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ABSTRACT

We consider leveraging the deviated outputs and gradient information from genera-
tive models due to out of distribution samples in visual anomaly detection (AD).
Visual AD has been critical problems and widely discussed. However, in various
applications, abnormal image samples are very rare and difficult to collect. In this
paper, we focus on the unsupervised visual anomaly detection and localization
tasks and propose a novel score-based generative model applicable to general cases.
Our work is inspired by the fact that injected noises to the original image through
forward diffusion process may reveal the image defects in the reverse process (i.e.,
reconstruction). First, due to the differences of normal pixels between the recon-
structed and original images, we propose to use a score-based generative model
and associated score values as metric to gauge the defects. Second, to accelerate
inference process, a novel 1" scales approach is developed to reduce redundant in-
formation from adjacent moments while leverages the information provided by the
score model at different moments. These practices allows our model to generalize
visual AD in an unsupervised manner while maintain reasonably good performance.
We evaluate our method on several datasets to demonstrate its effectiveness.

1 INTRODUCTION

Anomaly detection (AD) plays key roles in the variety of applications, including industrial manu-
facturing (Bergmann et al., [2019; |[Zavrtanik et al., 2021aj; Hou et al., 2021} [Li1 et al., 2021} Reiss
et al., [2021b)) and medical analysis (Schlegl et al., 2017 |2019; |Ouyang et al., 2020; Tang et al.,
2021). As anomalous samples are rare in real-world scenarios, they lead to challenges especially
for supervised learning models. Alternative solutions through generative models in an unsupervised
manner have been prevailing recently, including AutoEncoder (AE) (Kingma & Welling, [2013]),
Generative Adversarial Network (GAN) (Goodfellow et al.,2014)), Flow (Dinh et al.,[2016) and their
variants. Nonetheless, difficulty remains in applying these methods in high-dimensional data such as
images. For example, AE is known for its blurring reconstructions and indistinguishable defects, and
GAN or Flow models need additional overhead in developing encoders or dedicated dimensionality
reduction modules, which are both time and computational consuming.

We are inspired by the recent score-based generative model (Song et al.,[2021)) through stochastic
differential equation (SDE) and diffusion probabilistic model (Ho et al.| 2020a) that achieve state-
of-the-art performance in image generation. Our methodology is based on the assumption that the
anomalous data lie in the low probability density region of the normal data distribution. In addition,
we propose a more reliable score-based metric for the anomaly detection, namely, Score-AD. Through
score-based generative models, two scores are examined, namely, self-score and whole-score. Self-
score measures the distance towards the original data while whole-score measures that towards the
high probability density region of the training data. By providing different “stimulation” in the
reverse process, two whole-scores can be achieved and their divergence will be leveraged for anomaly
detection and localization. Fig[T|shows the framework.

There are three challenges to be solved in our paper. First, like existing works, a generative model
is trained first on normal data with the aim of converting abnormal data back to normal ones after
going through the model. However, our observations have identified key issues that after the diffusion
process, the normal pixels do not exactly match the original image after reverse diffusion process.
Therefore, a simple pixel-wise comparison between reconstructed and original data for AD is not
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Figure 1: The red dot represents abnormal sample. The red and green contour plots represent the
distributions of normal and abnormal data, respectively. Given an anomaly data, on the left, the noise
is injected to blur it. When the model iterating through whole-score, the defects are recovered into
normal mode as indicated by green arrow, while through self-score, the noisy image returns to the
original image as indicated by the red arrow. The two noisy images in this process, one that the defect
is gradually recovering to origin, require a larger whole-score value to change the defect than one
that have changed a part of the defect.

feasible anymore. Based on the initial assumption that defects lie in the low probability density
region of the normal data distribution which can easily satisfy, we propose a new metric through the
whole-score to mitigate this issue. Second, the reverse process of score-model is less-efficient for
certain setting of hyperparameters, e.g., a larger initial moment ¢ in our case. Instead of launching a
large ¢, we propose to investigate a set of smaller parameters, i.e., {t} with only few steps in reverse
for each. This ensemble strategy allows us to consider different “reconstructed-original” data pairs
and enable a more reliable detection mechanism, termed as 7" scales in this work. Third, most existing
unsupervised AD models rely on pre-trained networks for feature extraction and thus rely external
data for good performance. But our goal is to explore the characteristics of the score model applied
to unsupervised AD and to provide a simple and effective scheme not dependent on other models.
Therefore our score model is just trained on normal data in an unsupervised fashion. We evaluate
our method on several datasets to to verify the effectiveness of our method. Specifically, our method
achieves the state-of-the-art (SOTA) 98.24 image-level AUC and 97.78 pixel-level AUC on the
challenging MVTec AD dataset (Bergmann et al.| [ 2019). Besides, we not only explain the principle
of our method, but also conduct comparative experiments and ablation studies to analyze our method.

2 RELATED WORK

In this section, we mainly review previous AD approaches based on generative model. AE or Vari-
ational AutoEncoder (VAE) is trained to generate normal data but fail to reconstruct the abnormal
samples. However, the output is often blurred (Hou et al.,[2021), or defects are well restored (Zavr
tanik et al.,2021b) due to the nature of generalization. To fix these problems, recent works, including
memory mechanism (Gong et al., 2019 |Hou et al.} 2021, SSIM Loss (Wang et al.,|2004), Mask strat-
egy (Zavrtanik et al.|,|[2021b), denoising autoencoder (Huang et al., [2019), forgery defect (Zavrtanik
et al.| 2021a), are developed and discussed. However, these methods are recently superseded by the
following competitive generative models.

GANSs and its generative and discriminative networks have been leveraged in AD tasks recently. In
particular, the generative networks learn to map the noise from a latent space to anomaly-free data
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Figure 2: Regenerate samples by solving the probability flow ODE and reverse SDE on [0, ] with
initial point x(t) = u(t)x(0) + o(t)z(t) for z(t) ~ N(0,1) trained on MVTec AD dataset.

distribution, while the discriminant network determines whether it comes from anomaly-free data
distribution. However, as GANSs lacks dedicated encoders to produce hidden variables of the input
data, additional efforts are required to develop networks to search for the hidden variable (Schlegl

let all 2019} [Akcay et al,[2019; [Akcay et al. 2018).

Another line of works is based on the approach “normalized flow” that learns and manages to map
the distribution of normal data reversely to a simple Gaussian distribution. The distribution of normal
data supposes to be close to the center of the Gaussian kernels (i.e., high-density region), while the
abnormal data shall reside in the low probability density region, an indicator for data with defects in
the testing phase. However, as the hidden layer dimension must match the data dimension in these
methods, when working on data of larger size, e.g., high-resolution images, the model parameters
expand quickly. Therefore, the flow-based methods (Rudolph et al.}[2020; [2022}; [Gudovskiy et al.}
2021}, [YuT et al.| 2022)) usually take feature maps extracted by pre-trained network on a large-scale
dataset, e.g., ImageNet.

3 BACKGROUND

3.1 SCORE-BASED GENERATIVE MODEL FOR AD

The AD model discussed in this paper is trained on normal dataset Xy in an unsupervised fashion
while tested on a blend of normal and abnormal dataset X .+ 4. The hypothesis is that anomaly x €
X n+4 distributes differently with X . Our framework is inspired by the Denoising AutoEncoder
(DAE) (Huang et al.}[2019). We can extend the usage of DAE by integrating diffusion process and
score-based generative models (Meng et al., 2021}, [Yoon et al, [202T)). In particular, we can model a
diffusion process by forward SDE to inject a certain amount of noise to the data, and implement the
reverse diffusion process as denoising. Ideally, the defects would be treated as noise and recovered
to normal data. This procedure is shown in Fig.[2] With the reconstructed data through the reverse
diffusion, we are allowed to compare it with original data through certain metrics to detect defects.
We will briefly introduce: (1) diffusion process, (2) reverse process, (3) the probability flow ODE in
the followings.

Diffusion process. Diffusion process gradually adds noise to the original data x through forward

SDE (Song et al.} 2021), and yields a sequence {x(¢)} through:
dx(t) = f(t)x(t)dt + g(t)dw(t), (1

where ¢t € [0, 1] indicates the time stamp, w(¢) denotes a standard Wiener process, and the drift
coefficient f(t) and the diffusion coefficient g(t) are fixed. Therefore, it is essentially an ordinary
differential equation (ODE) driven by the noise. We can interpret dw(¢) as an infinitesimal Gaussian
noise. The solution to this diffusion process in Eq. is {x(t)}+e[0,1)- Assume p¢(x) denotes the
probability density of solution and po;(x(t)|x(0)) denotes the transition distribution from x(0) to
x(t). By definition, paqsa(x) & po(x). Based on Eq.(I), we can continuously add noises to the
original data x(0) ~ po(x). This process gradually removes details and structure of the data as ¢
increases, and the distribution of noisy data p; (x) satisfies a tractable prior distribution 7 (x).
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Reverse process. Diffusion process starts from x(0) and ends up with x(¢). The reverse process
aims to recover the original data from x(¢) and get an approximation x’(0) generated by the reverse
of a diffusion process of Eq.(T), which is also a diffusion process and can be achieved by:

dx(t) = (f(t)x(t) — g(t)*Vxlog py (x(t)))dE + g(t)dw(t), 2)

where df represents negative time step, W represents a standard Wiener process in the reversal time
direction. Therefore, the objective of score-based generative model transforms to learn the score
function Vylog p(x(t)) in Eq.(2). We can estimate Vxlog p;(x) by training a score-based model
sg(x(t), t) on training dataset X v, where s¢(x(t), t) adopts a variant of U-net that requires both x ()
and ¢ inputs. The objective turns to minimize the following loss (Vincent, [2011):

‘6(97 )‘()) = %A IFJ‘pO(x)pgt(x(t)|x(0))[)‘(t)HvxlOg pOt(X(t)‘X(O)) - SQ(X(t),t)H%]dt, 3)

which is equivalent up to a constant that is irrelevant to 6. Additionally, if the drift coefficient f(¢) is
linear, the po; (x(¢)|x(0)) = N (x(¢); u(t)x(0), o%(¢)1) is a tractable Gaussian distribution, and

x(t) = p(t)x(0) + o (t)z(t), ©)
where z(t) ~ A (0,1). Fortunately Variance Exploding (VE), Variance Preserving (VP) and sub-VP
SDE introduced in[Song et al.|(2021) satisfy the linear drift coefficient condition (check more details
in Appendix , and therefore, Vxlog po:(x(¢)|x(0)) = —:g; of each sample can be solved.

Following this, we are allowed to train a score-based model sy (x(t), t) by sampling x(0) ~ po(x)
from training dataset, uniformly random sampling ¢ in [0,1], and getting x(¢) ~ po:(x(¢)|x(0)).

Probability flow ODE. In addition to the Eq.@, there is an alternative solution to the reverse
diffusion process termed probability flow ODE (Maoutsa et al.,|2020; Song et al., 2021)), abbreviated
as Flow ODE. The Flow ODE shares the same marginal distribution p;(x) with SDE of Eq. and
can be defined as:

(1) = (F(0x(1) ~ 5(1)?xlog py(x())etr ©

In particular, the Flow ODE does not include random terms but retains the same score function
Vxlog pi(x(t)). Therefore, we can also plug sg(x(t),t) into Eq.(2) or Eq.(5) to generate samples.

Whole-score and self-score. It can be seen that the output of the trained score model sy (x,t) ~
Vilog p(x(t)) is the gradient pointing to the high-density regions of X, and plays a key role
in the reverse process. Therefore, we term it as whole-score s,,(x,t). In addition, we use score
Se(x,t) = —% relative to each sample denoted as self-score. Both whole- and self-score will be
discussed and used in our proposed Score-AD model.

3.2 ISSUES AND OBSERVATIONS

We regenerate a series of images as shown in Fig.[2] In particular, given a test image, with predeter-
mined ¢ € (0, 1], we inject noise to x(0) according to the forward SDEs to achieve x(t). Simulating
reverse process by reverse SDE or Flow ODE, we are allowed to reconstruct images x’(0). Note
with different ¢t € {.0005, 0.1, ...}, details and structures are gradually removed from left to right
in the third row of Fig. 2] Based on the difference between the original and reconstructed image,
we can localize the defects. For example, if using the reconstruction of ¢ = 0.5 in the first row of
Fig. [2| we may easily locate the defects. However, picking appropriate ¢ is non-trivial. When using
smaller ¢, not all defect images can be well changed into the normal mode. On the other hand, when
using larger ¢ values, the normal pixel in the reconstructed image is still somewhat different from the
original image in pixel space.

To provide more insights behind these phenomena, we conduct another experiment in Fig. [3to explore
how the score-based model transforms anomalous data to normal pattern, and reasons of deterioration
in normal regions of the original image. For demonstration purposes, we consider VE SDE where

dx(t) = de(t). Assume that the distribution of positive data is tA((—5,—5),1) +

%N ((5,5),1), and set 100 time steps in [0,1]. Other details are presented in Appendix E Following
the steps discussed above, we set the initial diffusion time step ¢ and obtain x(¢) by Eq.(4), and then
conduct reverse process through Flow ODE in Eq.(5) or reverse SDE in Eq.(2). In Fig. 3| anomalous
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Figure 3: Exploratory experiment based on VE SDE. pgq: (%) is shown in an orange colormap. The
red trajectory represents the reverse diffusion from x(¢) to x’(0) driven by Vlog p;(x(t)), and the
blue trajectory is the process from x(t) to x”(0) driven by —z(t)/o(t). (a) t = 0.6 and iterate the
Flow ODE. (b) t = 1.0 and iterate the Flow ODE. (c) t = 0.6 and iterate the Reverse SDE.

data points originally located in low probability density move to high probability density regions
driven by whole-score s,,(x,t) and end up as x’(0). For normal data, as shown in Fig. [3(a)| and
Fig. with a suitable ¢, e.g., t = 0.6, the deviation of the x’(0) from x(0) is smaller. When
t = 1.0, some normal data has trouble returning to the vicinity of x(0), as shown in Fig.[3(b) The
primary reason is s, (X, t) is learned to enforces the x’(0) moving to towards the high probability
density region of training data. When ¢ = 1.0, mixed Gaussians are fused into a tractable Gaussian
distribution p; (x) ~ 7(x). Therefore, some normal points are driven into the other Gaussian cores,
which deviate significantly from x(0).

4 PROPOSED METHOD

4.1 LEVERAGING WHOLE-SCORES TO LOCALIZE DEFECTS

One of the major issues identified in Fig. [3]is the whole-score drive the noisy data towards the high
density region, which makes anomalous data, originally located in the low density region, eventually
fall into the high density region. In the meanwhile, we shall carefully select ¢ value to retain the
overall contour of the distribution, such that the reconstructed normal data remain in the vicinity of
the original data after iterations. Otherwise, the normal region of the original data will be changed
significantly, as shown in Fig.[2]when ¢ > 0.5. This stringent requirement on ¢ makes comparing the
difference between the reconstructed and original image in pixel space be a less feasible or reliable
solution. However, we find that normal and abnormal data behave differently in the dimension of
probability density. From Fig. [3] after sufficient iterations, all normal or abnormal data eventually fall
into the high density portion of the normal distribution. Based on assumption that original anomaly
data is in the low probability density zone and normal data is originally in the high density region, we
propose that employing a metric connected to the probability density of normal data, e.g., whole-score
Sw (1) & Vylog p:(x(t)), is effective for AD. As a result, we can feed x’(0) and x(0) into score
model to assess their whole-score difference.

4.2 ENHANCEMENT THROUGH FEATURE MAPS

As the score-based model is usually implemented through neural networks, the characteristics of
scores can also be reflected by feature maps. Feature maps in deep layers containing more semantic
information and shallow layers feature maps for identifying fine-grained information such as lines,
colors, and so on. Previous works have already investigated the usefulness of feature maps in different
network layers for unsupervised anomaly detection (Wang et al., 2021} [Yamada & Hottal 2021}
Yang et al., [2020) as well as semantic segmentation (Baranchuk et al., [2022) through the middle
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Figure 4: Different semantic information of score model at different moments. Set different initial
time ¢, iterating = 1 steps with the Flow ODE, and present upsampling 64 x 64 feature map of
score model.

layer of score-based model. Therefore, we also adopt the multi-scale feature maps to strengthen the
performance through a U-net architecture as the followings.

In order to avoid using more models, we decide to adopt a similar scheme to process feature maps
in[Yamada & Hotta| (202T)). Firstly, calculate the Euclidean distance between the two feature maps
after performing /5 normalization on each feature map. Then, feature maps of the same resolution
are summed, and all feature maps are scaled up to the same resolution by using the “bilinear”
interpolations. The products of all feature maps are taken as the output. In our practice, however,
we found that the /5 normalization compromises the feature maps efficacy and its visual effects. We
believe the reason is feature maps of score-based model are not particularly trained for AD in an
supervised manner. Without normalization, feature maps of the same resolution may have different
magnitude. When they are added together, the output will favor the feature maps of greater magnitude,
leading to poor results. Therefore, we skip both /5 normalization and sum of feature maps of the
same resolution. Instead, feature maps with significant visual effects are selected and their point-wise
product will be used as outputs, as shown in Fig.

4.3 T SCALES

Another issue identified in practice is the time spent in the reverse process given a large ¢. It takes
many iterations with score model to return to x’(0). We are considering whether we can leverage the
feature maps of score model at different moments, but without the full iteration, because goal is to
detect defects rather than generate images.

It has been discussed that the score-based model provides semantics at different moments ¢
2022),, as Fig.[d]shown. Because the feature maps are changing gradually, there may be a lot
of redundant information in the feature maps at adjacent moments. Therefore, we are motivated to
not perform a full iteration to get the final image, but to iterate r steps (r is a very small integer),
then compute the difference of s,, (-, ¢,.) between x’(¢,) and x”(¢,.) to be the representative semantic
information in a certain time period around ¢, where x”' (t) represents the true trajectory from x(t) to
x(0). In order to leverage different information at different moments, we can apply a set of different
moments {¢} of capacity T', and in each ¢ case, we do the same process above. We term this approach
as T scales, as it will yield 7' feature maps to be assembled for anomaly map, as shown in Fig. [3]

Assume at step ¢, we will examine x at t; > ... > t; > ... > ¢, in a sequential manner, where
t; — tiy1 = At will be used as the approximation of d¢ in ODE. Without loss of generality, we
elaborate the process of computing x’(¢;) and x”(¢;) in each ¢ case as follows. First, x'(¢;) can be
achieved by replacing Vxlog p;(x(t)) in Eq.(]2) or Eq.([5) with whole-score s, (-, ) to build the
reverse path as the red path in Fig. [3| Second, x”(¢;) in adjacent steps can be modeled by replacing
the Vxlog p;(x(t)) in Eq.(2) or Eq.([§) with self-score s.(-,t) as the true trajectory from x(t) to
x(0). (The proof can be found in Appendix . Therefore, if we know self-score s, (-, t) relative to
x(0) at each moment, we can approach the original x(0) from x(t), as the blue path in Fig. 3} We
show the overall framework of our algorithm in Fig.[5] Specific calculation process and pseudo-code
are given in Appendix [A2] The key intuition of Score-AD with T scales as illustrated in Fig.[T}
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Figure 5: An overview of Score-AD for anomaly detection. Set {¢} and in each moment ¢ case, first
inject noise to a test image through po; (x(t)[x(0)) Eq.@). Then solving Eq.(2) or Eq.(5) by plugging
Sw(x,t) and s.(x, t) separately into them. After iterating r steps, input two samples into score model
to extract feature maps. Add up all feature maps of the same resolution at different {¢}, then after
upsampling, the final Anomaly map is obtained by multiplying them up.

Ours

Figure 6: Anomaly location examples of Score-AD on MVTec. The first row is the original anomaly
images. The second row is GT MASK. The third row is anomaly map from Score-AD.

5 EXPERIMENT

5.1 DATASETS

We conducted tests on common benchmarks to validate the effectiveness of our proposed approach,
Score-AD. We describe in detail the data sets used. MVTec AD dataset (Bergmann et al.l 2019)
contains 5354 high-resolution images, which is specifically utilized in the unsupervised AD task. It
contains 10 objects and 5 texture categories, and each category contains 60-320 train samples and
about 100 test samples. BeanTech AD dataset (Mishra et al, [2021)) is a industrial dataset containing
2540 high-resolution images of three products. MNIST (LeCun et al.,|2010) contains 60k training
and 10k test 28 x 28 gray-scale handwritten digit images.

5.2 EXPERIMENT SETUP

All of the images in the aforementioned dataset are resized to 256 x 256 pixels, except for MNIST
which is resized to 32 x 32 size. We train a score-based model based on NCSN++ and set 2000
diffusion timesteps for 256 x 256 size and train a score model based on DDPM++ (deep,VP) for
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Table 1: Anomaly detection (left) and localization (right) performance on MVTec AD dataset.
Methods achieved for the top two AUROC (%) are highlighted in bold. * means the method based on
pre-trained model. ¢ means Score-AD based on VE SDE,  means Score-AD based on VP SDE,
means Score-AD based on sub-VP SDE.

Method RIAD OCR-GAN CFlow* FastFlow* PaDiM* PatchCore* CutPaste DRAM | Ours’ Ours" Ours*™*

carpet |84.2/96.3  99.4/- 100/99.3  100/99.4  -/99.1 98.7/98.9  93.9/98.3 97.0/95.5|96.9/98.9 86.0/95.5 93.0/98.0
grid 99.6/98.8  99.6/-  97.6/99.0 99.7/98.3  -/197.3 98.2/98.7  100/97.5 99.9/99.7 | 100/99.7 100/99.6 100/99.5
leather | 100/99.4 97.1/-  97.7/99.7 100/99.5  -/99.2 100/99.3  100/99.5 100/98.6 |99.6/99.3 97.8/97.9 98.3/99.0
tile 98.7/89.1 95.5/-  98.7/98.0 100/96.3  -/94.1 98.7/95.6  94.6/90.5 99.6/99.2|98.6/94.4 98.7/95.7 100/94.8
wood |93.0/85.8  95.7/-  99.6/96.7 100/97.0 -/949  99.2/95.0 99.1/95.5 99.1/96.4|98.8/95.1 98.9/96.9 96.2/95.5

bottle  199.9/98.4  99.6/- 100/99.0  100/97.7  -/98.3 100/98.6  98.2/97.6 99.2/99.1| 100/97.9 100/98.1 99.7/95.7
cable |81.9/84.2  99.1/- 100/97.6  100/98.4  -/96.7 99.5/98.4 81.2/90.0 91.8/94.7|96.8/97.5 95.7/95.1 98.0/97.9
capsule |88.4/92.8  96.2/-  99.3/99.0 100/99.1  -/98.5 98.1/98.8 98.2/97.4 98.5/94.3|96.1/98.6 91.5/97.4 93.2/97.7
hazelnut |83.3/96.1 98.5/-  96.8/98.9 100/99.1  -/98.2 100/98.7  98.3/97.3 100/99.7 | 99.9/99.2 98.4/99.4 97.6/99.0
metal Nut 88.5/92.5  99.5/-  91.9/98.6 100/98.5 -/97.2 100/98.4  99.9/93.1 98.7/99.5|97.2/97.9 98.9/98.0 99.1/94.7
pill 83.8/95.7  98.3/-  99.9/99.0 99.4/99.2 -/957  96.7/97.1 94.9/95.7 98.9/97.6|95.3/96.0 88.3/96.4 93.7/94.4
screw | 84.5/98.8 100/- 99.7/98.9 97.8/99.4  -/98.5 98.1/99.4  88.7/96.7 93.9/97.6|99.6/99.6 98.3/99.8 99.1/99.8
toothbrush | 100/98.9 98.7/-  95.2/99.0 94.4/98.9  -/98.8 100/98.7  99.4/98.1 100/98.1 | 99.8/98.3 98.3/97.8 98.9/97.9
transistor [90.9/87.7  98.3/-  99.1/98.0 99.8/97.3  -/97.5 100/96.3  96.1/93.0 93.1/90.9 | 95.4/95.2 95.4/94.2 96.4/94.7
zipper |98.1/97.8  99.0/-  98.5/99.1 99.5/98.7 -/98.5 98.8/98.8  99.9/99.3 100/98.8 | 99.8/99.3 99.9/99.3 99.9/99.2

Average 191.7/942  98.3/-  98.3/98.6 99.4/98.5 97.9/97.5 99.1/98.1 96.1/96.0 98.0/97.3|98.2/97.8 96.4/97.4 97.5/97.2

Table 2: Anomaly detection (left) and localization (right) ~ Table 3: Quantitative results

performance on BTAD dataset. of AUROC for Anomaly De-
Class Panda® PaDiM* FastFlow* VIT-ADL OURS tection on MNIST dataset.
T 96.4/96.4 99.4/972 /95 799 99.2/97.7 Method  AUROC
2 81.0/94.1 79.5/952  -/96 194 81.1/95.2 ARAE 97.5
3 69.8/98.0 99.4/98.7  -/99 177 99.1/98.3 OCSVM  96.0
Mean 82.4/96.2 92.7/97.0  -/97 179 93.1/97.1 AnoGAN 914
DSVDD  94.8
Table 4: Quantitative results of Score-AD for ablation studies OCGAN 975
on MVTec AD dataset. LSA 97.5
Case Reconstruction Score-AD Score-AD U-Std* 99.35
Loss (w/o T scales) (w/ T scales) MKDAD* 98.71
AUROC 84.85/89.34 91.30/96.24 98.24/97.78 Score-AD  95.44

MNIST. We take area under the receiver operating characteristic curve (AUROC) the evaluation
metric for both anomaly detection and localization. In the inference stage, after we get the anomaly
map, leverage it to evaluate the AUROC metric for location task and the maximum value of each
anomaly map to evaluate the AUROC metric for classification task. Other experiment details are
presented in Appendix [B]

5.3 STATE-OF-THE-ART COMPARISON

Results on MVTec AD are shown in Table[l] where Score-AD based on VE SDE and Flow ODE
sampling method achieves the SOTA 98.2 image-level AUC and 97.8 pixel-level AUC, Score-AD
based on VP SDE and reverse SDE sampling method achieves 96.4 image-level AUC and 97.4 pixel-
level AUC, and Score-AD based on sub-VP SDE and the Flow ODE sampling method achieves 97.5
image-level AUC and 97.2 pixel-level AUC. We compare our results with the SOTA unsupervised
AD methods on MVTec AD dataset. Specifically, Score-AD outperforms the AE-based method,
RIAD (Zavrtanik et al.,[2021b), and is only 0.1% | than the GAN combined with pseduo-defects
method, OCR-GAN (Liang et al.|[2022)). Although our approach still lags behind CFLOW (Gudovskiy
et al.| [2021)) and FastFlow (Yul et al.,|2022)), works combined Flow with pre-trained models, as well
as some others based on pre-trained models, likely PatchCore (Roth et al.| [2022)), Score-AD does not
resort to pre-trained models that contain rich semantic information and have some comparability in
some classes. For the methods of creating pseudo-defects to transform unsupervised learning into
supervised learning, Score-AD also outperform CutPaste (Li et al.,|[2021)), while DREM (Zavrtanik
et al.|2021a), which uses additional data to create defects and specifically designed reconstruction
model and anomaly segmentation model for AD, achieved SOTA results, Score-AD also outperforms
it by 0.2% 7 in the detection task and 0.5% 1 in the localization task.



Under review as a conference paper at ICLR 2023

Results on BeanTech AD are shown in Table [2| where Score-AD based on VP SDE and the
probabiliyu flow ODE achieves 93.4 image-level AUC and 97.1 pixel-level AUC. Ours outperforms
the reconstruction-based method depended on transformation model, VI-ADL (Mishra et al.| 2021)).
And compared with the methods relied on pre-trained models, including Panda (Reiss et al., 2021a)),
PaDiM (Defard et al., [2021) and FastFlow (Yul et al.l[2022), we achieve a new SOTA results.

Results on MNIST are displayed in Table[3] Score-AD achieves 95.44 image-level AUC. Compared
with the methods relied on pre-trained models, U-Std (Bergmann et al., 2020) and MKDAD (Salehi
et al.,[2021b), we are about 3.91% | below the best result. More fairly, compared with unsupervised
methods, including ARAE (Salehi et al.|[2021a), OCSVM (Chen et al.,2001), AnoGAN (Li et al.|
2018), DSVDD (Ruff et al., [2018)), OCGAN (Perera et al., 2019) and LSA (Abati et al., [2019). We
come in 2.1% | below the top score. Notably, our approach is sensitive to feature maps that are
fixedly selected and cannot be adaptively adjusted according to different image. Thus difficulties are
encountered in experimentally tuning a large dataset like MNIST. This can be improved by easily
extending a professional and generalized classification or segmentation network with self-supervised
(e.g., pseduo-defects) or semi-supervised (i.e., several available abnormal samples with image or
pixel labels) methods. Since the purpose of this paper is to explore unsupervised solutions that are
applicable to the score model and do not depend on other models, we leave this work for the future.

5.4 ABLATION STUDY AND ANALYSIS

We do comparative experiments to confirm the efficacy of submodules methods. Specifically, we run
a continuous version experiment (Score-AD without 7" scales) iterating from the maximum moment
in {t} to near the smallest moment ¢, and then take difference of the s,,(, €) and its feature map
to simulate score difference, ||Vy/1og p;(x'(€)) — Vxrlog ps(x”’(€))||?, and also do a experiment
based on reconstruction loss between x’(0) and x(0) for AD, |[x’(0) — x”(0)||2. From the Table[4]
compared the case with reconstruction loss to Score-AD without 7" scales, it can be easily proved that
the score as a metric is more useful for AD. Plus, compared the case with 1" scales to the case without
T scales, T scales technique can enhance performance. This is because it iterates score model just
few steps, some normal pixels have little opportunity accessing other high probability density regions,
alleviating the problems discussed above in Section [3.2]further, and it also leverages the different
semantic information at different moments.

5.5 COMPUTATIONAL COMPLEXITY

We propose 1" scales technique to speed up the inference process. Take an example of real case in
MVTec AD dataset, after we train a score model that needs S = 2000 iteration steps to generate
images, and we set inital timesteps as t = 250/2000. Therefore, the inference-time efficiency of
Score-AD without 7" scales is O(t * S — 1 + 2) = O(251). However, with T scales, we develop
a set containing different timesteps {¢}. For example, we can take a ¢t from 250 to 50 every 50
steps, {¢t} = {250, 200, 150, 100, 50} /2000 containing 7' = 5 different timesteps. Therefore, the
minimal inference-time efficiency is O(T" * (r + 2)) = O(T = 3) = O(15), which are more efficient
than AnoDDPM (Wyatt et al., [2022)) whose inference-time efficiency is O(t x S) = O(250). Our
calculated inference-time efficiency is based on the number of times the neural network is run. What’s
more, 1" scales technique also makes the sequential iteration split into parallel cases, and each ¢ case
needs to iterate just few r steps. Therefore, it can also run in parallel to speed up further. Moreover,
the community is also exploring some ways to accelerate the score model and diffusion model.

6 CONCLUSION

We propose to use score-based generative model for unsupervised anomaly detection. Our research
indicates that employing a metric for AD that is linked to the probability density of normal data, e.g.,
score value, can efficiently handle the challenge of reconstructed normal images that differ from the
original normal images in pixel space. In addition, we propose to use 7" scales to solve the problem
of slow speed due to the need of iterating multiple steps of Markov chain, and since we only need to
iterate few steps at each t moment, it does not deviate the normal pixels too much from the original
data, but in turn improves the accuracy. Without using additional data, algorithms and models, we
achieve a competitive performance on several datasets.
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A  SUPPLEMENTARY FORMULA

A.1 PROOF FOR THE TRUE TRAJECTORY

First, we define the true trajectory from x(t) to x(0) in the sense that after obtaining x(¢) by injecting
noise to x(0), the path is iterated back to the original x(0) through reverse stochastic process. Below,
we give the proof of the formulation about the true trajectory from x(¢) to x(0).

First, the objective of generative model is to generate samples that satisfy the distribution of the
given training data. Recalling Section [3.I] we train a neural network to fit the score function
Vxlog pi(x(t)) of given dataset X v, which guarantees the score-based generative model eventually
generate x(0) ~ po(x) through reverse process, where pg(X) & pgqtq(x) by definition. Here,

Ologpi(x(t) 1  9pi(x(t))
ox(t) pe(x(t))  0x(t)
B pt(i(t)) axa(t Po(x(0))pos (x(t)[x(0))dx(0)
= iy | O P ax)
B pt(i(t)) / o0 (x(0)x(0)) poégcx(g)lx(o))dx(o)
N / po<x<0);fo>i((;<)t)lx<0)) = poégcx(g)x(o))dxm)- ©)

However, regarding the true trajectory from x(¢) to x(0), we can consider that p,:,(X) degenerates
to a one-point distribution with mean x(0) and variance 0, denoted as p; , . (x):

/1 _ 1, x= X(O)
pdata(x) - {07 Others (7)

Therefore, Vylog pY (x(¢)) = Vxlog pg, (x(t)|x(0)). As discussed in Section [3.1} if drift coefficient
f(t) of SDE is linear, the transition density is Gaussian po; (x(t)[x(0)) = N (x(t); u(t)x(0), o (£)?1).

Thus, Vilog p//(x(t)) = Vilog pf(x(t)x(0) = —X0-MOO — 20 where x(t) =
w(®)x(0) + o(t)z(t), z(¢t) ~ N(0,1), denoted as self-score s.(-,t) in our paper. Therefore, we
c.anlobtain Eq. and Eq.@) by plugging Vylog py (x(t)) = —% into Eq. and Eq. respec-
tively.

dx(t) = (Fx(t) = g(t)*(= DT + g()dw (). ®)
dx(t) = (FX(0) = a0 (- 5. ©

The path obtained by iterating Eq.(8) is represented as the true trajectory from x(t) to x(0) with
the Reverse SDE in Eq.(2), and the path from Eq.(9) as the true trajectory with the probability flow
ODE in Eq.(3). In addition, when training the score-based model, whole-score is actually evaluated

through self-score — ;((?) of each sample in the training dataset. And we can provide more insights of

the principle of score-AD by analyzing the difference of whole-score and self-score in calculation
ways with Eq.(6).

A.2 ALGORITHM

From Eq.(8) and Eq.(9), we can approach the original x(0) from x(¢) if we know z(t) relative to x(0)
at each moment. It should be noted that the z(¢;) changes constantly over steps, and by deforming
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Eq., z(t) = W we can know it will be updated along with x” (¢ ( ) At the current step,

as the z(¢ ) is known in advance, we can bring self-score computed by z(t;) to Eq.(8) or Eq. @])
to obtain x"(¢;11). Through above deformation of Eq.(4) and x” (t;11), we can therefore obtain
z(t;+1). Repeating this process, we can obtain the complete trajectory of x(t) to x”(¢,.), or ultimately
to x”(0) = x(0). Therefore, after r steps, we can feed the sets {«'(¢,)} and {2”(¢,)} (each of
which has a capacity of T') into the score-based model. We conclude the algorithm about Score-AD.
Algorithm 1 and 2 denotes the reverse diffusion process with the probability flow ODE, and Reverse
SDE separately. x(0) € X4 4 is a test image, {t} is a set of different initial time with capacity of
T, and r is the number of iteration steps.

Algorithm 1 Score-AD with the flow ODE Algorithm 2 Score-AD with Reverse SDE
Require: x(0);{t}; r; Require: x(0);{t}; r;
1: fort € {t} do for ¢ € {t} do
2 x(t) = p(t)x(0) 2 x(t) = p(t)x(0)
3: z(t) ~ N(0,1) z(t) ~ N(0,1)
4: x(to) = x(t) + o(t)z(t) 4: x(to) = x(t) + o(t)z(t)
5: fori =0tor —1do fori =0tor —1do
At =t; — titv1 At =1t; — tit1
n(t;) ~ N(0,1)
X/ (ti1) = X (t) — f(t)x/ ()AL X (ti1) = X (t) — f(t)x ()AL
X/(ti+1) = X/(ti+1) + %g(ti)QSQ(x/,ti)At ( i+1) =X (tig1) + (tl)Q ( ti) At
x'(tip1) = %' (tiv1) + g(ti) VA n(
6: _ // . 7
° X (tin) = X (1) — (t)x (8) A K (ti) = x"(t) = ()X (0 At
, " _ z(t:)
X (ti41) = %" (t41) + g(ts)2(— 20 ) Ay X! (tie) = x"(te) + 9(00)" (= ZE) A
2 O'(ti)
x"(tiv1) = x" (tiy1) + g(t:) V Atn(t:)
stonr) = X i) - u(t)i+1)X(0) altip) = X (Li+1) . (t;“) x(0)
o(tit1
7:  end for end for, y
8: Input x'(,.) and x” (£,.) to the score model 8: Input x'(¢,) and x” (¢,) to the score model
9: end for end for '
10: Add or multiply feature maps 10: Add or multiply feature maps
11: return Anomaly Map return Anomaly Map
A.3 DETAILS VE, VP AND SUB-VP SDEs
We follow the definitions of VE, VP and sub-VP SDE:s as in|Song et al.|(2021):
dx(t) = /=0 de( t), (VE SDE)
dx(t) = —3B(t)x(t)dt + /B(t)dw(t (VP SDE) (10)
dx(t) = —3B8(t)x(t)dt + \/ B(t)(1 — e’zfotﬁ(s)ds)dw(t). (sub-VP SDE)

VE SDE refers to Variance Exploding (VE) SDE, because VE SDE always gives a process with
exploding variance when t increases. The Variance Preserving (VP) SDE yields a process with a
fixed variance of one when the initial distribution has unit variance. The variance of the stochastic
process induced by sub-VP SDE is always bounded by the VP SDE at every intermediate time step.
See [Song et al.|(2021) for more information.

Because VE, VP and sub-VP SDEs all have linear drift coefficients f(¢), their corresponding transition
densities po:(x(t)|x(0)) are all Gaussian:

N (x(t); x(0), [0*(t) — o*(0)]T) (VE SDE)
pot(x(£)[x(0)) = { N(x(t); x(0)e~2 Jo B)ds 1 _Je= o B®dsy  (yPSDE) .  (11)
N (x(t);x(0)e=2 Jo B)ds [1 — ¢~ J3 B=)ds]2])  (sub-VP SDE)
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In particular, there are discretizations of SDEs. For VE SDE, set

Umin(gméx )t7 te (07 1]
t) = O min 12
o) {0, t=0. (12)

For both VP SDE and sub-VP SDE, they are set as:

6(t) = 6min + t(ﬂmax - 5min)- (13)

B IMPLEMENTATION DETAILS

Below, we add additional implementation details for each experiment.

MNIST Figure. For Fig.[I] to demonstrate our method and show more insights, we train a score
model on subset with category “1" on MNIST dataset, while select an image with category “7" in
testing. The score model is based on VE SDE, which adopts U-net architecture and code can be
found in colab tutorial of https://github.com/yang—-song/score_sde_pytorch. We
choose o(t) = (25)¢, set diffusion timesteps as 1000 and initial moment ¢ = 0.2 to get the final
reconstructed image.

MNIST Experiment. We choose VP SDE. Specially, 8,,in = 0.1, Bmaz = 20, and set diffusion
timesteps as 1000. Based on the previous work, we adopt the positional embeddings, the layers
in|Ho et al.| (2020b) to condition the score model on continuous time variables. As for architecture of
score-based model, we take DDPM++ structure introduced in Song et al.|(2021): 1) rescales skip
connections; 3) employs BigGAN-type residual blocks; 4) uses 2 residual blocks per resolution; and
5) uses "residual” for input. Please see|Song et al.| (2021) and yang-song/score_sde_pytorch|to get
more information.

Exploratory experiment. For Fig. 3, based on the instantiation scheme of VE SDE, we choose o i, =
0.1 and o = 20. Specially, we select three data points (—6.0,5.0), (5.17,5.2), (—4.2, —4.3).
Based on our assumption and normal data distribution, (—6.0, 5.0) is anomaly data. Consistent with
the results in the Fig.[3] the difference of whole-score value between the “reconstructed-original
noisy” data pairs is much larger than normal data.

MvTec AD and BeanTech AD dataset. The MVTec AD dataset is available at https://
www.mvtec.com/company/research/datasets/mvtec—ad/ and the BTAD dataset is
available at https://github.com/pankajmishra000/VT-ADL. For VE SDE, we choose
Omin = 0.01 and on.x = 348. For VP SDE and sub-VP SDE, we select Byin = 0.1 and SBpax = 20.
Based on the previous work, we use random Fourier feature embeddings layers introduced in |Tan+
cik et al.| (2020) to condition the score model on continuous time variables for VE SDE and the
scale parameter of Fourier feature embeddings is fixed to 16. For VP and sub-VP SDE, we adopt
the positional embeddings. As for architecture of score-based model, we take NCSN++ structure
for all SDEs : 1) uses FIR upsampling/downsampling; 2) rescales skip connections; 3) employs
BigGAN-type residual blocks; 4) uses 2 residual blocks per resolution; and 5) uses "residual” for
input and no progressive growing architecture for output. The code about the score-based model can
be found at yang-song/score_sde_pytorch. The results of Table 2 are based on VPSDE and Flow ODE
sampling method. For the results of Table 1, to choose a set of different initial moment {¢}, we adjust
the maximum and minimum ¢ in {¢}, and then take time stamp every 50 steps interval. The selected
feature maps or {¢} set work well and are effective in most cases but not every image. Therefore, an
adaptive feature maps selection strategy would be helpful and could be our future extension.
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