Learning to Solve and Verify:
A Self-Play Framework for Mutually Improving Code
and Test Generation

Zi Lin* Sheng Shen Jingbo Shang
UC San Diego xAI UC San Diego
1ziQucsd.edu shengs@x.ai jshang@ucsd.edu
Jason Weston Yixin Nie
Meta Meta
jase@meta.com ynie@meta.com
Abstract

Recent breakthroughs in Large Language Models (LLMs) have significantly ad-
vanced code generation. However, further progress is increasingly constrained by
the limited availability of high-quality supervised data. Synthetic data generation
via self-instruction shows potential, but naive approaches often suffer from error
accumulation and generalization collapse, underscoring the critical need for robust
quality control. This paper introduces SOL-VER, a novel self-play framework
where an LLM simultaneously acts as a solver (generating code) and a verifier
(generating tests). These two capabilities are mutually enhanced: improved tests
lead to better code, which in turn enables the generation of more discerning tests.
SOL-VER iteratively refines both code solutions and their corresponding unit tests,
jointly improving both functionalities without requiring human annotations or
larger, more capable teacher models. Our experiments using Llama 3.1 8B demon-
strate substantial gains, achieving average relative improvements of 19.63% in
code generation (pass@1) and 17.49% in test generation accuracy on the MBPP
and LiveCodeBench benchmarks.

1 Introduction

Large language models (LLMs) have demonstrated impressive ability in code generation, significantly
enhancing the programming efficiency and productivity of human developers [[19, 123 4]. The ability
to code is largely due to high-quality online coding resources, e.g., coding problem and human-
rewritten solutions. However, as these supervised data sources saturate, LLM improvement is
diminishing, with data scarcity becoming a key bottleneck for further progress.

To address scarce supervised data for code generation, recent studies use synthetic data techniques
like SELF-INSTRUCT [26] to augmenting LLM training sets. Typically, a high-capacity teacher LLM
generates code responses to designed instructions, and this data is then employed to fine-tune a student
LLM, thereby enhancing its code generation abilities. Although synthetic code data produced in this
manner has demonstrated success, it relies on the availability of a strong teacher model, presumably
with a larger parameter size and higher computation costs. Additionally, existing work has shown that
training a model on data generated by itself is ineffective because errors introduced during generation
tend to accumulate over iterations [[10]. As a result, there is a critical need for effective methods to
verify the generated data.

*Work done during internship at Meta.
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Figure 1: An overview of the SOL-VER framework. We train an LLM to both generate coding
solutions (solver) and unit tests (verifier) in an iterative self-play framework, whereby synthetic
preference pairs are constructed at each iteration depending on whether the code passes the generated
tests or not. We show that this approach enables the model to self-improve in both capabilities (see
Table 1).

While evaluating generated code correctness is challenging, often requiring expert human intervention,
recent LLM-as-a-judge efforts involve models executing generated code against self-generated unit
tests [20, 1219, 16} 15 [7, [10]. However, a critical bottleneck emerges: an LLM’s proficiency as a verifier
(generating effective unit tests) significantly lags its capability as a solver (generating code solutions),
a disparity we quantify in Section[4.3)). This gap is largely attributable to the scarcity of high-quality,
diverse unit test generation data used during LLM fine-tuning, which predominantly focuses only on
code generation.

To address this imbalance and unlock a new avenue for data generation, we introduce SOL-VER, a
self-play solver-verifier framework to iteratively train a model for both code and test generation. The
main idea is to let the LLM-as-a-solver and LLM-as-a-verifier help each other. Specifically, we ask
the model to generate code solutions and unit tests for the same set of coding problems. By executing
the generated test against the generated code, we obtain feedback for training, involving two steps:
(1) SFT training: we take the passed examples for fine-tuning the model, and (2) DPO training: we
take both passed and failed examples as preference pairs to further train the model aligning with the
preference. These training steps are for both code generation and unit test generation, and they can
be repeated in an iterative manner.

The experimental results on Llama 3.1 8B model show that we can successfully improve the model’s
performance on both code and test generation without relying on human-annotated data or larger
models. Specifically, on MBPP and LiveCodeBench, we achieve an average of 19.63% and 17.49%
relative improvement for code and test generation respectively.

In summary, our work makes the following contributions:

* Identification of a critical gap: We empirically demonstrate and analyze the significant gap in
LLMs’ abilities between code generation and unit test generation, motivating the need for targeted
improvements in test generation.

* Novel Self-Play Framework: We propose a novel iterative framework where the model simultane-
ously functions as a code solver and a verifier. This methodology effectively self-aligns the model’s
outputs with desired performance criteria without relying on external annotations or teacher models.

* High-Quality Synthetic Data Generation: We contribute a generalizable method for creating
high-quality synthetic data for both code and unit test generation. This data augmentation approach
can be extended to various model training scenarios in the coding domain.



2 Related Work

In recent years, scaling laws highlight the critical role of data size in training foundation models [14,
12, 18], making LLM-driven synthetic data generation a popular solution. Methods like SELF-
INSTRUCT [26, [24]] use pre-trained LLMs to create instruction-output pairs from seed data. For code
generation, this often involves stronger teacher models generating synthetic instructions to finetune
weaker student models (e.g., CODEALPACA [23]]). Efforts to enhance LLLM coding abilities include
generating more complex instructions (e.g., Code Eval-Instruct [28])).

However, training LL.Ms on their own generated data can be ineffective or detrimental [31} [1]].
Consequently, post-processing or refinement steps are vital. Examples include CodeT’s [5] execution-
based validation, Self-Debug’s [[7]] autonomous bug fixing, Llama 3.1’s [10] iterative self-correction
with execution feedback, Reinforcement learning from unit test feedback (RLTF) for optimizing
against test pass rates [16} 21], and CodeDPO’s [30] self-generation and validation for preference
data. While similar to our work, AutolF [18]] also uses an iterative framework for general tasks, it
doesn’t focus on the co-evolution of code solver and verifier capabilities.

In this work, we propose leveraging both positive and negative examples generated by the model,
treating pairs of passing and failing responses as chosen-rejected pairs for Direct Preference Opti-
mization (DPO) [22]]. Note that our method is complementary to self-correction and RLTF, rather
than orthogonal. By improving the quality of unit tests, our framework enhances the accuracy of unit
test execution feedback, and thereby can benefit self-correction and RLTF scenarios as well.

SOL-VER compared to CodeDPO: While CodeDPO [30] also utilizes self-verification for preference
data, its efficacy is inherently limited by the initial, and potentially static, quality of the self-generated
tests used for verification. If the verifier component is weak, it cannot reliably distinguish high-
quality code, potentially leading to suboptimal preference learning. In contrast, SOL-VER’s self-play
mechanism is designed to explicitly address this: it simultaneously improves both the code solver
and the test verifier. By iteratively enhancing the verifier’s ability to generate more discerning and
comprehensive tests, SOL-VER breaks this quality ceiling, thereby mitigating the verifier bottleneck
and enabling more robust and effective training for both capabilities.

3 A Self-play Solver-verifier Framework

3.1 Problem Formulation

We consider that an LLM can play two roles.

Solver (5): Given a coding problem description P, it produces a candidate solution C' (e.g., a piece
of code). The objective of the solver is to produce a correct solution C' that will pass any tests the
verifier can come up with.

Verifier (17): Given a proposed solution C' and the original problem P, the verifier tries to produce
test cases TE] (e.g., a set of inputs and expected outputs) and can catch errors in C' if it is incorrect.
Essentially, it produces and selects challenging unit tests to determine if the code is correct or not.
The objective of the verifier is to produce a set of tests T that will fail any incorrect solutions and
thus distinguish correct solutions from incorrect ones.

Let p(P) be the distribution over problem statements. We can think of having a training set of
problems or a domain from which we can sample problems. The sampling strategies we consider are
detailed in Section[3.2

The solver Sy is a model parameterized by 6 that, given a problem P, generates a candidate solution
C: C ~ Sy(:|P). The verifier V is a model parameterized by ¢, given the problem P and a candidate
solution C, generates a test suite T: T ~ V(-| P, C'). In practice, the solver and verifier can be the
same LLM.

Scoring Function We define a function that executes C' on the tests T as Score(C, T) € [0, 1],
which is the fraction of tests passed by solution C'. A score of 1 means C passes every test 7'; a score
of 0 means it failed all tests. Formally,

2We use bold Italic to represent a set.



Score(C, T) = Ep~1[I(C(T) = expected_output(T"))] (1)

where I is the indicator function, and C'(7') means running one single test on code solution C.

We sample a set of problems P ~ p(P), generate some candidate solutions C' ~ Sy(:|P), and
generate candidate tests T ~ V,,(-| P, C'). We now have tuple (P, C, T'). We consider:

= @

_J1 ifScore(C, T) = 1 (i.e., passes all tests)
0 otherwise.

We employ two stages of training to make use of both chosen (y = 1) and rejected (y = 0) examples
for training the solver and verifier, described as follows:

Stage 1: SFT Training For pairs where y = 1, we have a correct solution-test pair. These are
high-quality examples that reflect desired behavior, i.e., the solution C' solves the problem P, and the
test suite T properly validates that the solution is correct. We use (P, C, T,y = 1) tuples to fine-tune
the model directly. The training signal here encourages the model (1) as a solver, to generate similar
correct solutions for similar problems, and (2) as a verifier, to produce meaningful tests that confirm
correctness. We call this the supervised fine-tuning (SFT) stage, where we optimize for both solver
and verifier:

LsFT e (0) = —E(p,c,1):y=1[l0g S (C|P)] 3)
LT eier (#) = —E(p,c,1):y=1[l0g Vs (T| P, C))] @)

In practice, both objectives can be trained using a mixture of data consisting of chosen examples for
solver and verifier.

Stage 2: DPO Training We now aim to form pairwise comparisons (preferences) to train both solver
and verifier roles more effectively. In practice, we adopted the Direct Preference Optimization (DPO)
method, but any preference tuning methods can be used at this stage.

For the solver perspective, for each problem P, and each chosen tuple (P,C*, T,y = 1), we find
a rejected tuple (P,C~, T,y = 0). Following standard DPO training [22], we can formulate our
policy objective as:

S3(C*|P)
So(CH|P)

S6(C”|P)

L0y (Sa559) = —E[log o(S log m

— Blog ] &)

where [ is the hyperparameter to regulate the strength of weight updates; Sy (C|P) is the probability
that our model (with parameter 6) assigns to generating code solution C' given problem P.

For the verifier perspective, similarly, for each problem P, and each chosen tuple (P,C, T™) : y = 1,
find a rejected tuple (P,C, T7) : y = (ﬂ The verifier-related DPO loss is then:

Vs (TH|P,C)
Vo(T*|P,C)

Ve (T7|P,C)

LDP0yiser (Vi 3 Vo) = —E[log o (B log m]

— Blog (6)

3.2 Synthetic Data Generation

In this section, we describe our approach to generating the synthetic data, including problem descrip-
tion generation, code generation, test generation and preference data generation. All related prompts
can be found in Appendix [A]

Problem Description Generation Inspired by Magicoder [28], we prompt the model with random
code snippets to generate diverse programming problems, including long-tail topics. This allows

3This can be achieved by selecting any expected output that is not equal to the chosen one in the sampling
space for 7T'.



us to tap into a wide range of topics and create a comprehensive set of problem descriptions (as
demonstrated in Figure [5).

It is noted that code generation tasks can follow different problem description formats despite having
the same content. For example, here is the same problem but stated in different ways:

* Write a python function to remove the kth element from a given list.
* In the ancient Library of Alexandria, scrolls are stored in a mystical list. The librarian needs to
remove a specific scroll whenever a visitor requests it.

To make our prompt sets accommodate these diverse problem description formats, we adopt some
templates from the training set of different coding benchmarks (e.g., MBPP, APPS) into the original
prompt to generate the problem description.

To create self-contained coding problems, we ensure clear statements and starter code with necessary
libraries and detailed input/output function signatures. The model first generates problem descriptions,
then adds these function signatures. After deduplication, this yielded 103,280 problem descriptions.

Code Generation We prompt the LLM to solve each problem given the generated function signature.
Following the Llama 3.1 [[10], we also require the model to explain its thought process in comments,
which improves code generation in both accuracy and readability.

Test Generation To generate unit test sets, we first ask the model to generate a set of valid inputs
and then the expected outputs based on the inputs.

For input generation, we ask the model to generate different types of function inputs to cover different
cases including general, corner or difficult cases. For example, the following problem description
should contain two different cases:

Problem Description:

Write a function to find the longest string in a list of strings. If the strings are not comparable due to
being of different lengths, the function should return None.

longest_string(strings: list[str])

Case 1: strings is a list of strings.

Case 2: strings is empty.

For output generation, we ask the model to generate the expected output based on the problem
description and input. We also applied majority voting [25]] and chain-of-thought reasoning [27] for
LLM to boost the performance of unit test generation (as demonstrated in Section [4.3):

We also employ the following strategies to ensure the quality of the generated unit tests:

» Test Coverage Optimization: We sample multiple candidate test cases and select a subset that
maximizes branch coverage of the solution code (a maximum coverage problem), ensuring diversity
of execution paths.

* Output Diversification: We notice that if the outputs of the test cases are not diverse, the solution
code can cheat by exploiting patterns in test cases. For example, if all test cases return the same
value (e.g., True), the model could trivially pass by implementing a function that always returns
that value. Therefore, we explicitly select test samples with diverse output values.

Synthetic Preference Data Generation For DPO preference tuning, we construct chosen/rejected
pairs. As detailed in Section[3.1]“chosen” examples are where the solver’s generated code passes the
verifier’s generated tests. Identifying “rejected” examples is more complex, as disagreements don’t
clearly assign fault.

While [9] used automated quality cross-verification, we apply a similar strategy for both code and
test generation. Specifically, if at least one generated solution passes all the generated tests, we
will assume the solution and the test are “correct”. For training the solver, any other sampled code
solutions that fail to pass these “correct” tests are treated as “rejected” examples. Similarly, for
training the verifier, when we find a “correct” test f(x) == y, we revisit the original sampling
space for generating expected outputs, and treat any expected outputs y' # y as “rejected” tests
f(x) == ¢'. In this way, we can reuse all the chain-of-thought explanations generated by the model
during the majority voting process.



Table 1: Evaluation results over training iterations for our Solver-Verifier ( SOL-VER) method. A(%)
means the relative percentage change from Baseline to Iter3.ppo. Pass% means average pass rate,
Acc% is accuracy, and FP% is false positive rate. SOL-VER provides large gains over the baseline on
both code generation (solver) and unit test generation (verifier) tasks, which increase across iterations.

‘ Baseline Iter1+sFT Itel'1+1)p0 Iter2+SFT It€r2+1)1>0 Itel‘3+s]rT Iter3+])p0 ‘ A(%)

MBPP Codepygse, | 38.60 38.60 40.80 38.60 40.80 40.80 41.00 6.22
Testaccs | 42.68 49.01 49.50 50.69 51.01 51.54 51.76 17.54
Testgpg, 12.75 12.57 10.32 10.12 10.06 9.80 9.60 24.71
LiveCodeBench Codepysso, | 18.23 24.86 25.97 25.12 26.38 26.41 27.24 33.08
Testacca 20.14 36.43 37.09 39.40 40.65 41.25 41.50 51.47
Testrp, 20.76 20.65 19.34 19.28 19.05 18.94 18.63 10.26

4 Experiments

4.1 Experimental Setup

Models and Datasets We conduct experiments using Llama 3.1 8B [10] For the SFT and DPO
training, we use the fairseq2 infrastructure [29] and run inference using vLLM [15].

We sample the problem descriptions using Llama 3.1 based on open source snippets from the OSS-
Instruct dataset [28ﬂ For the problem description templates, we use the training sets of some
standard coding benchmark: MBPP [3]], APPS [[11] and CodeContest [19]]. For our experiments, we
only focus on Python-related coding questions.

We test both code and unit test generation on the python coding benchmarks including:

* MBPP [3]: A popular benchmark for Python code generation which focuses on relatively simple,
self-contained functions.

* LiveCodeBench [13]: A comprehensive and contamination-free evaluation of LLMs for code,
which continuously collects new problems over time from contests across three competition
platforms, namely LeetCode, AtCoder, and CodeForces.

LiveCodeBench contains both code generation and test output prediction tasks. Since MBPP does
not originally include a unit test generation task, we utilize the existing gold unit tests to assess the
model’s accuracy in generating expected outputs given the inputs in gold unit tests.

Evaluation Metrics For the code generation task, all results are obtained using greedy decoding
with the pass@1 metric (Pass%). For unit test generation, we consider the following metrics:

* Accuracy (Acc%): The accuracy of test output prediction. A test output is correct only when its
literal value is equal to the gold one.

* False Positive Rate (FP%): This measures how well unit tests differentiate correct from incorrect
code by evaluating the pass rate of known flawed solutions. These flawed solutions are obtained by
generating 20 candidate codes per problem and using gold unit tests to identify failures (treated as
negative examples)E]

4.2 Evaluating SOL-VER

Table[T|reports SOL-VER'’s iterative training performance for code and test generation on MBPP and
LiveCodeBenchE] To further show the improvement trend for SOL-VER, we plot the performance
change across iterations for test generation in Figure 2] (other figures for iterative change can be found
in Appendix [B). Results demonstrate SOL-VER consistently improves the base Llama 3.1 model in
both tasks, increasing code pass rates and test generation accuracy while decreasing false positives.

*https://huggingface.co/meta-1lama/Llama-3.1-8B

Shttps://huggingface.co/datasets/ise-uiuc/Magicoder-0SS-Instruct-75K

We use the same Llama 3.1 8B base model to generate negative examples (temperature is set to 0.6 and top
pis setto 0.9). As aresult, we get 400 examples for both MBPP and LiveCodeBench separately.

"Our baseline performance for code generation differs from that reported in the Llama 3.1 technical report
because we employ a unified three-shot prompt template for both MBPP and LiveCodeBench, rather than using
the prompts specifically provided for MBPP. We do not include the gold test in the prompt.


https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K

Table 2: Code generation and test generation performance for Llama 3.1 8B on the MBPP benchmark.
The case pass rate represents the average pass rate per test set. CoT means Chain-of-Thought
reasoning, and MV means majority voting.

Llama 3.1 8B \ Pass Rate Case Pass Rate
Code Generation 38.60% 44.20%
Test Generation 18.60% 37.60%

+ CoT 19.60% 39.60%

+ MV 24.80% 42.40%

+ CoT + MV 31.40% 47.60%
Code Reranked by Synthetic Test | 35.00% 42.40%

Test Generation

Accuracy (%)

—8— SFT+DPO(LiveCodeBench)
SFT+DPO(MBPP)

—<&— SFT(LiveCodeBench)

—&— SFT(MBPP)

204

T T T T
Baseline Iterl Iter2 Iter3

Figure 2: Iterative performance of our method, SOL-VER, for test generation. Our method outper-
forms the baseline and SFT training for both LiveCodeBench and MBPP benchmarks, and improve
across training iterations.

We achieved average relative improvements of 19.63% (code) and 17.49% (test). In particular, two
interesting conclusions can be made:

* The improvement in unit test generation performance is more significant than that observed in code
generation. This greater enhancement may be due to that Llama 3.1’s pre-training included less
data focused on tests.

* SFT+DPO outperforming SFT-only models suggests DPO, by incorporating negative examples,
helps the model learn from errors and refine its generation strategies.

4.3 Evaluating the Base Model

To contextualize SOL-VER’s improvements and underscore the motivation for our work, we first
evaluated the baseline Llama 3.1 8B model’s capabilities on MBPP (Table 2] first two rows). This
initial assessment immediately revealed the critical performance disparity that SOL-VER aims to
address: the model achieved a Pass@1 of 38.60% for code generation (solver) when evaluated against
gold tests. However, when tasked with generating test outputs for gold code solutions (verifier), its
accuracy (Case Pass Rate) was only 37.60% (with a raw pass rate of 18.60% for individual test cases),
confirming that the LLM’s inherent test generation abilities significantly lag its code generation
prowess.

We then explored conventional prompting strategies to enhance baseline test generation, applying
Chain-of-Thought (CoT) reasoning and Majority Voting (MV) (Section[3.2). As shown in Table 2]
these techniques, particularly when combined (+CoT+MV), did improve test generation accuracy to
31.40% (Pass Rate). This demonstrates that while sophisticated prompting can provide some uplift, it
does not fully bridge the solver-verifier gap.

Critically, we investigated the impact of using these baseline-generated tests (even the improved
CoT+MV versions) to rerank code solutions — a common approach in self-improvement. The last row



Table 3: Agreement between Iter 1 and Iter 2, and the test accuracy for the model ensemble. The
ensemble approach (Ens.) refers to selecting code solutions that successfully pass both the tests
generated in the first iteration and those from the second iteration.

Dataset | Acc%rer1  Acc%yerz Agreemnt | Acc%gns,

MBPP 49.50% 51.01% 75.14% 51.12%
LiveCodeBench | 37.09% 40.65% 72.38% 40.68%

Table 4: Tllustrative examples of test case refinement by SOL-VER’s verifier component across
iterations for two distinct programming problems. Red highlighting indicates tests that were

incorrect or suboptimal in earlier iterations but were corrected or improved by later iterations,
demonstrating the verifier’s learning progress.

Write a function that takes an integer number of seconds Write a function that calculates and returns the greatest
Problem | as input and returns the number of minutes in that time, common divisor (GCD) of two integers using the Euclidean
disregarding any remaining seconds. algorithm, with the output formatted as "GCD(a, b)= result".
assert minutes_in(1) == 0 assert pgcd(8, 7) == 1
Iter 1 assert minutes_in(3660 + 60 + 60 + 1) == 3 assert pgcd(20, 25) == 5

assert minutes_in(3660 + 60 + 60 + 60 + 60 + 1) == 5 assert pgcd(14, 6) == 2

assert minutes_in(1) == 0 assert pgcd(8, 7) == "PGCD(8,7) = 1"
Iter2 assert minutes_in(3660 + 60 + 60 + 1) == 61 assert pgcd(20, 25) == "PGCD(20,25) = 5"
assert minutes_in(3660 + 60 + 60 + 60 + 60 + 1) == 61 assert pged(14, 6) == "PGCD(14,6) = 2"
assert minutes_in(1) == 0 assert pged(8, 7) == "GCD(8, 7) = 1"
Tter3 assert minutes_in(3660 + 60 + 60 + 1) == 63 assert pged(20, 25) == "GCD(20, 25) = 5"
assert minutes_in(3660 + 60 + 60 + 60 + 60 + 1) == 65 assert pgcd(14, 6) == "GCD(14, 6) = 2"

of Table 2] ("Code Reranked by Synthetic Test") shows that this led to a decrease in code generation
performance (35.00% Pass@ 1) compared to the original baseline (38.60%). This finding is crucial: it
highlights that naively using imperfect, self-generated tests for code refinement can be detrimental.
This underscores the necessity of a framework like SOL-VER, which doesn’t just use tests, but
actively improves them in tandem with code generation, preventing such performance degradation
and instead fostering mutual improvement.

4.4 Evaluating Agreement between Iterations

To monitor progress, as models from different iterations are trained on distinct synthetic data, we
examine their agreement. Specifically, both models generate unit tests for MBPP benchmarks, mea-
suring agreement on gold code solutions (Table[3)). Both iterations exhibit performance enhancements
and maintain high agreement, indicating that despite distinct synthetic training data, they produce
largely consistent unit test outputs.

Given the agreement between iterations, we evaluated an ensemble that selects code solutions
successfully passing tests from both the first and second iterations. This ensemble demonstrated
modest improvement over the second iteration alone, leading us to adopt it for generating third-
iteration synthetic data for SOL-VER, as reported in Table[l]

5 Ablation Study

5.1 Prompt and Test Analysis

Prompt Coverage Analysis To analyze the domain coverage of our generated coding problem set,
in Figure[5)at Appendix [C] we visualize the embedding distributions of our synthetic problem descrip-
tions with those from established coding benchmarks, including MBPP, APPS, and LiveCodeBench.
Specifically, we use Gecko, a compact and versatile text embedding model distilled from LLMs [[17]
for obtaining the sentence embeddings. The embedding distribution plot reveals that our synthetic
problem set exhibits a broad and diverse coverage, encompassing a wide range of topics, difficulty
levels, and programming paradigms present in the compared benchmarks.
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Figure 3: Pass or error distribution of synthetic data generated at each iteration.

Table 5: Code generation performance for different settings of the scoring function for selecting DPO
pairs. Results indicate better results are obtained with less, but higher quality, data (¢ > 0).

€ | >0 >05 >0.75 SOL-VER
Data Size 25,525 20,457 13,158 12,525
MBPP 36.00 37.00 40.80 40.80
LiveCodeBench 22.41 25.75 26.18 25.97

Score(C~,T) | Random Lowest Median SOL-VER

MBPP 40.80 39.00 38.60 40.80
LiveCodeBench | 26.18 26.18 25.98 25.97

Progress Analysis per Iteration To evaluate the iterative advancements of our model, we present
a case study on test generation across iterations in Table @ The results illustrate that SOL-VER
progressively refines its test generation for the same set of coding problems, thereby enhancing the
quality of the synthetic data. These enhancements include the generation of more accurate expected
values and better adherence to required format specifications. Additionally, we monitor the execution
results at each iteration and display the distribution of pass and error rates in Figure[3] As shown, the
pass rate increases with each iteration, primarily due to a reduction in assertion errors, indicating an
improvement in the accuracy of the predicted expected outputs.

5.2 Discussion on the Scoring Function

In Section[3.1] we define a binary scoring function for selecting solution-test pairs. Our Iteration 1
experiments found that only 45% of examples yielded "agreed" pairs (where at least one generated
code passed all generated tests), thereby limiting the total number of available preference tuning
pairs.

To explore whether we can utilize the rest of the data where the pass rate is not necessarily 100%, but
is still high enough to rely on, we used a soft pass rate for selecting preference pairs. We change the
chosen / rejected pair as (C~, CT), where for the same test suite T, Score(Ct, T') > Score(C~, T),
and Score(C' T, T) > ¢, where € is a threshold to determine above which pass rate the test set is
relatively reliable. For simplicity, we discuss three cases for e: (1) ¢ > 0 (can be any number);
(2) € > 0.5; (3) € > 0.75. For Score(C~, T), we also consider three cases: (1) Score(C~,T) is a
random score; (2) Score(C'~, T) is the lowest score among all sampling candidate; (3) Score(C—, T)
is the median score from the lowest to Score(C+, T).

In Table we first present various e settings for assigning Score(C'~, T) as a random score. After
identifying the optimal setting from our results (¢ > 0.75), we examine the impact on Score(C'—, T).
The findings reveal that randomly selecting the threshold for a high-quality test set significantly
degrades performance, despite an increase in data size. This underscores that the quality of synthetic
data is more critical than its quantity. Regarding Score(C~,T), we found that its impact is less



sensitive compared to e. Considering the overall performance, we have chosen to retain the original
settings for SOL-VER to maintain simplicity.

6 Conclusion

We introduced SOL-VER, a novel self-play framework designed to address the critical challenge of
data scarcity and the performance disparity between LLM-based code solvers and test verifiers. By
enabling an LLM to simultaneously embody both roles, SOL- VER facilitates a co-evolutionary process
where improvements in test generation lead to better code synthesis, and vice-versa. This iterative
refinement loop generates high-quality synthetic code-test pairs, demonstrably enhancing both
capabilities without reliance on human annotations or larger teacher models. Our experiments with
Llama 3.1 8B validate SOL-VER’s efficacy, achieving significant performance gains on established
benchmarks. SOL-VER represents a step towards more autonomous, data-efficient, and robust systems
for automated code and test generation, offering a scalable and adaptable paradigm for continuous
self-improvement in code Al.
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A Prompt Template

[Code Snippet]

for (first_p, second_p) in zip_longest(diagl, diag2):
assert first_p[0] == pytest.approx(second_p[0])
assert first_p[1] == pytest.approx(second_p[1])

[Template]

Polycarp is reading a book consisting of n pages numbered from 1 to n. Every time he finishes the page with the number divisible
by m, he writes down the last digit of this page number. For example, if n = 15 and m = 5, pages divisible by m are 5, 10, 15.
Their last digits are 5, 0, 5 correspondingly, their sum is 10.

Your task is to calculate the sum of all digits Polycarp has written down.

You have to answer g independent queries.

[Instruction]

Please gain inspiration from the previous random code snippet and template to create a high-quality python programming problem.
Rules:

- Never mention the “code snippet”.

- Don’t write the solution.

- Do not specify constraints nor example inputs/outputs.

- The inspiration is just an inspiration. You can deviate from it.

- The solution of the problem should be only one function, not an entire program.

- The problem should be self-contained.

<Problem1>

Write a function to find the similar elements from the given two tuple lists.
</Problem1>

<Signaturel>

similar_elements(test_tup1: list, test_tup2: list) ->list

</Signaturel>

<Problem2>

Write a python function to identify non-prime numbers.

</Problem2>

<Signature2>

<QlI>

Write a function to find the longest string in a list of strings. If the strings are not comparable (due to being of different lengths), the
function should return None. function signature: longest_string(strings: list[str])

</Ql1>

<ANALYSIS1>

- Case 1: ‘strings* is a list of strings.

- Case 2: ‘strings* is empty.

</ANALYSIS1>

<INPUTS1>

longest_string([’dog’, ’cat’, ’elephant’]) # Consider case 1.

longest_string([]) # Consider case 2.

</INPUTS1>

<Q2>

Write a function to check if the given string represents a sequence of ASCII characters. The function should be able to handle
different types of sequences, such as lists, tuples, and NumPy arrays. The function should return True if the sequence contains only
ASCII characters, and False otherwise.

function signature: is_ascii(seq: list) ->bool

</Q2>

<ANALYSIS2>




<Ql >

Write a function to find the similar elements from the given two tuple lists.

function signature: similar_elements(test_tupl: Tuple, test_tup2: Tuple)
</Q1 >

<INPUT1 >

similar_elements((3, 4, 5, 6),(5, 7, 4, 10))

</INPUTI >

<ANALYSISI >

- In the first tuple (3, 4, 5, 6), the elements 4 and 5 are present.

- In the second tuple (5, 7, 4, 10), the elements 4 and 5 are also present.

- Since 4 and 5 are present in both tuples, they should be included in the output.

- The other elements in the tuples (3, 6, 7, and 10) are not present in both tuples, so they should not be included in the output.
- So the expected output is (4, 5).

</ANALYSIS1 >

<OUTPUTI >

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
</OUTPUTI1 >

<Q2 >

Write a python function to identify non-prime numbers.

function signature: is_not_prime(n: int)

</Q2 >

<INPUT2 >

is_not_prime(2)

</INPUT2 >

<ANALYSIS2 >

- One of the fundamental properties of prime numbers is that they can only be divided evenly by 1 and themselves.
- 2 is considered a prime number because it can only be divided evenly by 1 and itself.

- So 2 is a prime, and the expected output is False.

</ANALYSIS2 >

<OUTPUT2 >

assert is_not_prime(Q) == False

</OUTPUT2 >

<Q3>

Write a function to find all words which are at least 4 characters long in a string by using regex.
function signature: £ind_char_long(text: str)

</Q3 >

<INPUT3 >

find_char_long(’Jing Eco and Tech’)

</INPUT3 >

<ANALYSIS3 >

- For the first word *Jing’, it’s 4 characters long, and 4 >= 4, so it should be included.

- For the second word ’Eco’, it’s 3 characters long, and 3 < 4, so it should NOT be included.
- For the third word ’and’, it’s 3 characters long, and 3 < 4, so it should NOT be included.
- For the fourth word *Tech’, it’s 4 characters long, and 4 >= 4, so it should be included.

- To sum up, the output is [’Jing’, *Tech’].

</ANALYSIS3 >

<OUTPUT3 >

assert find_char_long(’Jing Eco and Tech’) == [’Jing’, ’Tech’]
</OUTPUT3 >

<Q4 >

function signature:

</Q4 >

<INPUT4 >

</INPUT4 >

<ANALYSIS4 >

B Performance Change Across Iterations

Performance of Solver-Verifier Framework are shown in Figure 4]

C Prompt Coverage Analysis

Prompt distribution comparison is shown in Figure 3]
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Figure 5: Prompt distribution comparison with other standard coding benchmarks. We use Principal
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