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Abstract

The biosecurity issue arises as the capability of deep learning-based protein design
has rapidly increased in recent years. To address this problem, we propose a
new general framework for adding watermarks to protein sequences designed by
various sampling-based deep learning models. Compared to currently proposed
protein design regulation procedures, watermarks ensure robust traceability and
maintain the privacy of protein sequences. Moreover, using our framework does
not decrease the performance or accessibility of the protein design tools.
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1 Main

Computational protein design, which includes various methods ranging from biophys-
ical models to generative machine learning methods, has emerged as the possible
solution to substitute the experimental-based variants selection methods since it could
efficiently explore the space of functional protein [1]. Among the computational meth-
ods, the capability of generative deep-learning approaches has rapidly grown and can
perform various protein design tasks within a single model [2, 3]. Moreover, the exper-
imental validations show that these generative models can design sequences with a
high success rate in in vivo expression [2, 3]. However, these high success rate protein
design tools not only bring opportunities and benefits in biological research but also
raise concerns about biosecurity [4, 5], because bad actors in the community could use
advanced open-source generative protein design tools to design and synthesize hazard
proteins and causes potential threats.

To mitigate this issue, the previous consensus involved controlling the DNA syn-
thesis step and logging every sequence with the authority (e.g., International Gene
Synthesis Consortium, IGSC) for screening to reduce the risk (Fig. 1a) [4]. If de novo
designed harmful sequences escape from screening due to their little sequence similar-
ity in the database, authority could robustly trace back the source through sequence
alignment methods even if a sequence collected from environment may have some
mutations. Thus this conventional method can deter bad actors to achieve biosecurity.
Although the regulation method is practicable, reporting every sequence to the author-
ity may compromise the privacy of the designed protein sequence and pose challenges
to intellectual property (IP) protection. Recently, a concurrent work by SecureDNA
foundation introduces a cryptographic framework designed for the screening step to
protect the privacy [6]. In this framework, biological sequences are dissected into frag-
ments and then hashed for exact matching with hashed hazardous sequences in a
curated database. However, using hash function as encryption method presents diffi-
culties for robust traceability, as the mutated sequences would not have the same hash
code as the original one. Additionally, the hashes of all subsequences of length x need
to be uploaded for screening. These hashes are significantly easier to reverse than a
single hash function, which could compromise privacy. As long as a bad actor knows
a subsequence xi, · · · , xi+k, they can guess the nearest neighboring base pair xi+k+1

with the help of hash(xi+1, · · · , xi+x+1). Once the bad actor has the hash of all subse-
quences and obtains the content of any subsequence, for example, through a collision
with a common structure, they can recover the entire sequence with only O(n) num-
ber of hash requests, where n is total sequence length. Hence, there still exists a large
gap between the current DNA synthesis regulation methods and the need for privacy
and biosecurity.

In this paper, we introduce protein watermark, a new general framework for adding
watermarks in the generative protein design model to fulfill the need of privacy and
robust traceability (Fig.1b,c). In this framework, each researcher gets an authorized
private key associated with their identity from the authority, then the researcher
can use this private key to add watermarks to the generative model-designed protein
sequence (Fig.1b). With the private key and corresponding sequences, the DNA syn-
thesizer equipped with a watermark detection program could locally verify that the
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Fig. 1 The biosecurity-enhanced regulation process with watermarked protein design.
a) Conventional protein design regulation process. Researchers use diverse tools to design protein
sequences and translate proteins into DNA sequences, then they report every sequence to the author-
ity and obtain permission for synthesis and expression. b) Watermarked protein design tools. To
add watermarks to protein sequences, the residue distribution of a specific design task is modified
according to a watermark code E derived from a private key. The expectation of the modified dis-
tribution over the watermark code is identical to the original distribution. c) Watermarked protein
design process. Each researcher applies for a private key from the authority. With this private key,
a researcher can design protein sequences with watermarks. These sequences are then translated to
DNA sequences and can be locally verified by a DNA synthesizer with a watermark detection pro-
gram. When a suspicious protein gains interest, the authority could sequence it and trace it back
to its designer even it has some mutations. Additionally, researchers could claim the IP of a specific
protein based on their private key.

sequences are from an authorized user without logging any sequence-related informa-
tion to the server (Fig.1c). The watermarks establish a strong association between
the synthesized sequences and the researcher’s identity. When a suspicious protein is
noticed, authority may trace the source by matching the watermarks against all pri-
vate keys (Fig.1c). The watermarks are robust and not easy to be erased from the
design, thereby improving the traceability of each synthesized sequence and deterring
the bad actors to enhance biosecurity. Additionally, this framework allows researchers
to claim intellectual property rights over synthesized sequences. If the watermarks are
not enough in the designed sequence (i.e. detected watermark score is below a thresh-
old), the researcher could still report the sequence to the authority as an alternative
way to get synthesis permission (Fig.1a).
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The protein watermark framework is based on previous works that can add water-
marks to contents generated by autoregressive models [7–9] and is modified to improve
the efficiency of watermark detection. Previous studies have shown that adding water-
marks to the content can either be biased, that is the watermarks can be detected by
everyone but the model performance will drop, or be unbiased, which means the water-
marks are undetectable unless the private key is given while the model performance
remains the same. Considering both the performance requirements and the traceabil-
ity needs of the secure protein design settings, we employ the unbiased watermarking
technique in our framework [8]. Specifically, the intuition of the unbiased property can
be simplified as: For a given generated distribution P (xi|conditions) of the ith residue,
we modify the distribution to Pw(xi|conditions, E) based on a watermark code E
derived from the private key (Fig.1b). Then we ensure the expectation of the modified
distribution is equal to the original one: EE(Pw(xi|conditions, E)) = P (xi|conditions).
That is, the performance would not be changed and the sequence’s watermarks can
not be detected without knowing the correct private key to derive the watermark code
(see rigorous proof in Watermark embedding). To detect the watermarks in a sequence,
we employ and improve the “model-agnostic” detection method. This method takes
the pair of private key and sequence as input and outputs the watermark score and
p-value. It does not require the logits information from the generative model, making
the detection more flexible and practical (see more details in Watermark detection).

To investigate the basic properties of the protein watermark framework, we assessed
it on the representative autoregressive model ProteinMPNN [3, 10]. ProteinMPNN
is chosen as the representative because the model can use arbitrary decoding order
[10, 11] to generate sequence and it has solid experimental verification. To fairly eval-
uate the performance, we prepared a dataset containing 60 monomer structures with
length ranges from 50 to 650 residues released after the training data cutoff date of
ProteinMPNN. To show that our framework is unbiased, we generated 50 sequences
for each structure under the original and the watermarked ProteinMPNN model at
different sampling temperatures (Fig.2a). The generated sequences’ performance is
evaluated by the average pLDDT score predicted by ESMfold [12] since pLDDT is used
as a surrogate metric to select generated sequences in the original study [3] (Fig.2a).
The results show that adding watermarks to the sequences does not change the per-
formance which is aligned with our theoretical analysis (see Watermark embedding).
To show the practicality, we then studied the relationship between the average Shan-
non entropy per residue and the average detected watermark score per residue to show
the efficacy of our framework (Fig.2b). The results show that the detected watermark
score increases along with the entropy as watermark can be effectively added when the
entropy is high. Moreover, the results show that detecting the watermarks with the
“model-agnostic” method proposed in the original paper [8] is not satisfying as the
negative watermark score appears when the entropy is low (Fig.2b). We then optimized
the detection method and found our new method is substantially improved when the
entropy is low, thus making the whole framework more practical (Fig.2b, see details
in Watermark detection). To show the robustness and correctness of the watermarks
and the corresponding detection method, we investigated the effect of sequence modi-
fication. The results display a decayed watermark after mutating all alanine to glycine
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Fig. 2 Protein watermark is unbiased, robust, and practical. a) The ESMfold’s pLDDT
of each designed sequence at different temperatures. The blue and red represent the original Pro-
teinMPNN and watermarked ProteinMPNN, respectively. Each violin plot contains 3,000 pLDDT
scores from 60 different monomer design tasks while each task has 50 different designs. The median
performance drops as the temperature increases. b) The relationship between entropy, and detected
watermark score. For the 60 monomer design tasks, we sample one sequence at each temperature.
The mean entropy per residue linearly increases as temperature increases. With more entropy, the
watermark score detection efficiency increases, and the optimized detection method substantially sur-
passes the original detection method. c) The robustness of watermark score. The average watermark
score goes down as the protein sequence is modified. In the plot, “G to A” and “A to G” refer to the
substitution of all alanine with glycine and the replacement of all glycine with alanine, respectively.
Despite these significant alterations, the watermarks remain detectable. The 95% confidence interval
is centered at the mean. d) The rank of the best pLDDT score of 50 samples at each temperature.
The proteins are ranked based on their length ranging from 50 to 650 residues. These sixty proteins
are evenly distributed in terms of length. The designed protein with the highest pLDDT score is in
red, whereas the one with the lowest score is in blue.

or mutating all glycine to alanine in a sequence (Fig.2c). Of note, though the water-
mark score would decrease under this very strong attack, the robustness enables the
authority to track the source of a suspicious protein even if it is largely modified after
the DNA synthesis step. Besides, our method guarantees that the watermarks can not
be detected by a wrong key (Fig.2c). However, these results also indicate there may
exist a trade-off between adding watermarks and the performance as the higher sam-
pling temperature would lead to a lower median performance but more watermarks
in the sequence (Fig.2a and Fig.2b). To further understand this observation, we next
selected the best average pLDDT score of the 50 generated sequences at each tem-
perature for each structure and showed their relative rank (Fig.2c). Selecting the best
pLDDT mimics the process of selecting the best sequence for in vivo expression [3].
The findings indicate that the best design does not always come from a lower temper-
ature and the performance between temperature from 0.1 to 0.5 is similar. Combining
all the observations together, we interpret them from a probabilistic perspective: as
the temperature increases, the variance of the sampling increases, and the performance
expands. It means that we may still have a chance to sample a good design at higher
temperatures but we would spend higher sampling costs.
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In summary, the protein watermark is a general, robust, and practicable frame-
work for the regulation of protein design, addressing challenges in privacy need, IP
protection, and robust traceability. It can be integrated into the current regulation
process and is complementary to hazard sequence detection methods [4, 6, 13]. Based
on manipulating the probability space of protein sequences, the protein watermark
framework can only be applied to generative models with randomness, and the water-
mark is hardly detected in low entropy regions. However, these limitations do not
conflict with the regulation process, since a low entropy design task means there may
be only several proteins in the protein space that can satisfy the requirements, which
prevents bad actors from modifying the sequences. Hence, the low-entropy protein
design can be supervised by the current regulation process. Furthermore, we envision
that more watermarks could be added and detected as the protein functional space
could be more efficiently explored in the future. Considering all features together, we
believe that the protein watermark framework will play an important role in future
protein design regulation processes.

2 Methods

2.1 Data preparation

In our experiments, we employed 60 protein structures for ProteinMPNN to perform
protein redesign task. To make the evaluation reasonable, we searched the monomer
structure data with protein length ranges from 50 to 650 released after ProteinMPNN
training data cutoff date (from July 22, 2021 to Mar 22, 2024). Then we evenly
sampled 60 monomers from all qualified monomers based on its length. That is, for
each bin (e.g., length from 50 to 60, 60 to 70...), we sampled one structure based
on the sequence length parsed by the pdb2fasta.py script from Rosetta Commons.
Of note, in our experiments, we found that the parser behaviour of pdb2fasta.py

is different from the ProteinMPNN’s parser, and the real output sequence length of
ProteinMPNN may differ from the expected length. Specifically, the sequence length
of “7WC9” and “8A7Z” parsed by ProteinMPNN exceeds 650 too much and these
two proteins’ designed sequences are not evaluated by ESMFold [12] because of the
memory constraint.

2.2 Protein watermark framework

In this section, we present our methodology for watermarking autoregressive pro-
tein design models and detecting the presence of watermarks in generated protein
sequences. Our approach allows for the embedding of identifying information into the
generation process without compromising the quality of the designed proteins. We
also introduce techniques for quantifying the strength of the watermark and efficiently
detecting its presence.

2.2.1 Problem formulation

We model the protein design process as an autoregressive model, where each step
generates a new token based on the previously designed tokens. In the context of
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protein sequences, tokens can correspond to the 20 standard amino acids, resulting in
a total of 20 symbols in the basic setup. Some encoding methods may utilize additional
symbols for each amino acid (see IUPAC), or multiple amino acid tuples can form a
single token based on the byte pair encoding (BPE) algorithm [14]. We abstract the
set of possible tokens as a symbol set Σ, and the space of all possible sequences as Σ∗.

The generation process without watermarking can be modeled as an autoregressive
model. Given the previously designed tokens x1, x2, ..., xn, the probability of the next
token is denoted as PM (xn+1|x1, x2, ..., xn). The probability of designing a complete
sequence is given by:

PM (x1, x2, ..., xn) =

n∏
i=1

PM (xi|x1, x2, ..., xi−1). (1)

To allow for personalized watermarks, we introduce a key space R. Each user
selects a key r ∈ R randomly from a uniform prior PR(r). The watermarked generation
process is denoted as:

PM,w(xn+1|x1, x2, ..., xn; r), (2)

and the probability of generating a watermarked sequence is:

PM,w(x1, x2, ..., xn; r) =

n∏
i=1

PM,w(xi|x1, x2, ..., xi−1; r). (3)

Our goal is to achieve downstream invariance, meaning that for any metric f :
Σ∗ → R, the following equality holds:

Er∼PR
Ex∼PM,w(·;r)[f(x)] = Ex∼PM

[f(x)] (4)

This ensures that the watermarking process does not affect the quality of the generated
protein sequences.

2.2.2 Watermark embedding

To embed a watermark, we transform the output distribution in a step-by-step manner.
At each step, a new symbol is generated according to some probability distribution
over the symbol set Σ. All possible probability distributions over Σ form a simplex,
denoted as ∆Σ. We introduce a reweighting function RE : ∆Σ → ∆Σ that depends on
a random watermark code E following a distribution PE .

Unbiased reweighting function

To ensure that the output distribution remains unchanged on average, we require that
the distribution is invariant under the reweighting function when averaged over the
random watermark code:

∀P ∈ ∆Σ,EE [RE(P )] = P. (5)
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Such a reweighting function is referred to as unbiased reweighting. There exist many
instances of unbiased reweighting functions. One example is the δ-Gumbel reweight-
ing function, which intuitively uses the Gumbel trick to sample from the original
distribution and returns a δ distribution over the sampled token as the reweighted
result:

E ∈ RΣ, (6)

PE(E) =
∏
i∈Σ

e−(Ei+e−Ei ), (7)

RE(P ) = δargmaxiPi+Ei
. (8)

For more examples of unbiased reweighting functions, we refer the reader to [8].
It is important to note that watermarking is only possible for generation

processes with sufficient entropy. If the entropy is very low, the reweighted dis-
tribution PM,w(·|x1, x2, ..., xn; r) will be very close to the original distribution
PM (·|x1, x2, ..., xn), making it difficult to embed and subsequently detect the water-
mark.

In the autoregressive setting, we apply the reweighting function at each step. Given
a prefix x1, x2, ..., xn, the probability distribution over the next token without water-
marking is PM (·|x1, x2, ..., xn) ∈ ∆Σ. At each step, we rely on a random watermark
code Ei+1, which can depend on the key r. With watermark, the new token is sampled
from the reweighted distribution:

PM,w(·|x1, x2, ..., xn; r) = REi+1
[PM (·|x1, x2, ..., xn)] ∈ ∆Σ. (9)

If the reweighting function is unbiased, we have:

EEi+1 [REi+1(PM (·|x1, x2, ..., xn))] = PM (·|x1, x2, ..., xn). (10)

The following theorem shows that if the reweighting function is unbiased and all
watermark codes Ei are independent, the entire generation process remains unbiased:
Theorem 1. If the reweighting function is unbiased and all watermark codes Ei are
independent, then EE1,...,EnPM,w(x1, x2, ..., xn; r) = PM (x1, x2, ..., xn).

Proof.

EE1,...,EnPM,w(x1, x2, ..., xn; r)

=EE1,...,En

n∏
i=1

PM,w(xi|x1, x2, ..., xi−1; r)

=

n∏
i=1

EEi
PM,w(xi|x1, x2, ..., xi−1; r)

=

n∏
i=1

PM (xi|x1, x2, ..., xi−1)
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=PM (x1, x2, ..., xn).

The second equality holds because Ei are mutually independent and
PM,w(xi|x1, x2, ..., xi−1; r) only depends on Ei.

This theorem extends the unbiased property of single token generation to the joint
distribution of the entire sequence. There exists a natural extension to the generation
of multiple sequences: as long as the watermark codes E used for generating each token
of each sequence are independent, the overall joint distribution of multiple sequences
remains unbiased.

Generating independent watermark codes

To ensure the independence of the random watermark codes Ei, which is crucial for
guaranteeing the unbiasedness of the entire sequence generation process, we combine
the “context information” and the “key” to construct Ei. Specifically, given a prefix
x1, x2, ..., xn, we consider an abstract context code space C and construct a context
code based on the prefix:

cc : Σ∗ → C, (11)

cn+1 = cc(x1, x2, ..., xn). (12)

In this work, we use the m most recent tokens as the context code:

cn+1 = (xn−m+1, ..., xn). (13)

The final watermark code is obtained through a watermark code generation
function Ê : C ×R → E :

Ei = Ê(ci, r). (14)

We require the watermark code generation function to satisfy two properties:

• Unbiasedness: In any context, it should generate watermark codes following the
correct distribution:

∀E ∈ E ,∀c ∈ C,PR(E = Ê(c, r)) = PE(E). (15)

• Independence: For any n different c1, . . . , cn ∈ C, the generated watermark codes
Ê(ci, r) are mutually independent random variables.

Such a watermark code generation function always exists, as shown in the following
proof:

Proof. Assume that watermark code space is E and the watermark code distribution
is PE(e). We construct a key space R = EC , where each key r is a function from
the context code space to the watermark code space. The random key has a PDF
PR(r) =

∏
c∈C PE(r(c)). With this construction, Ê(c, r) = r(c) constitutes an instance

of a watermark code generation function.
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In practice, we simulate the above construction using pseudorandom numbers.
Specifically, we use hash(c, r) as a random seed to sample E from PE as an imple-
mentation of E = Ê(c, r). In this work, we use SHA-256 and a 1024-bit random key
r.

Handling repeated context codes

It is important to note that the context code generation process cc : Σ∗ → C is gen-
erally not injective. This leads to the possibility of encountering the same watermark
code in two steps during the generation of a long sequence or multiple sequences, which
violates the independence of Ei. To address this issue, we introduce a simple but nec-
essary workaround: if a repeated context code is encountered during the generation of
a token, we skip the reweighting step for that token. Specifically, we define a context
code history that records all the context codes encountered in the watermarking pro-
cess using the key r. At each watermarking step, we compute the context code ci as
usual. If ci has not appeared in the context code history, we proceed with the normal
watermarking process:

PM,w(·|x1, x2, ..., xn; r) = REi+1(PM (·|x1, x2, ..., xn)) ∈ ∆Σ, (16)

and add ci to the context code history. Otherwise, if ci has appeared in the context
code history, we skip the reweighting step:

PM,w(·|x1, x2, ..., xn; r) = PM (·|x1, x2, ..., xn). (17)

In our experiments, we set the context code length be 5, which means the previous
5 tokens will be used as the context code. Hence, the watermark code space would be
205 = 3, 200, 000 in the experiments. It indicates that the unbiased watermark could
be added at most 3,200,000 times for a model, otherwise, the watermark could not be
added or could be detectable. In practice, the context code length can be extended to
a larger number to satisfy the protein design needs. For example, when the context
code length is 10, the watermark space (2010) would be large enough to satisfy any
protein design needs. Of note, there is a trade-off between context code length and
robustness, since a longer context code would lead to a less robust traceability.

2.2.3 Properties of the watermark

The theorem presented earlier has several implications for the properties of the
watermark:

Preserving output quality

The watermarked and original probability distributions are identical on average:

Er∼PR
[PM,w(·; r)] = EE1,...,En

[PM,w(·; r)] = PM (·). (18)
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Consequently, the expectations of any metric f : Σ∗ → R are also equal:

Er∼PR
Ex∼PM,w(·;r)[f(x)] = Ex∼PM

[f(x)]. (19)

This ensures that the watermarking process achieves downstream invariance and does
not affect the quality of the generated protein sequences.

Undetectability

For an observer who does not know the watermark code, it is impossible to deter-
mine whether a new token is sampled directly from PM (·|x1, x2, ..., xn) or from
PM,w(·|x1, x2, ..., xn; r) for a random watermark code E. It is also infeasible to detect
whether a sequence contains a watermark. This property is closely related to the
preservation of output quality: if the presence of a watermark could lead to a degra-
dation in quality under certain metric f , then there would exist a method to guess
the presence of a watermark based on the quality under such metric. Conversely, if
the watermark is undetectable, it implies that the output quality is not affected.

However, if the watermark code is known, it is possible to guess whether a token is
sampled from PM (·|x1, x2, ..., xn) or PM,w(·|x1, x2, ..., xn; r) through statistical tests.

2.2.4 Watermark detection

In the previous section, we discussed the process of watermark embedding, where
sampling from the watermarked distribution PM,w(·; r) yields a text with a water-
mark. The detection task is the inverse problem: given a text x1, x2, ..., xn, we aim to
determine whether it is more likely to have been generated from the original distribu-
tion PM (x1, x2, ..., xn) or the watermarked distribution PM,w(x1, x2, ..., xn; r). This is
equivalent to performing a statistical hypothesis test between two hypotheses:

• H0: x1, x2, ..., xn follows the original distribution PM (x1, x2, ..., xn).
• H1: x1, x2, ..., xn follows the watermarked distribution PM,w(x1, x2, ..., xn; r).

For each sequence to be tested, we output a real-valued score S. By setting a
threshold Ŝ, we accept hypothesis H0 if S < Ŝ, indicating that there is insufficient
evidence to reject the hypothesis that the text was generated by the original model.
Otherwise, we reject H0 and conclude that there is sufficient evidence to support the
presence of a watermark.

Under both hypothesis H0 and H1, the score S and the individual scores si are
random variables. There are two types of error probabilities associated with this
hypothesis test:

• Type I error (false positive): PH0
(S ≥ Ŝ).

• Type II error (false negative): PH1
(S < Ŝ).

The p-value of the test is defined as PH0
(S ≥ Ŝ), which represents the probability

of falsely rejecting H0 (i.e., concluding that a watermark is present when it is not).
In the following subsections, we discuss two types of scores that can be used

for watermark detection while maintaining an upper bound on the Type I error
probability.
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Likelihood-based detection

We first introduce a detection method that is more efficient and can achieve lower
p-values, but requires knowledge of not only the sequence to be tested but also the
probability distribution of each token in the sequence, i.e., PM (xi|x1, x2, ..., xi−1).

Inspired by the Log Likelihood Ratio (LLR) test, which is known to be the most
powerful test according to the Neyman-Pearson lemma, we define the individual score
for each token as:

si = log
PM,w(xi|x1, x2, ..., xi−1; r)

PM (xi|x1, x2, ..., xi−1)
, (20)

and the overall score as:

S =

n∑
i=1

si = log
PM,w(x1, x2, ..., xn; r)

PM (x1, x2, ..., xn)
. (21)

For brevity, we denote Pi = PM (·|x1, x2, ..., xi−1) and Qi =
PM,w(·|x1, x2, ..., xi−1; r). Note that Pi, Qi, and Si are all functions from Σ to R,
which are equivalent to |Σ|-dimensional vectors. We can define an inner product:

⟨Pi, Si⟩ =
∑
x∈Σ

Pi(x)Si(x). (22)

The LLR score can be derived from the following optimization problem:

max
Si

⟨Qi, Si⟩ (23)

s.t. ⟨Pi, exp(Si)⟩ ≤ 1. (24)

The optimal solution is given by:

Si(x) = log
Qi(x)

Pi(x)
, (25)

which recovers the optimal log likelihood ratio score si = Si(xi).

Type I error bound

Theorem 2. Under hypothesis H0, we have:

PH0
(S ≥ t) ≤ e−t. (26)

Proof. Consider two filtrations:

F x
i := σ(xj | 1 ≤ j ≤ i), (27)

F s
i := σ(sj | 1 ≤ j ≤ i), (28)

where σ(·) represents the σ-algebra generated by the random variables.
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Due to the constraint ⟨Pi, exp(Si)⟩ ≤ 1, the exponential momentum is bounded:

E[exp(si)|F x
i−1] ≤ 1, (29)

E[exp(
n∑

i=1

si)] = E[exp(
n−1∑
i=1

si)E[exp(sn)|F x
n−1]] (30)

≤ E[exp(
n−1∑
i=1

si)] ≤ 1. (31)

Applying the Chernoff bound yields the desired result.

Therefore, to ensure that the Type I error probability is bounded by α, i.e.,
PH0(S ≥ Ŝ) ≤ α, we can set the threshold as:

Ŝ = − log(α). (32)

Likelihood-agnostic detection

Watermark detection can also be performed in a likelihood-agnostic manner, which
does not rely on probability scores for computing the detection score. In [8], a
likelihood-agnostic score is introduced for δ-Gumbel reweighting function:

si = ln 2− exp(−Ei(xi)). (33)

This score also has an exponential momentum bound:

E[exp(si)] ≤ 1, (34)

and therefore, it also has a Type I error bound.
However, this score has a large Type II error. In cases where the entropy is not

high enough, the score may even be negative, making it impossible to detect the
watermark. In practice, this score detects fewer watermarked sequences compared to
the likelihood-based score.

To address this issue, we propose an improved likelihood-agnostic score for δ-
Gumbel reweighting function:

Ui = exp(− exp(−Ei(xi))) ∈ [0, 1]. (35)

Under hypothesis H0, Ui follows a uniform distribution on [0, 1]. The log exponential
momentum is given by:

logE[exp(Ui)] = − log (λ) + log
(
eλ − 1

)
. (36)

The final score is:

S =

n∑
i=1

Ui. (37)
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Applying the Chernoff bound, we have:

P (S ≥ Ŝ) ≤ min
λ≥0

exp(logE[eλS ]− λŜ). (38)

We can obtain the tightest Type I error bound by optimizing over λ.
Unlike the likelihood-based detection, the likelihood-agnostic score is not derived

using a principled method, and therefore, its design has a certain degree of arbitrari-
ness. The advantage of the likelihood-agnostic score is that it requires less information
and does not depend on the probability distribution PM of the original generation
process. This can be more appealing when the original distribution PM is difficult to
estimate.

However, when the original distribution PM is known, the likelihood-agnostic score
tends to be much smaller than the likelihood-based score, leading to worse Type II
errors.

2.3 Evaluation metrics

To evaluate the quality of designed protein sequences, we followed the previous works
[3, 15] and used pLDDT score as the surrogate metric to select promising sequences. We
used ESMFold [12] following its tutorial to predict protein structure and the pLDDT
score. The reason why we used ESMFold is that ESMFold is very fast and memory
efficient compared to AlphaFold2 [16] and it makes the inference of 30,000 sequences
affordable in the experiments. Moreover, ESMFold is especially suitable for monomer
structure prediction problem and the pLDDT between ESMfold and AlphaFold2 has
a good correlation in practice [12].

3 Data availability

All data used in this study comes from public database PDB. The PDB structure list
is available in our repository.

4 Code availability

The open source implementation of the protein watermark framework is avail-
able at https://github.com/poseidonchan/ProteinWatermark. Detailed tutorials and
reproducible experiments are also provided in this repository.
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