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Abstract

Phase retrieval (PR) is a crucial problem in many imaging applications. This study
focuses on resolving the holographic phase retrieval problem in situations where
the measurements are affected by a combination of Poisson and Gaussian noise,
which commonly occurs in optical imaging systems. To address this problem,
we propose a new algorithm called “AWFS" that uses the accelerated Wirtinger
flow (AWF) with a score function as generative prior. We calculate the gradient
of the log-likelihood function for PR and provide an implementable estimate for
it. Additionally, we introduce a generative prior in our regularization framework
by using score matching to capture information about the gradient of image prior
distributions. The results of our simulation experiments on three different datasets
show the following. 1) By using the PG likelihood model, the proposed algo-
rithm improves reconstruction compared to algorithms based solely on Gaussian
or Poisson likelihood. 2) The proposed score-based image prior method leads
to improved reconstruction quality over the method based on denoising diffu-
sion probabilistic model (DDPM), as well as plug-and-play alternating direction
method of multipliers (PnP-ADMM) and regularization by denoising (RED).

1 Introduction

Poisson-Gaussian phase retrieval (PR) is a nonlinear inverse problem, where the goal is to recover
a signal from the (square of) magnitude-only measurements that are corrupted by both Poisson and
Gaussian noise [1]. The measured pattern is roughly proportional to the square of Fourier transform
magnitude of electric field associated with the illuminated objects [2, 3]. Recovering the structure
of the sample from its diffraction pattern is a nonlinear inverse problem known as holographic PR.
To solve this problem, maximum a posterior (MAP) estimation uses the following form:

x̂ = argmax
x∈RN

p(x|y, b̄,A, r) = argmin
x∈RN

g(x;A,y, b̄, r) + h(x),

where x denotes the latent image to recover, y is the recorded measurement vector, b̄ denotes the
mean of background measurements, and A ∈ CM×N denotes the corresponding system matrix in
holographic PR, where M denotes the number of measurements and N denotes the dimension of
x. The known reference image r provides additional information to reduce the ambiguity of x̂.
Following Bayes’ rule, we denote g(x) = − log p(y,A, r|x) and h(x) = − log p(x) as the data
fidelity term and the regularization term, respectively. In practical scenarios, the measurements y are
contaminated by both Poisson and Gaussian (PG) noise. Because the PG likelihood is complicated,
most previous works [4–34] approximate the noise by only a Gaussian or Poisson. The regularizer
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h(x) provides prior information about underlying object characteristics. Generative model-based
priors are commonly used for this regularizer [35, 36]. Recently, score-based diffusion models have
gained significant traction for image generation [37–40]. These models estimate the gradients of
data distribution and can be used as plug-and-play priors for inverse problems [41] such as image
deblurring and MRI and CT reconstruction [42–47].

2 Methods

Wirtinger Flow. We model the system matrix A by the (oversampled and scaled) discrete Fourier
transform applied to a concatenation of the sample x, a blank image (representing the holographic
separation condition [26]) and a known reference image r, so that y follows the Poisson plus Gaus-
sian distribution:

y ∼ N (Poisson
(
|A(x)|2 + b̄

)
, σ2I),A(x) ≜ αF{[x,0, r]}. (1)

Here σ2 denotes the variance of Gaussian noise, and α denotes a scaling factor (quantum efficiency,
conversion gain, etc.) after applying the Fourier transform. Therefore, the negative log-likelihood
can be derived through the convolution of the Gaussian and Poisson distributions using (1) to be
gPG(x) =

∑M
i=1 gi(x), where

gi(x) ≜ − log

 ∞∑
n=0

e−(|a
′
ix|

2+b̄i) ·
(
|a′

ix|2 + b̄i
)n

n!
· e

−
(

(yi−n)2√
2σ

)
√
2πσ2

 .

Here M denotes the length of y and a′
i denotes the ith row of A (since A is linear). We opt to use

WF for estimating x because it is commonly used in practice due to its simplicity and efficiency
[19]. The WF algorithm is based on the gradient:

∇gPG(x) = 2A′ diag{ϕi(|a′
ix|2 + bi; yi)}Ax, (2)

ϕ(u; v) ≜ 1− s(u, v − 1)

s(u, v)
, s(a, b) ≜

∞∑
n=0

an

n!
e
−
(

b−n√
2σ

)2

.

One can show that ∇gPG(x) is Lipschitz continuous so that a finite sum can be used to approximate
it.

Accelerated Wirtinger Flow with Score-based Image Prior. We followed the implementation of
[48] for the accelerated WF algorithm. Assuming we have a score function sθ(x,σ) that was trained
by score matching [37, 49]:

θ̂ = argmin
θ

K∑
k=1

Ex,x̃

[∥∥∥∥sθ(x, σk)−
x− x̃

σ2
k

∥∥∥∥2
2

]
,

where x ∼ p(x), x̃ ∼ x+N (0, σ2
kI). (3)

The gradient descent algorithm for MAP estimation (1) has the form: xt+1 = xt − µ(∇g(xt) +
sθ(xt, σk)). Algorithm 1 summarizes our proposed AWFS algorithm. In a similar fashion as
Langevin dynamics, we choose σk to be a descending scale of noise levels. The step size factor
β in Algorithm 1 can be selected empirically, but one can show that the Lipschitz constant of the
gradient ∇gPG(xt) + sθ(xt, σk) exists for any σk. Hence with sufficiently small step size β, the
inner sequence xt,k generated by Algorithm 1 will converge as t → ∞ to a critical point of the
posterior distribution pσk

(x|A,y, b̄, r) ∝ p(y|A,x, b̄, r)pσk
(x) [48].

3 Experiment

We tested the algorithms on datasets of histopathology images [50], celebrity faces [51], and CT-
density dataset. For comparison, we implemented unregularized Gaussian WF, Poisson WF and
Poisson-Gaussian WF, smoothed total variation (TV) based on the Huber function [52, p. 184] and
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Algorithm 1 Proposed accelerated WF with score-based image prior.

Require: Measurement y, system matrix A, momentum factor η0 = 1, step size factor β > 0,
weighting factor 0 < γ < 1, truncation operator PC(·) → [0, C]; initial image x0, initial auxiliary
variables z0 = w0 = v0 = x0, initialize σ1 > σ2 > · · · > σK ≥ 0.
for k = 1 : K do

for t = 1 : T do
Set step size µ = βσ2

k.
Set ∆zt,k =

ηt−1,k

ηt,k
(zt,k − xt,k).

Set ∆xt,k =
ηt−1,k−1

ηt,k
(xt,k − xt−1,k).

Set wt,k = PC (xt,k +∆zt,k +∆xt,k).
Compute sθ(xt,k, σk) and sθ(wt,k, σk).
Set zt+1,k = wt,k − µ (∇gPG(wt,k) + sθ(wt,k, σk)).
Set vt+1,k = xt,k − µ (∇gPG(xt,k) + sθ(xt,k, σk)).

Set ηt+1,k = 1
2

(
1 +

√
1 + 4η2t,k

)
.

Set xt+1,k = PC (γt,kzt+1,k + (1− γt,k)vt+1,k).
end for

end for
Return xT,K .

Ground truth

SSIM NRMSE

0

1

0

0.5

Poisson PG TV PnP-ADMM

RED-SD PnP-PGM DOLPH AWFS
(Proposed)

0.42 45.9% 0.46 41.0% 0.69 23.0% 0.69 26.4%

0.72 21.1% 0.68 23.6% 0.72 21.7% 0.80 20.5%

WFS

0.79 22.3%

Figure 1: Reconstructed images on histopathology dataset [50]. The bottom left/right subfigures
correspond to the zoomed in area and the error map for each image. α and σ were set to 0.035 and
1, respectively.

PnP/RED methods with the DnCNN denoiser [53]: PnP-ADMM [54], PnP-PGM [55], and RED-
SD [56]. We also implemented the RED-SD algorithm with “Noise2Self" zero-shot image denoising
network [57] (RED-SD-SELF). For diffusion models, we implemented DOLPH [58] and our pro-
posed AWFS.

Results. We compared all implemented algorithms by computing the normalized root mean square
error (NRMSE) and structural similarity index measure (SSIM). Due to the global phase ambiguity,
i.e., all the algorithms can recover the signal only to within a constant phase shift due to the loss of
global phase information, we corrected the phase of x̂ by x̂corrected ≜ sign(⟨x̂,xtrue⟩) x̂.

Fig. 1 visualizes reconstructed images on the histopathology dataset [50]. The WF with PG likeli-
hood outperforms WF with Poisson likelihood with a consistently higher SSIM and lower NRMSE.
Of the regularized algorithms with PG likelihood, our proposed AWFS had less visual noise and
achieved the best detail recovery. For quantitative evaluations, Table 1 shows that in all cases, usage
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Table 1: SSIM and NRMSE for Poisson and Poisson-Gaussian likelihoods. Results were averaged
across 7 different noise levels by varying α ∈ 0.02 : 0.005 : 0.035 in (1).

Likelihood Unregularized (SSIM/NRMSE) DOLPH (SSIM/NRMSE) AWFS (SSIM/NRMSE)
DataSet: Histopathology [50]

Poisson 0.54 ± 0.18 31.7 ± 10.2 0.72 ± 0.13 19.5 ± 6.1 0.83 ± 0.06 16.2 ± 3.7
Poisson-Gaussian 0.57 ± 0.18 28.9 ± 9.0 0.80 ± 0.06 16.0 ± 2.9 0.85 ± 0.05 15.4 ± 3.7

DataSet: CelebA [51]
Poisson 0.39 ± 0.10 24.5 ± 11.4 0.61 ± 0.12 15.6 ± 10.6 0.72 ± 0.16 15.2 ± 11.8

Poisson-Gaussian 0.42 ± 0.10 21.8 ± 9.1 0.71 ± 0.11 13.7 ± 11.1 0.74 ± 0.15 14.8 ± 11.9
DataSet: CT-Density

Poisson 0.19 ± 0.06 48.9 ± 13.1 0.38 ± 0.11 25.6 ± 7.5 0.84 ± 0.08 17.8 ± 4.3
Poisson-Gaussian 0.24 ± 0.06 40.8 ± 9.5 0.55 ± 0.08 20.0 ± 3.3 0.88 ± 0.05 16.4 ± 3.7

Table 2: SSIM and NRMSE using Poisson Gaussian likelihood with different regularization/image
prior approaches. Results were averaged across 7 different noise levels by varying α ∈ 0.02 :
0.005 : 0.035 in (1). WFS∗ runs the same number of iterations as AWFS whereas WFS† runs more
iterations until convergence.

Dataset Histopathology [50] CelebA [51] CT-Density
Methods SSIM NRMSE (%) SSIM NRMSE (%) SSIM NRMSE (%)

Unregularized 0.57 ± 0.18 28.9 ± 9.0 0.42 ± 0.10 21.8 ± 9.1 0.24 ± 0.06 40.8 ± 9.5
RED-SD-SELF [57] 0.66 ± 0.13 21.9 ± 4.5 0.60 ± 0.09 15.9 ± 10.6 0.34 ± 0.04 28.1 ± 4.1

PnP-ADMM [54] 0.71 ± 0.11 20.7 ± 4.2 0.56 ± 0.08 16.7 ± 8.1 0.55 ± 0.03 31.2 ± 2.7
TV regularizer 0.72 ± 0.11 18.2 ± 3.9 0.64 ± 0.07 14.4 ± 8.6 0.41 ± 0.03 23.7 ± 2.8
RED-SD [56] 0.76 ± 0.09 16.8 ± 3.6 0.69 ± 0.11 13.9 ± 10.9 0.38 ± 0.04 25.9 ± 4.0

PnP-PGM [55] 0.78 ± 0.11 16.5 ± 4.5 0.74 ± 0.14 13.5 ± 11.3 0.42 ± 0.07 24.6 ± 4.4
DOLPH [58] 0.80 ± 0.06 16.0 ± 2.9 0.71 ± 0.11 13.7 ± 11.1 0.55 ± 0.08 20.0 ± 3.3

WFS∗ 0.76 ± 0.12 18.2 ± 5.5 0.63 ± 0.16 16.9 ± 11.8 0.53 ± 0.17 21.3 ± 7.6
WFS† 0.83 ± 0.06 16.2 ± 4.0 0.70 ± 0.16 15.7 ± 11.8 0.74 ± 0.13 17.3 ± 4.8

AWFS (Proposed) 0.85 ± 0.05 15.4 ± 3.7 0.74 ± 0.15 14.8 ± 11.9 0.88 ± 0.05 16.4 ± 3.7

of the PG likelihood results in improved image quality in terms of both metrics. Table 2 consists
of experiments using the PG likelihood and shows that our AWFS had superior quantitative perfor-
mance over all other compared methods on the histopathology and CT-density datasets.

Conclusion. We proposed a novel algorithm based on Accelerated Wirtinger Flow and Score-
based image prior (AWFS) for Poisson-Gaussian holographic phase retrieval that uses more realistic
system and noise models. With evaluation on simulated experiments, we demonstrated that our
proposed AWFS algorithm had the best reconstruction quality both qualitatively and quantitatively
compared to other state-of-the-art methods. Therefore, our approach has much promise for transla-
tion in real-world applications encountering phase retrieval problems.
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