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Abstract

Discovering symbolic Partial Differential Equation (PDE) from data is one of the
most promising directions of modern scientific discovery. Effectively constructing
an expressive yet concise hypothesis space and accurately evaluating expression
values, however, remain challenging due to the exponential explosion with the
spatial dimension and the noise in the measurements. To address these challenges,
we propose the ABL-PDE approach that employs the Abductive Learning (ABL)
framework to discover symbolic PDEs. By introducing a First-Order Logic (FOL)
knowledge base, ABL-PDE can represent various PDEs, significantly constraining
the hypothesis space without sacrificing expressive power, while also facilitating
the incorporation of problem-specific knowledge. The proposed consistency opti-
mization process establishes a synergistic interaction between the knowledge base
and the neural network learning module, achieving robust structure identification,
accurate coefficient estimation, and enhanced stability against hyperparameter
variation. Experimental results on three benchmarks across different noise levels
demonstrate the effectiveness of our approach in PDE discovery.

1 Introduction

Partial Differential Equations (PDEs) serve as fundamental mathematical tools for describing a vast
array of physical phenomena in science and engineering. They effectively capture the intricate
relationships between how quantities change over space and/or evolve over time. Complemented
by both analytical techniques and modern numerical solvers, PDEs provide interpretable models
that support reliable prediction and control. Due to their versatility, PDEs are widely employed
across a range of applications, including airfoil design in aerodynamics [14]], weather prediction in
meteorology [9]], and pricing analysis in quantitative finance [6].

Recently, physics-informed machine learning has demonstrated remarkable success in approximating
the behavior of complex physical systems [3} [22]], which significantly changes the way we represent
and leverage PDEs. Note that a single PDE can be adapted to various scenarios by simply modifying
its boundary conditions and domain geometries; however, PDEs in explicit form remain essential
in applications where high reliability is paramount. Therefore, discovering symbolic governing
equations from data becomes one of the most attractive research directions in scientific discovery [4].

Significant efforts [[7} [10} [12} [16l [18]] have been made to the PDE discovery task. Most of these
methods consist of two primary components: a derivative-integral calculator and a candidate term
library, as illustrated in Figure[I] The calculator evaluates symbolic expressions based on either direct
derivative estimation or weak formulation-based integral computation. The library constructs the
hypothesis space for the target equation, with each term representing a function of the variables of
interest. The underlying PDE is typically assumed to be a linear combination of these terms and is
identified through symbolic regression techniques.
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a concise library [[L1,[16]], or emphasizing
the expressiveness at the expense of using
a redundant library [8| 26} 27]. Accurately evaluating the expression values is also challenging.
Because we can only access discrete measurements, derivatives or integrals have to be estimated
using approximate methods, the accuracy of which can be significantly affected if there is no sufficient
data or there is noise. Many studies attempt to address this issue using techniques such as ensemble
learning [12] and weak formulation [[11]], while this paper attempts to exploit the discovered physical
information to help enhance the calculator’s capability, which has rarely been exploited before.

Figure 1: An illustration of PDE discovery framework.

In this paper, we propose the ABL-PDE (Abductive Learning for PDE discovery) approach to tackle
the aforementioned challenges under the ABductive Learning (ABL) framework [28| 29]]. ABL is
a powerful paradigm that integrates data-driven machine learning with knowledge-driven logical
reasoning in a balanced mutual promotion loop while maintaining the expressive power of both.
Building on this framework, we design two components for ABL-PDE: a neural network-based
learning module for derivative estimation and a First-order Logic (FOL)-based reasoning module
for candidate term generation, along with a consistency optimization process to bridge the two
components. Our approach balances the expressiveness and compactness of the hypothesis space in
PDE discovery and enables reciprocal enhancement between the calculator and the library.

Our main contributions are summarized as follows:

* We propose a novel PDE discovery approach based on the ABL framework, transforming
the previous unidirectional discovery pipeline into a bidirectional enhancement loop.

* We introduce a FOL knowledge base capable of representing a wide range of PDEs, sub-
stantially reducing redundancy and facilitating the incorporation of task-specific knowledge.

* We design a consistency optimization process to bridge the two components, which sig-
nificantly enhances the robustness of structure identification, the accuracy of coefficient
estimation, and the stability against hyperparameter variations in PDE discovery.

We conduct extensive experiments on various PDE discovery tasks across different noise levels. The
experimental results demonstrate the effectiveness of our approach.

2 Related Work

According to whether the equation structure and its coefficients are determined synchronously or not,
PDE discovery methods can be roughly categorized into two classes.

The first class comprises synchronous methods, most of which rely on sparse regression techniques.
A pioneering approach is SINDy [5], which was extended by PDE-FIND [23] from ODEs to PDEs.
Weak SINDy [L1] further enhances noise robustness using weak formulation. Apart from explicit
sparse regression, several synchronous methods such as PDE-Net [18| [19] and Bayesian hidden
physics models [[1]] optimize derivatives and coefficients end-to-end. Although generally exhibiting
superior performance in fitting physical fields, they struggle to distinguish noise from small-coefficient
terms. D-CIPHER [16] extends the boundary of PDE discovery to learn parameters within nonlinear
terms; this comes with a challenging optimization process, making it struggle to learn coupled PDE
systems. Generally speaking, synchronous methods rely on predefined, typically polynomial libraries
that can ensure term uniqueness, though such a compact library may lack expressiveness when
encountering complex structures. Actually, they may even find it challenging to identify fractions.

The second class comprises asynchronous methods, often based on evolutionary algorithms, that do
not need to be constrained by predefined libraries [8} 10, 12} |15, 125]]. These methods first determine
the equation’s form by discrete optimization and then estimate the equation’s coefficients. Although



such approaches incur higher computational costs due to discrete optimization, they mitigate the
detrimental impact of interference terms on coefficient estimation while facilitating the incorporation
of more flexible equation representation methods, such as binary trees [8 [15, 25]]. Note there are
great progresses in establishing theoretical foundation for evolutionary algorithms [30]], such that
many of these methods are not purely heuristics any more. These methods, however, often generate
an excessive number of redundant and invalid PDEs within the hypothesis space. By contrast, through
introducing a FOL knowledge base, our method achieves a better balance between expressiveness
and compactness in PDE representation, while also facilitating the incorporation of prior knowledge.

3 Preliminaries

In this section, we present the problem setting and introduce the abductive learning framework.

3.1 Problem Setting

In this paper, we consider general dynamical systems governed by PDEs of the following form:
o = [ (w2, fO (), O, 2),...| & (M

where u : [0,7] x € — R is the solution function with time horizon T" and bounded spatial domain
Q c R?, ¢ and x denote the temporal and spatial coordinate, each f(¥) is a function of u and , and &
is their linear combination coefficient which is always sparse in practice. The data available is a set
of triplets {(¢;, x;, 4(t;, x;)) }'™, representing m temporal-spatial coordinates, with measurements
that may contain noise. Each f(*)(u, x) collectively forms the candidate term library that will be
gradually expanded during the execution of our approach. We call f() (u, ) an expression term.

Definition 1 (Expression Term). An expression term is recursively formed by the following rule:

(expr) == (idpv) | (dpv) | O(sapv)(expr) | (expr) (op) (expr)
(op)  u= | [ x|/
Here, (-) denotes a nonterminal symbol, ::= indicates definition, and | signifies alternation. The

nonterminal symbols (dpv) and (idpv) represent dependent and independent variables, respectively.
Combining Equation (T)) with expression terms, it suffices to represent a wide range of fundamental
PDE:s, such as the Diffusion equation, the Schrodinger equation, the Navier-Stokes equation, etc.

3.2 Abductive Learning

Abductive Learning (ABL) [2829] is a powerful paradigm that integrates data-driven induction from
machine learning with knowledge-driven deduction from logical reasoning. A key challenge in this
integration is that the discrete deductive process is non-differentiable. ABL overcomes this by using
abductive reasoning to propagate the discrepancy between the logical deductions and data labels back
to the machine learning model, which then serves as the supervision signal for its training.

Abductive reasoning, also known as abduction, is a fundamental mode of logical inference that seeks
the best explanation for observations. A common approach to implement this process is through
Abductive Logic Programming (ALP) [[L7], where an abductive logic program is formally defined
by a triplet (P, A, IC). P is the background knowledge encoded as a logic program, A is a set of
abducible predicates representing hypotheses, and IC' is a set of first-order formulae called integrity
constraints. Abductive explanation for an observation O is a set A of ground atoms on abducible
predicates A, such that the following conditions are met (where |= denotes logical entailment):

() PUAEO,IC
(2) P U A is consistent

4 Our Approach

In this section, we first present an overview of our approach, ABL-PDE (ABductive Learning for
PDE discovery), and then detail its components and the proposed consistency optimization process.
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Figure 2: An illustration of ABL-PDE’s framework.

4.1 Overview of ABL-PDE

As illustrated in Figure 2] ABL-PDE comprises two modules:

* Machine Learning. This module employs a neural network to fit the physical field and
calculates derivatives through automatic differentiation.

* Logical Reasoning. This module incorporates an abductive logic program as the knowledge
base and is responsible for generating candidate expression terms.

The discovery process commences with pretraining the neural network, during which no physical
information is available (Step 1). Following this initial stage, an iterative deepening search is
performed by progressively increasing the number of operators in the candidate terms. In each
iteration, ABL-PDE first expands the candidate term library through abduction, utilizing the current
number of operators as observations (Step 2). After this expansion, the abduced expression terms are
transformed into numerical values (Step 3). Next, the proposed Monotone Subset Selection (MSS)
algorithm is employed to identify terms with nonzero coefficients (Step 4). Subsequently, ABL-PDE
estimates their coefficients and jointly optimizes the neural network through Finite Element Method-
based Training (FEMTrain) (Step 5). Steps 4 and 5 together constitute the consistency optimization
process, which is repeated until the discovered equation stabilizes and the coefficients converge.

4.2 Logic-based Knowledge Base

This part details our knowledge base KB, an abductive logic program (P, A, IC).

Background Knowledge P. A straightforward way is to adopt the syntax rule in Definition |1|as
the background knowledge P. Since P U A must be consistent, P effectively defines the boundary
of the search space by constraining A to be a valid expression term. This space, however, grows
exponentially with the number of operators, posing a significant challenge. We observe that this vast
space contains substantial redundancy, as many terms are mathematically equivalent despite differing
in their syntactic representation. To mitigate this issue, we introduce canonical form term, which
prune the search space by eliminating these equivalent representations.

Definition 2 (Canonical Form Term). An expression term is called in canonical form if and only if it
can be recursively generated by the following rules:

(cfterm) == (div) | (mul) | (add) | (sub) | (unit)
(div) = (mul) / (add) | (mul) / (sub)

(mul) = (unit) x (mul) | (unit)

(add) = (mul) + (add) | (mul)

(sub) = (add) — (add)

ity o= e )| )

par> n= 8 1dpv <dPV> | a 1dpv <Par>



Table 1: General-purpose (C1, C2, C3) and domain-specific (C4, CS, C6) integrity constraints.

Integrity Constraint Description
Cl < add(X,L)AL=add(Y,Z)AX >~ Unique addition order
C2 +ml(X,))AL=ml(Y,Z)AX ~ Unique multiplication order
C3 < sub(X,Y) A intersect(X,Y). Disjoint subtraction operands
C4 < getPower(mul(X,Y),u, N) AN >n. Power limit
C5 <+ getOrder(par(X,Y),z, M)A M > m. Derivative order limit

C6 < getDependent(par(X,Y),Z)AZ =vAY =y. Continuity equation constraint

The notation has the same meaning as in Definition[I} These rules impose structure constraints on
expression terms derivable from each nonterminal symbol. We illustrate the constraint on partial
derivatives ({par)) in Example|l} for detailed explanations of other rules, please refer to Appendix

Example 1. Given two dependent variables u and v. The expression term 9, (u X v) is not in canonical
form as it does not satisfy the rule of (par) nor any other rules. However, 0; (uxv) = duxv+uxdsv,
which is the linear combination of canonical form terms d;u X v and u X 9;v. In Section we prove
that every expression term can be represented by a linear combination of canonical form terms.

In our implementation, P is a logic program directly translated from the rules in Definition
Integrated with the operator number tracking capability in the deductive reasoning process, P can
leverage abductive reasoning to generate canonical form terms. E]

Abducible Predicates A. In this work, the design of abducible predicates is not a focus. We simply
introduce an auxiliary predicate to only allow abducing terms derivable from (mul) and (div) Since
we consider linear combinations of expression terms, this does not compromise the expressiveness.

Integrity Constraints /C. Integrity constraints enable us to declaratively state various constraints
on the structure of expression terms. Table [I] presents several examples of such constraints: the
upper section lists general-purpose constraints, while the lower section includes domain-specific
ones. The logical symbols are used as follows: ‘<—’ denotes implication (with the left-hand side
False omitted), ‘A’ represents conjunction, and ‘>’ indicates symbolic order, which is a built-in
predicate in most logic programming languages. C1 and C2 in Table [I] state that an addition or
multiplication sequence is invalid if the former of two adjacent subterms is symbolically greater than
the latter. C3 ensures that the two operands of a subtraction do not intersect. C4 and CS5 respectively
constrain the power of v and the derivative order with respect to z in a term. C6 is pertinent to the
continuity equation. Specifically, in our experiment on the Navier-Stokes equation, knowing that
2D incompressible flow satisfies the continuity equation (—0,u = 0,v) allows us to eliminate terms
involving partial derivatives of v with respect to y, since these terms can be systematically replaced
by partial derivatives of v with respect to = (e.g., vy = —Ug, Vyy = —Uy,). Please note that only the
general-purpose constraints are included in KB to ensure a fair comparison with other methods.

4.3 Consistency Optimization

In this part, we first introduce the consistency measure and then present MSS and FEMTrain.

Consistency Measure. Given the operator number limit L and the dataset D, the consistency measure
Cony, p(NNg,KB) of a neural network NNy and a knowledge base KB is defined as follows:

(réunRes(NNg,f F) + X - MSE(NNg, D))
@)
S.t. F C U AKB,O»
O=1

where 6 denotes the neural network parameters, £ is the coefficient vector as in Eq. (1)), F' is a set
of terms obtained from the abductive reasoning on KB for each operator number O < L, and A is a
hyperparameter utilized to balance Res and MSE.

'Please refer to Appendix for a pedagogical example illustrating the program and the abduction process.



Let F = {f@(u, )} %, the physics-informed residual is defined as:

Np

Res(NNg, &, F) = || 0NNg(t, ) — > & - f©) (WNy(t, ), ) 3)

i=1 2

Let D = {(t;,@;, 4(t;, @;))}7 as in Section[3.1] the mean square error is defined as:
m
2

MSE(NNg, D) = — NN (t;, ;) — a(ti, 2;)) " 4
(W, D) = L 3™ (g (11, ) — i1, ) @

i=1

The minimal residual in Eq. (Z)) decreases monotonically as the size of F increases. Thus, directly
maximizing the consistency measure will lead to a trivial solution where F' = |J Agg,0. Since
the number of nonzero terms cannot be determined in advance, selecting an upper bound of |F| is
insufficient to balance sparsity and consistency. Thus we introduce margin and k-level margin.

Definition 3 (Margin). Let H be a set of expression terms, and F' C H. The margin of F' with
respect to H is defined as:

_ |IRes™ (g, F)|[, — [[Res™ (NNg, H)|

Marging (F " , (@)
it () [Res” (5, 1),
where Res™ (NN, -) is the minimal residual in Eq. (Z)) with respect to &.
Definition 4 (k-Level Margin). Let H be a set of expression terms, & a positive integer, and | - |
denote set cardinality. The k-level margin of H is defined as
LevelMarging (k) = i Margin (F’). 6
evelMarging, (k) = | _min, _ Margin,;(F') ©)

Intuitively, the margin of a subset F' quantifies how self-sufficient it is in approximating the dynamics
OiNNy. A small margin suggests that the terms within F' are sufficient, while the terms outside it
are negligible. Accordingly, the k-level margin measures the sufficiency of the best possible k-term
model, indicating whether a parsimonious, k-term equation can accurately represent the system. As
shown in Section [3] the level margin decreases monotonically as k increases, which enables us to
adaptively control the expression term number by applying a margin threshold.

Monotone Subset Selection. Under a Algorithm 1 MSS
given margin threshold, evaluating the con-
sistency measure Cony, p(NNg, KB) with re-
spect to the neural network parameters 6
is time-consuming, as the complexity of
the residual minimization subproblem in

Input: Neural network NN, Term library termLib, Ini-
tial sparsity initSp, Margin threshold magThd

Output: Minimal residual set under magThd-margin
minSet

. 1: Initialization: minSet < 0
B @i no s hn st o the puse .t E o, comt )
gress 4 * 3: subLib < POSS(1ibVal, termLib, initSp)
which is generally NP-hard [20]]. To reduce ) .
. 4: left < 1, right < |subLib|
computational costs, we propose Mono- . .
- 5: while left < right do
tone Subset Selection (MSS), a two-stage . .
: ; A - 6: mid < [(left 4+ right)/2]
algorithm featuring an initial stage of rapid, . . .
. 7:  tmpMinSet, levMag < Enum(subLib, mid)
large-scale coarse selection succeeded by .
: 8:  if levMag < magThd then
a precise, small-scale refined search. . ) . .
9: minSet < tmpMinSet, right ¢~ mid — 1
Algorithm|[T| presents the details of MSS.In  10:  else
the first stage (cf. Line[2}3), MSS evaluates  11: left <—mid+1

expression terms in the library and calls
Pareto Optimization for Subset Selection (POSS) [21} [30]] to find a reduced term library subLib
whose size should be no greater than the initial sparsity. POSS is a non-deterministic subset selection
algorithm designed to minimize the residual in Eq. (2) under a cardinality constraint. In expectation,
it is guaranteed to find a reasonably good solution within a polynomial number of queries to the
objective function. This property makes it well-suited for the first stage, which focuses on rapidly
identifying relevant terms rather than performing costly residual minimization. More details about

2Since the underlying PDE is expected to hold at every point within the domain, we are free to select the set
of points for calculating the residual, which has been omitted for brevity.



POSS are provided in Appendix [C] In the second stage (cf. Line @{TT), MSS employs binary search
to find the smallest subset size for which the level margin is below the given threshold. Each time, it
enumerates the subset of size mid to identify the one with the minimal residual and calculates the
level margin, which is tractable within the reduced library size.

Finite Element Method-based Training. Once the set of active expression terms F' in Eq. (2)) is
identified via MSS for a given neural network parameters 6, the next step of consistency optimization
is to jointly optimize the network parameters 6 and coefficient vector £ to maximize the consistency
measure. A standard approach for this sub-problem is to adopt the Physics-Informed Neural Networks
(PINN) paradigm [22]. However, the efficacy of the PINN approach is often hindered by its sensitivity
to hyperparameters, such as the loss weighting term A in Eq. (2) [13]]. To enhance the stability of
model training and coefficient estimation, we move beyond pointwise collocation and instead enforce
the physics-informed residual in a weighted-average sense across the domain. This is achieved
through a Galerkin projection [24] of the residual from Eq. (3) onto the space spanned by Finite
Element Method (FEM) basis functions, leading to the following objective function:

Np
| M (0NN (t, ) — > & - FO (N (t, @), @))]|2, (7
=1

where M is the mass matrix constructed from the inner product of FEM basis functions. Please refer
to Appendix [D|for detailed definitions and derivations. The overall consistency optimization process
alternates between MSS and FEMTrain until the set I stabilizes and the coefficients £ converge.

5 Theoretical Analysis

In this section, we first demonstrate that our logic-based knowledge base, KB, retains full expressive
power, and then establish the soundness of MSS. Proofs are available in Appendix [E]

We denote the abduction result of KB for a given operator number % as H;. Thus, the set of all possible
abduction results is given by H = |J;=, H;. Besides, we refer to the set of all expression terms as S.

Definition 5 (Subsume). A finite set of expression terms F’ is said to subsume an expression term s
if there exists an expression term s’ such that:

* s’ can be derived from s through a finite sequence of algebraic operations and differentiation.

¢ s’ can be symbolically expressed as a linear combination of expression terms in F, i.e.,
[
s' =3 ;epaf - f, where a; are scalars.

As shown in Example (1} {9,u x v, u x 8,v} subsumes 9, (u x v).

Theorem 1. For every s € S, there exists a finite subset H' C H such that H' subsumes s.

According to the PDE formulation in Eq. (I)), it suffices to consider the expressiveness of a candidate
term library up to a linear combination. Theorem [I] states that every expression term in S has a
mathematically equivalent form that is a linear combination of elements from H, which directly
implies that the expressive power of KB is equivalent to that of the full expression term space S.

The soundness of MSS depends on the criterion utilized in its binary search, whose validity is ensured
by the following monotonicity theorem.

Theorem 2. For an expression term set F and integers 1 < k1 < ko < |F)|, it holds that:

LevelMarging (k1) > LevelMargin g (k2).

6 Experiments

In this section, we present empirical studies to answer the following questions:

1. How does ABL-PDE perform against contenders in PDE discovery?
2. How robust is ABL-PDE against hyperparameter selection?
3. How does each component of ABL-PDE contribute to its performance?



Table 2: PDE discovery comparison results. The evaluation metric is the sum of L2RE (%) on all
coefficients. Number with a dagger (}) indicates the discovered equation has redundant terms. Results
of ABL-PDE (w/o FEM) and ABL-PDE are the mean and standard deviation of 5 experiments with
different X that used to balance the two sub-metrics in Eq. (2). We bold the best results in each task.

Method ‘ Burgers’ Equation Schrodinger Equation Naiver-Stokes Equation
0 5% 10% 0 5% 10% 0 5% 10%
PDERidge 22.68 23.86 24.54 10.34 10.26 9.99 17.13 16.58 40.92
DL-PDE++ 22.68 23.86 24.54 10.34 10.26 9.99 57.25' 37.96 98.52f
ABL-PDE (w/o CO) 22.68 23.86 24.54 42.16f 44.67f 48.76 17.13 17.99 40.92
ABL-PDE (w/o FEM) | 13.69 + 2.81 14.65 4 2.67 15.04 & 3.87|3.05 4+ 0.94 3.27 & 1.09 2.87 & 1.07|30.88 & 5.24 26.47 £5.00 34.28 + 7.50
ABL-PDE 218 £1.06 2.79+0.13 4.12+0.34 |1.03 +0.10 1.12 + 0.06 1.08 + 0.29|18.02 + 0.08 15.22 + 0.08 21.27 + 1.72

6.1 Experimental Setup

We conduct experiments on three types of discovery tasks: (i) one-dimensional PDE: Burgers’
Equation, (ii) one-dimensional PDE system: Schrodinger Equation, (iii) two-dimensional PDE
system: Navier-Stokes Equation. Tasks (ii) and (iii) each involve two coupled equations. We use
data from public datasets [2], incorporating 5% and 10% Gaussian noise to simulate inaccurate
measurements as in [27]. We use the Lo Relative Error (L2RE, %) as in [[L1] to measure the quality
of coefficient estimation and physical field approximation. More details are specified in Appendix [F]
Code is available at: https://github.com/Abductivelearning/ABL-PDE.

6.2 Compared Methods

We compare ABL-PDE with four methods: 1) PDERidge: We build this strong baseline by assuming
a known PDE structure and applying ridge regression to estimate coefficients. This represents the best
possible performance for most methods that focus on enhancing structure identification [8 [10} [16].
2) DL-PDE++: DL-PDE [27] is a representative method among synchronous approaches that
discussed in Section [2] We enhance it by applying a normalization trick and tuning the sparsity
threshold to retain all correct terms while minimizing redundancy. 3) ABL-PDE (w/o Con): It
utilizes the pre-trained neural network and MSS algorithm to discover PDE, without the subsequent
consistency optimization. 4) ABL-PDE (w/o FEM): It employs the residual in Eq. (3) instead of the
FEM residual in Eq. (7)) during the consistency optimization. To ensure a fair comparison, we use the
same pre-trained neural network as in ABL-PDE to compute derivatives for the first two methods.

To verify the effectiveness of our logic-based knowledge base KB in reducing redundancy, we compare
it with two baselines: 1) Full Space: The full space of expression terms as defined in Definition
2) Canonical Form: It contains all expression terms in the canonical form, which lacks abducible
predicates and integrity constraints compared to KB.

6.3 PDE Discovery Comparison

In this part, we seek to answer the first two questions. Table [2| presents the results of structure
identification and coefficient estimation. Number with a dagger (1) indicates the discovered equation
has redundant terms (See Appendix for the specific form). The performance of DL-PDE++ and
ABL-PDE (w/o CO) is equivalent to PDERidge when the discovered structure matches the ground
truth, due to their shared neural network for derivative computation. As shown in the table, ABL-PDE
correctly identified the PDE structure across all three tasks under varying noise levels, achieving
the best coefficient estimation in 8 out of 9 cases and ranking second only to the structure-known
baseline, PDERidge, in the remaining one case. Notably, this performance was achieved utilizing
the same initial sparsity of 10 and the same margin threshold of 0.05 for all three tasks. ABL-PDE
has only one remaining hyperparameter, which will be discussed in Section[6.4] In our experiments,
despite the simple structure of Burgers’ equation, it remains challenging for coefficient estimation.
The inferior performance of compared methods is primarily attributed to the formation of sharp shock
waves in the solution, which can only be captured by an extremely dense mesh that is impractical in
most real-world applications. ABL-PDE effectively mitigates this issue via consistency optimization,
which utilizes the discovered physical information, even if it is initially incorrect, to improve the
derivative estimation, leading to a 5x to 10x reduction in L2RE.


https://github.com/AbductiveLearning/ABL-PDE

ABL-PDE (w/o CO) ABL-PDE (w/o FEM) ABL-PDE

204 4.0 4 5.0
= = < 45
) & 3.0 B
5% s 541
E £ £
w w 2.0 w 3.5
% 10 % 7
& & & 30
1.01
0.5 2.51
0 5 10 0 5 10 0 5 10
Noise Level (%) Noise Level (%) Noise Level (%)
(a) Burgers’ Equation (b) Schrodinger Equation (c) Naiver-Stokes Equation

Figure 3: Test error comparison results. The evaluation metric is the sum of L2RE on each component
of the predicted physical field. Results of ABL-PDE (w/o FEM) and ABL-PDE show the mean and
standard deviation of 5 experiments under different A used in Eq. (2). The area of the shadowed circle
represents the magnitude of the standard deviation. Detailed results are provided in Appendix [G.2]

Beyond its robustness to noise, ABL-PDE is also resilient to hyperparameter selection. As shown in
Table E], the discovered equation of ABL-PDE (w/o CO) contains redundant terms in several cases.
This redundancy stems from both the neural network’s imperfect approximation to the physical field
and, more critically, from a misalignment between the margin threshold and the data. Nevertheless,
ABL-PDE successfully eliminates these terms through consistency optimization, demonstrating
its notable robustness to sub-optimal hyperparameter choices. A by-product of our method is the
improvement in the neural network’s generalizability. Figure 3| presents the L2RE of model prediction
on the noise-free test data. Compared with the best performance achievable by supervised training
alone (cf. ABL-PDE (w/o CO)), ABL-PDE consistently outperforms it across all tasks. Initially, the
neural network performs suboptimally, and the candidate term library is too expansive. Consistency
optimization progressively clarifies the ambiguity within the library, leading to a refined equation
that, in turn, provides physical insights to improve neural network.

6.4 Ablation Study

Influence of FEMTrain. We investigate the effect of FEMTrain by comparing the performance of
our method with and without the utilization of FEM residual. Selecting a hyperparameter, e.g., A
in Eq. (), to balance the physical information and the supervision signal has long been an existing
issue with physics-informed machine learning [13]. Therefore, we conduct five experiments for
each task with hyperparameters: [0.5A, 0.75\, A, 1.25X, 1.5A]. The mean and standard deviation of
coefficient errors are presented in Table[2] and the results of test errors are visualized in Figure[3] In
addition to the superior performance of ABL-PDE in coefficient estimation and test error, its stability
to hyperparameter variations is particularly noteworthy. In Figure[3] we use the area of the shadowed
circle to reflect the magnitude of the standard deviation. Compared to ABL-PDE (w/o FEM), the
standard deviation of ABL-PDE is reduced by approximately one order of magnitude. This enhanced
stability is crucial for practical scientific discovery, as finding an effective hyperparameter is much
easier than finding the optimal one.

Influence of KB. We use the one-dimensional PDE with
a single dependent variable as a showcase to demonstrate
the effectiveness of KB, i.e., the abductive logic program
based on the canonical form, in constraining the hypothesis
space. As the full space of expression terms is enormous,
we use dynamic programming to compute its size, and the
sizes of Canonical Form and ABL-PDE are counted by the
implemented logic programs, respectively. Figure [ illus- 3 3 6 B 10
trates the logarithmic growth curve of the candidate term Operator Number Limit

number as the operator number limit increases. Compared Figure 4: Logarithmic growth curve of
to the full space of expression terms, the proposed canon- the candidate term number as the opera-
ical form reduces the problem size to a computationally ~tor number limit increases.

feasible scale. Nevertheless, KB still demonstrates a reduction by a constant factor in the exponent,
making it tractable for POSS. As terms with 10 operators can construct highly complex equations,
our method can be applied to most scenarios.

Full Space
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7 Conclusion

In this paper, we propose a novel PDE discovery method based on the abductive learning framework,
aiming at leveraging the logic-based knowledge base and the neural network in a reciprocal way.
Specifically, we introduce the ABL-PDE (ABductive Learning for PDE discovery) approach, which
alternatively refines the knowledge base by utilizing a neural network to access data and enhances the
neural network’s performance by integrating the physical information provided by the knowledge base.
Experimental results demonstrate the robustness of our approach in PDE structure identification, the
accuracy in coefficient estimation, and the stability against hyperparameter variations. Furthermore,
ABL-PDE is a general-purpose approach with sufficient flexibility in implementation, e.g., the neural
network can adopt any advanced architecture, and the knowledge base can incorporate domain-
specific information by declaring new integrity constraints. The limitation of ABL-PDE lies in its
restriction to learning linear combination coefficients, which prevents it from handling unknown
parameters within nonlinear terms. In future work, we will try to construct a parameterized candidate
term library and incorporate advanced techniques for joint parameter optimization.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately represent the paper’s
contributions and scope. They are supported by the theoretical analysis and experimental
results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discusses the limitations of the work in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and a complete (and correct) proof for
each theoretical result in the paper.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in Appendix [F] and a detailed
README file to reproduce the results in the supplementary material.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public datasets and provide code with a detailed README file to
reproduce the results in the supplementary material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental settings in Appendix [F] and a detailed
README file to reproduce the results in the supplementary material. We also analyze the
influence of hyperparameters on the performance of the proposed method in the main text.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report error bars for the proposed method in the main text.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detailed experimental settings in Appendix [F] which contains
the discussion of the compute resources used.
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9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conducted in the paper conforms to it.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit the creators of the assets and mention the license and terms
of use explicitly.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We will release the code upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Explanation of the Canonical Form

The canonical form of expression terms is defined by the BNF grammar presented in Definition[2] This
grammar uses standard notation: (-) for nonterminal symbols, ::= for production rules (indicating that
the nonterminal on the left can be replaced by the expression on the right), and | signifies alternation
between possible forms. The notation used here is consistent with that in Definition |I} In this
grammar, nonterminal symbols define the valid structure for terms corresponding to specific operators
or types: {(cfterm) for any canonical form term, (div) for division (/), (mul) for multiplication (x),
(add) for addition (+), (sub) for subtraction (—), (par) for partial differentiation (9), (unit) for
base multiplicative/derivative units, and (var), (dpv), (idpv) represent variables.

The production rules in Definition 2] define the set of expression terms that are in canonical form by
imposing syntactic constraints on their structure. We explain the meaning of these rules as follows:

* The top-level rule, (cfterm) ::= (div) | (mul) | (add) | (sub) | (unit), specifies that any
expression in canonical form must be derivable from one of these five main nonterminals or
be a base unit.

* The rule for division, (div) ::= (mul) / (add) | (mul) / (sub), defines the valid structure
for division terms (/). It requires the numerator to be a term derivable from (mul) and
the denominator to be a term derivable from either (add) or (sub). For example, a term
corresponding to (u + v)/(u — v) would be considered invalid under this rule because its
numerator, (u + v), is derivable from (add), not (mul).

* The recursive rule for multiplication, (mul) ::= (unit) X (mul) | (unit), defines the
structure of multiplication terms (x). The base case is any term derivable from (unit).
The recursive step requires a term derivable from (unit) on the left of “x” and a term
derivable from (mul) on the right. This imposes a specific structure on multiplication chains;
for instance, a product of three terms like © X v X w can only be derived in the form
(unit) x (mul), where the second term derivable from (mul) is v X w. This enforces the
structure u X (v X w), preventing syntactically distinct but equivalent forms like (u X v) X w.

* The recursive rule for addition, (add) ::= (mul) + (add) | (mul), similarly defines the
structure of addition terms (+). It allows a base case of a term derivable from (mul), and
arecursive step (mul) + (add). This ensures a specific structure for addition chains; for
example, an expression like ¢ + u X v + w (where u X v is derivable from (mul)) can only
be derived as (mul) + (add), where the first term derivable from (mul) is ¢ and the term
derivable from (add) is u x v 4+ w. This enforces the structure ¢ + (u X v + w), preventing
forms like (¢ + u X v) + w.

* The rule for subtraction, (sub) ::= (add) — (add), defines subtraction terms (—), requiring
both the left and right operands to be derivable from (add). This enforces a specific structure;
for example, u + v — w (wWhere u + v and w are derivable from (add)) can only be derived
as (u+v) —w,notu — (w — o).

* The rule (unit) ::= (dpv) | (idpv) | (par) defines terms derivable from (unit). These
are referred to as unit expressions and serve as the base elements for multiplication and
differentiation arguments.

* The rule for partial differentiation, (par) ::= O(iqpv) (dPV) | O(iapv) (Par), defines partial
derivative terms (0). It requires the derivative operator to be applied to a term derivable from
either (dpv) or (par), and differentiation is always with respect to a term derivable from
(idpv) (an independent variable). This imposes strong constraints, for instance, forbidding
derivatives of products or sums as single terms, such as 9,.(u X v), which would be invalid
because u X v is neither derivable from (dpv) nor (par).

B A Pedagogical Example of Logic-based Knowledge Base

We provide a pedagogical example to elucidate the logic-based knowledge base and the abduction
process discussed in the main text. As a pedagogical example, this knowledge base considers three
basic operators (+, —, /), and the full implementation (reasoning/expr .pl) is provided in the code
of the supplementary material. By querying 7- write_to_file. in SWI-Prolog, we can generate
all expression terms with up to a given number of operators (2 in this code). Abduced expressions are
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all in the form similar to mul (u,mul (v,v)). A single integrity constraint is employed to ensure that
multiplication expressions are in a canonical order, illustrating how various human knowledge can be
declaratively stated through such constraints. The declarative nature simplifies the task by allowing
the user to specify desired properties directly, with the generation of constraint-satisfying expressions
entirely managed by the Prolog prover. The implementation of this simplified knowledge base and
abduction process is detailed in the following Prolog code.

htototoloholototlo ool h %t %o %o

% Background Knowledge

ot toloholotlelote el hh kst % %o

% Declare the dependent variables

dep_var ([u, v]).

% Rule for fraction expressions: (X/Y)
% Cur_num: Counter for the number of operations used so far
% Op_limit: Maximum operations allowed

fraction_expr(frac(X, Y), Cur_num, Op_limit) -->
[2C1,
multiplication_expr (X, Cur_numl, Op_limit - 1), 7 Parse
numerator (X)
[>7°1,
addition_expr (Y, Cur_num2, Op_limit - Cur_numl - 1), 7%

Parse denominator (Y)
{Cur_num is Cur_numl + Cur_num2 + 1}, % Calculate total
operations used (adding 1 for fraction)

[)°7.

% Rule for multiplication expressions: (XxY)
% First clause handles actual multiplication
multiplication_expr (mul (X, Y), Cur_num, Op_limit) -->

[2C1,

unit_expr (X, Cur_numl, Op_limit - 1), ) Parse first operand
(XD

[*1,

multiplication_expr (Y, Cur_num2, Op_limit - Cur_numl - 1),

% Parse second operand (Y)

{Cur_num is Cur_numl + Cur_num2 + 1},

{\+constraint (mul (X, Y))}, % Check that this multiplication
doesn’t violate integrity constraints

[)°7.

% Second clause for multiplication_expr
% This is how the recursion terminates
multiplication_expr (X, Cur_num, Op_limit) -->
{0 =< Op_limit},
unit_expr (X, Cur_num, Op_limit).

% Rule for addition expressions: (X+Y)
addition_expr (add(X, Y), Cur_num, Op_limit) -->
[>c1,
multiplication_expr (X, Cur_numl, Op_limit - 1), J, Parse
first operand (X)
[+1,
addition_expr (Y, Cur_num2, Op_limit - Cur_numl - 1), %
Parse second operand (Y)
[>H-°1,

{Cur_num is Cur_numl + Cur_num2 + 1}.

% Second clause for addition_expr
% This is how the recursion terminates
addition_expr(X, Cur_num, Op_limit) -—>
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multiplication_expr (X, Cur_num, Op_limit).

% Rule for basic units
% This is a terminal rule that matches a single variable from
the dependent variable 1list
unit_expr(X, Cur_num, Op_limit) -—>
{
Cur_num is O,
Cur_num =< Op_limit,
dep_var (DepVarList), member (X, DepVarList) 7 X must be
one of the dependent variables
},
[x].

Tt bt tslotolotsTotsToto ot %o
% Abducible Predicates
Tl bt bttt lotsTotsTo %ot %o

% Decide which terms can be utilized to explain the

observation, i.e., which values of X can satisfy
expression_term(x, Op_limit)
expression_term (X, Op_limit) --> fraction_expr(X, _, Op_limit).
expression_term(X, Op_limit) --> multiplication_expr (X, _,
Op_limit).

T bt To o %ot ToTo ot %o To To To o %o Vo

% Integrity Constraints

T bl ot To ot toToTolo %o To To To o %o Vo

% Constraint to enforce a canonical ordering of multiplication
terms

% This prevents generating both (ax*xb) and (b*a) which are
mathematically equivalent

constraint (mul (X, Y)) :- extract_first_mul_term(Y, FirstTerm),
X @> FirstTerm.

% Helper predicate to extract the first term in a
multiplication chain
% For mul(a, mul(b, c)), it returmns ’a’

% For a simple term like ’u’, it returms ’u’
extract_first_mul_term(Term, FirstTerm) :-
( functor (Term, mul, 2) % Check if Term is a

multiplication
-> arg(l, Term, FirstTerm) 7 If yes, extract first argument
; FirstTerm = Term % If not, the term itself is the first
term

).

% Utility predicate to write all generated expressions to a file
write_to_file :-
open(’out.txt’, write, Stream),
findall ([X, Y], phrase(expression_term(X, 2), Y), L), %
Generate all expressions with max 2 operators
forall (member ([X, Y], L),
(write(Stream, X), nl(Stream),
write(Stream, Y), nl(Stream))),
close(Stream).

C A Brief Introduction to POSS

POSS leverages Pareto Optimization to solve the following subset selection problem:
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Algorithm 2 POSS

Input: all variables V = {X;,..., X,,}, a given criterion f and an integer parameter k € [1,n]
Parameter: the number of iterations 7" and an isolation function I : {0,1}" — R
Output: a subset of V' with at most £ variables
1: Let s = {0}" and P = {s}.
2: Lett =0.
3: while ¢t <T do
4:  Select s from P uniformly at random.
5:  Generate s’ from s by flipping each bit of s with probability 1/n.
6: if Pz € P suchthat I(z) = I(s') and

(2.01 < 801 A 2.00 < 5".09) or (z.01 < 8".01 A 2.09 < §".09)

then
7 Q={z€P|I(z)=I(s)ANs".01 <z01AN5.03 <z09}.
8: P=(P\Q)U{s'}.
9: t=t+1.
10: Return arg minge p,|5/<p f(5)

Definition 6 (Sparse Regression). Given all observation variables V' = { X7, ..., X, }, a predictor
variable Z and a positive integer k, define the mean squared error of a subset ' C V as

2

Sparse regression is to find a set of at most k& variables minimizing the mean squared error, i.e.,

arg ;ncn‘} MSEzp st |F|<k.

We use it to roughly select the subset that contains possible relevant terms. The following is the
pseudo-code of POSS:

In Algorithm o1 represents residual and o, represents the subset size. I : {0, 1} — R determines
if two solutions are allowed to be compared: they are comparable only if they have the same isolation
function value.

D More Details on FEMTrain

D.1 A Brief Introduction to FEM

Finite Element Method (FEM) is a well-established numerical method that provides a systematic
framework for approximating solutions to PDEs.

We use a scalar field u with one spatial dimension, [0, L], as a showcase to explain the process of
using FEM to solve the following type PDE:

ou=f (u,x, O, &zu, .. ) . ®)
The first step to apply FEM is to discretize the spatial domain into smaller, finite subdomains called
elements. Given an ordered set of points X = {x1,x2,...,z,} withx; = 0 and x,, = L, they split
the domain into n — 1 elements: [z1, 2], ..., [€n—1,%]. The second step is to construct a set of
basis functions {¢1, @2, . .., ¢, } to approximate the solution u. ¢; is defined as follows:
0, ife<x;_jorz > x4,
LTi41—T

e ife, <x <wmiiq.
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The solution u is then approximated by u defined as:

=2 _ai)ei (), ©)

where «; (t) = u(t, ;). The third step is to transform Eq. (8] into weak formulation by multiplying
both sides with each basis function and integrating over the domain:

/ O - ¢Zdw—/ f(u ) - ¢ da. (10)
Substitute Eq. (@) into Eq. (T0), we get a linear system:
d
M— =F(t 11

L . o . . .
where M;; = fo ¢; - ¢; dx is the so-called mass matrix in finite element analysis, a(t) is the vector

of coefficients in Eq. (9), and F; (¢ fo ) - ¢i dz. Eq. ([I)) is an Ordinary Differential
Equation (ODE) system of c. Therefore grven the 1n1t1al state, we can calculate F and forward o
iteratively, thus forecasting @ at any time.

D.2 FEM-based Residual

Firstly, we discretize the spatial domain €2 into a set of cubic elements 7 = {Q; C R4} N2 Let

= {x; € R4}, denote their vertices, and ® = {¢; : Q@ — R}, for the corresponding basis
funct1ons. Secondly, we use ® to approximate d;u(t, ) £ f© (u(t, ), x) and expression terms
{fD(u(t, ), z)}N7 identified by MSS as follows:

N
7O (ult.@).2) = Y~ af ()6, (@) i = 0,1...... N, a2
j=1

where a ( ) = f@(u(t,x;), x;), which can be evaluated through the pre-trained neural network.
Thirdly, we transform f(©) = S"N% ¢, £() into the weak formulation:

f(O) ¢j Zf f(Z) d)] ]_1725"'7N7 (]3)
where &; is the coefficient as introduced in Eq. (1)), and (u,v) = [, u- v dz. Substituting into
(T3) at a given time point ¢ (omitted for brevity) yields the linear system:

Ma® = M Ag, (14)

where M;; = (¢;,¢;), a® = (a?,al",. .. ,ag\?)T, A= [aWa® . alF)] and & =
(€0,€1,- -, En,)T. Since {a®} V% are outputs of the neural networks, the following FEM-based
residual can be utilized to optimize neural network parameters 6 and PDE coefficients &:

1M (e — Ag)] . (15)
Replacing Res(NNg, &, F') in Eq. () with this residual gives the loss function utilized in FEMTrain.
E Proofs

E.1 Theorem

Lemma 1. Let e1 and es be two expressions generated by <sub>. Then, e; X eo can be rewritten as
an expression generated by <sub>.
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Proof. According to Definition 2] e; can be expressed as a — b, e5 can be expressed as ¢ — d, where
a, b, ¢, d are expressions generated by <add>, <mul>, <par>, <dep>, or <indep>. Without loss
of generality, we only need to consider the <add> case, as all other cases are simply degenerate
forms of this one. Since (a — b) X (¢ — d) = (ac + bd) — (be + ad), we only need to prove ac + bd
and bc + ad can be rewritten as expressions generated by <add>. Since a and ¢ are summations of
multiplication or unit expressions, it’s obvious that we can rewrite ac as an expression generated by
<add> according to basic algebraic laws, so as bd, be, and ad. Therefore, (ac + bd) — (bc + ad) is a
subtraction between two expressions generated by <add>, which can be rewritten as an expression
generated by <sub>.

O

Lemma 2. Let e1 and es be two expressions generated by <div>. Then, e X ey can be rewritten as
an expression generated by <div>.

Proof. Without loss of generality, we assume e; = ﬁ, ey = %, where a and d are expressions
generated by <mul>; b, ¢, e, and f are expressions generated by <add>. According to Lemma I}
the denominator of e; X ey can be written as an expression generated by <sub>. The numerator of
e1 X ey can be rewritten as an expression generated by <mul>, thus e; X e5 can be rewritten as an
expression generated by <div>.

O

Lemma 3. Let e; and ey be two expressions generated by <div>. Then, the numerator and
denominator of ey op es, where op € {+, —, /} can all be rewritten as expressions generated by
<sub>.

Proof. Without loss of generality, we assume e; = -, e3 = %, where a and d are expressions
generated by <mul>; b, ¢, e, and f are expressions generated by <add>. We prove the “+” case and
others are similar. Since e; + eg = %, according to Lemma ale — f) + d(b—c) and

(b — ¢)(e — f) are all expressions generated by <sub>.
O

Lemma 4. Let e be an expression generated by <div>. Then, % can be subsumed by a set H' C H,
where x is an arbitrary independent variable.
Proof. Without loss of generality, we assume e = %, where a is an expression generated by

<mul>; b and c are expressions generated by <add>. According to differentiation rule, 9, ;% =

W. According to Lemma (b—c)? is an expression generated by <sub>. According

to the differentiation rule and basic laws of multiplication, the numerator is an expression generated

by <sub>. Thus, % can be subsumed by aset H' C H.
O

Proof of Theorem[I, We use structural induction to prove Theorem|[I]

1. Base Case: For each expression term s with zero operator, there exists a term A € H such
that s = h.

This case is obviously true.

2. Inductive Hypothesis: Assume that for each expression term s with no greater than n
operators, there exists a subset of H' C H such that H’ subsumes s.

3. Inductive Step: Show that for each expression term s with n + 1 operators, there exists a
subset of H' C H such that H’ subsumes s.
If s is an addition or subtraction, according to the inductive hypothesis, the conclusion is
obviously true.
If s is a multiplication, assume s = a X b, according to the inductive hypothesis, a and b
can be subsumed by two sets H, C H and H, C H respectively. Without loss of generality,
we assume each element of H, and H} are all expressions generated by <div>. According
to the distributive law of multiplication and Lemma 2] the conclusion holds.
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If s is a division, let s = a/b, according to the inductive hypothesis, a and b can be subsumed
by two sets H, C H and H;, C H respectively. Without loss of generality, we assume
each element of H, and H, are all expressions generated by <div>. Then, we only need

to prove Zi? can be subsumed by a set H' C H, where ¢, d, e, and f are all expressions
c+d

generated by <div>. Other cases are all degenerated cases. According to Lemma , i

be rewrite as %, where g, h, j, and k are all expressions generated by <sub>. According

can

to Lemma it’s obvious that there exists a set H' C H subsumes ?—Z.

If s is a partial derivative, let s = Je. According to the inductive hypothesis, e can be
subsumed by a set H. C H. According to the linearity of differentiation, we can assume e
is a single element of H. Without loss of generality, we assume e is an expression generated
by <div>. According to Lemmafd] the conclusion holds.

4. Conclusion: By the principle of mathematical induction, Theorem [I] holds.

E.2 Proof of Theorem 2|

Proof. Let F} be a subset of F' with cardinality %, that realizes the k;-level margin, such that
LevelMarging (k1) = Margin g (Fy).

Since k1 < ko < |F|, we can construct a new set F3 by adding ko — k; arbitrary terms from F'\ Fy'
to F;'. By construction, F;* C Fj and |F}| = ko.

The minimal residual is found by solving a linear least-squares problem. The solution space for the
coefficients &€ corresponding to the terms in F; is a subspace of that for the terms in F3. Therefore,
the minimal residual over the larger set F, cannot be greater than the minimal residual over its subset
Fr:

[Res™ (WNg, F7)|, > [[Res™ (NNg, F3)]] -

From the definition of Margin (Definition [3), this directly implies that:
Marginz(F;) > Marginp(Fy).
Furthermore, by the definition of k-Level Margin (Definition[d), the k»-level margin is the minimum

margin over all subsets of size ko. The margin of our constructed subset F must therefore be greater
than or equal to this minimum:

Marginz(F3) > LevelMargin (k).
Combining these inequalities, we arrive at the desired result:
LevelMargin (k1) = Marginp(F}) > Margin(Fs) > LevelMarginz(kz).
This completes the proof. O
F More Experimental Details

F.1 Equation Form

Table 3: Summary of Governing Equations

Equation Form

Burgers’ Equation u = —udyu + (22) Oppu
Ou = —0.50,,v — v(u? + v?)
v = 0.50,,u + u(u? + v?)

Schrodinger Equation {

. . Opu = —u0zu — vOyu — Opp + 0.01(Dgpu + Oyyu)
N -Stokes Equat v Y r e vy
avierStokes Bquation {6}1} = —u0;v — vOyv — Oyp + 0.01(0pgv + Jyyv)
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F.2 L2 Relative Error

Definition 7 (L2 Relative Error). Let f = [f1, f,..., fn] be a vector of true values and f =
[f1, f2, .-, fn] be a vector of approximations. The L2 Relative Error (L2RE) is defined as:

1= Al _ VEi i = Sl
17112 S AP

Please note that for coefficient estimation, the L2RE is simplified as follows:

N
2Tl

The benefit of using this metric is that errors in large coefficients do not dominate and obscure errors
in small coefficients.

L2RE =

F.3 Network Architecture and Training Details

Our model’s architecture is a multilayer perceptron (MLP) composed of 8 hidden layers. For the
Burgers’ Equation, each layer has 20 neurons. This architecture is adapted for the Schrodinger
Equation by modifying the output layer to predict two variables (the real and imaginary parts of the
solution). For the more complex Navier-Stokes Equations, we increase the network’s width to 40
neurons per hidden layer.

The training data consists of 1 x 10% (40%), 2 x 10* (40%), and 2 x 10° (20%) measurement points
for the Burgers’, Schrodinger, and Navier-Stokes experiments, respectively. We hold out 20% of the
training data as a validation set, which is used to select the derivative computation weights and the
hyperparameter A. The networks are pre-trained for 5,000 epochs for the Burgers’ and Schrédinger
equations, and 100,000 epochs for the Navier-Stokes equations. Across all tasks, we use a consistent
initial sparsity of 10 and a margin threshold of 0.05. During consistency optimization, MSS is
applied every 1,000 epochs to refine the discovered equation. The values for A are selected based on
validation error and are summarized in Table[d All experiments were conducted on a server equipped
with four NVIDIA A6000 GPUs, each with 48 GB of memory.

Table 4: Hyperparameter A settings.

Method Burgers’ Equation  Schrodinger Equation  Navier-Stokes Equations
ABL-PDE (w/o FEM) 0.05 0.5 1
ABL-PDE 5 5 200

G Detailed Experimental Results

G.1 Redundant Terms
Table [5] details the specific redundant terms for the dagger-marked () results presented in Table 2]

Table 5: Redundant terms of the dagger-marked results in Table 2]

Method Equation Noise Level Redundant Terms

Upt Uz, U, UV, U, v

te—

ABL-PDE (w/o CO) Schrodinger Eq. All Levels

0% 'Ll,t.: -
Vt: Uy
DL-PDE++ Navier-Stokes Eq. 5, gt PPy, vy
(N pyu, puy
e 2 3 2
10% Ut PU; VU, P75 P

Ut: pyu7 puy7 Vg
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G.2 Test Error

Table [6] presents the detailed results of test errors on three benchmarks. The area of the shaded circles
in Figure [3|is proportional to the square root of the standard deviation. We use the square root to
improve the visibility of the standard deviation of ABL-PDE.

Table 6: Test error comparison results on three benchmarks. The evaluation metric is the sum of
L2RE (%) on each dependent variable. Results of ABL-PDE (w/o FEM) and ABL-PDE are the mean
and standard deviation of 5 experiments with different hyperparameters.

Burgers’ Equation Schrodinger Equation Naiver-Stokes Equation
0 5% 10% 0 5% 10% 0 5% 10%
ABL-PDE (w/o CO) 1.79 1.83 1.92 2.25 2.37 3.93 2.85 3.38 4.70
ABL-PDE (w/o FEM) [ 1.04 £ 0.11 1.06 £ 0.11 1.08 £ 0.19|1.67 & 0.40 1.74 & 0.38 1.84 & 0.36|3.06 + 0.22 3.44 +0.25 4.02 +0.24
ABL-PDE 0.68 £ 0.01 0.72 £ 0.02 0.85 + 0.03 |1.22 £+ 0.01 1.36 = 0.01 1.75 £ 0.01 | 2.64 & 0.05 3.17 & 0.04 3.88 + 0.06

Method ‘

G.3 Redundancy Reduction
Table [7) presents the detailed number of candidate terms.

Table 7: Number of candidate terms w.r.t. operator number limit.

Number 2 3 4 5 6 7 8 9 10
Full 105 44205 7.8E+9 24E+20 24E+41 23E+83 2.1E+167 1.7E+335 1.2E+671
Canonical 39 143 510 1784 6141 20849 69948 234789 764761
ABL-PDE 11 29 69 165 387 879 1955 4254 9053
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