Poisson-Gaussian Holographic Phase Retrieval with Score-based Image Prior

Zongyu Li*, Jason Hu*, Xiaojian Xu, Liyue Shen, and Jeffrey A. Fessler
EECS Department
University of Michigan
zonyul,jashu,xjxu,liyues,fessler@umich.edu

Abstract

Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on resolving the holographic phase retrieval problem in situations where the measurements are affected by a combination of Poisson and Gaussian noise, which commonly occurs in optical imaging systems. To address this problem, we propose a new algorithm called “AWFS” that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior. We calculate the gradient of the log-likelihood function for PR and provide an implementable estimate for it. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. The results of our simulation experiments on three different datasets show the following. 1) By using the PG likelihood model, the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihood. 2) The proposed score-based image prior method leads to improved reconstruction quality over the method based on denoising diffusion probabilistic model (DDPM), as well as plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).

1 Introduction

Poisson-Gaussian phase retrieval (PR) is a nonlinear inverse problem, where the goal is to recover a signal from the (square of) magnitude-only measurements that are corrupted by both Poisson and Gaussian noise [1]. The measured pattern is roughly proportional to the square of Fourier transform magnitude of electric field associated with the illuminated objects [2, 3]. Recovering the structure of the sample from its diffraction pattern is a nonlinear inverse problem known as holographic PR. To solve this problem, maximum a posterior (MAP) estimation uses the following form:

\[
\hat{x} = \arg \max_{x \in \mathbb{R}^N} p(x|y, \bar{b}, A, r) = \arg \min_{x \in \mathbb{R}^N} g(x; A, y, \bar{b}, r) + h(x),
\]

where \(x\) denotes the latent image to recover, \(y\) is the recorded measurement vector, \(\bar{b}\) denotes the mean of background measurements, and \(A \in \mathbb{C}^{M \times N}\) denotes the corresponding system matrix in holographic PR, where \(M\) denotes the number of measurements and \(N\) denotes the dimension of \(x\). The known reference image \(r\) provides additional information to reduce the ambiguity of \(\hat{x}\). Following Bayes’ rule, we denote \(g(x) = -\log p(y, A, r|x)\) and \(h(x) = -\log p(x)\) as the data fidelity term and the regularization term, respectively. In practical scenarios, the measurements \(y\) are contaminated by both Poisson and Gaussian (PG) noise. Because the PG likelihood is complicated, most previous works [4–34] approximate the noise by only a Gaussian or Poisson. The regularizer

*Z. Li and J. Hu contributed equally to this work.

\(h(x) \) provides prior information about underlying object characteristics. Generative model-based priors are commonly used for this regularizer \([35, 36]\). Recently, score-based diffusion models have gained significant traction for image generation \([37–40]\). These models estimate the gradients of data distribution and can be used as plug-and-play priors for inverse problems \([41]\) such as image deblurring and MRI and CT reconstruction \([42–47]\).

2 Methods

Wirtinger Flow. We model the system matrix \(A \) by the (oversampled and scaled) discrete Fourier transform applied to a concatenation of the sample \(x \), a blank image (representing the holographic separation condition \([26]\)) and a known reference image \(r \), so that \(y \) follows the Poisson plus Gaussian distribution:

\[
y \sim \mathcal{N}(\text{Poisson} ([A(x)]^2 + b), \sigma^2 I), \ A(x) \triangleq \alpha \mathcal{F}\{ [x, 0, r] \}.
\]

(1)

Here \(\sigma^2 \) denotes the variance of Gaussian noise, and \(\alpha \) denotes a scaling factor (quantum efficiency, conversion gain, etc.) after applying the Fourier transform. Therefore, the negative log-likelihood can be derived through the convolution of the Gaussian and Poisson distributions using (1) to be \(g_{\text{PG}}(x) = \sum_{i=1}^{M} g_i(x) \), where

\[
g_i(x) \triangleq -\log \left(\sum_{n=0}^{\infty} \frac{e^{-\left(\sum_a a_i^n \cdot |x|^2 + b_i \right) \cdot n}}{n!} \cdot \frac{1}{\sqrt{2\pi \sigma^2}} \right).
\]

Here \(M \) denotes the length of \(y \) and \(a_i \) denotes the \(i \)th row of \(A \) (since \(A \) is linear). We opt to use WF for estimating \(x \) because it is commonly used in practice due to its simplicity and efficiency \([19]\). The WF algorithm is based on the gradient:

\[
\nabla g_{\text{PG}}(x) = 2A' \text{diag}\{\phi_i((a_i^t x)^2 + b_i; y_i)\} A x,
\]

(2)

\[
\phi(u; v) \triangleq 1 - s(u, v - 1), \ s(a, b) \triangleq \sum_{n=0}^{\infty} \frac{a^n}{n!} e^{-\frac{b}{\sqrt{2\pi \sigma^2}}}.
\]

One can show that \(\nabla g_{\text{PG}}(x) \) is Lipschitz continuous so that a finite sum can be used to approximate it.

Accelerated Wirtinger Flow with Score-based Image Prior. We followed the implementation of \([48]\) for the accelerated WF algorithm. Assuming we have a score function \(s_{\theta}(x, \sigma) \) that was trained by score matching \([37, 49]\):

\[
\hat{\theta} = \arg \min_{\theta} \sum_{k=1}^{K} \mathbb{E}_{x, \tilde{x}} \left[\left\| s_{\theta}(x, \sigma_k) - \frac{x - \tilde{x}}{\sigma_k^2} \right\|_2^2 \right],
\]

where \(x \sim p(x), \ \tilde{x} \sim x + \mathcal{N}(0, \sigma_k^2 I) \).

(3)

The gradient descent algorithm for MAP estimation (1) has the form: \(x_{t+1} = x_t - \mu(\nabla g(x_t) + s_{\theta}(x_t, \sigma_k)) \). Algorithm 1 summarizes our proposed AWFS algorithm. In a similar fashion as Langevin dynamics, we choose \(\sigma_k \) to be a descending scale of noise levels. The step size factor \(\beta \) in Algorithm 1 can be selected empirically, but one can show that the Lipschitz constant of the gradient \(\nabla g_{\text{PG}}(x_t) + s_{\theta}(x_t, \sigma_k) \) exists for any \(\sigma_k \). Hence with sufficiently small step size \(\beta \), the inner sequence \(x_{t,k} \) generated by Algorithm 1 will converge as \(t \to \infty \) to a critical point of the posterior distribution \(p_{\sigma_k}(x|A, y, b, r) \propto p(y|A, x, b, r)p_{\sigma_k}(x) \) \([48]\).

3 Experiment

We tested the algorithms on datasets of histopathology images \([50]\), celebrity faces \([51]\), and CT-density dataset. For comparison, we implemented unregularized Gaussian WF, Poisson WF and Poisson-Gaussian WF, smoothed total variation (TV) based on the Huber function \([52, \text{p. 184}] \) and
Algorithm 1 Proposed accelerated WF with score-based image prior.

Require: Measurement y, system matrix A, momentum factor $\eta_0 = 1$, step size factor $\beta > 0$, weighting factor $0 < \gamma < 1$, truncation operator $P_C(\cdot) \rightarrow [0, C]$; initial image x_0, initial auxiliary variables $z_0 = w_0 = v_0 = x_0$, initialize $\sigma_1 > \sigma_2 > \cdots > \sigma_K \geq 0$.

for $k = 1 : K$ do
 for $t = 1 : T$ do
 Set step size $\mu = \beta \sigma_k^2$.
 Set $\Delta z_{t,k} = \frac{\eta_{t,k} - 1}{\eta_{t,k}} (z_{t,k} - x_{t,k})$.
 Set $\Delta x_{t,k} = \frac{\eta_{t,k} - 1}{\eta_{t,k}} (x_{t,k} - x_{t-1,k})$.
 Set $w_{t,k} = P_C (x_{t,k} + \Delta z_{t,k} + \Delta x_{t,k})$.
 Compute $s_\theta(x_{t,k}, \sigma_k)$ and $s_\theta(w_{t,k}, \sigma_k)$.
 Set $z_{t+1,k} = w_{t,k} - \mu (\nabla g_{PG}(w_{t,k}) + s_\theta(w_{t,k}, \sigma_k))$.
 Set $v_{t+1,k} = x_{t,k} - \mu (\nabla g_{PG}(x_{t,k}) + s_\theta(x_{t,k}, \sigma_k))$.
 Set $\eta_{t+1,k} = \frac{1}{2} \left(1 + \sqrt{1 + 4 \eta_{t,k}^2} \right)$.
 Set $x_{t+1,k} = P_C (\gamma_{t,k} z_{t+1,k} + (1 - \gamma_{t,k}) v_{t+1,k})$.
 end for
end for
Return $x_{T,K}$.

Figure 1: Reconstructed images on histopathology dataset [50]. The bottom left/right subfigures correspond to the zoomed in area and the error map for each image. α and σ were set to 0.035 and 1, respectively.

PnP/RED methods with the DnCNN denoiser [53]: PnP-ADMM [54], PnP-PGM [55], and RED-SD [56]. We also implemented the RED-SD algorithm with “Noise2Self” zero-shot image denoising network [57] (RED-SD-SELF). For diffusion models, we implemented DOLPH [58] and our proposed AWFS.

Results. We compared all implemented algorithms by computing the normalized root mean square error (NRMSE) and structural similarity index measure (SSIM). Due to the global phase ambiguity, i.e., all the algorithms can recover the signal only to within a constant phase shift due to the loss of global phase information, we corrected the phase of \hat{x} by $\hat{x}_{\text{corrected}} = \text{sign}(\langle \hat{x}, x_{\text{true}} \rangle) \hat{x}$.

Fig. 1 visualizes reconstructed images on the histopathology dataset [50]. The WF with PG likelihood outperforms WF with Poisson likelihood with a consistently higher SSIM and lower NRMSE. Of the regularized algorithms with PG likelihood, our proposed AWFS had less visual noise and achieved the best detail recovery. For quantitative evaluations, Table 1 shows that in all cases, usage
We proposed a novel algorithm based on accelerated Wirtinger Flow and Score-based image prior (AWFS) for Poisson-Gaussian holographic phase retrieval that uses more realistic system and noise models. With evaluation on simulated experiments, we demonstrated that our proposed AWFS algorithm had the best reconstruction quality both qualitatively and quantitatively compared to other state-of-the-art methods. Therefore, our approach has much promise for translation in real-world applications encountering phase retrieval problems.

References

