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ABSTRACT

This paper explores the challenge of accelerating the sequential inference process
of Diffusion Probabilistic Models (DPMs). We tackle this critical issue from a dy-
namic systems perspective, in which the inherent sequential nature is transformed
into a parallel sampling process. Specifically, we propose a unified framework
that generalizes the sequential sampling process of DPMs as solving a system of
banded nonlinear equations. Under this generic framework, we reveal that the Ja-
cobian of the banded nonlinear equations system possesses a unit-diagonal struc-
ture, enabling further approximation for acceleration. Moreover, we theoretically
propose an effective initialization approach for parallel sampling methods. Fi-
nally, we construct ParaSolver, a hierarchical parallel sampling technique that
enhances sampling speed without compromising quality. Extensive experiments
show that ParaSolver achieves up to 12.1× speedup in terms of wall-clock time.
The source code will be publicly available.

1 INTRODUCTION

Over the past few years, the landscape of generative modeling has been significantly reshaped by the
ascent of diffusion probabilistic models (DPMs) (Ho et al., 2020; Song et al., 2020b). These models
have emerged as a pivotal methodology for diverse applications (Yang et al., 2024; Liu et al., 2023a;
Lu et al., 2024; Chung et al., 2023), spanning from high-quality image/video synthesis (Rombach
et al., 2022; Blattmann et al., 2023) to molecular generation (Wu et al., 2024; Nguyen et al., 2023).
In essence, diffusion models hinge on a noise reduction process that is represented mathematically
as an ordinary or stochastic differential equation (ODE/SDE). The equation systematically removes
noise from an initial normal distribution, transforming it into a vivid sample that conforms to the
intended real data distribution, thereby facilitating high-quality generative modeling. To produce
high-quality samples, nevertheless, DPMs typically necessitate a multitude of sequential noise re-
duction iterations involving extensive evaluations of large neural networks, leading to a notably slow
sampling speed.

Researchers have put forth a range of methods (Gong et al., 2024; Zheng et al., 2023; Gonzalez et al.,
2024; Geng et al., 2024; Liu et al., 2023b; Luo et al., 2023) to improve sampling speed. One strategy
involves developing faster SDE/ODE solvers like DDIM (Song et al., 2020a) and DPMSolver (Lu
et al., 2022) based on mathematical principles to expedite the sampling process. However, these
approaches often require a reduction in the number of denoising steps, which impacts the quality of
the samples. Another category is to distill the ODE trajectory of pre-trained diffusion model into
another neural network that enables short-step sampling, exemplified by work such as (Salimans &
Ho, 2022; Song et al., 2023). An additional enhancement for this kind of method is to straighten
the convoluted ODE trajectory of DPMs into a straight line using the Rectified Flow (Lipman et al.,
2022; Liu et al., 2022). Nevertheless, it is common for these approaches to result in a decline in both
image quality and diversity.

To circumvent the aforementioned questions and expedite the sampling process, Shih et al. (2024b)
introduced a parallelization technique that simultaneously denoises multiple steps through Picard
iteration. Subsequently, Tang et al. (2024) further redefined the parallel sampling paradigm of dif-
fusion models, framing it as the solution of a series of triangular nonlinear equations via fixed-
point iteration (FP). These methodologies present a trio of distinct benefits compared to existing
approaches: (1) training-free and compatible with existing fast sampling methods; (2) yielding sam-
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ples with comparable quality to sequential sampling; (3) resulting in a notable decrease in sampling
steps, thereby greatly enhancing sampling efficiency.

To further extend the capabilities of the parallel methods and enable new sampling paradigms, we
propose ParaSolver, a unified framework that generalizes previous approaches through the lens of
nonlinear equations (NEs). Specifically, we formulate the sampling process of DPMs as a system
of NEs with a computation-efficient banded structure. This framework leads to parallel sampling
in a hierarchical way, thus improving the efficiency of parallel sampling methods in situations with
constrained computing resources. Moreover, any current sequential or parallel sampling algorithms
for DPMs can be seamlessly integrated into our framework.

In summary, this paper encompasses the following theoretical and practical contributions:

• we propose a novel parallel sampling algorithm for diffusion models named ParaSolver,
via partitioning the sequential inference process into a system of non-linear equations;

• we accelerate and simplify the updating process via the unique structure of the Jacobian
matrix of the system, which has a unit-diagonal structure with compute-intensive gradients
in the sub-diagonal;

• we conduct extensive experiments, showcasing that our ParaSolver can achieve 2ˆ „ 12ˆ

speedup in terms of wall-clock time, establishing a new record in this field.

2 RELATED WORK

Parallel sampling that enables faster sampling without quality degradation opens up a promising av-
enue for faster sampling of DPMs. It concurrently denoises multiple sample points on the ODE/SDE
trajectories of DPMs by iteratively refining them from an array of initial guesses. To the best of our
knowledge, the recent studies Shih et al. (2024a) and Tang et al. (2024) are the only research en-
deavors concentrating on parallel sampling methods for DPMs. ParaDiGMS (Shih et al., 2024a)
represents the pioneering parallel sampling approach. It treats the discretized sample points along
the ODE trajectories as a sequence of fixed points. These points are progressively enhanced through
iterations using the established fixed-point theorem and Picard-Lindelöf theorem. ParaTAA (Tang
et al., 2024) extends the fixed-point iteration approach by defining the sampling process of DPMs
as solving triangular nonlinear equations, with all discretized sample points acting as unknown vari-
ables. In contrast to ParaTAA, we frame the sampling procedure of DPMs as a set of banded
nonlinear equations. This leads to a hierarchical parallel method, which is totally different from
existing methods parallelizing all points in the ODE trajectories. Moreover, this banded structure,
characterized by its sparsity, facilitates significantly more efficient computations compared to the
compute-intensive triangular structure. Additionally, ParaTAA can be seamlessly incorporated into
our framework. We have also identified intriguing research areas dedicated to expediting diffusion
models. These include topics like model or sample partitioning (Ma et al., 2024b;a; Wang et al.,
2024; Li et al., 2024), trajectory stitching (Pan et al., 2024), nested diffusion (Elata et al., 2024),
minimum denoising step prediction (Yu & Barad, 2024), and theoretical assurances (Gupta et al.,
2024; Chen et al., 2024). Our strategy revolves around parallelizing the sequential sampling process
of DPMs, which is complementary to theirs.

While these methods show promising benefits, several drawbacks constrain their parallel efficiency.
First, parallelizing all discretized sample points simultaneously becomes compute-intensive when
handling large models, leading to a rapid degradation in parallel efficiency. Second, the final clean
sample relies on all samples from previous timesteps. As a result, errors from these prior sample
points all accumulate in the final clean samples. This, in turn, necessitates additional iterations to
correct these accumulated errors, further restricting parallel efficiency.

3 PRELIMINARY

Diffusion Models. Denote by Xt P RHWC the noised variable on the diffusion trajectory, t P r0, T s

the scalar indicating the time-stamp, fptq the drift coefficient function, and gptq the diffusion coef-
ficient function. Then, the forward diffusion process can be formulated as the following stochastic
differential equation (SDE), which projects the clean image XT to a random noise X0 (we define
the clean image at time T and the noise at time 0),

dXt “ fptqXtdt ` gptqdW, (1)
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where dW indicates the standard Wiener process. Then, to generate the corresponding clean latent
from the easily sampled random noise, we have to reverse the forward SDE in Eq. (1), resulting in
the following reverse SDE formulations

dXt “
“

fptqXt ´ g2ptq∇Xt
log ppXtq

‰

l jh n

φpXt,tq

dt ` gptq
ljhn

σt

dW, (2)

where ∇Xt
log ppXtq can be approximated by a score function Sθp¨q, parameterized by a neural

network with learnable weights of θ; φpXt, tq denotes the drift function for the reverse diffusion
process; σt represents the corresponding coefficient of diffusion counterpart. Let Φpt, s,Xsq repre-
sent an integral result of Xt by Eq. (2) over a time interval from s to t, with an initial value Xs:

Φpt, s,Xsq “ Xs `

ż t

s

φpXτ , τqdτ `

ż t

s

στdW. (3)

Consequently, the analytical solution of Eq. (2) at time t can be expressed as

Xt “ Φpt, 0,X0q,X0 „ N p0, Iq, (4)

where N p0, Iq denotes the standard Gaussian distribution.

Parallel Sampling Algorithms. For an array of ODE/SDE trajectories for DPMs
tXt, t “ 0, ¨ ¨ ¨ , T u1, existing parallel sampling algorithms (Shih et al., 2024a; Tang et al., 2024)
establish the following system of non-linear equations to reformulate the integral-based formulation
of the diffusion model:

Xt`1 ´ Hpiq
t pXt, ¨ ¨ ¨ ,Xt´iq “ 0, (5)

where i is the number of utilizing previous states at timestamp t; Hpiq
t denotes a solver for estimating

results in timestamp t with acknowledging previous states, i.e., Xt, ¨ ¨ ¨ ,Xt´i.

The sampling methods utilize an iterative refinement manner to gradually adjust an estimation
trajectory

!

X̂t, t “ 0, ¨ ¨ ¨ , T
)

. Each state from the trajectory tXt, t “ 0, ¨ ¨ ¨ , T u is first initial-

ized with coarse, even noise value, denoted as
!

X̂
p0q

t , t “ 0, ¨ ¨ ¨ , T
)

. Denote by X̂t the vector,

X̂0:T “ rX̂J
0 , ¨ ¨ ¨ , X̂J

T , sJ. Then, for the k-th parallel iteration (k P r0,Ks), Newton–Raphson
method (Kelley, 2003) updates the variables by the following scheme

X̂
pk`1q

0:T “ X̂
pkq

0:T ´ GkQpkq

0:T , (6)

where Qpkq

t “ X̂
pkq

t ´ Hpiq
t pX̂

pkq

t , ¨ ¨ ¨ , X̂
pkq

t´iq indicates a residual term to be optimized; and Gk “

pJ pkqq´1 indicates the inverse of Jacobian matrix J pkq “
BQpkq

0:T

BX̂0:T
.

4 PROPOSED METHOD

Parallel solvers transform the sequential integral process of the diffusion model, as represented in
Eq. (4), into the view of non-linear equations articulated in Eq. (6). However, the typically large
number of timestamps complicates the simultaneous solving of all nodes, particularly with a limited
number of GPU/CPU cores. To mitigate this issue, we propose a hybrid approach that integrates
the fully sequential inference of classical diffusion models with comprehensive parallel methodolo-
gies. Specifically, we reformulate the partitioning of non-linear equations using a banded structure,
which leverages the strengths of both parallel and sequential techniques, as discussed in Sec. 4.1.
Furthermore, based on this formulation, we analyze strategies to simplify and accelerate the solving
process with corresponding steps for initialization and stopping criterion in Sec. 4.2.

1To adapt the parallel sampling algorithm, we discretize the continuous trajectory r0, T s into several inter-
vals r0, 1, ¨ ¨ ¨ , T s by a step size of 1.

3
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4.1 HIERARCHICAL SAMPLING VIA BANDED NON-LINEAR EQUATIONS

We start with the re-investigation of the integral formulation of diffusion process Eq. (4) in the
following partitioned manner,

Xtn`1 “ Φptn`1, tn,Xtnq, n P t0, 1, ¨ ¨ ¨ , N ´ 1u, (7)

where the whole temporal region of r0, T s is partitioned into N time sub-intervals, with 1 ď N ď

T and 0 “ t0 ă t1 ă ¨ ¨ ¨ tN “ T 2. Inspired by current parallel algorithms, e.g., Song et al.
(2021), such a sequential problem can be solved in a parallel manner. Specifically, such a series of
cascaded functions can be treated as a system of NEs with a banded structure. Denote by tXtn , n “

0, ¨ ¨ ¨ , Nu a set of points exactly on the diffusion trajectory,
!

X̂tn , n “ 0, ¨ ¨ ¨ , N
)

the points to
be optimized approaching the trajectory. A cascade of local integral formulations as Eq. (7) can be
reformulated as the solutions of following Banded NEs.
Definition 1 (Banded NEs). We define the system of banded NEs for the sequential sampling process
in Eq. (7) as

#

X̂t0 ´ Xt0 “ 0,

X̂tn`1
´ Φptn`1, tn, X̂tnq “ 0, n P t0, 1, ¨ ¨ ¨ , N ´ 1u.

(8)

Moreover, we also have a theoretical analysis that the solution of Eq. (8) is the unique and unbiased
estimation of the sequential sampling results, as shown in Prop. 1.
Proposition 1 (Unbiased Estimation). The set of banded NEs in Eq. (8) possesses a unique solution,
which is also an unbiased estimation of the sequential diffusion results.

Proof. See Appendix A.

By the aforementioned, we reformulate the sequential sampling process of the diffusion model into
two hierarchical phases, i.e., globally solving the banded NEs of Eq. (8) and locally calculating the
integral process Φp¨q. Each of them can be solved parallel or sequential by existing methods, which
distinguishes the proposed method compared to other sequential or parallel sampling methods. Since
solving the global non-linear equations is the primary bottleneck for the acceleration of diffusion
sampling, we will mainly discuss the methods to further simplify and accelerate solving Eq. (8).

Novelty Claim. Due to the aforementioned hierarchical sampling manner, the system of NEs in
our proposed method has smaller-scale NEs and variables than the existing parallel sampling al-
gorithms and features a notably sparse banded structure. Consequently, hierarchical sampling can
conserve numerous computational resources than the existing methods with a dense triangular struc-
ture. Moreover, we want to note that our framework encapsulates the existing parallel and sequential
methods. The banded NEs with N “ 1 and N “ T are precisely aligned with the sequential sam-
pling method in Eq. (4) and the parallel sampling approach in Eq. (5), respectively.

4.2 SOLVING THE SYSTEM OF BANDED NES

We investigate the Newton–Raphson method (Kelley, 2003) to solve the aforementioned NEs
as Eq. (8), as

X̂
pk`1q

t0:tN “ X̂
pkq

t0:tN ´

´

J pkq

t0:tN

¯´1

Rpkq

t0:tN , (9)

where Rpkq

tn “ X̂
pkq

tn`1
´ Φptn`1, tn, X̂

pkq

tn q indicates the residual term based on our previously for-

mulated NEs;
´

J pkq

t0:tN

¯´1

represents the inverse of Jacobian matrix as BRpkq

t0:tN {BX̂
pkq

t0:tN .

Proposition 2 (Smoothness Analysis). Φptn`1, tn, X̂tnq satisfies
›

›

›

BΦptn`1,tn,X̂tn q

BX̂tn

›

›

›

F
ď

αtn`1

αtn
`

γσtn`1p
αtn`1

σtn

αtnσtn`1

´ 1q « 1, where 0 ď γ ă 1; α and σ are the noise schedule for the forward

process N pαtnXtN , σtnIq from clean image XtN to noisy image at tn. This small upper bound
leads to sufficiently smooth Φ, implying Rtn is smooth enough.

2We discretize the continuous trajectory r0, T s into several intervals rt0, t1, ¨ ¨ ¨ , tN s by a step size of not
less than 1.
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Proof. See Appendix B.

Applicability analysis. Proposition 2 suggests that the residual for the nonlinear system in Defini-
tion 1 has a sufficiently smooth landscape, enabling Newton’s method for root-finding to converge
rapidly without getting stuck easily.

Although, through such a manner, we seem to be solving the problem efficiently in a parallel manner,
the calculation of the reverse Jacobian matrix is computationally complex, even unsolvable.

Inspired by the classical optimization theory in NEs (Wolfe, 1959; Broyden, 1965; Anderson, 1965),
we approximate the reverse Jacobian of the NEs system and execute a Jacobian-like update based on
this estimation. Our initial crucial insight is that we can precisely calculate the diagonal component
of the Jacobian by taking into account the specific structure of the banded NEs system. The resid-
ual term of the banded NEs system comprises two components: the part X̂pkq

t0:tN behaves as linear

functions of itself, while the remaining part of Φ
´

t1 : tN , t0 : tN´1, X̂
pkq

t0:tN

¯

generally represents

nonlinear functions of X̂pkq

t0:tN because it involves the neural network Sθ

´

X̂
pkq

t0:tN

¯

. These semi-
linear NEs are ignorant by existing method (Tang et al., 2024) as it estimates the entire triangular
part of the Jacobian matrix, which causes estimated errors in the linear part.

We note that for the semi-linear banded NEs system, the reverse Jacobian at kth parallel iteration
can be exactly formulated as a unit lower block banded matrix:

Bi,j “

$

’

’

&

’

’

%

I, if j “ i
BΦ

´

ti,tj ,X̂
pkq
tj

¯

BX̂
pkq
tj

, if j “ i ´ 1

0, otherwise

(10)

where Bi,j is a block matrix within the unit lower block banded matrix
´

J pkq

t0:tN

¯´1

at row i and
column j. Based on this insight, we can obtain an exact parallel sampling iteration for our banded
NEs system.

Proposition 3 (Exact Parallel Sampling). Given a set of initial values tX̂
p0q

tn , n “ 0, 1, ¨ ¨ ¨ , Nu, the
exact parallel recurrence for our semi-linear banded NEs system in Definition 1 at parallel iteration
k is

$

&

%

X̂
pk`1q

t0 “ X̂
p0q

t0 “ Xt0 „ N p0, Iq,

X̂
pk`1q

tn`1
“ Φptn`1, tn, X̂

pkq

tn q `
BΦptn`1,tn,X̂

pkq
tn

q

BX̂
pkq
tn

´

X̂
pk`1q

tn ´ X̂
pkq

tn

¯

.
(11)

Proof. See Appendix C.

For the nonlinear part, i.e., the Jacobian term
BΦptn`1,tn,X̂

pkq
tn

q

BX̂
pkq
tn

, in practice, is expensive to compute.

Following numerous studies on Jacobian-free backpropagation (Fung et al., 2022; Geng et al., 2021;
Liu et al., 2024; Knoll & Keyes, 2004; Poole et al., 2022), we find that substituting the Jacobian
with the identity matrix cannot impact the iteration process. This yields the following effective
recurrence:

#

X̂
pk`1q

t0 “ X̂
p0q

t0 “ Xt0 „ N p0, Iq,

X̂
pk`1q

tn`1
“ Φptn`1, tn, X̂

pkq

tn q ` X̂
pk`1q

tn ´ X̂
pkq

tn .
(12)

Reorganizing Eq. (12) leads to the formula of its general term
$

&

%

X̂
pk`1q

t0 “ X̂
p0q

t0 “ Xt0 „ N p0, Iq,

X̂
pk`1q

tn`1
“ X̂

pk`1q

t0 `
n
ř

i“0

Φpti`1, ti, X̂
pkq

ti q ´
n
ř

i“0

X̂
pkq

ti .
(13)

Proposition 4 (Convergence Analysis). The update rule in Eq. (13) has a descent direction that is
not contradictory to the exact update rule in Eq. (11) for the residual Rpkq

t0:tN . Its convergence speed
falls between linear and quadratic convergence.

5
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Proof. See Appendix D.

Stopping Criterion. We need to establish a stopping criterion for our parallel sampling to prevent
any decline in sample quality. Setting a sufficiently low tolerance ensures that the outcome of parallel
sampling closely resembles that of the sequential sampling procedure. Specifically, denote by δ the
tolerance. We follow Shih et al. (2024a) to define the stopping criterion as

1

D

›

›

›
X̂

pk`1q

tn ´ X̂
pkq

tn

›

›

›

2

F
ď δ2σ2

tn , (14)

where D is the dimensional of sample X̂tn ; }¨}F is Frobenius norm. As demonstrated in Shih et al.
(2024a), it has been established that this relaxed stopping criterion can guarantee that the samples
of XK

tN are obtained from a distribution that exhibits a minimal total variation distance from the
DDPM model distribution.

Initialization. The parallel iteration in Eq. (13) commences with an array of initial values
tX̂

p0q

tn , n “ 0, ¨ ¨ ¨ , Nu. Initiating the iterations with values that closely approximate the solu-
tions tXtn , n “ 0, ¨ ¨ ¨ , Nu will lead to swift convergence. Hence, initialization also stands as a
crucial component for ensuring parallel efficiency. To review the banded NEs system in Defini-
tion 1, we find that the initializations should satisfy the condition X̂

p0q

tn`1
“ Φptn`1, tn, X̂

p0q

tn q with

X̂
p0q

t0 „ N p0, Iq. However, executing such a sampling procedure, whether in parallel or sequentially
across N ` 1 time points t0, ¨ ¨ ¨ , tN , which may be large, usually requires a significant amount of
time.

Given this, our core insight is to utilize the principle of DPMs to fast construct a set of more precise
initial values that conform to the Definition 1. In particular, the condition Xtn`1 “ Φptn`1, tn,Xtnq

can be estimated by the reverse process using coarse timesteps from tn to tn`1 :

Xtn`1 „ qpXtn`1 |Xtn ,XtN q, (15)

where q is the transition probability distribution from Xtn to Xtn`1
for the reverse process, which

becomes traceable when conditioned on the clean sample XtN (we define the clean image at time
tN “ T and the noise at time t0 “ 0). According to the forward process Xtn „ N pαtnXtN , σtnIq
where α and σ are the noise schedule, the clean sample at parallel iteration k can be estimated by
the neural network SθpXtn , tnq at time tn:

X̂
pkq

tN ptnq “
X

pkq

tn ´ σtnSθpX
pkq

tn , tnq

αtn

. (16)

Once obtaining the estimated clean sample X̂tN , we can then approximate all the remaining noisy
samples via the reverse process at negligible costs. To initialize the diffusion trajectory, we can
perform a few steps of the reverse process as preconditioning steps, with minimal expense. Denote
by M the number of the preconditioning steps. Then, after M steps of the reverse process, we
can approximate the clean sample by Eq. (16) using X̂

p0q

tN ptM´1q. Formally, we define the set of
initialized values as follows:

#

X̂
p0q

tn “ Xtn , if 0 ď n ă M

X̂
p0q

tn`1
„ qpX̂

p0q

tn`1
|X̂

p0q

tn , X̂
p0q

tN ptM´1qq, if M ď n ă N
(17)

where Xt0 „ N p0, Iq; X̂tN is approximated by X̂
p0q

tN ptM´1q at time tM´1 using Eq. (16); for
M “ 0, we follow Shih et al. (2024a) to initialize all the samples with random noises.

Sliding Window. ParaSovler requires maintaining N ` 1 parallel denoised points tX̂
pkq

tn : n “

0, ¨ ¨ ¨ , Nu throughout time, which can be excessively large to feed into GPU memory when dealing
with a sizable N . To tackle this, we use the sliding window technique from Shih et al. (2024a). This
technique conducts parallel iteration merely on a subset of points tX̂

pkq

tn : n “ 0, ¨ ¨ ¨ , p ´ 1u within
a window of size p, where 1 ď p ď N . This window size can be adjusted to adhere to the limitations
of the GPU memory. The window is then promptly advanced once the states of the current timesteps
within it converge.

Algorithm 1 details the complete process of the proposed ParaSolver. After preparing an array of
initial guesses tX̂

p0q

tn : n “ 0, ¨ ¨ ¨ , Nu via random noises or a few preconditioning steps at negligible

6
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Algorithm 1: ParaSolver: a hierarchical parallel sampling method for diffusion models
Input : Diffusion model Sθ , subinterval number N , preconditioning steps M , tolerance δ, batch

window size p, sample dimension D
Output : A sample.

1 Initialize tX̂
p0q

tn
, n “ 0, ¨ ¨ ¨ , pu by Eq. (17) // Initialize with a few sampling steps

2 n, k Ð 0, 0, k P r0,Ks, and n P r0, N ´ 1s

3 while n ă N do
4 Φpti`1, ti, X̂

pkq

ti
q,@i P tn, ¨ ¨ ¨ , n ` p ´ 1u // Solve each subproblems concurrently.

5 ∆
pkq

ti
Ð Φpti`1, ti, X̂

pkq

ti
q ´ X̂

pkq

ti
,@i P tn, ¨ ¨ ¨ , n ` p ´ 1u // Calculate drifts.

6 X̂
pk`1q

ti`1
Ð X̂

pkq

tn
`

i
ř

j“n

∆
pkq

tj
,@i P tn, ¨ ¨ ¨ , n ` p ´ 1u // Update previous states via Eq. (13)

7 s Ð argmin
j

tj P

!

ti; X̂
pk`1q

ti
unsatisfying Eq. (14),@i P tn, ¨ ¨ ¨ , n ` p ´ 1u

)

// The sliding stride

8 Obtain X̂
pkq

tN
ptn`p´1q with the score from Line 4 at tn`p´1 by Eq. (16) // Predict clean sample.

9 X̂
pk`1q

ti`1
„ qpX̂

pk`1q

ti`1
|X̂

pk`1q

ti
, X̂

pkq

tN
ptn`p´1qq,@i P tn ` p, ¨ ¨ ¨ , n ` p ` s ´ 1u // Initialize new

points.
10 n Ð n ` s, k Ð k ` 1, p Ð minpp,N ´ nq

Return: X̂pKq

tN

costs (Line 1), ParaSolver initiates the parallel sampling loop at Line 2 in which a batch of samples
tX̂

pkq

tn : n “ 0, ¨ ¨ ¨ , p ´ 1u within a sliding window undergo parallel denoising. Line 4 executes
sampling for all the subproblems coinstantaneously in which each subproblem can be solved by
existing parallel or sequential sampling methods, starting from the preceding states tX̂

pkq

tn : n “

0, ¨ ¨ ¨ , p ´ 1u. The drifts are computed in Line 5 subsequent to subproblems sampling, and Line 6
updates the previous states from the prior iteration. Line 7 checks the variation between new states
and the current states and then determines the extent to which the window can slide forward. Line 9
initializes s new points outside the current window according to the sliding stride.

5 EXPERIMENT

We evaluate ParaSolver across various high-dimensional image generation models such as latent-
space diffusion model StableDiffusion-v2 (Rombach et al., 2022) and pixel-space diffusion model
LSUN Church (Yu et al., 2015). The results of these experiments demonstrate that ParaSolver
enhances the efficiency of sequential sampling methods by approximately 2 „ 12 times, all while
maintaining consistent sample quality as measured by metrics like FID score or CLIP score.

5.1 EXPERIMENT SETTINGS

Evaluation Metrics. We explore five widely used metrics for our proposed PararSolver: the number
of function evaluations (NFE), the iteration number (iters), wall-clock time, FID score (Heusel et al.,
2017), and CLIP score (Hessel et al., 2021).

Datasets and Models. As per ParaDiGMS Shih et al. (2024a), we analyze our ParaSolver across
latent-space and pixel-space models. For latent-space models, we leverage the StableDiffusion-v2
model model and evaluate FID and CLIP scores on a random selection of 5000 samples from the
ImageNet-1k dataset . The StableDiffusion-v2 model generates images at a resolution of 768 by 768
pixels, utilizing a diffusion model that operates within a latent space dimension of 4 by 96 by 96.
For pixel-space models, we employ models pretrained on the LSUN Church dataset . This LSUN
Church pre-trained model operates in the pixel space with a resolution of 256 by 256. We compute
the FID score on 5000 random samples of LSUN Church datasets. . We assess the performance of
all methods on 8 NVIDIA RTX 3090 GPUs, each equipped with 24268 MB of memory.

Algorithms. We apply our approach to accelerate the performance of the state-of-the-art sequential
sampling methods: DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and DPMSolver (Lu et al.,
2022). We evaluate the parallel efficiency of our ParaSolver against ParaDiGMS in accelerating the
aforementioned three sequential methods. ParaDiGMS is implemented based on the the Diffusers
library, and the other algorithms are all accessible in the widely-used library Diffusers (von Platen
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Table 1: Quantitative comparisons of different methods on Stable Diffusion-v2 over 5000 random
samples from the ImageNet-1k dataset, with classifier guidance w = 7.5. The visual comparisons
are shown in Figs. 3, 4, and 2 in Section F in Appendix. The best results are highlighted in bold.
“Ò” (resp. “Ó”) means the larger (resp. smaller), the better.

Steps Method
Stable Diffusion-v2

Iters Ó NFE Ó CLIPÒ FIDÓ Time (s)Ó SpeedupÒ

1000
DDPM 1000 1000 25.6 55.9 128.0 1.0ˆ

DDPM + ParaDiGMS 65 2024 25.6 55.6 32.8 3.9ˆ

DDPM + ParaSolver 32 1065 25.6 55.3 15.9 8.1ˆ

50
DDIM 50 50 25.6 57.2 6.3 1.0ˆ

DDIM + ParaDiGMS 21 132 25.6 56.9 3.3 1.9ˆ

DDIM + ParaSolver 13 83 25.6 56.9 1.9 3.3ˆ

25
DDIM 25 25 25.4 62.9 3.4 1.0ˆ

DDIM + ParaDiGMS 18 53 25.4 62.8 2.9 1.2ˆ

DDIM + ParaSolver 11 49 25.4 61.9 1.2 2.8ˆ

50
DPMSolver 50 50 25.6 57.2 6.3 1.0ˆ

DPMSolver + ParaDiGMS 25 132 25.6 57.2 3.3 1.8ˆ

DPMSolver + ParaSolver 15 96 25.6 57.1 2.2 3.1ˆ

25
DPMSolver 25 25 25.4 62.3 3.2 1.0ˆ

DPMSolver + ParaDiGMS 15 81 25.4 62.3 2.2 1.5ˆ

DPMSolver + ParaSolver 11 58 25.4 62.1 1.5 2.1ˆ

et al., 2022); hence we utilize them directly. However, we exclude the comparison with another
parallel method (Tang et al., 2024) as it has not been integrated into the Diffusers library yet.

Hyperparameter Settings. Following the previous settings in (Shih et al., 2024a; Tang et al.,
2024), we apply our ParaSolver and ParaDiGMS to DDPM with 1000 sequential sampling steps.
For DDIM and DPMSolver, we consider two settings: 25 and 50 sequential sampling steps, as they
are commonly utilized and capable of producing samples of similar quality to DDPM. Besides, We
tune the best tolerance for ParaDiGMS via grid search on t0.001, 0.005, 0.01, 0.5, 0.1u. We find for
StableDiffusion-v2, ParaDiGMS for DDPM, DDIM, and DPMSolver need to set the tolerance as
0.5, 0.01, and 0.01 to achieve the similar sample quality as the corresponding sequential method,
respectively. For LSUN Church model, the tolerance of ParaDiGMS should be 0.5 and 0.001 for
DDPM and DDIM. Moreover, for each setting, we sweep all the window size to find the best speedup
for ParaDiGMS. For our ParaSolver on StableDiffusion-v2 model, we set the tolerance as 0.55, 0.05,
and 0.05 for ParaSolver on DDPM, DDIM, and DPMSolver respectively. For LSUN Church model,
the tolerances of ParaSolver are set as 0.55 and 0.005 for DDPM and DDIM, respectively.

5.2 EXPERIMENTAL RESULTS

Latent-space diffusion model. Table 1 shows the experimental results on DDPM, DDIM, DPM-
Solver, and their parallel variants when combined with ParaSolver and ParaDiGMS, respectively.
Initially, ParaSolver can expedite the performance of DDPM, DDIM, and DPMSolver without com-
promising FID and CLIP scores. The FID and CLIP scores are marginally superior to the baseline
values, we think the employed tolerances might be relatively tight, thereby enhancing the overall
outputs. Futhermore, ParaSolver achieves the best speedup, up to 8.1ˆ in terms of the wall-clock
time. This is a new record for existing related parallel methods. Parallelization sacrifices com-
putation for speed, resulting in a higher NFEs compared to the sequential methods. Nevertheless,
when contrasted with ParaDiGMS, our ParaSolver notably reduces NFEs, even requiring mere 1065
NFEs for 1000 steps in DDPM. ParaSolver significantly diminishes the iteration count required for
sequential methods by a factor ranging from 2.5 times to 31 times.
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Table 2: Quantitative comparisons of different methods on LSUN Church
over 5000 samples. DPMSolver is not integrated with the LSUN model in
the Diffusers library; thus we exclude it.

Steps Method
LSUN Church

Iters Ó NFE Ó FIDÓ Time (s)Ó SpeedupÒ

1000
DDPM 1000 1000 12.7 50.0 1.0ˆ

DDPM + ParaDiGMS 65 2082 12.7 10.8 4.6ˆ

DDPM + ParaSolver 42 1079 12.7 4.1 12.1ˆ

50
DDIM 50 50 15.5 1.8 1.0ˆ

DDIM + ParaDiGMS 23 202 15.8 1.5 1.2ˆ

DDIM + ParaSolver 14 73 15.7 0.8 2.2ˆ

25
DDIM 25 25 15.6 1.1 1.0ˆ

DDIM + ParaDiGMS 15 96 15.7 0.8 1.4ˆ

DDIM + ParaSolver 10 44 15.7 0.5 2.2ˆ

Pixel-space diffu-
sion model. Table 2
shows the exper-
imental outcomes
regarding DDPM and
DDIM alongside their
parallel adaptations
with ParaSolver and
ParaDiGMS on the
pretrained LSUN
Church model. Simi-
lar to the latent space
results, ParaSolver
consistently surpasses
existing techniques,
achieving speedups
ranging from 2.2
to 12.1 times while
upholding sample
quality comparable to
that of the sequential
methods. Producing a sample without any loss in quality within 4.1 seconds instead of 50.0
seconds can notably enhance the interactive experience for various generative scenarios like the
human-in-the-loop applications (Bhattacharya et al., 2023).

Table 3: The effect of preconditioning steps M using LSUN Church over
5000 random samples. Sect. H in Appendix shows the visual comparisons.

Steps Method
LSUN Church

M ItersÓ NFEÓ FIDÓ Time (s)Ó SpeedupÒ

1000

DDPM - 1000 1000 12.7 50.0 1.0ˆ

DDPM + ParaSolver 0 54 1036 12.8 4.4 11.3ˆ

DDPM + ParaSolver 1 54 1017 12.8 4.3 11.6ˆ

DDPM + ParaSolver 10 42 1066 12.7 4.1 12.1ˆ

DDPM + ParaSolver 15 34 1078 12.7 4.2 11.9ˆ

The effect of M . Ta-
ble 3 investigates the
impact of the precon-
ditioning steps M . It
is evident that a trade-
off exists between M
and the acceleration
achieved, with the op-
timal M identified at
M “ 10. This is
because increasing the
number of precondi-
tioning steps leads to
a more accurate ini-
tialization but also re-
quires additional time. As we implement the preconditioning steps through a sequential sampling
approach, the efficiency of parallel processes is affected by a large M . We believe that by executing
the preconditioning steps in parallel, we can enhance the precision of initialization, facilitating a
faster acceleration even with a higher M .

The effect of N . Table 4 examines the influence of N . The most favorable wall-clock time is ob-
served at N “ 15. At N “ 1, ParaSolver reverts to a sequential sampling approach. However,
for N “ 5 and N “ 10, the wall-clock time exceeds the sequential sampling because the current
implementation for solving the subproblems is through the sequential sampling. With each paral-
lel iteration involving the sequential sampling, the parallel efficiency is significantly compromised.
Substituting the sequential sampling with parallel techniques could substantially enhance the effi-
ciency. We believe that by leveraging optimized implementations, the wall-clock times in Table 4
can be further refined. For N “ 30, ParaSolver aligns with existing parallel methods with our ini-
tialization method, necessitating the computation of the entire triangular part as specified in Eq. (5).
This demanding computational task results in extended wall-clock times. We note that to tune the
window size, the wall-clock time in the Table 4 can be further improved. Moreover, the visual com-
parisons presented in Section G in the Appendix indicate that employing a larger value of N may
result in increased errors on the refining samples during parallel iteration. This occurs because the
ultimate clean samples are connected to all samples from earlier time steps, causing their errors dur-
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Table 4: The effect of the number of subintervals N using LSUN Church over 5000 random sam-
ples. Our ParaSolver is employed to expedite DDIM with 30 sequential steps. We set M “ 10 and
fix the window size p “ 30. The visual comparisons are shown in Section G in Appendix.

Method
N “ 1 N “ 5 N “ 10 N “ 15 N “ 30

FIDÓ time (s)Ó FIDÓ time (s)Ó FIDÓ time (s)Ó FIDÓ time (s)Ó FIDÓ time (s)Ó

Ours 15.4 1.2 15.3 1.8 15.3 1.4 15.2 0.9 15.2 1.5

Table 5: The effect of the number of GPUs using LSUN Church. Our ParaSolver is employed to
expedite DDPM with 1000 sequential steps.

Method
1 GPU 2 GPUs 4 GPUs 8 GPUs

Time (s)Ó SpeedupÒ Time (s)Ó SpeedupÒ Time (s)Ó SpeedupÒ Time (s)Ó SpeedupÒ

DDPM 50.0 1.0ˆ 50.0 1.0ˆ 50.0 1.0ˆ 50.0 1.0ˆ

ParaDiGMS37.0 1.4ˆ 23.3 2.1ˆ 15.2 3.3ˆ 10.8 4.6ˆ

Ours 19.7 2.5ˆ 13.0 3.8ˆ 9.9 5.1ˆ 4.1 12.1ˆ

ing updation to all accumulate in the final clean samples. Refining these errors requires additional
parallel iterations, which can reduce the parallel efficiency.

Table 6: The effect of the toler-
ance δ on FID using LSUN Church
over 5000 random samples. Our Para-
Solver is employed to DDIM with 30
sequential steps with FID 15.5.

M δ 0.001 0.005 0.01 0.05 0.1

1 FID 15.3 15.6 21.4 40.6 104.6

5 FID 14.8 15.3 20.7 36.4 50.3

10 FID 14.3 15.2 16.6 18.2 23.2

The effect of the number of GPUs. In Table 5, the analysis
focuses on how the number of GPUs affects performance.
When ample computing resources are available, the paral-
lel efficiency of our method can be greatly released than
ParaDiGMS, resulting in a speedup of 12.1 times. Addi-
tionally, even in scenarios with limited computing power,
such as utilizing only a single RTX 3090 GPU, the speedup
can reach 2.5 times, whereas ParaDiGMS shows only mod-
est improvement. This is attributed to our sampling process,
which only needs to handle a sparse banded NEs system,
in contrast to ParaDiGMS, which requires full computation
over the dense triangular NEs system.

The effect of the tolerance δ. In Table 6, we demonstrate
how tolerance impacts FID under different preconditioning
steps M . It is evident that ParaSolver can uphold a similar
or better FID to the baseline when δ “ 0.005 and δ “

0.001, respectively. Furthermore, a higher M leads to a better FID even under a looser tolerance.

Figure 1: The effect of p

The effect of the window size p. In Figure 1, we examine
how the window size p affects the speedup of 1000 DDPM
over the LSUN Church Model. The peak speedup is ob-
served at p “ 36 rather than the maximal p. This is because
the parallel efficiency is inundated by the significant com-
putational burden associated with larger window sizes. In
situations with restricted computational resources, it is cru-
cial to select an appropriate window size for optimal per-
formance.

6 CONCLUSION

In this paper, we conceptualized the process of sequential sampling in DPMs as solving a system of
banded NEs leading to a general parallel sampling approach . Leveraging the semi-linear structure
of the Jacobian matrix within this NEs system, we derived a more precise parallel sampling iteration.
Building upon this iteration, we introduced a novel hierarchical parallel sampling technique called
ParaSolver. ParaSolver is computationally efficient and seamlessly compatible with existing parallel
and sequential methodologies. Extensive experiments demonstrate that our ParaSolver can achieve
a speedup of up to 12ˆ in terms of wall-clock time without degrading the sample quality.
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ETHICS & REPRODUCIBILITY STATEMENTS

The proposed sampling algorithm is designed to accelerate the pre-trained models. We have read
and adhere to the Code of Ethics of ICLR 2025. Thus, no further additional information on human
subjects and potentially harmful insights is involved. Moreover, we set a random seed of 1 during
the experiment, which ensures reproducibility. We will make the source code publicly available on
Github.
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A PROOF OF PROPOSITION 1

Firstly, it is straightforward to confirm that the analytical expression Φptn`1, tn,Ynq possesses a
unique solution. Now, based on the principle of proof by contradiction, suppose that there exist two
distinct solutions At0 ,At1 , ¨ ¨ ¨ ,AtN and Bt0 ,Bt1 , ¨ ¨ ¨ ,BtN , so they satisfy:

"

Atn`1
“ Φptn`1, tn,Atnq

Btn`1 “ Φptn`1, tn,Btnq
(18)

Assume by induction that for 0 ď n ď N , Atn “ Btn , so this yields

Atn`1
“ Φptn`1, tn,Atnq “ Φptn`1, tn,Btnq (19)

Thus, the two sets of solutions At0 ,At1 , ¨ ¨ ¨ ,AtN and Bt0 ,Bt1 , ¨ ¨ ¨ ,BtN are the identical.

Secondly, it is easy to confirm that the solutions at re unbiased estimation of the sequential sampling
results. In particular, according to Eq. (4) and Eq. (3), the the sequential sampling results can be
expressed as

14
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Φptn`1, 0,X0q “ X0 `

ż tn

0

φpXτ , τqdτ `

ż tn

0

στdW

“ X0 `

n
ÿ

i“0

ż ti`1

ti

φpXτ , τqdτ `

n
ÿ

i“0

ż ti`1

ti

στdW

“

n
ÿ

i“0

Xti `

n
ÿ

i“0

ż ti`1

ti

φpXτ , τqdτ `

n
ÿ

i“0

ż ti`1

ti

στdW

“

n
ÿ

i“0

Φpti`1, ti,Xtiq

(20)

Therefore, we have

ErXtn`1
s “ ErΦptn`1, 0,X0qs “

n
ÿ

i“0

ErXtis `

n
ÿ

i“0

ż ti`1

ti

ErφpXτ , τqsdτ `

n
ÿ

i“0

ż ti`1

ti

στdW

(21)

For our method, we have

ErAtn`1
s “ ErΦptn`1, tn,Atnqs

“ ErAtns `

ż tn`1

tn

ErφpAτ , τqsdτ `

ż tn`1

tn

στdW

“

n
ÿ

i“0

ErAtis `

n
ÿ

i“0

ż ti`1

ti

ErφpAτ , τqsdτ `

n
ÿ

i“0

ż ti`1

ti

στdW

(22)

Recall that At0 and X0 follow the same distribution. Therefore, according to Eq. (21) and Eq. (22),
it is easy to see that ErAtns “ ErXtns because of the linear nature of expectation.

B PROOF OF PROPOSITION 2

Before proceeding with the proof, we need to state several assumptions and definitions. Following
the Banach fixed-point theorem Banach (1922), we first make the following assumptions.
Assumption 1. The denoising network SθpXt, tq is continuous and differentiable. Holding t fixed
and letting θ the optimal model θ˚, the mapping operator Sθ˚ p¨, tq is a contraction, i.e., there exists
a constant 0 ď γ ă 1, such that:

}Sθ˚ pU, tq ´ Sθ˚ pV, tq} ď γ}U ´ V},@U,V P RHWC (23)

Remark: It is sensible to consider the optimal denoising network Sθ˚ pXt, tq as a contraction map-
ping, as it can convert data points from a large space into a single dense data space that adheres to a
standard Gaussian distribution, thereby effectively compressing the data points in the larger space.

For simplicity of expression, we denote Gn “
BΦptn`1,tn,X̂tn q

BX̂tn

and λtn “ log
αtn

σtn
(one half of the

log-SNR). Recall that we define Xt0 and XtN as the random noise and clean image respectively. Be-
sides the forward process ppXtn |XtN q “ N pαtnXtN , σtnIq where α and σ are the noise schedule.
Then it is easy to know that λtn is a strictly decreasing function of t.

Following Proposition 3.1 in Lu et al. (2022), we can obtain the exact solution of diffusion SDEs,
i.e.,

Φpt, s,Xsq “
αt

αs
Xs ´ αt

ż λt

λs

e´λSθ˚ pXλ, λqdλ `

ż λt

λs

gpλqdW. (24)
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Now we conduct the proof. Recall that we have the residual function:

Rtn “ X̂tn`1
´ Φptn`1, tn, X̂tnq. (25)

Since X̂tn`1 is linear for Rtn , it is sufficiently smooth. We now need to affirm whether the nonlinear
part Φptn`1, tn, X̂tnq is sufficiently smooth. It is well known that if the normal of Jacobian matrix
of Φptn`1, tn, X̂tnq is bounded by a small number, then the function is smooth enough. In light of

this, we seek to find the upper bound of the norm of the Jacobian matrix Gn “
BΦpt1,t0,X̂tn q

BX̂tn

.

According to the definition of gradient, we get:

}Gn} ě lim
h´ą0

}Φptn`1, tn, X̂tn ` hq ´ Φptn`1, tn, X̂tnq}

}h}
(26)

The equation holds with h being on the principle direction of singular value decomposition of G.
Here we donote such subset of h as h1. Then, we have

}Gn} “ lim
h1´ą0

}Φptn`1, tn, X̂tn ` h1q ´ Φptn`1, tn, X̂tnq}

}h1}
(27)

Utilizing Eq. (24) yields:

}Φptn`1, tn, X̂tn ` h1q ´ Φptn`1, tn, X̂tnq}

“

›

›

›

›

›

αtn`1

αtn

h1 ´ αtn`1

ż λtn`1

λtn

e´λ
“

Sθ˚ pXλ ` h1, λq ´ Sθ˚ pXλ, λq
‰

dλ

›

›

›

›

›

ď
αtn`1

αtn

›

›h1
›

› ` αtn`1

ż λtn`1

λtn

e´λ
›

›

›
Sθ˚ pXλ ` h1, λq ´ Sθ˚ pXλ, λq

›

›

›
dλ

ď
αtn`1

αtn

›

›h1
›

› ` αtn`1γ
›

›h1
›

›

ż λtn`1

λtn

e´λdλ

“
αtn`1

αtn

›

›h1
›

› ` σtn`1
γ

›

›h1
›

›peλtn`1
´λtn ´ 1q

“
αtn`1

αtn

›

›h1
›

› ` σtn`1
γ

›

›h1
›

›pe
log

αtn`1
σtn

αtnσtn`1 ´ 1q.

(28)

Taking Eq. (28) into Eq. (27), we obtain the upper bound of the gradient as follows:

}Gn} ď
αtn`1

αtn

` σtn`1
γpe

log
αtn`1

σtn
αtnσtn`1 ´ 1q (29)

ď
αtn`1

αtn

` σtn`1γp
αtn`1

σtn

αtnσtn`1

´ 1q. (30)

The relationship between the Jacobian norm and the noise schedule parameters α and σ is clearly
illustrated in Eq. (29). Given that α and σ in DPMs are strictly monotonically decreasing and
increasing with respect to t, respectively, we can conclude that the ratios

αtn`1

αtn
and σtn

σtn`1
are nearly

equal to 1, as their rates of change with respect to the time step are minimal. As a result, }Gn} is
constrained to a small value close to 1, indicating a highly smooth function Φptn`1, tn, X̂tnq, which
implies that the residual Rtn is adequately smooth.

C PROOF OF PROPOSITION 3

According to Definition 1, the specific form of the residual term for our banded NEs system is as
follows:

Rpkq

t0:tN “

#

X̂
p0q

t0 ´ Xt0 ,

X̂
pk`1q

tn`1
´ Φptn`1, tn, X̂

pkq

tn q, if 0 ď n ď N ´ 1
(31)
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Using this specific form, we can express the Newton update pJ
pkq

t0:tN q´1Rpkq

t0:tN in a particular manner

»

—

—

—

—

—

—

—

—

—

—

—

–

I

´
BΦpt1,t0,X̂

pkq
t0

q

BX̂
pkq
t0

I

´
BΦpt2,t1,X̂

pkq
t1

q

BX̂
pkq
t1

. . .

. . .

´
BΦptN ,tN´1,X̂

pkq
tN´1

q

BX̂
pkq
tN´1

I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´1

¨

˚

˚

˚

˚

˚

˚

˝

X̂
pkq

t0 ´ Xt0

X̂
pkq

t1 ´ Φpt1, t0, X̂
pkq

t0 q

X̂
pkq

t2 ´ Φpt2, t1, X̂
pkq

t1 q

...
X̂

pkq

tN ´ ΦptN , tN´1, X̂
pkq

tN´1
q

˛

‹

‹

‹

‹

‹

‹

‚

.

(32)

Rearranging Eq. (32) by multiplying through by the Jacobian and taking into the Eq. (9), we derive
the fundamental recurrence used for our parallel iteration at iteration k.

$

&

%

X̂
pk`1q

t0 “ X̂
p0q

t0 “ Xt0 „ N p0, Iq,

X̂
pk`1q

tn`1
“ Φptn`1, tn, X̂

pkq

tn q `
BΦptn`1,tn,X̂

pkq
tn

q

BX̂
pkq
tn

´

X̂
pk`1q

tn ´ X̂
pkq

tn

¯

.
(33)

D PROOF OF PROPOSITION 4

Assumption 2. The residual Rt0:tN is L1-Lipschitz continuous with respect to input X̂ :“

pX̂t0 , ¨ ¨ ¨ , X̂tN´1
q, satisfying:

}Rt0:tN pUq ´ Rt0:tN pVq} ď L1}U ´ V},@U,V P RpN`1qˆHWC (34)

Assumption 3. Suppose that the Hessian matrix HpX̂q of the residual Rt0:tN with respect to input
X̂ is bounded, that is, there is a constant L2 such that

}HpX̂q} ď L2,@X̂ P RpN`1qˆHWC (35)

Remark: Proposition 2 demonstrates that the residual Rt0:tN is sufficiently and possesses a very
small upper bound on the Jacobian of the nonlinear part Φptn, tn´1, X̂tn´1q, suggesting that L1

and L2 are small real numbers. This insight will aid in analyzing the convergence behavior of the
proposed update rule in Eq. (11).

For the sake of simplicity, we denote Gn “
BΦptn`1,tn,X̂tn q

BX̂tn

; RpX̂q “ Rt0:tN pX̂q. Therefore,

according to the Jacobian in Eq. (32), the Jacobian matrix for RpX̂q has the following convenient
form:

J “

»

—

—

—

—

–

I
´G0 I

. . . . . .

´GN´1 I

fi

ffi

ffi

ffi

ffi

fl

. (36)

Since we use identity matrix I to substitute Gn, we thus have an approximated matrix for J , denoted
as,

J̃ “

»

—

—

—

—

–

I
´I I

. . . . . .

´I I

fi

ffi

ffi

ffi

ffi

fl

. (37)
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Proof of a descent direction. Now, we first prove that the approximated Jacobian matrix J̃ is a
descent direction for RpX̂q, which is not contradictory to the descent direction of the true Jacobian
matrix J . Formally, to complete the proof, it suffices to show their inner product satisfies that:

xJ , J̃ y ą 0,@X̂ P RpN`1qˆHWC . (38)

According to the relation between the trace and Frobenius inner product of the matrix, we have

xJ , J̃ y “ trpJ JJ̃ q

“tr

˜

»

—

—

—

—

—

—

—

—

–

I ` GJ
0 ´GJ

0

´I I ` GJ
1 ´GJ

1

. . . . . . . . .

´I I ` GJ
N´1 ´GJ

N´1
´I I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¸

“

N
ÿ

n“0

trpIq `

N´1
ÿ

n“0

trpGnq

paq

ě pN ` 1qHWC ´
?
HWC

N´1
ÿ

n“0

›

›Gn

›

›

(39)

Here, the inequation (a) uses the Lemma 1. According to Proposition 2, we know
›

›Gn

›

› is upper
bounded by a number close to 1. Therefore, Eq. (40) becomes

xJ , J̃ y ě pN ` 1qHWC ´ N
?
HWC ą 0 (40)

Proof of convergence speed. In this part, we will prove that the convergence speed of the update
rule in Eq. (13) falls between linear and quadratic convergence. According to Taylor’s theorem, any
function that has a continuous second derivative can be represented by an expansion about a point
that is close to a root of this function. In view of this, we suppose a root of the residual function
RpX̂q is A. Then the expansion of RpAq on point X̂pkq at parallel iteration k is:

RpAq “ RpX̂pkqq ` J JpA ´ X̂pkqq `
1

2
pA ´ X̂pkqqJHpξqpA ´ X̂pkqq

l jh n

R

, (41)

where the Lagrange form of the Taylor series expansion remainder is denoted as R in which ξ is in
between X̂pkq and A. And Hp¨q is the Hessian matrix with respect to X̂pkq. Since A is the root,
Eq. (41) becomes:

0 “ RpX̂pkqq ` J JpA ´ X̂pkqq ` R. (42)
Multiply both sides by the inverse of J J and rearranging gives:

rJ Js´1RpX̂pkqq ` A ´ X̂pkq “ ´rJ Js´1R. (43)

Remembering that the update rule in Eq. (12) uses J̃ to approximate J , yielding:

X̂pk`1q “ X̂pkq ´ J̃ ´1RpX̂pkqq

“ X̂pkq ´ rJ Js´1RpX̂pkqq `

!

rJ Js´1 ´ J̃ ´1
)

RpX̂pkqq.
(44)

Combining Eq. (44) with Eq. (43), we find:

A ´ X̂pk`1q `

!

rJ Js´1 ´ J̃ ´1
)

RpX̂pkqq “ ´rJ Js´1R. (45)
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Denote by εpkq “ A ´ X̂pkq, Eq. (45) becomes:

εpk`1q “ ´

!

rJ Js´1 ´ J̃ ´1
)

RpX̂pkqq ´
1

2
rJ Js´1rεpkqsJHpξqεpkq. (46)

Taking the norm of both sides gives:

}εpk`1q} “

›

›

›

›

´

!

rJ Js´1 ´ J̃ ´1
)

RpX̂pkqq ´
1

2
rJ Js´1rεpkqsJHpξqεpkq

›

›

›

›

ď

›

›

›

›

rJ Js´1 ´ J̃ ´1

›

›

›

›

›

›

›

›

RpX̂pkqq

›

›

›

›

`
1

2

›

›

›

›

rJ Js´1rεpkqsJHpξqεpkq

›

›

›

›

pbq
“

›

›

›

›

rJ Js´1 ´ J̃ ´1

›

›

›

›

›

›

›

›

RpAq ´ RpX̂pkqq

›

›

›

›

`
1

2

›

›

›

›

rJ Js´1rεpkqsJHpξqεpkq

›

›

›

›

pcq

ď L1

›

›

›

›

rJ Js´1 ´ J̃ ´1

›

›

›

›

›

›

›

›

εpkq

›

›

›

›

`
1

2

›

›

›

›

rJ Js´1rεpkqsJHpξqεpkq

›

›

›

›

pdq

ď L1

›

›

›

›

rJ Js´1 ´ J̃ ´1

›

›

›

›

l jh n

M1

›

›

›

›

εpkq

›

›

›

›

`
L2

2

›

›

›

›

J ´1

l jh n

M2

›

›

›

›

εpkq

›

›

›

›

2

(47)

here pbq holds since A is the root of RpX̂pkqq; pcq relies on Assumption 2; pdq is derived from the
properties of matrix transpose and norm, as well as Assumption 3.

Since the identity matrix approximation provides a descent direction and the residual function is
smooth enough, it indicates that convergence is possible, implying that M1 and M2 are relatively
small. Therefore, the above Eq. (47) describes the rate at which the sequence X̂pkq (εpkq “ A´X̂pkq)
converges to the root A. Since the inequality contains both linear and quadratic terms, we can
conclude that the convergence rate of the sequence X̂pkq is at least linear but influenced by the
quadratic term. This means that the convergence rate of the sequence X̂pkq is faster than linear but
slower than quadratic. The exact order depends on the specific values of M1 and M2:

• If M1 is small and M2 is non-zero, then the quadratic term will dominate, and the sequence
will converge at a quadratic rate.

• If M1 is non-zero and M2 is small or zero, then the linear term will dominate, and the
sequence will converge at a linear rate.

Since this study mainly concentrates on parallel sampling for DPMs, offering specific values for M
and detailed convergence speeds falls outside our current scope. We provide this initial insight for a
general understanding and will explore the specific relationship between M1 and M2 in future work.

E PROOF OF LEMMA 1

Lemma 1. For any matrix A P Rn, the relationship between the trace
trpAq and the Frobenius norm }A}F satisfies the following inequation:

|trpAq| ď }A}F ¨
?
n

Proof: To show the relationship |trpAq| ď }A}F ¨
?
n, we can start with the definitions of both

concepts.

1. Trace of a matrix A:

trpAq “

n
ÿ

i“1

aii

where aii are the diagonal elements of the matrix A.
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2. Frobenius Norm of a matrix A:

}A}F “

g

f

f

e

n
ÿ

i“1

n
ÿ

j“1

|aij |2

To show the relationship |trpAq| ď }A}F ¨
?
n, we can use the Cauchy-Schwarz inequality.

Using the Cauchy-Schwarz inequality in the context of sums, we have:
˜

n
ÿ

i“1

|aii|

¸2

ď

˜

n
ÿ

i“1

12

¸ ˜

n
ÿ

i“1

|aii|
2

¸

Step 2: Simplify the Terms. The first term simplifies to n:

n
ÿ

i“1

12 “ n

Thus, we can rewrite the inequality as:
˜

n
ÿ

i“1

|aii|

¸2

ď n
n

ÿ

i“1

|aii|
2

The Frobenius norm can be expressed as:

}A}2F “

n
ÿ

i“1

n
ÿ

j“1

|aij |2

It includes the sum of the squares of all elements in the matrix A, hence:

}A}2F ě

n
ÿ

i“1

|aii|
2

Combining these results, we have:
˜

n
ÿ

i“1

|aii|

¸2

ď n}A}2F

Taking the square root on both sides gives:

n
ÿ

i“1

|aii| ď
?
n}A}F
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Thus, we conclude:

|trpAq| “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

aii

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i“1

|aii| ď
?
n}A}F

This completes the proof:
|trpAq| ď }A}F ¨

?
n
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F VISUAL COMPARISON FOR DIFFERENT METHODS

This section shows the visual comparisons of when our ParaSolver and ParaDiGMS are applied to
speed up DDPM, DDIM, and DPMSolver on Stable Diffusion v2. The results are shown in Figure 2,
Figure 3, and Figure 4. We can see that our ParaSolver significantly outperforms the competitors,
with faster speed to generate a better image.

(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 2: The intermediate generated images for expediting DDPM with 100 sequential steps on
Stable Diffusion Model v2. The images in the first row are produced by DDPM. The images in the
second row are created by ParaDiGMS. The images in the third row are generated by ParaSolver.
For our ParaSolver, we set the number of subintervals as 100 and the preconditioning steps as 2.

G VISUAL COMPARISON FOR DIFFERENT SUBINTERVALS NUMBER N

This section presents visual comparisons illustrating the application of our ParaSolver to enhance
the speed of DDIM and DPMSolver on Stable Diffusion v2 when using different N . The outcomes
are depicted in Figure 5, Figure 6. It is clear that our ParaSolver performs better with smaller values
of N , leading to enhanced output quality. For instance, in Figure 6, at N “ 20, the image of the cute
corgi at iteration 3 appears natural without any noise, whereas at N “ 100, some noise is noticeable
at this stage. This observation supports our claim that a system of nonlinear equations with N “ 100
variables is more prone to accumulating errors during refinement compared to a system with only
N “ 20 variables.

H VISUAL COMPARISON FOR DIFFERENT PRECONDITIONING STEPS M

This portion delves into the impact of the preconditioning steps M on the visual outcomes produced
by our ParaSolver, which is utilized to accelerate DDIM with 100 sequential steps across the Stable
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(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 3: The intermediate generated images for expediting DDIM with 100 sequential steps on
Stable Diffusion Model v2. The images in the first row are produced by DDIM. The images in the
second row are created by ParaDiGMS. The images in the third row are generated by ParaSolver.
For our ParaSolver, we set the number of subintervals as 40 and the preconditioning steps as 2.
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(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 4: The intermediate generated images for expediting DPMSolver with 100 sequential steps on
Stable Diffusion Model v2. The images in the first row are produced by DPMSolver. The images in
the second row are created by ParaDiGMS. The images in the third row are generated by ParaSolver.
For our ParaSolver, we set the number of subintervals as 40 and the preconditioning steps as 2.
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(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 5: The effect of the number of the subintevals N on the generated images when expediting
DDIM with 100 sequential steps over Stable Diffusion Model v2. The images in the first row are
produced by ParaSolver with N “ 20. The images in the second row are created by ParaSolver with
N “ 40. The images in the third row are generated by ParaSolver with N “ 60. The images in the
fourth row are created by ParaSolver with N “ 80. The images in the fifth row are generated by
ParaSolver with N “ 100. For our ParaSolver, we set the preconditioning steps as 2.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 6: The effect of the number of the subintevals N on the generated images when expediting
DPMSolver with 100 sequential steps over Stable Diffusion Model v2. The images in the first row
are produced by ParaSolver with N “ 20. The images in the second row are created by ParaSolver
with N “ 40. The images in the third row are generated by ParaSolver with N “ 60. The images
in the fourth row are created by ParaSolver with N “ 80. The images in the fifth row are generated
by ParaSolver with N “ 100. For our ParaSolver, we set the preconditioning steps as 5.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Diffusion Model. The outcomes are depicted in Figure 7. An intuitive observation emerges: elevat-
ing the number of preconditioning steps notably boosts the sample quality. Notably, even with just
one parallel iteration, the resulting image appears impressive.

(a) 1 iteration (b) 3 iteration (c) 5 iteration (d) 7 iteration

Figure 7: The effect of the preconditioning steps M on the generated images when expediting DDIM
with 100 sequential steps over Stable Diffusion Model v2. The images in the first row are produced
by ParaSolver with M “ 0. The images in the second row are created by ParaSolver with M “ 1.
The images in the third row are generated by ParaSolver with M “ 5. The images in the fourth row
are created by ParaSolver with M “ 10. The images in the fifth row are generated by ParaSolver
with M “ 15. For our ParaSolver, we set N “ 40.
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