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Abstract

While the scaling laws of large language models (LLMs) training have been exten-
sively studied, optimal inference configurations of LLMs remain underexplored.
We study inference scaling laws and compute-optimal inference, focusing on the
trade-offs between model sizes and generating additional tokens with different
inference strategies. As a first step towards understanding and designing compute-
optimal inference methods, we studied cost-performance trade-offs for inference
strategies such as greedy search, majority voting, best-of-n, weighted voting, and
two different tree search algorithms, using different model sizes and compute
budgets. Our findings indicate smaller models (e.g., Llemma-7B) can outperform
larger models given the same computation budgets, and that smaller models paired
with advanced inference algorithms yield Pareto-optimal cost-performance trade-
offs. For instance, the Llemma-7B model, equipped with our novel tree search
algorithm, consistently outperforms Llemma-34B with standard majority voting on
the MATH benchmark across all FLOPs budgets. We hope these findings contribute
to a broader understanding of inference scaling laws for LLMs.2

1 Introduction

Scaling laws of neural networks [Hestness et al., 2017, Rosenfeld et al., 2019] have been established
across a range of domains, including language modeling [Kaplan et al., 2020, Hoffmann et al., 2022,
OpenAI, 2023], image modeling [Henighan et al., 2020, Yu et al., 2022, Peebles and Xie, 2023],
video modeling [Brooks et al., 2024], reward modeling [Gao et al., 2023], and board games [Jones,
2021]. These studies have demonstrated how model performance is influenced by both the size of the
model and the amount of training computation. However, there is limited knowledge on how varying
the compute during inference affects model performance after the model has been trained.

To improve the task performance of large language models (LLMs), inference techniques typically
involve additional computation as a performance maximization step at inference time [Nye et al.,
2021, Wei et al., 2022, Wang et al., 2022b, Yao et al., 2023, Chen et al., 2024b]. The computational
cost of these techniques must be taken into account for compute-optimal inference. For example,
a Monte Carlo Tree Search (MCTS) method [Jones, 2021] may improve task performance, but
potentially require much more compute than simply sampling solutions multiple times. Generally
speaking, we need a comprehensive understanding of how various inference-time methods (e.g.,
best-of-n, majority voting [Wang et al., 2022a]) trade off between performance and cost. To improve
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our understanding, this paper presents a thorough empirical evaluation with careful analysis over
various configurations of representative LLMs and inference algorithms.

Specifically, we explore how to select an optimal size for the language model and an effective
inference strategy (e.g., greedy search, majority voting, best-of-n, weighted voting, and their tree-
search variants) to maximize performance (i.e., accuracy) with a given compute budget. We control
the inference computation (FLOPs) of a fixed model by generating more tokens through the language
model3, sampling further candidate solutions, and ranking them with a reward model. We analyze the
performance of fine-tuned models of various sizes given different inference FLOPs on mathematical
reasoning benchmarks (e.g., GSM8K test set [Cobbe et al., 2021a] and MATH500 test set [Hendrycks
et al., 2021, Lightman et al., 2023b]). Our experiments cover several model families, including
general-purpose LLMs (e.g., Pythia [Biderman et al., 2023] & Mistral [Jiang et al., 2023]) as well as
math-specialized ones (e.g., Llemma [Azerbayev et al., 2023]).

Our results on Pythia (Fig. 1) illustrate how performance scales with increased inference compute
across various model sizes. Typically, increasing the compute budget leads to higher accuracy until
the accuracy reaches saturation. As the compute budget increases, smaller models initially perform
better than larger ones, but once the accuracy of the smaller models saturates, the larger models
have favorable performance. The right panel of Figure 1 demonstrates that the optimal model size
for inference varies with different levels of computation. However, in real-world deployment, the
available computation is typically much lower than the point where the accuracy of relatively small
models saturates and larger models begin to show their advantage (as shown in Figure 2, where the
7B model outperforms the 34B model until 128 Llemma 7B solutions are sampled). This indicates
that relatively smaller models could be more compute-optimal for inference.

We have also found that the commonly-used MCTS method does not perform well with weighted
voting, as it often yields many unfinished solutions, hence having less effective votes. To address this
issue, we propose a novel tree search algorithm, REward BAlanced SEarch (REBASE), which pairs
well with weighted voting and achieves a Pareto-optimal trade-off between accuracy and inference
compute. The key idea of REBASE is to use a node-quality reward to control node expansion, which
eliminates the need for explicit rollouts while ensuring enough candidate solutions for voting.

In our experiments, REBASE consistently outperforms sampling and MCTS methods across all
settings, models, and tasks. Importantly, we find that REBASE with a smaller language model
typically achieves a Pareto-optimal trade-off. For instance, we show that the Llemma-7B model can
achieve competitive accuracy to a Llemma-34B model while using 2× less FLOPs when evaluating
on MATH500 (Fig. 2) or GSM8K (Fig. 3). Moreover, Llemma-7B with REBASE outperforms
Llemma-34B with standard majority voting across all compute budgets. Our results show the value
of using smaller models with advanced inference-time algorithms, and the benefits of new algorithms
for achieving better returns on inference-time compute.

1.1 Problem Formulation

We explore the following question: Given a fixed FLOPs budget, how should one select an optimal
model size for the policy model, and an effective inference strategy to maximize performance (i.e.,
accuracy)? .

To address this, we represent the problem-solving error rate E(N,T ;S) as a function of the number
of model parameters N , the number of generated tokens T and the inference strategy S. The
computational budget C is a deterministic function FLOPs(N,T ;S), based on N and T . Our goal is
to minimize E under the test-time compute constraint FLOPs(N,T,S) = C:

(Nopt(C), Topt(C);S) = argmin
(N,T,S) s.t. FLOPs(N,T,S)=C

E(N,T ;S)

where Nopt(C) and Topt(C) denote the optimal allocation of a computational budget C.

Here, the inference computation (FLOPs) for a fixed model can be modulated by generating more
tokens with the policy model, e.g., by sampling additional candidate solutions and subsequently
ranking them using a reward model. We primarily consider sampling and tree-search approaches with
reranking or Majority Voting as the means to consume more tokens.

3Following Uesato et al. [2022], we refer to the main language model generating outputs as the policy model.
It can be paired with a reward model, which scores outputs from the policy model to facilitate inference.
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Figure 1: The inference computation scaling laws of Pythia exhibited in error rate on the GSM8K
test set. We evaluate Pythia model using various sizes and various numbers of sampled solutions
for majority voting. The left panel shows the error rate for each model size decreases steadily when
the computation increases and converges at the end. The right panel shows the model performances
given inference FLOPs budgets. In particular, the three stars highlight the optimal model size under
241, 244, and 247 FLOPs, indicating that the optimal model size can vary given different budgets.
Both the x and y axes are shown in log scale.

1.2 Inference Strategies

We examine sampling-based and tree-search inference strategies.

In sampling methods, majority voting (a.k.a. self-consistency [Wang et al., 2022a]) samples multiple
reasoning paths, selecting the most frequent answer. When using a reward model, best-of-N selects
the highest-scoring path, while weighted majority voting selects the answer with the highest weighted
score, based on reward model values.

Tree-search methods, recently adapted for LLMs [Yao et al., 2023, Zhang et al., 2023, Zhou et al.,
2023, Liu et al., 2024, Choi et al., 2023, Chen et al., 2024a, Tian et al., 2024, Chen et al., 2024a],
often pair with value models to guide exploration. Monte Carlo Tree Search (MCTS) is common
(Appendix C reviews MCTS), but it tends to be resource-heavy, requiring many more generated
tokens than simpler methods. A more efficient inference strategy is needed, and comparisons of
tree-search and sampling methods on computational cost are essential. We present our novel tree
search method REBASE in 3.1.

2 Inference Scaling Laws

In order to compare the compute budgets of different models, we plot the figures with the number of
FLOPs used per question during inference. We compute the inference FLOPs based on the standard
formula from [Kaplan et al., 2020].

Scaling law of compute-optimal inference for model size. Figure 1 shows the relationship
between inference compute and error rate for different model sizes. The error rate first decreases
steadily and then starts to saturate. Initially, sampling many times from smaller models is compute-
optimal. At larger compute budgets the larger models are preferable, since the performance of small
models has saturated. As highlighted in the right panel of Figure 1, the optimal model size varies
based on the inference budget. We performed a regression analysis on inference FLOPs C and model
sizes N to establish a relationship between a given computational budget and its optimal model size.
The resulting equation, log10 (C) = 1.19 log10 (N) + 2.03, lets us estimate the optimal inference
model size for a specific compute budget.

Llemma-7B model achieves competitive accuracy to Llemma-34B model with lower compute
budget. Fig. 2 & 3 shows the relationship between error rate and inference FLOPs for Llemma
7B and Llemma 34B using different inference strategies. Llemma-7B requires around 2× less total
FLOPs than Llemma-34B to achieve comparable accuracy. This held across inference strategies
(sampling strategies, MCTS, REBASE) and tasks (MATH, GSM8K). This result suggests that, with
the same training dataset and model family, generating more tokens with a suitable inference strategy
using a smaller model can have more favorable cost-performance tradeoffs than using a larger model.
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Figure 2: The inference computation scaling comparisons across model sizes. The left/right panel
shows the problem-solving error rate on MATH based on Weighted Majority/Best-of-N.
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Figure 3: The inference computation scaling comparisons across model sizes. The left/right panel
shows the problem-solving error rate on GSM8K based on Weighted Majority/Best-of-N. MCTS is
not included in the comparison because of its poor compute-accuracy trade-off.

3 Compute-Optimal Inference

3.1 Reward Balanced Search (REBASE)

The REBASE tree search method inherits the exploitation and pruning properties of tree search,
while using the reward model alone to estimate the nodes’ qualities without additional computation
for estimating values by sampling children. The details are provided below:

Notations. We view the fine-tuned LLM as a policy πθ which generates the solution step by step.
Given a question x and the first k steps of a solution r1 · · · rk, the (k + 1)-th step is sampled from
πθ(·|xr1 · · · rk). REBASE effectively generates a solution tree during inference, in which the root
node the question x and other nodes corresponds to solution steps. When generating solution trees,
we generate children of rk by sampling from πθ(·|xr1 · · · rk). Here we slightly abuse notations and
use the corresponding question/solution step to denote a node. The reward of a node rk is generated
by the PRM: R(rk) := R(qr1 · · · rk).
Initialization. Given the question x, balance temperature Tb > 0, and sampling number of solutions
N , we sample N instances of the first step for the question, yielding all the nodes of depth 1 in the
search tree. We let the sampling budget of depth 0, B0, to N at initialization.

Reward modeling and update. In the i-th iteration, the PRM assigns the rewards to all the nodes
at depth i. After that, the algorithm examines whether the solutions up to depth i are complete.
Supposing there are Ci completed solutions, we update the sampling budget using Bi ← Bi−1 − Ci.
If Bi = 0, the process ends, and we obtain N solutions.

4



Exploration balancing and expansion. For all of the nodes nj with reward R(nj) in the depth i of
the tree, we calculate the expansion width of the nj as:

Wj = Round
(
Bi

exp (R(nj)/Tb)∑
k exp (R(nk)/Tb)

)
.

Then we sample Wj children for nj for all the nodes in depth i, and start the next iteration.

Intuitively, when the balance temperature Tb is small, this method encourages more exploitation
which put much more compute budget on the nodes with high score, when Tb is large, it encourages
exploration where nodes with high score and low score are exlopred equally. In our experiment, we
have found Tb in the range of (0.1, 0.3) works well for our process reward model.

3.2 Comparing REBASE to Other Baselines

REBASE is Pareto-optimal. REBASE consistently achieves the best cost-performance tradeoffs,
outperforming the sampling-based methods in all settings when fixing the model and the evaluation
task (Fig. 2, 3, 4, and 5). For example, in Figure 2, REBASE is the compute-optimal strategy at all
inference compute budgets, with 7B typically the optimal model size. On the other hand, MCTS
underperforms the sampling-based methods at each compute budget, likely due to its costly rollouts
(Figure 2) compared to the efficient use of the reward model in REBASE.

Table 1 shows that REBASE achieves better accuracy with a lower compute budget compared to
sampling-based weighted voting. With the 7B model, REBASE achieves higher accuracy with 7
times less compute. This finding is novel, and differs from previous tree search methods that typically
improve the performance at the cost of higher computational expense compared to sampling-based
voting [Chen et al., 2024a, Xie et al., 2023].

Weaker models gain more from tree search. For example, our proposed REBASE leads to
5.3%, 3.3%, and 2.6% performance gains on MATH for Mistral-7B, Llemma-7B, Llemma-34B,
respectively. The order of accuracy increase is inversely related to the model’s corresponding greedy
search accuracy on those datasets. This suggests that weaker models, as indicated by their lower
greedy search accuracy, benefit more from tree search methods like REBASE.

REBASE saturates later than sampling with higher accuray. From Fig. 2 and Fig. 3, we observe
that REBASE saturates later than the sampling methods, with lower final error rates. This is the
evidence that REBASE improves the reasoning paths, due to the selection and pruning mechanism in
the intermediate steps, REBASE discards the low quality partial paths and exploring more on good
ones, results in a higher probability of sampling high-quality reasoning paths.

4 Conclusions and Limitations

Conclusions. In this work, we conducted a comprehensive empirical analysis of inference scaling
law and compute-optimal inference for problem-solving with language models. We examined the
scaling effect of computation during inference across different model sizes and found that while
increased computation generally leads to higher performance, the optimal model size varies with the
available compute budget. When the computation budget is limited, smaller models can be preferable.
Additionally, we introduce our novel tree search method, REBASE, which is more compute-optimal
than both sampling methods and Monte Carlo Tree Search (MCTS). REBASE typically achieves
higher accuracy while using several times less computation than sampling methods. Our results
underscore the potential of deploying smaller models equipped with sophisticated inference strategies
like REBASE to enhance problem-solving accuracy while maintaining computational efficiency.

Limitations. Our empirical analysis specifically targets mathematical problem-solving. Investigat-
ing the inference scaling laws and compute-optimal inference strategies for tasks beyond mathematical
problem-solving would be a valuable direction for future research. Additionally, we mainly evaluate
the proposed REBASE on the GSM8K and MATH500 datasets. We speculate that the REBASE
algorithm, which assumes access only to a function that assigns scores to nodes, will be effective in
tasks beyond those studied here.
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Figure 4: MATH inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.
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Figure 5: GSM8K inference scaling across inference strategies and models (lower is better). The
tested models are Llemma-7B (left), Llemma-34B (middle), & Mistral-7B (right). In the legend,
W.M. and BoN refer to weighted majority and best-of-n, respectively.

A Additional Results

In this section, we present the results of Llemma models and Mistral model to see how the REBASE
performs on different models. Fig. 4 and 5 shows the scaling behaviors of Llemma models and
Mistral model on MATH and GSM8k datasets. Table 1 shows the advantage of REBASE in specific
compute settings.

Table 1: REBASE with a lower compute budget has better accuracy than sampling with a higher
compute budget. We use weighted voting to aggregate candidates for both sampling and REBASE.

# SAMPLES FLOPS MATH500

MISTRAL-7B

SAMPLING 256 8.70× 1014 42.8
REBASE 32 1.36× 1014 45.0

LLEMMA-7B

SAMPLING 256 10.0× 1014 45.5
REBASE 32 1.48× 1014 46.8

LLEMMA-34B

SAMPLING 64 12.1× 1014 46.7
REBASE 32 7.08× 1014 49.2
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B Related Works

Mathematical Reasoning with LLMs. Large language models have made significant progress
in recent years, and have exhibited strong reasoning abilities [Brown et al., 2020, Hoffmann et al.,
2022, Chowdhery et al., 2022, Lewkowycz et al., 2022]. Mathematical problem solving is a key
task for measuring LLM reasoning abilities [Cobbe et al., 2021a, Hendrycks et al., 2021]. Ling
et al. [2017] first developed the method of producing step by step solutions that lead to the final
answer. Later, [Cobbe et al., 2021b] extended the work by training a verifier for evaluating and
ranking solutions. Subsequent research (e.g., Lewkowycz et al. [2022]) has shown the performance
benefits of inference-time techniques such as majority voting [Wang et al., 2022a] and weighted
majority voting [Li et al., 2023]. We choose problem solving in mathematics as the task to study
compute-optimal strategies since it allows us to accurately evaluate problem solving ability.

Inference Strategies of LLM Problem Solving. A variety of inference strategies have been
developed to generate sequences with a trained model. Deterministic methods such as greedy
decoding and beam search [Teller, 2000, Graves, 2012] find highly probable sequences, often yielding
high quality results but without diversity. Sampling algorithms (e.g., temperature sampling [Ackley
et al., 1985]) can produce a diverse set of results which are then aggregated to achieve higher accuracy
(e.g., via majority voting [Wang et al., 2022a]). Recent methods combine search algorithms with
LLMs, including breadth-first or depth-first search [Yao et al., 2023], Monte-Carlo Tree Search
(MCTS) [Zhang et al., 2023, Zhou et al., 2023, Liu et al., 2024, Choi et al., 2023], and guided beam
search [Xie et al., 2023]. All of these methods show that using search at inference time can lead
to performance gains in various tasks. However, the trade-off for the improved performance is the
use of compute to perform the search. Analyzing the resulting cost-performance trade-offs remains
understudied. In this paper, we systematically analyze the trade-off between compute budget and
problem-solving performance, and propose a tree search method that is empirically Pareto-optimal.

Process Reward Models. Process reward models (PRMs) have emerged as a technique to improve
the reasoning and problem-solving capabilities of LLMs. These models assign rewards to the
intermediate steps of the LLM generated sequences. PRMs have been shown effective in selecting
reasoning traces with a low error rate, and for providing rewards in reinforcement learning-style
algorithms [Uesato et al., 2022, Polu and Sutskever, 2020, Gudibande et al., 2023]. Ma et al. [2023]
applies a PRM to give rewards on the intermediate steps and guide the multi-step reasoning process.
The PRM can be either trained on human labeled data [Lightman et al., 2023a] or model-labeled
synthetic data [Wang et al., 2023]. In our work, we use the PRM as the reward model for selecting
generated solutions, and for selecting which partial solutions to explore in tree search.

C MCTS Details

In this section, we present additional background on the Monte Carlo Tree Search (MCTS) algorithm.
The MCTS process can be formulated as the following steps:

Selection. The process begins at the root node. Here, the algorithm recursively selects the child
node that offers the highest Upper Confidence Bound applied to Trees (UCT) value, continuing until
a node is reached that has not been expanded. The UCT is calculated using the formula

UCT (s) = Q(s) + C

√
ln (N(Parent(s)))

N(s)
,

where Q(s) denotes the quality score of node s, N(s) is the number of visits to node s, Parent(s)
denotes the parent node of s, and C is a constant determining the level of exploration.

Expansion and evaluation. Upon reaching a non-terminal node s, the node is expanded by
generating multiple child nodes. Each child node c is then evaluated using a value function V (c),
which predicts the potential quality of continuing the sequence from node c.

Backpropagation. After evaluation, the algorithm updates the UCT values and the visit counts
for all nodes along the path from the selected node back to the root. For any node n in this path, the

10



Table 2: Fine-tuning Hyper-parameters: LR refers to the learning rate, BS refers to the batch size.
Pythia, Llemma-7B and LLemma-34B are the generators we use in our experiments, RM is short for
Reward Model. We only use problems from GSM8K to train the Pythia models.

Model # Epoch Dataset BS LR Max Seq Length Dtype

Pythia-410M 1 MetaMath (GSM8K) 128 8E-5 768 FP32
Pythia-1.4B 1 MetaMath (GSM8K) 128 4E-5 768 FP32
Pythia-2.8B 1 MetaMath (GSM8K) 128 3E-5 768 FP32
Pythia-6.9B 1 MetaMath (GSM8K) 128 2E-5 768 FP32
Pythia-12B 1 MetaMath (GSM8K) 128 1E-5 768 FP32
Llemma-7B 1 MetaMath 128 8E-6 1024 FP32
Llemma-34B 1 MetaMath 128 8E-6 768 FP32
Llemma-34B RM 2 Math-Shepherd 128 1E-5 768 BF16

updates are made as follows:

N(n)← N(n) + 1,

Q(n)← (N(n)− 1)Q(n) + V (s)

N(n)
.

D Hyper-parameters

Finetuning All the hyperparameters for model fine-tuning can be found in Table 2. We preprocess
the MetaMath [Yu et al., 2023] Dataset to make the solutions in a stepwise format.

Inference For all the inference strategies, the temperature of the LLM is set to 1.0. Max tokens
for the output is 1024 and max tokens for one step is 256. For REBASE, we chose the balance
temperature (the softmax temperature in the REBASE algorithm) as Tb = 0.1. For MCTS, we set
C in the UCT value as 1 and we expand 4, 8, 16 children for the root, 2 children for other selected
nodes with total 32, 64, 128 expansions respectively.
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