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Abstract

Pre-trained language models (PLMs) like001
BERT have made significant progress in var-002
ious downstream NLP tasks. However, by ask-003
ing models to do cloze-style tests, recent work004
finds that PLMs are short in acquiring knowl-005
edge from the unstructured text. To understand006
the internal behavior of PLMs in retrieving007
knowledge, we first define knowledge-baring008
(K-B) tokens and knowledge-free (K-F) tokens009
for unstructured text and ask professional an-010
notators to manually label some sample. Then,011
we find that PLMs are more likely to give012
wrong predictions on K-B tokens and attend013
less attention to those tokens inside the self-014
attention module. Based on these observations,015
we develop two solutions to help the model016
learn more knowledge from the unstructured017
text in a fully self-supervised manner. Exper-018
iments on knowledge probing tasks show the019
effectiveness of the proposed methods. To our020
best knowledge, we are the first to explore021
fully self-supervised learning of knowledge in022
continue pre-training. 1023

1 Introduction024

Pre-trained language models (PLMs), such as025

BERT (Devlin et al., 2019) and GPT (Radford et al.,026

2018), have greatly improved the performance of027

many NLP tasks in the past few years. Pre-training028

has been regarded as a promising way for acquiring029

common knowledge from unstructured plain text.030

However, how to learn more knowledge for PLMs031

is still an unsolved problem (Petroni et al., 2019),032

especially in those tasks which need explicit usage033

of knowledge. There are mainly two common ways034

to enhance the PLMs with more knowledge. One035

is to introduce structured knowledge bases (Zhang036

et al., 2019; Wang et al., 2021b) while the other is037

using unstructured text. Compared with structured038

knowledge bases, unstructured text is easier to ac-039

quire and construct. In addition, with freer format,040

1The codes and data will be released upon acceptance.

The chemist Gay-Lussac discovered that in
water hydrogen was present in twice the

amount of oxygen.

Knowledge-baring Tokens; Knowledge-free Tokens

Figure 1: Examples of knowledge-baring (K-B) tokens
and knowledge-free (K-F) tokens.

Figure 2: The RoBERTa’s behavior on probing sam-
ples: (a) the model performs worse on knowledge-
baring tokens than on knowledge-free tokens; (b)
knowledge-baring tokens are likely to receive less at-
tention in the self-attention process.

the unstructured text can express better complex 041

knowledge. 042

We focus on enhancing the ability of PLMs in 043

acquiring knowledge from the unstructured text. 044

First of all, we explore which tokens in the text 045

embodies factual knowledge in a more fine-grained 046

manner (i.e., token-level). This not only help us bet- 047

ter understand the model’s behavior of memorizing 048

and utilizing knowledge, but also motivates us to 049

design methods for better acquiring knowledge. In 050

particular, for a piece of text, the tokens which are 051

essential for human to understand the text’s factual 052

knowledge are considered as knowledge-baring; 053

otherwise, they are knowledge-free. The example 054

is presented at Figure 1. 055

We analyze the relationship between behaviors 056

of PLMs and knowledge by manually annotating 057

whether each token in samples is knowledge-baring. 058

As shown in Figure 2 (a), we find that PLMs per- 059
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form worse on knowledge-baring tokens in the060

Cloze-style test. In addition, shown in Figure 2061

(b), the transformer-based model is likely to gain062

less attention on knowledge-baring tokens.063

Intuitively, for better acquiring knowledge064

from unstructured text, the model is expected to065

mask-recover more knowledge-baring words when066

trained on unstructured text and get less influence067

from knowledge-free words. To this end, based068

on our observation, we propose two solutions at069

the mask policy and attention levels of the PLM:070

(1) In the mask policy, we have two methods. The071

first method is to perform random masking on the072

training corpus before each training iteration and073

find out which masks the model fails to predict074

correctly. These incorrectly predicted tokens are re-075

garded as knowledge-baring tokens for masking in076

this training iteration. The second is that we feed-077

forward on the training data before each training078

iteration and use the attention to determine which079

tokens are more likely to be knowledge-baring for080

masking. (2) At the attention level, we adopt the081

visibility matrix to avoid knowledge-free tokens082

from affecting other tokens during self-attention.083

Extensive experiments are conducted on three084

tasks. Specifically, to check whether the model085

has learned the knowledge from unstructured text,086

we let the model perform on the LAMA Probing087

task, a standard cloze-style test. To test whether088

the model can utilize the learned knowledge, we089

also introduce two probing task, namely QA-style090

Probing and Knowledge Graph Style (KG-style)091

Probing. Note that there is no labelled data for092

finetuning for the three tasks, they are only used093

for probing how much knowledge the model has094

learned from the unstructured text. Besides, the095

training corpus contains all needed knowledge of096

evaluation and testing. The test examples of three097

tasks are presented in Table 4. Experiments on the098

three tasks show the effectiveness of the proposed099

methods, achieving up to 6.1 and 5.5 points abso-100

lute improvement in LAMA Probing task on two101

datasets, up to 6.7 points absolute improvement102

in QA-style Probing task and 2.6 points absolute103

improvement in the KG-style probing task.104

To our knowledge, we are the first to explore the105

relationship between PLMs’ behavior and knowl-106

edge in the token-level and the first to research107

on fully self-supervised learning of knowledge in108

continue pre-training.109

2 Probing the Behavior of PLMs in 110

Retrieving Knowledge 111

To better probing how the PLMs learn knowledge 112

from the unstructured text, we start to identify the 113

type and role of each word. Inspired by knowledge 114

graphs as well as our observations, we find that 115

knowledge in a sentence is largely embodied by 116

a few keywords. For the remaining words, even 117

if they are deleted, we can still receive the factual 118

knowledge the sentence conveys. 119

• knowledge-baring: For a given text, if the 120

deletion of one token will make it relatively 121

hard for humans to obtain the factual knowl- 122

edge contained in the text correctly, we take 123

the token as knowledge-baring; 124

• knowledge-free: For a given text, if the dele- 125

tion of one token still allows humans rela- 126

tively easy to obtain the factual knowledge 127

contained in the text correctly, we take the 128

token as knowledge-free. 129

The example is shown in Figure 1. Note that, 130

Knowledge-Free tokens are not totally free of 131

knowledge, they certainly have some kind knowl- 132

edge, such as linguistic knowledge and semantic 133

knowledge. They are just relatively less important 134

to the factual knowledge, which we put emphasis 135

on in this work. 136

We randomly sample 100 cases from the LAMA 137

SQuAD dataset and LAMA Google RE dataset 138

(Petroni et al., 2019), respectively and then use 139

the tokenizer of RoBERTa to tokenize each sen- 140

tence. We ask three annotators, who are all Ph.D. 141

students, manually label each token as knowledge- 142

baring and knowledge-free. The inter-annotator 143

agreement for samples of LAMA SQuAD/LAMA 144

Google RE is 0.920/0.938, respectively. The statis- 145

tic of labelled tokens is shown in Table 1. 146

We also use the Stanford CoreNLP toolkit 147

(Manning et al., 2014) to conduct part-of- 148

speech tagging analysis on those samples. We 149

find that the most knowledge-baring tokens are 150

nouns(64.2%), verbs(11.6%), numbers(9.2%) and 151

adjective words(6.5%) while most knowledge-free 152

tokens are preposition or subordinating conjunc- 153

tions(25.1%), comma and punctuation(23.6%), de- 154

terminers(15.2%) and verbs(11.7%) for the two 155

set of samples. We also put the detailed results in 156

the Appendix Table 10. From the results, we can 157

see that we do not limit the scope of knowledge 158
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number of
Knowledge-Baring Tokens

number of
Knowledge-Free tokens

LAMA SQuAD 739 532

LAMA Google RE 1715 975

Table 1: The number of tokens that are knowledge-
baring and knowledge-free we have labelled for the
samples of the two dataset.

to entities or nouns, we expand it to nouns, verbs,159

numbers, adjective words and so on.160

To better understand the model’s behavior on161

comprehending knowledge, we mainly explore two162

questions: (1) Does the model perform better on163

knowledge-baring contents or knowledge-free con-164

tents? (2) Can the model’s attention scores reveal165

its association with knowledge?166

2.1 Accuracy on Knowledge-Baring and167

Knowledge-Free Tokens168

To investigate the first question, we first mask each169

token of the sentences in both datasets. For exam-170

ple, if one sentence contains 10 separate tokens,171

we derive 10 sentences with “<mask>” on each172

token after processing this sentence. If one word is173

tokenized to several tokens, we mask those tokens174

together. The detail is shown in the Table 8 (a) in175

Appendix. Then, we ask the model to predict the176

mask(s) of processed sentences.177

To better understand the influence of pre-training178

on model learning knowledge, we use the original179

PLM as well as the continued pre-trained model180

to predict on the processed sentences. For contin-181

ued pre-training, we first find the Wikipedia snip-182

pets where the sentences are from and then train183

the model using the pre-training objective with the184

snippets for 100 iterations.185

The performances of RoBERTa and continued186

pre-trained RoBERTa on two types of tokens on187

two datasets are presented in Table 2. From the188

result, we find that the model performs much worse189

on knowledge-baring tokens than on knowledge-190

free tokens, which is 14.9% to 55.1% on SQuAD191

and 38.6% to 83.4% on Google RE. Even if the192

model is continued pre-trained, the accuracy of193

knowledge-baring tokens is still lower than that of194

K-F tokens, which is 39.2% to 82.8% on SQuAD195

and 67.2% to 93.5% on Google RE. The results196

show that it is more difficult for models to learn197

factual knowledge from the unstructured text than198

non-knowledge.199

Knowledge-Baring Knowledge-Free

RoBERTa-Orig 14.9% 55.1%

RoBERTa-Cont 39.2% 82.8%

(a) On the LAMA SQuAD Samples.

Knowledge-Baring Knowledge-Frees

RoBERTa-Orig 38.6% 83.4%

RoBERTa-Cont 67.2% 93.5%

(b) On the LAMA Google RE samples.

Table 2: The probing accuracy on two types of tokens
for original model (RoBERTa-Orig) and continued pre-
trained model (RoBERTa-Cont) along with the original
pre-training mask policy. Both models perform worse
on knowledge-baring tokens.

2.2 Attention on Knowledge-Baring and 200

Knowledge-Free Tokens 201

For the second question, we feed-forward the 202

model on the sentences without masking them. For 203

each token, we calculate the sum of all tokens’ re- 204

ceived attention weights and sum up for all layers 205

and heads. The received attention (RcAtt) weight 206

of token t in the model is 207

RcAttt =
L∑
i=1

H∑
j=1

N∑
k=1

attijkt (1) 208

where L is the layer number, H is the head number 209

andN is the token number; attijkt means in layeri 210

headj , the attention score tokenk to tokent. 211

We sort all the tokens by their RcAtt scores for 212

each sentence and divided them into 10 percent 213

segments. Next, we calculate the proportion of 214

knowledge-baring tokens in each segment. Same as 215

the previous question, we not only use the original 216

PLM to predict, but also test the continued pre- 217

trained model. 218

The results are presented in Table 3. We can 219

see that the attention scores strongly correlate with 220

whether the tokens are knowledge-baring. The K- 221

B tokens are more likely to receive less attention, 222

while the K-F tokens are more likely to receive 223

more attention. When the model is continued pre- 224

trained, this phenomenon still exists but at a slightly 225

reduced level. 226

Conclusions. Based on the above two probing 227

experiments, we can conclude that: (1) The PLMs 228

perform worse on knowledge-baring words (i.e., 229

with higher prediction error); (2) The knowledge- 230

baring words are more likely to receive less atten- 231

tion than knowledge-free ones. 232
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0∼10% 10∼20% 20∼30% 30∼40% 40∼50% 50∼60% 60∼70% 70∼80% 80∼90% 90∼100% Corr*

Original RoBERTa 85.7% 78.9% 72.3% 69.3% 58.1% 50.6% 46.4% 22.4% 5.5% 0.5% -1.0

RoBERTa-Cont 75.1% 72.8% 64.9% 65.0% 57.4% 53.3% 53.9% 40.7% 9.4% 0.5% -0.98

(a) On LAMA SQuAD samples

0∼10% 10∼20% 20∼30% 30∼40% 40∼50% 50∼60% 60∼70% 70∼80% 80∼90% 90∼100% Corr*

Original RoBERTa 97.6% 92.2% 84.7% 75.4% 70.9% 59.1% 53.2% 42.9% 10.6% 4.9% -1.0

RoBERTa-Cont 81.7% 77.6% 77.3% 75.8% 68.9% 63.4% 61.9% 50.2% 38.1% 5.8% -1.0

(b) On LAMA Google RE samples

Table 3: The relationship between knowledge-baring proportion (in red) and the level of receiving attention (the
first row). The head X-Y% indicates those tokens rank in bottom X-Y% on attention receiving, for example, 0-
10% means those tokens receive least attention. The cell with red color is the K-B proportion of those tokens.
RoBERTa-Cont is the continued pre-trained RoBERTa. The last column is the the Spearman’s rank correlation
coefficient between the level of receiving attention and K-B proportion. We can see that tokens receiving more
attention are less likely to be K-B.

3 Methods233

In this section, we propose two methods based on234

the conclusion of the above probing experiments,235

making the PLMs learn more knowledge from un-236

structured text.237

3.1 Backbone Model238

We choose the RoBERTa (Liu et al., 2019) model as239

our baseline model. Moreover, we choose the origi-240

nal pre-training objective of RoBERTa as our base-241

line. The RoBERTa model is built on the encoder242

of the Transformer model(Vaswani et al., 2017).243

For each layer of RoBERTa, it consists of a multi-244

head self-attention layer and a position-wise feed-245

forward network. For ith layer, the self-attention246

output of jth head is247

Aj = softmax(
QjK

T
j√

dk
)Vj (2)248

where dk is the dimension of Q,K, V vectors.249

3.2 Mask Policy250

Initially, RoBERTa randomly chooses tokens from251

the input text to mask. However, recent work252

(Wang et al., 2021a) shows that it is inefficient to253

memorize knowledge. Therefore, we aim to enable254

the model to focus on learning knowledge-baring255

content. Because we do not provide any label in-256

formation to the model during training, the model257

needs to find the K-B tokens from the input text258

without any supervision.259

From the Section 2, we find that the K-B tokens260

are related to whether the model can accurately261

predict the token and attention weight the token262

receive. Hence we provide two corresponding se- 263

lective mask policies for the model to find and mask 264

the K-B tokens. Note that, the two selective mask 265

policies are mutually exclusive, so we compare 266

their performance rather than combine them. 267

RoBERTa-Sel-I. Since the model performs 268

much worse on knowledge-baring tokens than on 269

knowledge-free tokens, we can use this feature to 270

find out K-B tokens from the unstructured text. 271

Before each training iteration, we randomly mask 272

some tokens of the training text and predict on 273

the masks, then we Select out tokens that are 274

Inaccurately predicted and treat them as K-B to- 275

kens. Besides finding K-B tokens, this policy also 276

helps the model to avoid learning those tokens 277

which it has already learned previously. 278

RoBERTa-Sel-A. As the knowledge-baring to- 279

kens are more likely to receive less attention, we 280

can make use of the attention score each token re- 281

ceives. Before each training iteration, we let the 282

model forward on the non-masked training text, and 283

then we calculate each token’s attention weights, 284

which is the same as Eq 1. Next, we Select out the 285

tokens that get the least Attention and treat them as 286

K-B tokens. 287

After finding knowledge-baring tokens, we first 288

randomly mask them and then randomly choose to 289

mask all remaining tokens. For example, we set 290

the first-phase mask language modelling (MLM) 291

probability as 15%, and second-phase MLM proba- 292

bility as 10%, if the text has 100 tokens and we find 293

20 K-B tokens using one of our methods, we first 294

mask 100×15%=15 tokens from the K-B tokens 295

and then mask 100×10%=10 tokens from the left 296

85 tokens. The two-phase masks will be combined 297
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Canarian

<s>

</s>

Islands
are

located
off
the
coast
of

Africa
.

Figure 3: The illustration of the visibility matrix. The
orange square means the left token can see the top to-
ken while the gray square means it cannot. In this ex-
ample, the token “are” and “the” are invisible to other
tokens.

for pre-training.298

Salient Span Mask (SSM) (Guu et al., 2020)299

uses a trained NER tagger and a regular expres-300

sion to identify named entities and date from the301

raw corpus. These salient spans are selected and302

masked within a sentence for pre-training. We also303

conduct the SSM experiments on our dataset as a304

comparison. But note that the SSM policy is not305

fully self-supervised because it requires external306

labelled data to train a NER tagger and prior knowl-307

edge to design the expression while our methods308

are free of any external information and only relied309

on models themselves.310

3.3 Visibility Matrix311

In addition to making the model pay more atten-312

tion to K-B tokens during the continue pre-training,313

we also consider making the model pay less at-314

tention to knowledge-free tokens. To achieve this315

goal, we adopt the concept of visibility matrix from316

Dong et al. (2019) and Bao et al. (2020). Using the317

visibility matrix, we expect those tokens that harm318

knowledge memorization cannot influence other319

tokens.320

Figure 3 is the illustration of the visibility matrix.321

During the self-attention process, if token q can322

attend to token p, in other words, the hidden state323

of token q can be influenced by the hidden state324

of token p, we consider token q is visible to token325

p, otherwise, it is invisible. After adding visibility326

matrix mechanism to self-attention module, the327

self-attention output of i layer and j head in Eq 2328

Algorithm 1 Detecting “harmful” tokens.
Special Dataset Construction:
(1) Forward RoBERTa on the training data
(2) Select the tokens which receive the least 10% attentions

(3) ask the whole words which contain those tokens from
the training corpus.
(4) The masked train set is served as the special dataset.
Initialization:
(1) Set a positive real number threshold τ .
(2) Tokenize the special validation data, collect all tokenized
tokens that appear more than τ times to a set T .
(4) Add special tokens “<s>”, “</s>”, “<pad>” and
“<mask>” to the set T .
(5) Initialize the set Tn as empty.
(5) Evaluate the model accuracy ACC0 on the special
dataset.
for token t in set T do

(1) Make t invisible to other tokens
(2) Evaluate the model accuracy ACC on the special
dataset.
if ACC > ACC0 then

Add t to Tn.
end if

end for
return Tn

is changed to 329

Aj = softmax(
QjK

T
j√

dk
+M∗)Vj (3) 330

where M∗ ∈ Rn×n, M∗
pq = −∞ if token q is visi- 331

ble to token p and M∗
pq = 0 if token q is invisible 332

to token p. 333

By conducting pilot experiments on making man- 334

ually chosen irrelevant tokens invisible by other 335

tokens, we find it effective to boost performance 336

on the three tasks. So, we continue to design an 337

algorithm to find the tokens that may harm the per- 338

formance. Since the training data does not have 339

any label, we construct a special dataset from the 340

training data to find the “harmful” tokens. The al- 341

gorithm is presented in Algorithm 1. For each time, 342

we make one token invisible, and check whether it 343

will help the evaluation performance on the special 344

dataset. 345

4 Tasks 346

Note that, there are three main differences between 347

the proposed visibility matrix and the mask ma- 348

trix used in recent works (Dong et al., 2019; Bao 349

et al., 2020): 1) The visibility matrix is indepen- 350

dent on input masks while mask matrix only make 351

the masked tokens invisible; 2) We have designed 352

an automated algorithm to search invisible tokens 353

rather than by random masking; 3) The invisible 354
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LAMA Probing

Train Text: ... Kenya ranks low on Transparency International’s Corruption Perception Index (CPI), a metric which attempts to
gauge the prevalence of public sector corruption in various countries. ...
Test Query: On the CPI scale, Kenya ranks <mask>. Test Answer: low

QA-style Probing

Train Text: ... The capital of the Ottoman empire was Istanbul....
Test Query: What was the capital of the Ottoman empire? <mask> Test Answer: Istanbul

KG-style Probing

Train Text: Shlomo Shriki, Israeli painter and artist, born in Morocco (1949), grew up and was educated in Kibbutz Yifat.
Test Query: Shlomo Shriki, place of birth, <mask> Test Answer: Morocco

Table 4: Examples of three tasks. The training text are all unstructured text and label-free. In validation/test, the
model need to predict on the <mask> token.

Training
Passages

Validation
Queries

Testing
Queries

LAMA Probing
(LAMA SQuAD) 271 152 152

LAMA Probing
(LAMA Google RE) 5516 2758 2758

QA-style Probing 271 152 152

KG-style Probing 5516 2206 2205

Table 5: The statistics of three tasks (four datasets).

tokens can still see themselves while the tokens in355

mask matrix cannot.356

We adopt three tasks to evaluate the usage of357

knowledge from the unstructured text in this work:358

LAMA probing, QA-style Probing, and Knowledge359

Graph (KG) Reasoning. The examples of the three360

tasks are presented in Table 4. These tasks are361

slightly different from the ordinal machine learning362

tasks, as the training data and evaluation/test data363

have different formats.364

We use the LAnguage Model Analysis Probing365

(Petroni et al., 2019) task to directly evaluate how366

much knowledge can PLM obtain from unstruc-367

tured text. For each example, the training case con-368

tains a passage and the validation/test case contains369

a cloze-style query and answer pair. The model370

needs to learn knowledge from training passages371

and use the knowledge to fill the “<mask>” tokens372

in the validation/test cloze-style sentences.373

We use the QA-style Probing task and the Knowl-374

edge Graph style (KG-style) Probing task to testify375

whether the PLM can utilize its learned knowledge376

in downstream tasks.377

For each sample in the QA-style Probing task,378

the training case contains a sentence, while the379

validation/test case contains a cloze-style QA pair,380

whose question has one or several “<mask>” to-381

kens after the “?”. The needed knowledge of valida-382

tion/test questions is in the training sentences. The383

model needs to learn knowledge from training sen- 384

tences and use the knowledge to fill the “<mask>” 385

tokens in the validation/test cloze-style questions. 386

For each sample in the KG-style Probing task, the 387

training case contains a sentence, while the valida- 388

tion/test case contains a cloze-style triple, whose 389

object is replaced with one or several “<mask>” 390

tokens. The needed knowledge of validation/test 391

triples is in the training sentences. The model needs 392

to learn knowledge from training sentences and 393

use the knowledge to fill the “<mask>” tokens in 394

the validation/test cloze-style triples. To make the 395

model adapt to the cloze-style triples answer, for 396

20% training sentences, we add the corresponding 397

triple at the end of each sentence and remove the 398

triple from the validation/test set. 399

Data. The task data originate from public re- 400

leased datasets. For the LAMA SQuAD dataset, 401

we link the probes to SQuAD1.1 dataset (Rajpurkar 402

et al., 2016) and find the related questions and pas- 403

sages of each case. Then we use the passages as 404

training data and probes as the validation/test data 405

to construct the dataset for LAMA Probing task. 406

Moreover, we use the recovered probing sentences 407

as the training data and the questions concatenated 408

with “<mask>” as the validation/testing data for the 409

QA-style Probing task. For the LAMA Google RE 410

dataset, we use the snippet of each case as training 411

data and probe sentences as the validation/test data 412

for the LAMA Probing task. Furthermore, we use 413

passages as the training data and use the <subject, 414

relation, object> triples as the validation/test data 415

for the KG-style Probing task. 416

Note that, for the three tasks, all needed knowl- 417

edge of validation and test questions can be directly 418

extracted from the training set. 419

For each task and dataset, we use Algorithm 1 420

to find “harmful” tokens automatically. In prac- 421

tice, we use the original RoBERTa-large model or 422
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the continued pre-trained RoBERTa-large model423

to evaluate. After finding those tokens, we make424

them invisible to all other tokens during training,425

validation and testing periods. An example of the426

processed visibility matrix is shown in Figure 3.427

5 Experiments428

Settings. We adopt the RoBERTa-large model as429

our base model, and conduct continued pre-training430

on it. We follow most of the traditional pre-training431

hyper-parameters of RoBERTa (Liu et al., 2019),432

such as training batch size, optimization method433

and model configurations. However, some spe-434

cific parameters are modified when applying our435

methods. We present needed hyper-parameters at436

Section A in the Appendix.437

5.1 Overall Results438

Table 6 shows the results on three tasks. Specifi-439

cally, the LAMA probing task is used to explicitly440

evaluate how much knowledge is stored from the441

unstructured text. Moreover, the QA-style Probing442

and the KG-style Probing tasks are used to explic-443

itly validate the model’s ability in making use of444

knowledge on the other formats.445

Firstly, we investigate the masking policy (Sec-446

tion 3.2) in continued pre-training. It can be447

found that our proposed two selective mask policies448

(RoBERTa-Sel-I and RoBERTa-Sel-A) outperform449

the original random mask policy (RoBERTa-Cont),450

obtaining up to 6.1/5.1, 6.5 and 1.4 absolute im-451

provement on three tasks, respectively. It indicates452

that our methods can enhance the RoBERTa with453

more domain specific knowledge in the continued454

pre-training process.455

Furthermore, we find that model trained with Vis-456

ibility Matrix (VM) mechanism (Section 3.3) can457

substantially achieve better accuracy. For example,458

RoBERTa-Cont-VM outperforms RoBERTa-Cont459

by 4.9/4.4, 5.5 and 1.7 absolute gains on three tasks,460

respectively. Since RoBERTa-Sel-I is superior to461

RoBERTa-Sel-A on two tasks and three datasets,462

we further only present the results of RoBERTa-Sel-463

I combined with the Visibility Matrix mechanism.464

The combination of selective mask policy Sel-I and465

visibility matrix (RoBERTa-Sel-I-VM) performs466

best in the LAMA Google RE, QA-style Probing467

and KG-style Probing.468

Finally, we observe that at the same continued469

pre-training iterations, our models generally give470

higher accuracy than RoBERTa-Cont on all tasks,471

showing that our methods can also benefit in the ef- 472

ficiency of learning knowledge. In addition, though 473

SSM introduces external tools (a trained NER tag- 474

ger) and prior knowledge (expression to identify 475

dates), our methods performs better than it. It 476

is mainly because SSM only mask entities while 477

leaves other kinds of tokens, which are also impor- 478

tant for knowledge probing in the two task. SSM 479

outperforms our methods on KG-style Probing, it 480

is natural since KG-style Probing queries contain 481

only entities and relations. 482

5.2 On Knowledge-Baring Tokens 483

We also evaluate the continued pre-training on K-B 484

tokens to see whether the improvement comes from 485

the model’s better understanding of K-B tokens. 486

The evaluation data statistic is shown in Table 8 (a) 487

in Appendix. 488

The results are presented in Table 7. From this 489

table, we can see that our methods can help model 490

better comprehend K-B tokens, showing that the 491

overall better results in Table 6 comes models’ com- 492

prehension of K-B tokens. 493

5.3 Discovery on Invisible Tokens 494

We find that the three tokens “<s>”, “</s>” and “.” 495

receiving much attention, consistently ranking on 496

the top 20% in one piece of text. However, if we 497

make one or more of them invisible to other tokens, 498

the performance on the three tasks will decrease by 499

at least 5 points. Though they cannot be viewed as 500

knowledge-baring tokens, they are still crucial for 501

knowledge learning. We hypothesize they can store 502

the general knowledge information of the text. 503

6 Related Work 504

Continue Pre-training of PLMs. Gururangan 505

et al. (2020) reveals that continued pre-training on 506

specific domains will contribute to the performance 507

in downstream tasks within the same domains, and 508

continued pre-training on some task’s input data 509

will also boost the performance on those datasets. 510

Guu et al. (2020) proposed Salient span masking 511

(SSM) which is using a NER tagger and rules to 512

detect named entities and date, then they mask at 513

least one salient span each time when pretraining. 514

On the contrary, we do not introduce any exter- 515

nal information or prior knowledge to determine 516

masks. Gu et al. (2020) first uses the training pairs 517

of downstream tasks to help continue-pretrain a 518

PLM. They find which tokens deleted from the 519

7



LAMA SQuAD LAMA Google RE QA-style Probing KG-style Probing

RoBERTa-Orig 16.4 24.6 0.0 2.6
RoBERTa-Cont 33.6 (+0.0) 58.4 (+0.0) 37.9 (+0.0) 28.1 (+0.0)

RoBERTa-SSM 37.5 (+3.9) 62.6 (+4.2) 42.7 (+4.8) 31.2 (+3.1)

RoBERTa-Sel-A 35.9 (+2.3) 62.4 (+4.0) 44.4 (+6.5) 27.7 (-0.4)
RoBERTa-Sel-I 39.7 (+6.1) 63.5 (+5.1) 43.6 (+5.7) 29.5 (+1.4)

RoBERTa-Cont-VM 38.5 (+4.9) 62.8 (+4.4) 43.4 (+5.5) 29.6 (+1.7)
RoBERTa-Sel-I-VM 37.2 (+3.6) 63.9 (+5.5) 44.8 (+6.7) 30.7 (+2.6)

Table 6: The accuracy on three knowledge intensive tasks. The first block denotes the results of original and
continued pre-trained RoBERTa. The second and third blocks show the performance of improved models in terms
of Selective mask policy (Section 3.2) and Visibility Matrix (Section 3.3). The numbers in brackets show the
absolute improvements compared to the continued pre-trained RoBERTa.

LAMA-SQuAD LAMA-Google RE

RoBERTa-Orig 13.9% 38.6%
RoBERTa-Cont 38.4% 67.2%

RoBERTa-Sel-A 41.8% 71.4%
RoBERTa-Sel-I 42.6% 71.6%

RoBERTa-Cont-VM 41.9% 71.0%

Table 7: The probing results on the annotated
knowledge-baring tokens.

input of task’s training data will influence the con-520

fidence of prediction of the finetuned model, and521

they focus on masking those tokens when continue522

pre-training. Ye et al. (2021) proposed a two-loop523

meta-learned policy in continue pre-training BART524

for Closed-book QA Tasks, Knowledge-Intensive525

Tasks (Petroni et al., 2021) and abstractive sum-526

marization. They first continue pretrain the BART527

with a passage and second train it with a (q,a) pair,528

then they use the validation loss on the pair to up-529

date the parameters of mask policies. There are two530

main differences between our work and the above531

two works. First, their works use labelled datasets532

to help continue pre-training, while our work does533

not use any labelled data. Second, they conduct534

continue pre-training for specific tasks, such as535

Closed-book QA and sentiment analysis, we aims536

for general knowledge learning and directly test537

how much knowledge the model has learned, not538

for specific downstream tasks.539

Knowledge Probing in PLMs. LAMA (LAn-540

guage Model Analysis) probe (Petroni et al., 2019)541

first uses the Cloze-style test to evaluate how much542

knowledge in the PLMs, they manually transfer543

some questions of SQuAD (Rajpurkar et al., 2016)544

and some triples of Google RE, T-REx (Elsahar545

et al., 2018) and ConceptNet (Liu and Singh, 2004)546

to Cloze-style prompts. In this work, we create two547

variants x on LAMA probing and use the LAMA 548

probing test and the variants to evaluate how much 549

knowledge the model has learned from the unstruc- 550

tured text. 551

Despite increasing research in knowledge and 552

PLMs, relatively less work associate knowledge 553

from text with testing questions. Roberts et al. 554

(2020) and Fedus et al. (2021) use a set of 555

query&answer (QA) pairs to finetune the model 556

and use another set of QA pairs to test it, which 557

have no explicit correlation with pre-training data. 558

We cannot exactly know whether the model learn 559

from the training data or just solve questions by 560

overlap between the finetuning data and test data 561

(Lewis et al., 2021) or simply by spurious cues 562

(Niven and Kao, 2019). In contrast, we impose re- 563

strictions on the continued pre-training data and the 564

test questions as well as get rid of finetuning pro- 565

cess to ensure the model can only acquire needed 566

knowledge from the training data. 567

7 Conclusion 568

We probe the behavior of the pre-trained lan- 569

guage models on the unstructured text about the 570

knowledge-baring and knowledge-free tokens, by 571

asking those models to do the cloze-style test on 572

our annotated data. We find that: (1) The model per- 573

forms worse on K-B tokens; (2) The model gathers 574

less attention on K-B tokens. To enable the model 575

to better acquire knowledge from the unstructured 576

text, we consider two selective mask policies and 577

adopt the visibility matrix mechanism to help the 578

model focus on K-B tokens when learning from 579

the unstructured text. To our knowledge, we are 580

the first to explore fully self-supervised learning of 581

knowledge in continued pre-training. 582
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#Sentences #Masked Tokens

LAMA SQuAD
(Knowledge-Baring) 609 739

LAMA SQuAD
(Knowledge-Free) 524 532

LAMA Google RE
(Knowledge -baring) 1268 1715

LAMA Google RE
(Knowledge -free) 865 975

(a) Data after every token of the 200 samples
is masked separately, which is used for

accuracy analysis in Section 2.1.

#Sentences # Tokens

LAMA SQuAD 100 1471

LAMA Google RE 100 2903

(b) Data used for attention analysis
in Section 2.2.

Table 8: Data statistics after the 200 samples are pro-
cessed for analysis in Section 2.1 and Section 2.2.

Hyperparam
Learning Rate 1e-4
Train Batch Size 256 (passages)
MLM propability 0.15
Max Tokens Length 512
Optimizer Adam
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.98
Weight Decay 0.01
Learning Rate Decay Linear

Table 9: The hyper-parameters for continue pre-
training RoBERTa in this work.

A Hyper-parameters736

The traditional hyper-parameters for continue pre-737

training RoBERTa can be seen at Table 9.738

Moreover, for RoBERTa-Sel-I and RoBERTa-739

Sel-A, we set the first-phase MLM probability as740

15% and the second-phase MLM probability as741

10%. For the RoBERTa-SSM, we adopt a publicly742

released NER model, which is based on RoBERTa-743

base and trained on the conll2003 dataset, 4 and a744

regular expression to identify named entities and745

date, respectively. In the LAMA Probing task, all746

models are trained for 100 iterations. For the visi-747

ble mechanism, we use the original RoBERTa-large748

to find the knowledge-free tokens. In the QA-style749

Probing task, models are trained for 500 iterations.750

For the visible matrix mechanism, we set τ as 3 for751

the two datasets.752

4huggingface.co/andi611/roberta-base-ner-conll2003

B Details of POS analysis on Samples 753

We present a detailed results of part-of-speech tag- 754

ging analysis of annotated samples in Table 10. 755

C Mask Analysis 756

To compare three different mask policies, namely 757

RoBERTa-Cont, RoBERTa-Sel-I and RoBERTa- 758

Sel-A we conduct 10-iteration continue pre- 759

training on the 200 samples in Section 2 and record 760

their masked tokens. 761

Then We take part-of-speech analysis on the 762

mask tokens for the three mask policies, which 763

is presented in Table 11. From the result, we can 764

see that our two selective mask policies choose 765

more nouns, numbers, verbs and adjective words 766

to mask than the random mask policies. 767

We also calculate the K-B / K-F ratio of masked 768

tokens for the three mask policies and list the result 769

in Table 12. From the table, it can be seen that 770

our two selective mask policies can significantly in- 771

crease the proportion of K-B tokens in the masked 772

tokens. 773
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Knowledge-
Baring
Tokens

NN
243

0.329

NNP
179

0.242

JJ
68

0.092

NNS
49

0.066

VBN
46

0.062

VBD
21

0.028

CD
20

0.027

VBZ
19

0.026

VB
15

0.02

IN
14

0.019

POS
8

0.011

RB
7

0.009

NNPS
6

0.008

VBP
5

0.007

VBG
5

0.007

Knowledge-
Free

Tokens

IN
149
0.28

DT
109

0.205

.
100

0.188

VBZ
39

0.073

VBD
31

0.058

TO
14

0.026

,
13

0.024

CC
9

0.017

VB
8

0.015

RB
8

0.015

WDT
7

0.013

PRP$
6

0.011

VBP
5

0.009

WRB
4

0.008

MD
4

0.008

(a) In LAMA SQuAD samples

Knowledge-
Baring
Tokens

NNP
657

0.383

NN
419

0.244

CD
205
0.12

VBN
102

0.059

JJ
91

0.053

IN
38

0.022

VBD
36

0.021

NNS
23

0.013

FW
22

0.013

PRP
19

0.011

VBG
14

0.008

DT
12

0.007

VBZ
11

0.006

VBP
10

0.006

RB
9

0.005

Knowledge-
Free

Tokens

IN
230

0.236

,
143

0.147

DT
113

0.116

.
110

0.113

CC
58

0.059

-RRB-
58

0.059

-LRB-
58

0.059

VBD
53

0.054

VBZ
40

0.041

HYPH
26

0.027

:
18

0.018

RB
16

0.016

WP
11

0.011

PRP$
11

0.011

WRB
4

0.004

(b) In LAMA Google RE samples

Table 10: Part-of-speech Results on our annotated samples. For each cell, the tag name is at the top, the number
of this tag is in the middle, the proportion of this tag is in the bottom. For each type of token in each data set, we
only display the top-15 tags.

RoBERTa-Cont
(Random)

NNP
0.206

NN
0.151

IN
0.117

DT
0.067

CD
0.054

JJ
0.048

,
0.047

VBN
0.045

VBD
0.043

.
0.042

VBZ
0.031

NNS
0.021

CC
0.019

-RRB-
0.015

RB
0.013

RoBERTa-Sel-I NNP
0.24

NN
0.181

IN
0.097

CD
0.073

DT
0.051

JJ
0.047

VBN
0.038

VBD
0.037

,
0.034

.
0.033

VBZ
0.024

NNS
0.023

CC
0.016

-RRB-
0.012

RB
0.012

RoBERTa-Sel-A NNP
0.265

NN
0.167

IN
0.112

CD
0.086

JJ
0.049

DT
0.048

VBN
0.033

,
0.026

VBD
0.024

.
0.021

VBZ
0.021

NNS
0.018

CC
0.013

-LRB-
0.012

RB
0.012

Table 11: The result of part-of-speech analysis for three mask policies. For each cell, the tag name is at the top and
the proportion of this tag is in the bottom.

Method K-B / K-F ratio

RoBERTa-Cont (Random) 1.47:1
RoBERTa-Sel-I 2.16:1
RoBERTa-Sel-A 2.33:1

Table 12: The K-B to K-F ratios for three mask policies.
The experiment is conducted on the samples which are
annotated with K-B and K-F.
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