
FLaRe: Achieving Masterful and Adaptive Robot Policies with
Large-Scale Reinforcement Learning Fine-Tuning

Jiaheng Hu1,2, Rose Hendrix1, Ali Farhadi1,3, Aniruddha Kembhavi1,3,
Roberto Martín-Martín2, Peter Stone2,4, Kuo-Hao Zeng1,†, and Kiana Ehsani1,†

Abstract— In recent years, the Robotics field has initiated
several efforts toward building generalist robot policies through
large-scale multi-task Behavior Cloning. However, direct deploy-
ments of these policies have led to unsatisfactory performance,
where the policy struggles with unseen states and tasks.
How can we break through the performance plateau of these
models and elevate their capabilities to new heights? In this
paper, we propose FLaRe, a large-scale Reinforcement Learn-
ing fine-tuning framework that integrates robust pre-trained
representations, large-scale training, and gradient stabilization
techniques. Our method aligns pre-trained policies towards
task completion, achieving state-of-the-art (SoTA) performance
both on previously demonstrated and on entirely novel tasks
and embodiments. Specifically, on a set of long-horizon mobile
manipulation tasks, FLaRe achieves an average success rate of
79.5% in unseen environments, with absolute improvements
of +23.6% in simulation and +30.7% on real robots over
prior SoTA methods. By utilizing only sparse rewards, our
approach can enable generalizing to new capabilities beyond
the pretraining data with minimal human effort. Moreover,
we demonstrate rapid adaptation to new embodiments and
behaviors with less than a day of fine-tuning. Videos can be
found on the project website at robot-flare.github.io

I. INTRODUCTION

Foundation models in computer vision and natural lan-
guage processing have recently achieved groundbreaking
successes. Large-scale transformer models, such as GPT [1]
and SAM [2], have demonstrated the ability to perform
an extensive range of tasks. Inspired by these advances,
the robotics community has set its sights on training high-
capacity, multi-task transformers for robotic applications.

One of the prominent methods in this pursuit is large-scale
behavior cloning (BC) [3], which leverages large datasets
of real-world and simulated demonstrations (e.g., RT-1 [4],
RT-2 [5], RT-X [6], and SPOC [7]) to train high-capacity
policies that can perform many different tasks. While BC
policies have shown promise, they remain fundamentally
limited when directly deployed in the real world: mod-
els are constrained to the states observed during training,
making it difficult to generalize beyond expert trajectories.
Consequently, these policies often struggle when faced with
unfamiliar states, and fail to recover from errors effectively.

On the other hand, reinforcement learning (RL) [8] offers
a complementary approach that directly optimizes the per-
formance of the robot through trial-and-error learning, and

1 Allen Institute for Aritifical Intelligence (Ai2)
2 University of Texas, Austin 3 University of Washington 4 Sony AI
† Equal Supervision.

FLaRe: Fine-tuning Large-Scale Robot Polices with RL

Cross-embodiment Transfer

Stretch RE-1 LoCoBot

Learn Novel Tasks

Efficient Training/SoTA Results

0 50 100 150
0

50

100

Su
cc

es
s 

Ra
te

 (%
)

Training Time - GPU Days

PRILNav

SPOC

PoliFormer

Sparse Reward

FLaRe

JSRL

PoliFormer

Dense Reward

EmbSigLIP

Long Horizon Mobile 
Manipulation tasks

FLaRe Framework
Large-Scale


Multitasks Data FlaRe Policy

BC Policy
Stable

RL

Fine-tuning

Large-Scale

Efficient

Fig. 1: FLaRe is a simple but effective approach for
large-scale fine-tuning of robotic policies. FLaRe achieves
SoTA performance on simulation (+23.6%) and real-world
(+30.7%) benchmarks, can generalize to unseen tasks, and
adapts to new behaviors and embodiments.

RL algorithms have achieved many successes when a well-
defined reward function is available [9]–[11]. However, many
RL algorithms are notoriously sample inefficient, requiring
extensive training time. As the task horizon increases and the
action space grows, RL policies struggle to get off the ground
due to the large search space. Moreover, RL’s reliance on
hand-crafted reward functions severely limits its scalability.

Although insufficient for direct deployment, the policies
trained through large-scale multi-task Behavior Cloning al-
ready possess extremely valuable features and behavior pri-
ors. How can we break through the performance plateau of
these models and elevate their capabilities to new heights?
Our key insight is that, through RL, we can align the
behavior of these policies towards true objectives such as task
completion (instead of the BC objective), thereby achieving
masterful performance not only on tasks seen during BC
training, but also on novel tasks and embodiments never seen
by the pre-trained policy.

While attempts have been made to fine-tune BC policies
with RL [12]–[15], these works are only verified with small-
scale networks and in single-task domains. Empirically, we
find these methods ineffective as the capacity of the pre-
trained policy scales up, where the abrupt shift from BC to
RL often results in destructive gradient updates, leading to
oscillations or even collapse during RL training.

robot-flare.github.io


In FLaRe, we introduce an effective, scalable, and robust
solution for fine-tuning large-scale robot policies with Re-
inforcement Learning. Illustrated in Fig. 1 top-left, FLaRe
starts from a multi-task robotics policy, and fine-tunes it
with large-scale RL through extensive use of simulation. To
ensure the RL fine-tuning is stable, FLaRe introduces a set
of simple yet highly effective techniques, detailed in Sec. IV-
C, that drastically improve performance and reduce training
time compared to previous methods.

FLaRe achieves SoTA performance on household mobile
manipulation tasks. In established simulation benchmark [7],
it achieves an average 79.5% success rate, +23.6% absolute
improvements over the best baseline. In the real world,
FLaRe achieves excellent results (80.7% SR on average),
outperforming the best prior work by +30.7%. Furthermore,
FLaRe offers several key advantages:

1) FLaRe enables efficient training with a 15x reduction in
training time compared to the previous SoTA method,
using a simple sparse reward without the need for
handcrafted reward functions (Fig 1 top-right).

2) FLaRe allows for generalization beyond the tasks seen
during BC. Even for new tasks without expert trajec-
tories or shaped rewards, FLaRe can be fine-tuned to
achieve state-of-the-art performance (Fig 1 bottom-left).

3) FLaRe facilitates rapid adaptation to new embodiments
and behaviors, significantly enhancing the base model’s
flexibility and applicability (Fig 1 bottom-right).

We find that FLaRe marks a promising achievement to-
wards developing highly generalizable robotic systems that
can handle a wide range of tasks in diverse environments.

II. Related Work
A. Foundation model for robotics

Following the successes of foundation models in vision [2]
and language [1], there has been a recent trend towards
training robotics-specific foundation models [16, 17]. While
these models focus on different robot applications, such
as manipulation (e.g. RT-1 [4], RT-2 [5], RT-X [6], Octo
[18], RoboCat [19], OpenVLA [20]), navigation (e.g. ViNT
[21]), and mobile manipulation (e.g. SPOC [7]), they share a
similar recipe of training a high-capacity transformer model
through multi-task behavior cloning [3]. As a result, they
generate the same end-product: a multi-task transformer
policy, which FLaRe can use as a base model for fine-tuning.

B. RL training and fine-tuning of robotics models
While RL has achieved many successes in robotics [9],

directly applying RL from scratch often requires extensive
reward engineering and long training time [10, 11, 22, 23].
Hence, previous works have extensively explored leveraging
pretrained models to facilitate RL [12]–[15, 24]–[38].

However, many of these approaches focus on fine-tuning
models that have been pre-trained using either online RL
[24]–[26] or offline RL [39]–[42], which limits their appli-
cability. This makes them unsuitable for fine-tuning most
existing robotics foundation models, which are typically
trained using Behavior Cloning. Many previous works also

require access to the entire offline dataset during fine-tuning
[14, 15, 27]–[33], which may be feasible for small-scale
data and low-dimensional observations but is unlikely to
be computationally feasible for large-scale data and image
observations, as also noted by Ramrakhya et al [13].

In addition, the techniques proposed in many of these
works are only evaluated on simple domains, with low-
dimensional state spaces [14, 27, 29], small-scale network
architecture (e.g. MLP) [12, 14, 15], single-task pretraining
and fine-tuning [32, 43], and often no real robot experiments
[15, 27, 29, 34]. PIRLNav [13] and JSRL [12] are two works
that are closest to our setting, where only a pretrained policy
is required for the fine-tuning phase. However, both of them
focus on single-task setting with small-scale networks and
no real robot experiments. In contrast, FLaRe explores fine-
tuning from large robotics models, where both scalability and
applicability to real robots are of critical concern.

III. Problem Formulation
We consider each robotics task 𝑇 ∈ T as a language-

conditioned Partially Observable Markov Decision Process
(S, A, P, 𝑅, O, L, 𝑃(𝑠0), 𝛾), where S is a state space, A is
an action space, O is an observation space, P is a Markovian
transition model, L is a set of natural language instruction, 𝛾
is a discount factor, 𝑃(𝑠0) is the initial state distribution, and
𝑅 is a sparse reward function that takes in a natural language
instruction 𝑙 ∈ L and a state 𝑠 ∈ S and outputs a binary
value indicating whether a given instruction is successfully
completed. For the purpose of this paper, we assume that all
tasks have the same action space (the actuators of the robot)
and observation space (the robot’s sensors). Each task 𝑇 ∈ T
defines a set of natural language instructions L𝑇 (e.g., for
the task of Object Navigation, potential instructions can be
“go to an apple”, “find a houseplant”, and more). At the start
of every episode, an instruction 𝑙𝑇 ∈ L𝑇 and an initial state
𝑠0 ∼ 𝑃(𝑠0) will be sampled. Every time a specific task 𝑇 ∈ T
is given, our goal is to train a policy 𝜋𝑇

𝜃
that maximizes the

expected return (i.e. success rate) EL𝑇 , 𝜋

∑
𝑡 𝑅(𝑠𝑡 , 𝑙) for the

given task over the possible language instructions L𝑇 .

IV. Method
Considerable effort has been devoted to optimizing perfor-

mance on robotics tasks via training high-capacity models
𝜋𝜃 with large-scale, multi-task imitation learning [4]–[7]. In
practice, these efforts lead to unsatisfactory performance due
to compounding errors [44], where small action prediction
error leads to state distribution drift. Furthermore, for novel
tasks and scenarios where no demonstration data is available,
these models have shown limited generalization capabilities,
likely due to the limited task coverage of the training data.

FLaRe addresses both problems by fine-tuning the pre-
trained model 𝜋𝜃 with RL for each given task 𝑇 ∈ T . The
key idea of FLaRe is to achieve stable and effective RL
fine-tuning through a series of design choices, including 1)
utilize a large-scale multi-task model as the base model,
2) achieve large-scale fine-tuning through extensive use of
simulations, and 3) a series of algorithmic design to stabilize



FLaRe Stabilizes RL Fine-tuning

Sec. IV (A)

Small Learning Rate

lr = 2e−5
Separate Actor and Critic

Copy

Unshared

Actor Critic

On-Policy Update

PPO

Disable Entropy Bonus

Action Distribution

Foundation Policy Large-Scale Env

Sec. IV (B) Sec. IV (C)

Fig. 2: FLaRe introduces a series of design choices that help stabilize the RL training process, including 1) fine-tuning from
a multi-task robotics policy, 2) large-scale fine-tuning in simulation, 3) using an on-policy algorithm as opposed to off-policy
methods, 4) utilizing smaller learning rate than when performing RL from scratch, 5) disabling the entropy bonus objective
that can potentially distort the policy at the start of the training, and 6) separating the actor and the critic network, so that
the critic update will not influence the policy prediction.

RL Fine-tuning with Sparse Reward
No Reward Engineering

Purely Sparse Reward

Tr
an

sf
or

m
er

 
St

at
e 

En
co

de
r

Goal Encoder

STATE TOKEN Ac
tio

n

Goal

Ca
us

al
 

Tr
an

sf
or

m
er

 
De

co
de

r

Camera 1

Camera 2

Vision 
Transformer

Fig. 3: FLaRe can efficiently fine-tune large transformer
policies through large-scale Reinforcement Learning, using
a sparse reward function that requires minimal human effort.

the RL fine-tuning. Together, these design choices enable
FLaRe to effectively learn from sparse reward and achieve
good performances. We elaborate in detail on each of these
decisions in the following sections (Fig. 2).

A. Fine-tune from a multi-task robotics model
The first key design choice of FLaRe is to start from

a multi-task pre-trained large model (i.e. a foundational
robotics model). Compared to fine-tuning from a single-
task, small-scale network (as is often the case in previous
works [12]–[14, 43]), starting from a robotics foundation
model brings three key benefits. First, models pre-trained
on diverse tasks can master more robust representations
and more versatile behavior priors [45], which will benefit
the fine-tuning process. Second, the highly capable network
architecture (e.g. large transformer models) that comes with
these foundational robotics models brings good inductive
bias that can facilitate generalization [46], which is crucial
to fine-tuning. Most importantly, the multi-task capability of
these models allows us to reuse the same model for fine-
tuning for many different tasks. In fact, as we will show
in the experiments in Sec. V-B, we can even fine-tune for
tasks and embodiments that have never been seen by the
pre-trained policy and still achieve good performance.

While our method can in principle work on any foun-
dational robotics model, in this specific work, we focus on
fine-tuning the SPOC model (Fig. 3) [7] — a multi-task
transformer model for mobile manipulation tasks, trained
on large-scale shortest path expert trajectories collected in
Objaverse-Populated ProcTHOR houses [47]–[49]. Please
find more details regarding the SPOC model in App. VI-E.

B. Large-scale fine-tuning in simulation
The second key design choice of FLaRe is to perform

large-scale fine-tuning through extensive use of simulation.
Recent advancements in robotics and embodied AI have
given us a set of tools for simulating robotics tasks [47,
50]–[54]. In this work, we utilize AI2THOR [47] to perform
large-scale simulated fine-tuning with diverse objects and
scenes, which includes 150k procedurally generated PROC-
THOR houses [49] and 800K+ annotated 3D objects [48].

When using simulation in robotics, addressing the sim-
to-real gap [55] becomes a critical challenge. In FLaRe,
similar to Ehsani et al. [7], we employed two techniques
to facilitate sim-to-real transfer. First, we perform extensive
domain randomization, including color augmentation, apply-
ing random crops, and posterizing the images. Second, we
extract visual features through DinoV2 [56], a pre-trained
foundational vision model, which captures useful features
that can generalize across simulation and the real world.

To ensure large-scale training of the transformer policy
and value networks, we utilize the KV-cache technique [57]
to reduce the computational costs during network inference,
similar to Zeng et al. [10]. The KV-cache technique caches
and reuses the keys and values of earlier observations within
an episode. This reduces the inference complexity of the
transformer network from quadratic to linear, which is crucial
for affordable large-scale RL fine-tuning.

C. Stabilize RL fine-tuning
Finally, we introduce a set of simple but very critical

algorithmic choices to ensure the stability of RL fine-tuning.
While these techniques are relatively simple, as we will
show in the ablation studies in Sec. V-E, each choice is
very important to ensure stable training and to obtain good
performances.

Using On-policy Algorithms. Off-policy RL methods [58,
59] can utilize off-policy data during training, and thus bring
the promise of sample-efficient RL. However, compared to
on-policy methods, off-policy RL is often less stable and
more sensitive to hyperparameters, both in theory and in
practice, due to problems associated with the “deadly triad”
[8]. In this work, since we perform fine-tuning entirely in



TABLE I: Success and Episode-length weighted Success (SEL) on the CHORES [7] benchmark (in-distribution tasks).
Baselines with privileged information are marked in blue . FLaRe significantly outperforms the previous SoTA methods.

Success (SEL) ↑ IL+RL: Sparse Reward IL Only RL Only

FLaRe [Ours] PIRLNav JSRL SPOC Poliformer - Sparse Poliformer - Dense EmbSigLIP - Dense

ObjectNav 85.0 (67.6) 20.0 (7.0) 21.0 (15.6) 55.0 (42.2) 14.5 (10.4) 85.5 (61.2) 36.5 (24.5)
Fetch 66.9 (54.7) 0.0 (0.0) 2.9 (2.8) 14.0 (10.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
PickUp 91.8 (90.4) 0.0 (0.0) 50.9 (47.7) 90.1 (86.9) 0.0 (0.0) 90.1 (88.7) 71.9 (52.9)
RoomVisit 70.4 (67.1) 12.5 (11.0) 19.0 (18.6) 40.5 (35.7) 12.5 (12.5) 12.5 (10.9) 16.5 (11.9)

simulation, we are less constrained by the sample efficiency
of our RL algorithms, and therefore choose to use on-policy
algorithms for stable fine-tuning. Specifically, we use PPO
[60], a state-of-the-art on-policy policy gradient method.

Taking Small Update Steps. When setting the learning
rate for RL, it is common practice to reuse a learning rate
that has previously achieved success in the same/similar
domains. However, what we found in FLaRe is that fine-
tuning from an existing policy requires significantly lower
learning rates than when starting from scratch. For example,
in the object navigation task, the previous state-of-the-art
result is achieved with PPO from scratch using a learning rate
of 2𝑒−4. In FLaRe, when fine-tuning on the exact same task,
we have to reduce the learning rate by an order of magnitude
to achieve stable learning. It is important to notice that we
do not perform additional LR tuning in FLaRe - the same
learning rate is used for all experiments and tasks.

Disabling Entropy Bonus. The PPO objective [60] con-
tains an entropy bonus, which promotes the entropy of the
action distribution predicted by the policy network to ensure
sufficient exploration. However, we found that when fine-
tuning from a pre-trained policy network, this additional
entropy term can quickly distort the policy gradient update
at the start of the training, leading to unlearning of the pre-
trained policy. Hence, we remove this entropy bonus term
from our PPO update in FLaRe.

Disabling Feature Sharing. When applying RL to high-
dimensional observations such as images, a standard practice
is to have a shared feature extractor between the actor
and the critic network, which can facilitate the learning
of useful features. However, we found that feature sharing
during RL fine-tuning can actually hurt the performance
since the gradient from the critic loss will change the pre-
trained features and lead to the deterioration of the action
prediction. Furthermore, during RL fine-tuning, since the
pre-trained foundation model should already capture good
representations, there is no need for the actor and the critic
network to share the same feature extractor. Therefore, in
FLaRe, we initialize the policy and the critic network as
independent networks, both using the weight and architecture
of the pre-trained transformer policy. The policy head of the
critic network is replaced by a randomly initialized values.

We found that all four training components are important,
and in Section V-E, we show that removing any one of them
results in training collapse.

V. Results

We evaluate FLaRe on a set of navigation and manipula-
tion tasks both in simulation and in the real world. Through
our experiments, we seek to answer the following questions:
Q1: Can FLaRe achieve state-of-the-art performance on tasks
both within and outside the training data of the pre-trained
policy? Q2: Can FLaRe learn new capabilities never seen
during pre-training and generalize to unseen tasks? Q3: Can
the policies learned by FLaRe transfer to the real world?
Q4: Can FLaRe enable efficient adaptation to new robot
embodiments and new behavior? Q5: Are the stabilization
techniques in FLaRe necessary to ensure stable fine-tuning?

All of the experiments use the same hyperparameters,
specified in App. VI-C. Unless stated otherwise, results for
FLaRe are obtained using sparse rewards that correspond to
task completion. Visualizations of the robot trajectories are
shown in Fig. 4 and on our project website.

A. FLaRe on seen capabilities
First, we evaluate the performance of FLaRe in compari-

son to prior behavior cloning (BC) and reinforcement learn-
ing (RL) baselines. Specifically, we test FLaRe on CHORES-
S [7], a recently introduced simulation benchmark designed
for household robot tasks. CHORES-S encompasses four
task types that require various skills, including navigation,
object recognition, object manipulation, and environment
exploration. Similar to [7, 10], the policies use the agent’s
RGB observations as input to predict discrete actions, which
represent movements of the base, arm, gripper, and an END
action to signify task completion. For further details on the
action space, observation space, and task definitions, please
refer to App. VI-D.2, VI-D.1, VI-D.3.

CHORES tasks are very challenging due to their long-
horizon nature, partial observability, RGB-only observation
space, and diverse scenes and objects. Therefore, previous
methods struggle to complete these tasks. Since CHORES
tasks are contained in the training data of the SPOC model
that FLaRe fine-tunes upon, our goal is to utilize FLaRe to
improve performance on these in-distribution capabilities.

Baselines. Our baselines consist of prior works in im-
itation learning, reinforcement learning from scratch, and
reinforcement learning fine-tuning from pre-trained policies.
Aside from SPOC [7], the robot foundation model that
we fine-tune upon, we additionally compare against Po-
liformer [10], a transformer-based RL-from-scratch method
that achieved SOTA performance on object navigation; Emb-
SigLIP [61], a GRU-based RL-from-scratch method; PIRL-



(a) Fetch Task (b) RoomVisit Task (c) ObjNavRelAttr Task (d) ObjNavAfford Task

Fig. 4: We evaluate FLaRe on mobile manipulation tasks. (a, b) In-distribution tasks, in unseen environments. (c, d) Novel
tasks that require unseen capabilities from pretraining, in unseen environments. FLaRe excels in long-horizon tasks, showing
strong object recognition, relational reasoning, and exploration abilities.

Nav [13], an RL fine-tuning method that employs learning
rate scheduling to warm-start the value function; and JSRL
[12], an off-policy RL fine-tuning method that gradually “roll
in” experiences with the prior policy.

We compare against baselines in two settings: (1) a fair-
comparison setting, where the baseline methods use the
same sparse reward as FLaRe, and (2) an unfair-comparison
setting, where the baseline methods use a privileged, task-
specific dense reward that has been hand-coded by human
experts. It is important to note that each new task demands
significant researcher effort to design and curate a dense
reward function that avoids collapsing during training and
is not scalable to new tasks.

To demonstrate the superiority of FLaRe, all baseline
methods are trained for more steps than FLaRe. Specifically,
the fair-comparison baselines are trained for 3𝑥 more steps
on ObjectNav and RoomVisit, and 2𝑥 more steps on Fetch
and Pickup. The unfair-comparison baselines are trained
until convergence to obtain the best possible result. Notice
that this often means significantly longer training time. For
example, for the Poliformer (Dense) on ObjectNav, the result
is obtained after training for 300M steps - over 15𝑥 as many
training steps that FLaRe uses on ObjectNav.

Results are shown in Table I and Fig. 4 (a, b), where
we evaluate on unseen simulated houses and report Success
rate as well as Episode-length weighted Success (SEL [62])
which measures the efficiency of the policies. As shown by
the table, FLaRe not only significantly outperforms the fair-
comparison baselines, but outperforms the unfair baseline on
three out of the four tasks despite using significantly fewer
training steps (Q1). Please find training curves in Fig. 6(a).

B. FLaRe on novel capabilities
A well-trained robotics foundation model should learn

features useful for all robotics tasks, not only applicable to
in-distribution tasks appearing in its original training data.
To investigate if FLaRe can take advantage of these pre-
trained features, we examine the performance of FLaRe on a
set of novel capabilities never seen by the foundation model.
Specifically, we evaluate FLaRe on three navigation tasks
that specify target objects/locations in different ways and
require distinct types of explorations and skills, including

TABLE II: FLaRe can fine-tune for tasks that are never seen
by the base model, and achieve state-of-the-art performance.
Baselines with privileged information are marked in blue .

Success (SEL) ↑ FLaRe [ours] Poliformer - Sp SPOC++ Poliformer - De

ObjNavRelAttr 71.0 (63.6) 6.7 (6.7) 54.5 (44.6) 36.1 (32.4)
RoomNav 91.6 (85.6) 57.0 (51.8) 74.5 (59.9) 75.0 (62.4)

ObjNavAfford 79.7 (70.6) 35.5 (29.4) 62.4 (50.6) 53.8 (43.1)

1) ObjNavRelAttr, which identifies target objects through
relative object attributes comparison (e.g. “find the largest
apple”); 2) RoomNav, which requires the robot to navigate
to room types instead of objects (e.g. “go to the kitchen”);
and 3) ObjNavAfford, which requires object affordance un-
derstanding (e.g. “find something I can sit on”). Note that
new reasoning skills are required for these unseen tasks;
for example, in ObjNavRelAttr, the agent must search the
environment for all objects of the specified type, reason
about their properties, and issue a completion action when
it identifies the correct instance.

We compare against the Poliformer [10] baseline described
in Sec. V-A, as well as SPOC++, a BC baseline that has
the same network architecture as SPOC but uses additional
expert demonstrations (1M frames per aforementioned task).
Note that these demonstrations are not available to FLaRe,
nor to the SPOC model that FLaRe fine-tunes.

We show the results in Table II and Fig. 4 (c, d). On
these out-of-distribution tasks that require novel capabili-
ties, FLaRe achieves state-of-the-art performance without
any additional hyperparameter tuning (Q2), even where the
baselines have unfair advantages. It is worth noting that,
since specifying each of these new tasks 𝑇𝑛 is as simple as
specifying a success criteria 𝑅𝑛 and the associated language
instructions 𝐿𝑛, these results imply that we can apply FLaRe
to on-the-fly tasks without much engineering effort. This
suggests a path towards continual adaptation.

C. FLaRe on real robots
To examine the performance of FLaRe on real robots,

we evaluate the policies learned by FLaRe in a real-world
apartment on a Stretch RE-1 [63]. This layout (Fig. 5) is
never seen by the robot during training. We directly deploy
policies without any adaptation or real-world fine-tuning,



TABLE III: Real-world results (total of 46 tasks). For manip-
ulation tasks, we report both full success (policy and heuristic
grasping) and policy success (proximity) following [7].

Success Rate ↑ FLaRe [ours] SPOC Poliformer - Dense

ObjectNav 94.4 50.0 83.3
Fetch 66.7 (55.6) 33.3 (11.1) X

PickUp 86.7 (66.7) 66.7 (46.7) X
RoomVisit 75.0 50.0 X

StorageKitchenBathroomOfficeBedroom

Corridor

Livingroom

Start 1 Start 2
Start 3

Fig. 5: The real-world layout that we tested upon
and leverage a heuristic object grasping model following
SPOC [7]. We compare against SPOC and Poliformer1 with
dense reward, and report the results in Table III. Sim-to-real
approaches introduced in Sec. IV-B enable the successes of
FLaRe in simulation to directly transfer to the real world,
achieving state-of-the-art performances on a set of real world
navigation and mobile manipulation tasks (Q3).

D. FLaRe for adaptation
FLaRe opens up the possibilities for learning behaviors not

captured by the demonstration data (and thus the foundation
robotics model). We examine this in two setups, cross-
objective and cross-embodiment capabilities of FLaRe (Q4).

1) Adaptation to New Embodiment: We use FLaRe to
fine-tune SPOC (which is trained only on Stretch-RE1) to
adapt to Locobot [64]. Locobot has different action space
and camera parameters: it lacks the manipulation degrees-of-
freedom that Stretch possesses, but has a rotatable, narrower
field-of-view camera mounted lower. To facilitate cross-
embodiment transition, we simply mask out the invalid
actions output by the policy, and repurpose two of the invalid
actions to control the camera. FLaRe effectively utilizes the
pre-trained policy to adapt to the new embodiment, as shown
by the table below on the ObjectNav Task:

New Embodiment Success Rate ↑ SEL ↑

FLaRe 72.0 47.2
Poliformer zero-shot2 57.5 30.1

Poliformer (Sparse Reward) 44.0 29.7

2) Adaptation to New Behavior: We investigate whether
FLaRe can be used to shape a robot’s behavior after the
policy is trained, using only a few training steps. We test two
new behaviors: 1) encouraging the agent to be more efficient

1Poliformer reported real-world results only for the ObjectNav Task.
2We zero-shot evaluate Poliformer [10] 400M ckpt trained with LoCoBot.

This baseline was trained in ProcTHOR-10k, instead of ObjaTHOR houses.

(a) Baselines (b) Ablations

Fig. 6: Baseline performances and ablation studies on the
Fetch task. FLaRe is the only method that can achieve good
performance on this challenging task.

(+step penalty −0.01/step), and 2) reducing the number of
unwanted collisions with the environment (+collision penalty
−0.5/collision). By adding a reward term tailored to each
behavior, the policy adapts to these new behaviors after just
6 hours of training, with minimal impact on the success rate.
The following table presents the results for the Fetch task:

New Behaviors Success Rate ↑ Episode Length ↓ # of Collisions ↓

FLaRe 66.9 258.2 10.0
+ Step Pen. 65.7 222.8 10.0
+ Coll. Pen. 66.7 251.2 3.1

E. Ablation studies
To evaluate whether the techniques proposed in Sec. IV-C

are necessary for the performance of FLaRe, we evaluate four
ablation variants of our method. To evaluate whether using
on-policy methods is important, we tested switching the
PPO algorithm by Soft Actor-Critic [59] (SAC). To evaluate
whether a small learning rate is necessary, we tested setting
the learning rate to 2𝑒 − 4, 10 times our original learning
rate. To evaluate the importance of having separated actor
and critic, we tested Shared AC, where the actor and critic
share the transformer encoder and decoder trunk. Finally, we
tested EB=0.2, which set the coefficient of the entropy bonus
in PPO to 0.2. We show the training curves in Fig. 6(b).

Perhaps surprisingly, removing any single one of the
stabilizing techniques in FLaRe results in the success rate
quickly collapsing to 0 on the fetch task, while FLaRe learns
very robustly with the same set of hyperparameters across
variety of tasks and experiment setups (Q5). This showcases
the importance of all of the techniques introduced in FLaRe.

VI. CONCLUSIONS
FLaRe is an efficient and scalable approach for fine-

tuning large-scale robot policies using RL. It enables ef-
fective adaptation to unseen tasks and achieves state-of-the-
art performance in both simulation and real-world settings.
FLaRe’s adaptability to new embodiments and behaviors
unlocks the potential for flexible deployment across a wide
range of robotic platforms. FLaRe’s main limitation lies
in its reliance on simulation environments for fine-tuning.
While leveraging recent work in simulation generation [65,
66] offers a promising direction, tackling tasks where robust
simulations are unavailable—such as those involving liquids
or soft objects—remains challenging and may require fine-
tuning directly in the real world.



References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment
anything,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 4015–4026.

[3] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, vol. 358, no. 1431,
pp. 537–547, 2003.

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[6] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar,
A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain et al., “Open
x-embodiment: Robotic learning datasets and rt-x models: Open x-
embodiment collaboration 0,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2024, pp. 6892–6903.

[7] K. Ehsani, T. Gupta, R. Hendrix, J. Salvador, L. Weihs, K.-H. Zeng,
K. P. Singh, Y. Kim, W. Han, A. Herrasti et al., “Spoc: Imitating short-
est paths in simulation enables effective navigation and manipulation
in the real world,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 16 238–16 250.

[8] R. S. Sutton, “Reinforcement learning: An introduction,” A Bradford
Book, 2018.

[9] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martín-Martín, and
P. Stone, “Deep reinforcement learning for robotics: A survey of real-
world successes,” arXiv preprint arXiv:2408.03539, 2024.

[10] K.-H. Zeng, Z. Zhang, K. Ehsani, R. Hendrix, J. Salvador, A. Herrasti,
R. Girshick, A. Kembhavi, and L. Weihs, “Poliformer: Scaling on-
policy rl with transformers results in masterful navigators,” arXiv
preprint arXiv:2406.20083, 2024.

[11] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar,
and S. Levine, “The ingredients of real-world robotic reinforcement
learning,” arXiv preprint arXiv:2004.12570, 2020.

[12] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice,
C. Fu, C. Ma, J. Jiao et al., “Jump-start reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2023, pp.
34 556–34 583.

[13] R. Ramrakhya, D. Batra, E. Wijmans, and A. Das, “Pirlnav: Pretraining
with imitation and rl finetuning for objectnav,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 17 896–17 906.

[14] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[15] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and
M. Bellemare, “Reincarnating reinforcement learning: Reusing prior
computation to accelerate progress,” Advances in neural information
processing systems, vol. 35, pp. 28 955–28 971, 2022.

[16] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu,
S. Song, A. Kapoor, K. Hausman et al., “Foundation models in
robotics: Applications, challenges, and the future,” arXiv preprint
arXiv:2312.07843, 2023.

[17] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim,
Y. Xie, T. Zhang, Z. Zhao et al., “Toward general-purpose robots
via foundation models: A survey and meta-analysis,” arXiv preprint
arXiv:2312.08782, 2023.

[18] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[19] K. Bousmalis, G. Vezzani, D. Rao, C. M. Devin, A. X. Lee, M. B.
Villalonga, T. Davchev, Y. Zhou, A. Gupta, A. Raju et al., “Robocat: A
self-improving generalist agent for robotic manipulation,” Transactions
on Machine Learning Research, 2023.

[20] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

[21] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose,
and S. Levine, “Vint: A foundation model for visual navigation,” arXiv
preprint arXiv:2306.14846, 2023.

[22] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[23] J. Hu, P. Stone, and R. Martín-Martín, “Causal policy gradient for
whole-body mobile manipulation,” arXiv preprint arXiv:2305.04866,
2023.

[24] A. A. Taiga, R. Agarwal, J. Farebrother, A. Courville, and M. G.
Bellemare, “Investigating multi-task pretraining and generalization in
reinforcement learning,” in The Eleventh International Conference on
Learning Representations, 2023.

[25] K. Khetarpal, M. Riemer, I. Rish, and D. Precup, “Towards contin-
ual reinforcement learning: A review and perspectives,” Journal of
Artificial Intelligence Research, vol. 75, pp. 1401–1476, 2022.

[26] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey.” Journal of Machine Learning Research,
vol. 10, no. 7, 2009.

[27] A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating
online reinforcement learning with offline datasets,” arXiv preprint
arXiv:2006.09359, 2020.

[28] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 32, no. 1, 2018.

[29] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and rein-
forcement learning,” arXiv preprint arXiv:1910.11956, 2019.

[30] R. Julian, B. Swanson, G. S. Sukhatme, S. Levine, C. Finn, and
K. Hausman, “Never stop learning: The effectiveness of fine-tuning
in robotic reinforcement learning,” arXiv preprint arXiv:2004.10190,
2020.

[31] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[32] J. Kober, B. Mohler, and J. Peters, “Imitation and reinforcement
learning for motor primitives with perceptual coupling,” in From motor
learning to interaction learning in robots. Springer, 2010, pp. 209–
225.

[33] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao,
A. Irpan, M. Khansari, D. Kalashnikov et al., “Aw-opt: Learning
robotic skills with imitation and reinforcement at scale,” arXiv preprint
arXiv:2111.05424, 2021.

[34] B. Baker, I. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet,
B. Houghton, R. Sampedro, and J. Clune, “Video pretraining (vpt):
Learning to act by watching unlabeled online videos,” Advances in
Neural Information Processing Systems, vol. 35, pp. 24 639–24 654,
2022.

[35] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in
deep reinforcement learning: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2023.

[36] M. Wołczyk, B. Cupiał, M. Ostaszewski, M. Bortkiewicz, M. Zając,
R. Pascanu, Łukasz Kuciński, and P. Miłoś, “Fine-tuning reinforcement
learning models is secretly a forgetting mitigation problem,” 2024.
[Online]. Available: https://arxiv.org/abs/2402.02868

[37] H. Hu, S. Mirchandani, and D. Sadigh, “Imitation bootstrapped
reinforcement learning,” arXiv preprint arXiv:2311.02198, 2023.

[38] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza, “Bootstrapping
reinforcement learning with imitation for vision-based agile flight,”
arXiv preprint arXiv:2403.12203, 2024.

[39] M. Nakamoto, S. Zhai, A. Singh, M. Sobol Mark, Y. Ma, C. Finn,
A. Kumar, and S. Levine, “Cal-ql: Calibrated offline rl pre-training
for efficient online fine-tuning,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[40] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv preprint arXiv:2110.06169, 2021.

[41] S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin, “Offline-to-online rein-

https://arxiv.org/abs/2402.02868


forcement learning via balanced replay and pessimistic q-ensemble,”
in Conference on Robot Learning. PMLR, 2022, pp. 1702–1712.

[42] A. Kumar, A. Singh, F. Ebert, M. Nakamoto, Y. Yang, C. Finn, and
S. Levine, “Pre-training for robots: Offline rl enables learning new
tasks from a handful of trials,” arXiv preprint arXiv:2210.05178, 2022.

[43] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasu-
vunakool, J. Kramár, R. Hadsell, N. de Freitas et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” arXiv preprint
arXiv:1802.09564, 2018.

[44] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[45] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
transactions on knowledge and data engineering, vol. 34, no. 12, pp.
5586–5609, 2021.

[46] B. L. Edelman, S. Goel, S. Kakade, and C. Zhang, “Inductive biases
and variable creation in self-attention mechanisms,” in International
Conference on Machine Learning. PMLR, 2022, pp. 5793–5831.

[47] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti,
M. Deitke, K. Ehsani, D. Gordon, Y. Zhu et al., “Ai2-thor: An interac-
tive 3d environment for visual ai,” arXiv preprint arXiv:1712.05474,
2017.

[48] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. Vander-
Bilt, L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse:
A universe of annotated 3d objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
13 142–13 153.

[49] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador,
W. Han, E. Kolve, A. Kembhavi, and R. Mottaghi, “Procthor: Large-
scale embodied ai using procedural generation,” Advances in Neural
Information Processing Systems, vol. 35, pp. 5982–5994, 2022.

[50] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martín-Martín,
C. Wang, G. Levine, M. Lingelbach, J. Sun et al., “Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic
simulation,” in Conference on Robot Learning. PMLR, 2023, pp. 80–
93.

[51] E. Jin, J. Hu, Z. Huang, R. Zhang, J. Wu, L. Fei-Fei, and
R. Martín-Martín, “Mini-behavior: A procedurally generated bench-
mark for long-horizon decision-making in embodied ai,” arXiv
preprint arXiv:2310.01824, 2023.

[52] X. Puig, E. Undersander, A. Szot, M. D. Cote, T.-Y. Yang, R. Partsey,
R. Desai, A. W. Clegg, M. Hlavac, S. Y. Min et al., “Habitat
3.0: A co-habitat for humans, avatars and robots,” arXiv preprint
arXiv:2310.13724, 2023.

[53] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” arXiv preprint arXiv:2009.12293,
2020.

[54] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang et al., “Sapien: A simulated part-based interactive
environment,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2020, pp. 11 097–11 107.

[55] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[56] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-

dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby et al., “Dinov2:
Learning robust visual features without supervision,” arXiv preprint
arXiv:2304.07193, 2023.

[57] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, pp.
606–624, 2023.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[59] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[60] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[61] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi, “Simple
but effective: Clip embeddings for embodied ai,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 14 829–14 838.

[62] A. Eftekhar, K.-H. Zeng, J. Duan, A. Farhadi, A. Kembhavi, and
R. Krishna, “Selective visual representations improve convergence
and generalization for embodied ai,” arXiv preprint arXiv:2311.04193,
2023.

[63] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The
design of stretch: A compact, lightweight mobile manipulator for
indoor human environments,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 3150–3157.

[64] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning in
homes: Improving generalization and reducing dataset bias,” Advances
in neural information processing systems, vol. 31, 2018.

[65] M. Deitke, R. Hendrix, A. Farhadi, K. Ehsani, and A. Kembhavi,
“Phone2proc: Bringing robust robots into our chaotic world,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 9665–9675.

[66] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal, “Reconciling reality through simulation: A real-
to-sim-to-real approach for robust manipulation,” arXiv preprint
arXiv:2403.03949, 2024.

[67] L. Weihs, J. Salvador, K. Kotar, U. Jain, K.-H. Zeng, R. Mottaghi, and
A. Kembhavi, “Allenact: A framework for embodied ai research,” in
arXiv preprint arXiv:2008.12760, 2020.

[68] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[69] J. Ni, G. H. Abrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and
Y. Yang, “Sentence-t5: Scalable sentence encoders from pre-trained
text-to-text models,” arXiv preprint arXiv:2108.08877, 2021.

[70] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mot-
taghi, J. Salvador, D. Schwenk, E. VanderBilt, M. Wallingford et al.,
“Robothor: An open simulation-to-real embodied ai platform,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3164–3174.

https://arxiv.org/abs/1707.06347


APPENDIX
A. Results Visualization

We encourage the reader to visit our website
(robot-flare.github.io) for visualizations of
trajectories generated by FLaRe both in simulation and
in the real world, including performances visualization,
behavior analysis, and failure mode analysis.

B. Hyperparameter

Training and Model Details

Parameter Value
Total Rollouts 32
Learning Rate 0.0002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor 𝛾 0.99
GAE 𝜆 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.0
Steps for PPO Update 128
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

TABLE IV: Hyperparameters for training and model archi-
tecture. We use AllenAct [67] to implement our models and
conduct experiments.

C. Number of Training Steps

The base SPOC model that we evaluted and fine-tuned
upon is trained for 50k gradient update steps on a total
of 100k episodes of demonstrations across the CHORES
tasks, where the training hyperparameter and training data
is exactly the same as in the original SPOC paper.

For navigation tasks that do not involve manipulating
objects (i.e. ObjectNav and RoomVisit), FLaRe performs RL
fine-tuning for 20M steps, while all other fair-comparison
baseline methods perform RL training for 60M steps. For
mobile manipulation tasks (i.e. Fetch and Pickup), FLaRe
performs RL fine-tuning for 50M steps, while all other fair-
comparison baseline methods perform RL training for 100M
steps. For adaptation tasks, we run FLaRe fine-tuning for
50M steps on ObjNavRelAttr and ObjNavAfford, and 20M
steps on RoomNav. For cross-embodiment, we run FLaRe
for 30M steps.

All of the aforementioned experiments use the same base
SPOC mode, with exactly the same set of hyperparameters.

D. CHORES Benchmark
A big portion of FLaRe’s evaluation is carried out on

the CHORES benchmark. We provided detailed information
about this benchmark, including the observation space, action
space, and task specifications.

1) Observation Space: The observation space of
CHORES consists of two ego-centric 384 × 224 RGB
camera pointing towards orthogonal directions, where one
points towards the direction of navigation and the other
points at the arm. Additionally, a natural language text
instruction is re-sampled at the start of each episode and
appended to the observation to specify what the robot
should be doing.

2) Action Space: The action space of CHORES consists
of 20 discrete actions: Move Base (± 20 cm), Rotate Base
(±6◦, ±30◦), Move Arm (x, z) (±2 cm, ±10 cm), Rotate
Grasper (±10◦), pickup, dropoff, done with subtask, and
terminate.

3) Tasks Specifications: We describe the CHORES tasks
in Table. V. For each task, if the robot exceeds the maximum
steps, the episode is terminated and marked as failed.

For each task, we splited a total of 191,568 houses from
ProcThor [49] into training and testing sets with a ratio of
10:1, to ensure that the test evaluation is conducted in unseen
houses.

E. The SPOC Model
In this work, we use a slightly modified version of the

SPOC model [7] inspired by Poliformer [10], where the
transformer decoder block in SPOC is replaced by the
decoder from Llama 2 LLM [68] to speed up training
and inference. At each step, the SPOC model takes in the
new observations consisting of two RGB images and a
text instruction. Each of these images are separately passed
through a frozen vision transformer model (DinoV2 [56])
to extract a set of visual tokens. These tokens, along with an
embedding of the natural language instructions using a pre-
train text encoder T5 [69], are summarized by a transformer
state encoder to produce the observation representation. A
causal transformer decoder then decodes the observations
feature across all steps within the current episode into a belief
vector that is passed through an actor head to generate the
action prediction. We provide a visualization of our model in
Fig. 7, and explain each of these components in detail below.

1) Vision Transformer Model: We use DINOv2 as the
visual foundation backbone because of its remarkable ability
to make dense predictions that generalize across sim and real.
Our input to the visual backbone are two RGB observations
𝑖𝑎 and 𝑖𝑏. 𝑖𝑎 ∈ R𝐻×𝑊×3 is captured by the navigation camera
and 𝑖𝑏 ∈ R𝐻×𝑊×3 is captured by manipulation camera, where
𝐻 and 𝑊 are the height and width of the image. The
visual backbone then produces a patch-wise representation
𝑟 ∈ R𝐻

14 ×
𝑊
14 ×ℎ, where ℎ is the hidden dimensions of the visual

representations. 𝑟 is then reshaped and projected to generate
visual tokens 𝑣raw ∈ R𝑛patch×𝑑encoder . A learnable camera-type
embedding is then added to this visual tokens to ensure
the model can differentiate between the navigation and the

robot-flare.github.io


Task Description & Example Max Steps
ObjectNav Locate an object category: “find a mug” 600
PickUp Pick up a specified object in agent line of sight: “pick up a mug” 600
Fetch Find and pick up an object: “locate a mug and pick up that mug” 600
RoomVisit Traverse the house. “Visit every room in this 5-room house. Indicate

when you have seen a new room and when you are done.”
1000

TABLE V: CHORES tasks.

Tr
an

sf
or

m
er

 S
ta

te
 E

nc
od

er

Ti
m

e
t

t−
1

t−
2

t−
3

t−
4

Pr
ev

io
us

 
Ac

tio
ns

at−5
at−4

at−3
at−2

at−1

St
at

e 
Fe

at
ur

es
st−4

st−3
st−2

st−1
st

st

Pr
ed

ic
te

d 
Ac

tio
ns

at−4
at−3

at−2
at−1

at

Ac
tio

n 
H

ea
d

C
rit

ic
 

H
ea

d

Va
lu

e 
Es

tim
at

io
n

et−4
et−3

et−2
et−1

etbt

Causal Transformer Decoder

qt

kt

vt

At
te

nt
io

n 
La

ye
r

Nx

Value cache

Key cache

Vi
si

on
 T

ra
ns

fo
rm

er
 M

od
el

M
LP

it
a

rt

Navigation Camera STATE
f

g

G
oa

l 
Sp

ec
ifi

ca
tio

n 
En

co
de

r

M
LPSearch for 

a sofa

Goal Specification

M
LP

it
b

rt

Manipulation Camera

Fig. 7: A visualization of the network architecture of the transformer-based SPOC model that FLaRe fine-tunes upon.

manipulation cameras, resulting in the final visual features 𝑣.
To ensure sim-to-real transfer, we freeze the DinoV2 weight
throughout training.

2) Transformer State Encoder: This module summarizes
the observations at each timestep as a vector 𝑠 ∈ R𝑑 . The
input to this encoder includes the visual representation 𝑣,
the text feature 𝑔, and a learnable STATE token 𝑓 . We
concatenate these features together and feed them to a non-
causal transformer encoder. This encoder then returns the
output corresponding to the STATE token as the state feature
vector. The transformer state encoder digests both visual and
text features, and can thus be seen as generating a text-
conditioned visual state representation.

3) Causal Transformer Decoder: To deal with partial
observability and handle long-horizon tasks, SPOC uses a
causal transformer decoder to perform explicit memory mod-
eling over time. The causal transformer decoder consumes
the visual representations generated by the transformer state
encoder, additively combines them with sinusoidal temporal
position encodings and learned previous time step action
embeddings, and generates the belief vector used for action
generation.

F. Real Robot Setup
Following SPOC [7], we equipped our Stretch RE-1 robot

with two identical Intel RealSense 455 fixed cameras, namely
the navigation and the manipulation camera. These cameras
have a vertical field of view of 59◦ and are capable of
capturing 1280×720 RGB-D images. Both of these cameras
point slightly down, with the horizon at a nominal 30◦, to
optimize the agent’s perspective of its functional workspace.
The images returned by these cameras are first resized to 396

× 224, and the cropped to 384 × 224, to match the image
observations during training.

Same as SPOC, we assess the performance of our mod-
els on ObjectNav and Fetch in a 6-room apartment also
used in Phone2Proc [65], Pickup in RoboThor [70], and
RoomVisit in both environments. The 6-room apartment
contains environment variations wholly unseen at train time,
including a new configuration (multiple rooms off a long
corridor), two new room types (office and corridor), rooms
with non-orthogonal wall alignment, and many unseen object
instances. For each object in ObjectNav and Fetch, we tested
three starting positions: once from the living room, once from
the middle of the corridor, and once from the kitchen. We
visualize these starting locations in Fig. 5. Below, we provide
objects that we tested upon in the real world for each tasks.

1) ObjectNav: Target objects are Sofa, Bed, Chair, Apple,
Vase, and Houseplant, each from three starting positions.

2) Fetch: Target objects are Apple, Vase, and Houseplant
from the same three starting positions. In one small change
from ObjectNav episodes, object instances are replaced with
instances which better fit into Stretch’s grasping envelope
and in some cases at a better height for interaction, but
availability and placement are nearly identical.

3) PickUp: Objects are placed on three different surfaces
(coffee table, desk, and nightstand) at three different heights.
Objects are Apple, Houseplant, Spray Bottle, Mug, and Vase.

4) RoomVisit: The full 6-room apartment is explored,
and then partitioned into two 3-room apartments to evaluate
the ability of SPOC to explore large and small spaces. We
additionally explore a section of RoboTHOR and attached
workroom as a novel 3-room apartment.


	INTRODUCTION
	Related Work
	Foundation model for robotics
	RL training and fine-tuning of robotics models

	Problem Formulation
	Method
	Fine-tune from a multi-task robotics model
	Large-scale fine-tuning in simulation
	Stabilize RL fine-tuning

	Results
	FLaRe on seen capabilities
	FLaRe on novel capabilities
	FLaRe on real robots
	FLaRe for adaptation
	Adaptation to New Embodiment
	Adaptation to New Behavior

	Ablation studies

	CONCLUSIONS
	References
	Results Visualization
	Hyperparameter
	Number of Training Steps
	CHORES Benchmark
	Observation Space
	Action Space
	Tasks Specifications

	The SPOC Model
	Vision Transformer Model
	Transformer State Encoder
	Causal Transformer Decoder

	Real Robot Setup
	ObjectNav
	Fetch
	PickUp
	RoomVisit



