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ABSTRACT

Adversarial training is an effective method to combat adversarial attacks in or-
der to create robust neural networks. By using an auxiliary batch normalization
on adversarial examples, it has been shown recently to possess great potential in
improving the generalization ability of neural networks for image recognition as
well. However, crafting pixel-level adversarial perturbations is computationally
expensive. To address this issue, we propose AdversariaL Feature Augmentation
(ALFA), which advocates adversarial training on the intermediate layers of fea-
ture embeddings. ALFA utilizes both clean and adversarial augmented features
jointly to enhance standard trained networks. To eliminate laborious tuning of key
parameters such as locations and strength of feature augmentations, we further
design a learnable adversarial feature augmentation (L-ALFA) framework to au-
tomatically adjust the perturbation magnitude of each perturbed feature. Extensive
experiments demonstrate that our proposed ALFA and L-ALFA methods achieve
significant and consistent generalization improvement over strong baselines on
CIFAR-10, CIFAR-100 and ImageNet benchmarks across different backbone net-
works for image recognition.

1 INTRODUCTION

Neural networks often fall vulnerable when presented adversarial examples injected with imper-
ceptible perturbations, and suffer significant performance drop when facing such attacks (Szegedy
et al., 2013; Goodfellow et al., 2015b). Such susceptibility has motivated abundant studies on ad-
versarial defense mechanisms for training robust neural networks (Schmidt et al., 2018; Sun et al.,
2019; Nakkiran, 2019; Stutz et al., 2019; Raghunathan et al., 2019), among which adversarial train-
ing based methods (Madry et al., 2018b; Zhang et al., 2019a) have achieved consistently superior
robustness than others.

The general focus of adversarial training is to enhance the robustness of gradient-based adversarial
examples. A few recent studies (Zhu et al., 2020; Gan et al., 2020) turn to investigate the generaliza-
tion ability of adversarial training on language models. However, in-depth exploration of extending
this to the vision domain is still missing. Xie et al. (2020) proposes to utilize adversarial examples
with an auxiliary batch normalization to improve standard accuracy for image recognition, but it still
suffers from expensive computational cost from the generation of pixel-level perturbations.

To address this issue, we propose AdversariaL Feature Augmentation (ALFA) as a natural extension
of adversarial training, with a focus on leveraging adversarial perturbations in the feature space to
improve image recognition on clean data. As illustrated in Figure 1, ALFA introduces adversarial
perturbations to multiple intermediate layers. These perturbed feature embeddings act as a special
feature augmentation and implicit regularization to enhance the generalization ability of deep neural
networks. Consequently, two challenges arise: (i) how to efficiently find the best locations to intro-
duce adversarial perturbations; and (ii) how to decide on the strength of the created perturbations.
Although a few recent works (Zhu et al., 2020; Gan et al., 2020; Sankaranarayanan et al., 2017) look
into this field, they either add perturbations in the input embeddings or all the intermediate features,
yet have not reached a coherent conclusion.

To efficiently learn an optimal strategy of perturbation injection, we further propose a learnable
adversarial feature augmentation (L-ALFA) framework, which is capable of automatically adjust-
ing the position and strength of introduced feature perturbations. The proposed approach not only
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Figure 1: Overview of Adversarial Feature Augmentation for image recognition. From left to right,
clean images are fed into network backbones to extract clean feature embeddings. Then, adversar-
ial perturbations are generated to augment several intermediate features (in the direction of purple
paths). In the end, both adversarial augmented and clean feature embeddings are taken as inputs by
the classifer, and optimized by adversarial (Lat) and standard training (Lstd) objectives.

circumvents laborious hyper-parameter tuning, but also fully unleashes the power of adversarial
feature augmentation. Experiments show that this strategy gains a substantial performance margin
over existing feature augmentation methods (Li et al., 2020). In addition, we find that learnable
ALFA and exhaustively-tuned ALFA exhibit consistent patterns: applying weak adversarial feature
augmentations to the last layers of deep neural networks can boost generalization performance.

The main contributions are summarized as follows. (i) We introduce a new approach of adversar-
ial feature augmentation (ALFA) to improve the generalization ability of neural networks, which
applies adversarial perturbations to the feature space rather than raw image pixels. (ii) To tackle
the dilemma of laborious hyper-parameter tuning in generating adversarial features, we propose
learnable adversarial feature augmentation (L-ALFA) to automatically tailor target perturbations
and their locations. (iii) Comprehensive experiments on CIFAR-10, CIFAR-100, and ImageNet
datasets across multiple backbone networks demonstrate the superiority of the proposed methods.

2 RELATED WORK

Adversarial Training Deep neural networks are notoriously vulnerable to adversarial samples
(Szegedy et al., 2013; Goodfellow et al., 2015b), which are crafted with malicious yet negligible
perturbations (Goodfellow et al., 2015a; Kurakin et al., 2016; Madry et al., 2018a). In order to im-
prove the robustness against adversarial samples, various defense mechanisms have been proposed
(Zhang et al., 2019a; Schmidt et al., 2018; Sun et al., 2019; Nakkiran, 2019; Stutz et al., 2019;
Raghunathan et al., 2019). Among these works, adversarial-training-based methods (Madry et al.,
2018b; Zhang et al., 2019a) have achieved consistently superior performance in defending state-
of-the-art adversarial attacks (Goodfellow et al., 2015a; Kurakin et al., 2016; Madry et al., 2018a).
Although adversarial training substantially improves model robustness, it usually comes at the price
of compromising the standard accuracy (Tsipras et al., 2019), which has been demonstrated both
empirically and theoretically (Zhang et al., 2019a; Schmidt et al., 2018; Sun et al., 2019; Nakkiran,
2019; Stutz et al., 2019; Raghunathan et al., 2019).

Recently, researchers start to investigate improving clean set accuracy with adversarial training (Xie
et al., 2020; Zhu et al., 2020; Wang et al., 2019a; Gan et al., 2020; Wei & Ma, 2019) (Ishii &
Sato, 2019). Xie et al. (2020) shows that performance on the clean dataset can be enhanced by
using adversarial samples with pixel-level perturbation generation. Zhu et al. (2020) and Wang
et al. (2019a) apply adversarial training to natural language understanding and language modeling,
both successfully achieving better standard accuracy. Gan et al. (2020) achieves similar success on
many vision-and-language tasks. There also exist parallel studies that employ handcrafted or auto-
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generated perturbed features to ameliorate generalization (Wei & Ma, 2019) (Ishii & Sato, 2019) or
robustness (Sankaranarayanan et al., 2017).

However, two key issues remain unexplored: (i) which layers to introduce adversarial feature aug-
mentations; (ii) how strong the perturbations should be. For the former, Zhu et al. (2020); Wang
et al. (2019a); Gan et al. (2020) try to perturb the input embeddings of transformer models, while
Wei & Ma (2019); Sankaranarayanan et al. (2017) insert perturbations to all layers of a convolutional
network. Regarding the above issue, all the methods need arduous and heuristic tunings. In our pa-
per, we present a different observation that augmenting the last layers’ feature embeddings with
weak adversarial feature perturbations can gain higher standard accuracy. The L-ALFA framework
inspired by this observation can effectively alleviate laborious tuning, which otherwise is inevitable.

Feature Augmentation Although pixel-level data augmentation techniques (Simard et al., 1993;
Schölkopf et al., 1996) have been widely adopted, feature space augmentations have not received
the same level of attention. A few pioneering works propose generative-based feature augmentation
approaches for domain adaptation (Volpi et al., 2018), imbalance classification (Zhang et al., 2019b),
and few-shot learning (Chen et al., 2019). Another loosely related field is feature normalization
(Ioffe & Szegedy, 2015; Li et al., 2020). MoEx (Li et al., 2020) is a newly proposed method that
can be regarded as a feature augmentation technique, which leverages the first and second-order
moments extracted and re-injected by feature normalization. It is worth mentioning that all the
approaches aforementioned are orthogonal to our proposed method, and can be combined for further
generalization improvement, which is left as future work.

3 ADVERSARIAL FEATURE AUGMENTATIONS (ALFA)

In the proposed ALFA framework, we generate adversarial perturbations in the intermediate feature
embedding space, rather than applying perturbations to raw image pixels as in common practice.
Thus, adversarial training can be formulated as an effective regularization to improve the general-
ization ability of deep neural networks.

3.1 NOTATIONS

Given a dataset D = {x, y}, where x is the input image and y is the corresponding one-hot ground-
truth label. Let f(x; Θ) represents predictions of a deep neural networks, and fi(x; Θ(i))|r+1

i=1 is
the intermediate feature embedding from the i-th layer. The (r + 1)-th layer denotes the classifier,
therefore fr+1(x; Θ(r+1)) = f(x; Θ). Adversarial training can be formulated as the following
min-max optimization problem:

min
Θ

E(x,y)∈D

[
max
||δ||p≤ε

Lat(f(x + δ; Θ); Θ; y)

]
, (1)

where δ is the adversarial perturbation bounded by the `p norm ball, which is centered at x with
radius ε which is the maximum perturbation magnitude. Lat is the cross-entropy loss for adversarial
training (AT). E(x,y)∈D takes the expectation over the empirical objective on the training dataset D.

The inner optimization generates adversarial perturbation δ via maximizing the empirical objec-
tive. It can be reliably solved by multi-step projected gradient descent (PGD) (Madry et al., 2018b)
(without loss of generality, we take || · ||∞ perturbation as an example):

δt+1 = Π||δ||∞≤ε [δt + α · sgn(∇xLat(f(x + δt; Θ); Θ; y)] , (2)
where t is the number of steps, α denotes the learning rate of inner maximization, sgn is the sign
function, and Lat is the adversarial training objective on adversarial images.

3.2 PERTURBATIONS IN THE EMBEDDING SPACE VIA ALFA

Here, we extend the conventional adversarial perturbations to the feature embedding space. We start
from the training objective of ALFA as follows:

min
Θ

E(x,y)∈D

[
Lstd(x; Θ; y) + λ ·

∑
i

max
||δ(i)||∞≤ε

Lat(fi(x; Θ(i)) + δ(i); Θ; y)

]
, (3)
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where Lstd is the cross-entropy (XE) loss on clean images, Lat here is the cross-entropy loss for
adversarial training (AT) on adversarial augmented feature embeddings. λ is the hyperparamter to
control the influence of AT regularization, which is tuned by grid search. δ(i) is the adversarial
perturbation on the feature of layer i, generated as follows:

δ
(i)
t+1 = Π||δ||∞≤ε

[
δ
(i)
t + α · sgn(∇xLat(fi(x; Θ(i)) + δ

(i)
t ; Θ; y))

]
. (4)

It is worth noting that, for crafting δ(i), at each step, the gradient is only back-propagated to the
i-th layer without going further, which is much more computationally efficient compared to gener-
ating perturbations in the input embedding space. In practice, we set the maximum magnitude of
crafted feature perturbation ε to be unbounded, and the projected gradient descent will be replaced
by gradient descent.

Settings Standard Accuracy (%)

ResNet-20s ResNet-56s

Baseline 91.25 93.03

α = 0.5
255 92.52 94.38

α = 1.0
255 92.47 94.47

α = 1.5
255 92.34 94.72

α = 2.0
255 91.36 93.45

Table 1: Applying ALFA with different step size
α to the feature embeddings from the last block
of ResNet-20s/56s on CIFAR-10. Larger α indi-
cates stronger feature perturbations.

Figure 2: Applying ALFA to the feature embed-
dings from different blocks or the combinations
of top-performing blocks. Experiments are con-
duted on CIFAR-10 with ResNet-20s.

In ALFA, the two most essential factors are: (i) where to introduce adversarial perturbations; and
(ii) how strong the perturbations should be. Table 1 and Figure 2 present some preliminary results to
understand this. Results shows that the performance of ALFA relies particularly on the location (i.e.,
which blocks) and strength (i.e., step size α) of the introduced feature perturbations. An inadequate
configuration (e.g., applying ALFA to all blocks 1, 2 and 3 as shown in Figure 2) might cause accu-
racy degradation. More analyses are provided in Section 4.3. To determine the best configuration,
we further design a learnable adversarial feature augmentation (L-ALFA) approach to automatically
adjusting the location and strength of perturbations for best augmentation performance, which will
be explained in the next sub-section.

3.3 LEARNABLE PERTURBATIONS VIA L-ALFA

To ascertain the two critical settings (locations and strength) of feature augmentations, we introduce
an enhanced ALFA method, L-ALFA, which also eliminates laborious tuning. Specifically, in layer
i, for the PGD-generated perturbation δ(i), we apply a learnable parameter ηi to control the magni-
tude of δ(i) before adding it to the corresponding feature embeddings. Thus, a learned near-zero ηi
indicates that it is unnecessary to inject feature perturbations on layer i. Furthermore, we also intro-
duce the `1 sparsity constraint on the learnable perturbation magnitude η. The design philosophy is
that applying ALFA on all layers of deep neural network does not benefit (or even hurt) the standard
accuracy, as exemplified in Figure 2 and Figure 3.

The optimization problem is then formulated as:

min
Θ,{ηi}r1,η∈P

E(x,y)∼D

[
Lstd + λ ·

r∑
i=1

max
||δ(i)||∞≤ε

Lat(fi(x; Θ(i)) + ηi · δ(i); Θ; y) + γ · ||η||1

]
,

(5)

where Lstd = LXE(x; y; Θ), P = {η|1Tη = 1}, η = (η1, η2, · · · , ηr) is the learnable strength
of feature perturbations, γ is the hyperparameter to control the sparsity level. γ can be chosen from
{0.5, 1.0, 2.0}. To solve equation 5, we first generate feature perturbations δ(i) via multi-step PGD.
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Algorithm 1 Learnable Adversarial Feature Augmentation (L-ALFA).
1: Input: given Θ0, η0, δ0. (In our case, η0 = (1, · · · , 1) ∈ Rr)
2: for n = 1, 2, · · · , N iterations do
3: Given Θn−1, ηn−1, generate adversarial perturbation δn = (δ

(1)
n , · · · , δ(r)

n ) via multi-step PGD;
4: Given δn, perform SGD to update Θn, ηn;
5: Project ηn into P via the bisection method (Wang et al., 2019b).
6: end for

Then, we minimize the empirical training objective to update the network weights Θ and η through
stochastic gradient descent (SGD) (Ruder, 2016). In the end, we project η into P and repeat the
above steps until the training converges. The full algorithm is summarized in Algorithm 1.

4 EXPERIMENTS

We conduct extensive experiments on multiple benchmarks to validate the generalization ability of
ALFA and L-ALFA, evaluating across different backbone networks for image recognition. Ablation
studies and analysis of the learned distribution of perturbation magnitude are also provided.

4.1 EXPERIMENTAL SETUP

Datasets and Backbones We consider three representative datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). In our experiments, the original training
datasets are randomly split into 90% training and 10% validation. The early stopping technique is
applied to find the top-performing checkpoints on the validation set. Then, the selected checkpoints
are evaluated on the test set to report the performance. From our observations, the hyperparam-
eters are quite stable from validation to test sets. We evaluate large backbone networks (ResNet-
18/50/101/152 (He et al., 2016)) on all three datasets, and test smaller backbones (ResNet-20s/56s)
as well on CIFAR-10 and CIFAR-100. Ablation studies are implemented on CIFAR-10, where key
observations can be generalized to other datasets.

Training and Metrics For network training on CIFAR-10 and CIFAR-100, we adopt an SGD op-
timizer with a momentum of 0.9, weight decay of 5 × 10−4, and batch size of 128 for 200 epochs.
The learning rate starts from 0.1 and decays to one-tenth at 50-th and 150-th epochs. We also per-
form a linear learning rate warm-up in the first 200 iterations. For ImageNet experiments, following
the official setting in Pytorch repository,1 we train deep networks for 90 epochs with a batch size
of 512, and the learning rate decay at 30-th and 60-th epoch. The SGD optimizer is adopted with
a momentum of 0.9 and a weight decay of 1 × 10−4. We evaluate the generalization ability of a
network with Standard Testing Accuracy (SA), which represents image recognition accuracy on the
original clean test dataset.

4.2 EVALUATION AND ANALYSIS OF ALFA

For ALFA experiments, all hyperparameters are tuned by grid search, including PGD steps, step size
α, and the layers to introduce adversarial perturbations. For generated adversarial feature embed-
dings, we set the maximum perturbation magnitude ε to be unbounded 2, since there are no explicit
constraints for feature perturbations, and the effect of tuning ε can be absorbed by adjusting PGD
steps and step size α.

Table 2 presents the standard testing accuracy of different models on CIFAR-10. Comparing the
standard training with our proposed ALFA, here are the main observations:

(i) ALFA obtains a consistent and substantial improvement over standard accuracy, e.g., 1.27%
on ResNet-20s, 1.69% on ResNet-56s, and 0.51% on ResNet-50. This suggests that train-
ing with augmented features generated by ALFA effectively enhances the generalization of

1https://github.com/pytorch/examples/tree/master/imagenet
2In practice, the magnitude of crafted feature perturbation steadily stays in a range from 0.97 to 1.10 under

the `2 norm. Adversarial perturbations usually are applied to the normalized feature from batch normalization.
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Table 2: Standard testing accuracy (%) on CIFAR-10 dataset. Standard Training stands for the
traditional training with only clean data. We utilize PGD-5 to generate the adversarial perturbations
on the feature embeddings from the last residual block of ResNets. ε is unbounded here. Step size
α = 0.5/255 for ResNet-20s, α = 1.0/255 for ResNet-18 and ResNet-101, and α = 1.5/255 for
ResNet-56s and ResNet-50. ↑ indicates the improvement over SA compared to the corresponding
baseline in standard training.

Settings ResNet-20s ResNet-56s ResNet-18 ResNet-50 ResNet-101

Standard Training 91.25 93.03 94.30 94.73 95.17
ALFA 92.52 (↑ 1.27) 94.72 (↑ 1.69) 94.65 (↑ 0.35) 95.24 (↑ 0.51) 95.38 (↑ 0.21)

Table 3: Standard testing accuracy (%) on CIFAR-100 and ImageNet datasets. For CIFAR-100, we
apply PGD-5 to augment the feature embeddings in the last block with adversarial perturbations. ε
is unbounded, and α = 0.5/255 for both ResNet-20s and ResNet-56s. As for ImageNet dataset,
one-step PGD is selected for ALFA, with ε unbounded and α = 0.5/255. All perturbations are
applied to feature embeddings in the last block.

Settings CIFAR-100 ImageNet

ResNet-20s ResNet-56s ResNet-18 ResNet-50 ResNet-101 ResNet-152

Standard Training 66.92 71.22 69.38 75.21 77.10 78.31
ALFA 67.79 (↑ 0.87) 72.36 (↑ 1.14) 70.19 (↑ 0.81) 76.23 (↑ 1.02) 78.04 (↑ 0.94) 78.65 (↑ 0.34)

deep neural networks. We hypothesize that this is because adversarial perturbed features
are treated as an implicit regularization, leading to better solutions for network training.

(ii) Different backbones prefer diverse strengths of adversarial feature perturbations, and there
is no obvious pattern. For example, networks in middle size, such as ResNet-56s and
ResNet-50, tend to favor larger perturbations (i.e., α = 1.5/255) compared to small
ResNet-20s (α = 0.5/255) and deep ResNet-101 (α = 1.0/255).

(iii) Shallow ResNets benefit more from ALFA than deep ResNets (e.g., 1.27% on ResNet-20s
vs. 0.21% on ResNet-101). A possible reason is that the performance of standard trained
ResNets is already saturated on the small-scale CIFAR-10 dataset, leaving little room for
improvement.

Results on CIFAR-100 and ImageNet are summarized in Table 3. We observe that ALFA consis-
tently boosts the generalization ability of multiple ResNets on both CIFAR-100 and ImageNet, e.g.,
1.14% for ResNet-56s on CIFAR-100, 1.02% for ResNet-50 on ImageNet. Furthermore, we notice
that ALFA advocates different steps of PGD to achieve superior performance on diverse datasets. To
fully understand these sensitive yet critical factors, we conduct a systematical and comprehensive
ablation study in the next sub-section.

4.3 ABLATION STUDIES

Strength and Locations of ALFA To understand the effect or the strength of injected adversarial
perturbations, we implement ResNet-18 on CIFAR-10 and examine the performance across different
step sizes and numbers of PGD steps. Table 4 shows that perturbing with step size α = 1.0/255
obtains a larger gain by 0.35% SA. In addition, excessive weak (e.g., α = 0.5/255) or strong
(e.g., α = 1.5/255) adversarial feature augmentations may incur performance degradation. For the
ablation of PGD steps, we implement ResNet-18 on ImageNet as well. Table 5 demonstrates that
ALFA with PGD-5 and PGD-1 works the best for CIFAR-10 and ImageNet, respectively, indicating
that the strength of generated perturbations is an essential and sensitive hyperparameter for ALFA.

Then, we analyze the effect of locations (i.e., where to apply ALFA) via two typical backbones:
ResNet-56s on CIFAR-10 and ResNet-18 on ImageNet. In each setting, we present a detailed analy-
sis on which layer and how many layers the feature embeddings should be adversarially augmented
for achieving the best performance. Figure 3 presents the layer preference of feature perturbations
when applying ALFA to different blocks or some combinations of blocks. We notice that introduc-
ing ALFA to the last block achieves better standard accuracy, while the performance deteriorates
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Table 4: Standard testing accuracy (%) on CIFAR-10 dataset. We perturb the feature embeddings
in the last block of ResNet-18 via PGD-5 and diverse step size α. For reference, SA of standard
trained model is 94.30%. ↑/↓ indicates SA improvement/degradation compared to the corresponding
baseline in standard training.

Step size α 0.5
255

1.0
255

1.5
255

2.0
255

4.0
255

ALFA 93.15 (↓ 1.15) 94.65 (↑ 0.35) 94.34 (↑ 0.04) 94.36 (↑ 0.06) 93.30 (↓ 1.00)

Table 5: Standard testing accuracy (%) on CIFAR-10 and ImageNet datasets. For CIFAR-10, we
perturb the feature embeddings in the last block of ResNet-18, via PGD-1/3/5/7/10 with step size
α = 1.0/255. As a reference, the SA of standard trained model is 94.30%. As for ImageNet, we
also perturb the last block features of ResNet-18 via PGD-1/3/5 and step size α = 0.5/255. The
reference SA is 69.38%.

Steps CIFAR-10 ImageNet

PGD-1 PGD-3 PGD-5 PGD-7 PGD-10 PGD-1 PGD-3 PGD-5

ALFA 94.46 (↑ 0.16) 94.43 (↑ 0.13) 94.65 (↑ 0.35) 94.39 (↑ 0.09) 94.17 (↓ 0.13) 70.19 (↑ 0.81) 68.65 (↓ 0.73) 67.42 (↓ 1.96)

Figure 3: Standard testing accuracy (%) of ResNet-18 (Left) and ResNet-56s (Right) on CIFAR-10
dataset, with ALFA applied to different blocks and several combinations of top-performing blocks.
‘Block’ represents the residual blocks in the ResNets. Block 4 of ResNet-18 and Block 3 of ResNet-
56s are the last blocks before the classifiers. The adversarial perturbations on each block’s feature
embeddings are generated by carefully tuned configurations, including PGD-5, unbounded ε and
step size α ∈ { 0.5

255 ,
1.0
255 ,

1.5
255}.

after injecting ALFA to multiple blocks. These results demonstrate that the strength and location
for ALFA play a crucial role and need to be cautiously selected, which motivates us to design the
learnable framework, L-ALFA.

ALFA vs. Other Feature Augmentations One natural baseline is adding random noise to the fea-
ture embeddings. For each training iteration, a new random noise sampled from a Gaussian distri-
bution N (0, (1.0/255)2) is applied to the same feature embeddings. Another representative feature
augmentation recently proposed is MoEx3 (Li et al., 2020), which is compared as another baseline.
For ALFA, we choose the best hyperparameter configurations for ResNet-56s and ResNet-18 on
CIFAR-10, i.e., perturbing the last block feature embeddings with PGD-5, and step size (α = 1.5

255

for ResNet-56s and α = 1.0
255 for ResNet-18). As shown in Table 7, ALFA significantly surpasses

MoEx and random-noise-based feature augmentation, demonstrating that feature perturbations gen-
erated from ALFA are non-trivial.

ALFA vs. AdvProp We compare ALFA with AdvProp (Xie et al., 2020) on CIFAR-10 with
ResNet-18 and on ImageNet with EfficientNet-B0 (Tan & Le, 2019), as presented in Table 6. Train-
ing on a single GTX1080 Ti GPU for CIFAR-10 experiments, AdvProp achieves 94.52% accuracy
with 123 seconds per epoch; ALFA obtains 94.65% with 28 seconds per epoch, where standard train-
ing takes 23 seconds per epoch. The experiments on ImageNet (batch size 256) are conducted on 2
Quadro RTX 6000 GPUs with 24G×2 memory in total, and the reported running time is per epoch.

3We implement MoEx based on their released repository, https://github.com/Boyiliee/MoEx
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Table 6: Running time per epoch and standard accuracy (SA) comparison across standard training,
AdvProp, and ALFA.

Settings ResNet-18 on CIFAR-10 EfficientNet-B0 on ImageNet

Standard Training AdvProp ALFA Standard Training AdvProp ALFA

SA (%) 94.30 94.52 (↑ 0.22) 94.65 (↑ 0.35) 77.00 77.50 (↑ 0.50) 77.60 (↑ 0.60)
Time 23s 28s 123s 2628s 3140s 13352s

The Last Block

The Last Block

Figure 4: The learned distribution of perturbation magnitude vector η in L-ALFA over training
epochs on ImageNet (Left) and CIFAR-10 (Right). The curves of the last block (i.e., Block 9)
feature embeddings are highlighted by black arrows.

Table 8: Standard testing accuracy (%) of L-ALFA with different ResNets (dim(η) = 9). Perfor-
mance differences are computed between L-ALFA/ALFA and Standard Training.

Datasets CIFAR-10 (ResNet-18) CIFAR-100 (ResNet-56s) ImageNet (ResNet-50)

Standard Training 94.30 71.22 75.21
L-ALFA 94.62 (↑ 0.32) 72.40 (↑ 1.18) 76.12 (↑ 0.91)
ALFA 94.65 (↑ 0.35) 72.36 (↑ 1.14) 76.23 (↑ 1.02)

As shown in Table 6, ALFA obtains a similar performance improvement with less computational
cost, compared with pixel-level adversarial augmentations (e.g., AdvProp).

Table 7: Standard testing accuracy of ALFA vs. other
methods. All experiments are repeated for 5 runs, with
errorbars of one standard deviation reported.

Methods ResNet-56s ResNet-18

Random Noise 93.17 ± 0.09 94.34 ± 0.10
MoEx 92.90 ± 0.33 94.16 ± 0.23
ALFA 94.72 ± 0.06 94.65 ± 0.08

AdvProp - 94.52 ± 0.28

Robust Performance of ALFA Although the
robust testing accuracy (RA) is not the focus
of ALFA, we report it for completeness. We
implement the standard, ALFA and the adver-
sarial trained ResNet-18 networks on CIFAR-
10. The adversarial trained model uses PGD-10
with step size α = 2

255 and ε = 8
255 for training.

Then, PGD-20 with the same α and ε is applied
to evaluate the robust performance of the three
models. We observe that ALFA trained models
(4.86% RA) yield moderate robustness, com-
pared to models from standard (0.00% RA) and
adversarial (50.72% RA) trained models.

4.4 EVALUATION AND ANALYSIS OF L-ALFA

Results on L-ALFA are presented in Table 8 and Figure 4. L-ALFA consistently improves the
generalization of trained networks by 0.32% on CIFAR-10, 1.18% on CIFAR-100, and 0.91% on
ImageNet. Although the achieved performance is close to ALFA, L-ALFA saves toilsome tuning
by automatically adjusting the strength and locations of adversarial feature augmentations. Another
interesting finding is that L-ALFA automatically learns the effective trick of only perturbing the last
block feature embeddings, which is consistent with our observations made from ALFA.
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Table 9: Ablation studies on the dimension of η. SA (%) on
CIFAR-10 dataset is reported.

Dimension of η dim(η) = 4 dim(η) = 9 dim(η) = 20

L-ALFA 94.52 (↑ 0.22) 94.62 (↑ 0.32) 93.54 (↓ 0.76)

Number of Perturbed Layers
To study the effect of the di-
mension of the learnable per-
turbation magnitude η in L-
ALFA, we implement ResNet-
18 on CIFAR-10 for the addi-
tional experiment. ResNet-18
has four residual blocks and twenty convolution layers, and perturbing them will result in dim(η)
being equal to 4 and 20, respectively. We also try introducing adversarial feature augmentations to
only some of the intermediate layers, such as perturbing the features after each skip connection (i.e.,
dim(η) = 9). As shown in Table 9, an unduly high dimension of η, i.e., perturbing features in
almost all the layers, is harmful to model generalization. Therefore, learning feature perturbations
by blocks or by skip connections is adequate for L-ALFA.

Table 10: Ablation studies of the `1 regularization. SA (%) on CIFAR-100 dataset is reported.

γ 0.1 0.2 0.5 1.0 2.0 10.0

SA of L-ALFA 70.68 (↑ 0.54) 72.13 (↑ 0.91) 72.35 (↑ 1.13) 72.40 (↑ 1.18) 72.38 (↑ 1.16) 71.92 (↑ 0 .70)

Ablation of the `1 regularization in L-ALFA Results of ResNet-56s on CIFAR-100 are collected
in Table 10. We observe that γ can be roughly chosen from {0.5, 1.0, 2.0} and obtain similar com-
petitive performance. Excessive large or small values of γ obtain less performance improvements or
even incur degradation.

5 CONCLUSION

In this paper, we present ALFA, an advanced adversarial training framework for image recognition.
By applying adversarial perturbations on feature embeddings, and by jointly training with both clean
and adversarial augmented features, ALFA improves the generalization of diverse neural network
backbones across multiple image recognition datasets such as ImageNet. Systematical ablation
studies reveal that introducing weak adversarial feature augmentations to the last layers of networks
contributes more, which is different from previous findings. Furthermore, we propose L-ALFA to
learn a better augmentation, and also save the laborious tuning on ALFA. For future work, we plan
to extend the ALFA to other vision tasks, such as object detection and semantic segmentation.
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