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ABSTRACT

We propose the first loss function for approximate Nash equilibria of normal-form
games that is amenable to unbiased Monte Carlo estimation. This construction
allows us to deploy standard non-convex stochastic optimization techniques for
approximating Nash equilibria, resulting in novel algorithms with provable guaran-
tees. We complement our theoretical analysis with experiments demonstrating that
stochastic gradient descent can outperform previous state-of-the-art approaches.

1 INTRODUCTION

Nash equilibrium (NE) famously encodes stable behavioral outcomes in multi-agent systems and
is arguably the most influential solution concept in game theory. Formally speaking, if n players
independently choose n, possibly mixed, strategies (xi for i 2 [n]) and their joint strategy (x =Q

i xi) constitutes a Nash equilibrium, then no player has any incentive to unilaterally deviate
from their strategy. This concept has sparked extensive research in various fields, ranging from
economics (Milgrom and Weber, 1982) to machine learning (Goodfellow et al., 2014), and has even
inspired behavioral theory generalizations such as quantal response equilibria which allow for more
realistic models of boundedly rational agents (McKelvey and Palfrey, 1995).

Unfortunately, when considering Nash equilibria beyond the 2-player, zero-sum scenario, two
significant challenges arise. First, it becomes unclear how n independent players would collectively
identify a Nash equilibrium when multiple equilibria are possible, giving rise to the equilibrium
selection problem (Harsanyi et al., 1988). Secondly, even approximating a single Nash equilibrium is
known to be computationally intractable and specifically PPAD-complete (Daskalakis et al., 2009).
Combining both problems together, e.g., testing for the existence of equilibria with welfare greater
than some fixed threshold is NP-hard and it is in fact even hard to approximate (Austrin et al., 2011).

From a machine learning practitioner’s perspective, such computational complexity results hardly give
pause for thought as collectively we have become all too familiar with the unreasonable effectiveness
of heuristics in circumventing such obstacles. Famously, non-convex optimization is NP-hard, even
if the goal is to compute a local minimizer (Murty and Kabadi, 1985), however, stochastic gradient
descent (SGD) and variants succeed in training billion parameter models (Brown et al., 2020).

Unfortunately, computational techniques for Nash equilibrium have so far not achieved anywhere near
the same level of success. In contrast, most modern NE solvers for n-player, m-action, general-sum,
normal-form games (NFGs) are practically restricted to a handful of players and/or actions per
player except in special cases, e.g., symmetric (Wiedenbeck and Brinkman, 2023) or mean-field
games (Pérolat et al., 2022). For example, when running the suite of all 7 applicable methods from the
hallmark gambit library (McKelvey et al., 2016) on a 4-player Blotto game, we find only brute-force
pure-NE enumeration is able to return any NE within a 1 hour time limit. Scaling solvers to large
games is difficult partially due to the fact that an NFG is represented by a tensor with an exponential
nm

n entries; even reading this description into memory can be computationally prohibitive. More to
the point, any computational technique that presumes exact computation of the expectation of any
function sampled according to x similarly does not have any hope of scaling beyond small instances.

This inefficiency arguably lies at the core of the differential success between ML optimization and
equilibrium computation. For example, numerous techniques exist that reduce the problem of Nash
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computation to the minimization of the expectation of a random variable (Section 3). Unfortunately,
unlike the source of randomness in ML applications where batch learning suffices to easily produce
unbiased estimators, these techniques do not extend easily to game theory which incorporates
non-linear functions such as maximum and best-response. This raises our motivating goal:

Can we solve for Nash equilibria via unbiased stochastic optimization?

Our results. Following in the successful steps of the interplay between ML and stochastic optimiza-
tion, we reformulate the approximation of Nash equilibria in an NFG as a stochastic non-convex
optimization problem admitting unbiased Monte-Carlo estimation. This enables the use of powerful
solvers and advances in parallel computing to efficiently enumerate Nash equilibria for n-player,
general-sum games. Furthermore, this re-casting allows practitioners to incorporate other desirable
objectives into the problem such as “find an approximate Nash equilibrium with welfare above !”
or “find an approximate Nash equilibrium nearest the current observed joint strategy” resolving the
equilibrium selection problem in an effectively ad-hoc and application tailored manner. Concretely,
we make the following contributions by producing:

• A loss L⌧ (x) 1) whose global minima well approximate Nash equilibria in normal form games, 2)
admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.

• An efficient randomized algorithm for approximating Nash equilibria in a novel class of games.
The algorithm emerges by employing the family of X -armed bandit approaches to L

⌧ (x) and
connecting their global stochastic optimization guarantees to global approximate Nash guarantees.

• An empirical comparison of SGD against state-of-the-art baselines for approximating NEs in large
games. In some games, vanilla SGD actually improves upon previous state-of-the-art; in others,
SGD is slowed by saddle points, a familiar challenge in deep learning (Dauphin et al., 2014).

Overall, this perspective showcases a promising new route to approximating equilibria at scale in
practice. We conclude the paper with discussion for future work.

2 PRELIMINARIES

In an n-player, normal-form game, each player i 2 {1, . . . , n} has a strategy set Ai =
{ai1, . . . , aimi} consisting of mi pure strategies. These strategies can be naturally indexed, so
we redefine Ai = {1, . . . ,mi} as an abuse of notation. Each player i also has a utility function,
ui : A =

Q
i Ai ! [0, 1], (equiv. “payoff tensor”) that maps joint actions to payoffs in the unit-

interval . We denote the average cardinality of the players’ action sets by m̄ = 1
n

P
k mk and

maximum by m
⇤ = maxk mk. Player i may play a mixed strategy by sampling from a distribution

over their pure strategies. Let player i’s mixed strategy be represented by a vector xi 2 �mi�1

where �mi�1 is the (mi � 1)-dimensional probability simplex embedded in Rmi . Each function ui

is then extended to this domain so that ui(x) =
P

a2A ui(a)
Q

j xjaj where x = (x1, . . . , xn) and
aj 2 Aj denotes player j’s component of the joint action a 2 A. For convenience, let x�i denote all
components of x belonging to players other than player i.

The joint strategy x 2
Q

i �
mi�1 is a Nash equilibrium if and only if, for all i 2 {1, . . . , n},

ui(zi, x�i)  ui(x) for all zi 2 �mi�1, i.e., no player has any incentive to unilaterally deviate from
x. Nash is typically relaxed with ✏-Nash, our focus: ui(zi, x�i)  ui(x) + ✏ for all zi 2 �mi�1.

As an abuse of notation, let the atomic action ai = ei also denote the mi-dimensional “one-hot"
vector with all zeros aside from a 1 at index ai; its use should be clear from the context. We also intro-
duceri

xi
as player i’s utility gradient. And for convenience, denote by H

i
il = Ex�il [ui(ai, al, x�il)]

the bimatrix game approximation (Janovskaja, 1968) between players i and l with all other play-
ers marginalized out; x�il denotes all strategies belonging to players other than i and l and
ui(ai, al, x�il) separates out l’s strategy xl from the rest of the players x�i. Similarly, denote
by T

i
ilq = Ex�ilq [ui(ai, al, aq, x�ilq)] the 3-player tensor approximation to the game. Note player

i’s utility can now be written succinctly as ui(xi, x�i) = x
>
i r

i
xi

= x
>
i H

i
ilxl = xiT

i
ilqxlxq for any

l, q where we use Einstein notation for tensor arithmetic. For convenience, define diag(z) as the
function that places a vector z on the diagonal of a square matrix, and diag3 : z 2 Rd

! Rd⇥d⇥d

as a 3-tensor of shape (d, d, d) where diag3(z)iii = zi. Following convention from differential
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Loss Function Obstacle
Exploitabilty maxk ✏k(x) max of r.v.
Nikaido-Isoda (NI)

P
k ✏k(x) max of r.v.

Fully-Diff. Exp
P

k

P
ak2Ak

[max(0, uk(ak, x�i)� uk(x))]2 max of r.v.
Gradient-based NI NI w/ BRk  aBRk = ⇧�

⇣
xk + ⌘rxkuk(x)

⌘
⇧� of r.v.

Unconstrained Loss + Simplex Deviation Penalty sampling from xi 2 Rmk

Table 1: Previous loss functions for NFGs and their obstacles to unbiased estimation. Note that
✏k(x) = maxz uk(z, x�k)�uk(x) contains a max operator (see equivalent definition in equation (1)).

geometry, let TvM be the tangent space of a manifold M at v. For the interior of the d-action
simplex �d�1, the tangent space is the same at every point, so we drop the v subscript, i.e., T�d�1.
We denote the projection of a vector z 2 Rd onto this tangent space as ⇧T�d�1(z) = z �

1
d11

>
z

and call ⇧T�d�1(ri
xi
) a projected-gradient. We drop d� 1 when the dimensionality is clear from

the context. Finally, let U(S) denote a discrete uniform distribution over elements from set S.

3 RELATED WORK

Representing the problem of computing a Nash equilibrium as an optimization problem is not new. A
variety of loss functions and pseudo-distance functions have been proposed. Most of them measure
some function of how much each player can exploit the joint strategy by unilaterally deviating:

✏k(x)
def
= uk(BRk, x�k)� uk(x) where BRk 2 argmax

z
uk(z, x�k). (1)

As argued in the introduction, we believe it is important to be able to subsample payoff tensors of
normal-form games in order to scale to large instances. As Nash equilibria can consist of mixed
strategies, it is advantageous to be able to sample from an equilibrium to estimate its exploitability
✏. However none of these losses is amenable to unbiased estimation under sampled play. Each
of the functions currently explored in the literature is biased under sampled play either because 1)
a random variable appears as the argument of a complex, nonlinear (non-polynomial) function or
because 2) how to sample play is unclear. Exploitability, Nikaido-Isoda (NI) (Nikaidô and Isoda,
1955) (also known by NashConv (Lanctot et al., 2017) and ADI (Gemp et al., 2022)), as well as
fully-differentiable options (Shoham and Leyton-Brown, 2008, p. 106, Eqn 4.31) introduce bias
when a max over payoffs is estimated using samples from x. Gradient-based NI (Raghunathan et al.,
2019) requires projecting the result of a gradient-ascent step onto the simplex; for the same reason
as the max, this is prohibitive because it is a nonlinear operation which introduces bias. Lastly,
unconstrained optimization approaches (Shoham and Leyton-Brown, 2008, p. 106) that instead
penalize deviation from the simplex lose the ability to sample from strategies when each iterate x is
no longer a distribution (i.e., xk 62 �mk�1). Table 1 summarizes these complications.

4 NASH EQUILIBRIUM AS STOCHASTIC OPTIMIZATION

We will now develop our proposed loss function which is amenable to unbiased estimation. Sub-
sections 4.1-4.4 provide a warm-up in which we assume an interior (fully-mixed) Nash equilibrium
exists. Subsection 4.5 then shows how to relax that assumption allowing us to approximate partially
mixed equilibria as well (including pure equilibria). Our key technical insight is to pay special
attention to the geometry of the simplex. To our knowledge, prior works have failed to recognize the
role of the tangent space T�. Proofs are in the appendix.

4.1 STATIONARITY ON THE SIMPLEX INTERIOR

Lemma 1. Assuming player i’s utility, ui(xi, x�i), is concave in its own strategy xi, a strategy in
the interior of the simplex is a best response BRi if and only if it has zero projected-gradient1 norm.

In NFGs, each player’s utility is linear in xi, thereby satisfying the concavity condition of Lemma 1.
1Not to be confused with the nonlinear (biased) projected gradient operator in (Hazan et al., 2017).
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4.2 PROJECTED GRADIENT NORM AS LOSS

An equivalent description of a Nash equilibrium is a joint strategy x where every player’s strategy is
a best response to the equilibrium (i.e., xi = BRi so that ✏i(x) = 0). Lemma 1 states that any interior
best response has zero projected-gradient norm, which inspires the following loss function

L(x) =
X

k

⌘k||⇧T�(r
k
xk
)||2 (2)

where ⌘k > 0 represent scalar weights, or equivalently, step sizes to be explained next.
Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approx-
imated by a single step of projected-gradient ascent with step size ⌘k: aBRk = xk + ⌘k⇧T�(rk

xk
).

This connection was already pointed out in prior work for unconstrained problems (Gemp et al., 2022;
Raghunathan et al., 2019), but this result is the first for strategies constrained to the simplex.

4.3 CONNECTION TO TRUE EXPLOITABILITY

In general, we can bound exploitability in terms of the projected-gradient norm as long as each
player’s utility is concave (this result extends to subgradients of non-smooth functions).
Lemma 2. The amount a player can gain by exploiting a joint strategy x is upper bounded by a
quantity proportional to the norm of the projected-gradient:

✏k(x) 
p
2||⇧T�(r

k
xk
)||. (3)

This bound is not tight on the boundary of the simplex, which can be seen clearly by considering xk

to be part of a pure strategy equilibrium. In that case, this analysis assumes xk can be improved upon
by a projected-gradient ascent step (via the equivalence pointed out in Proposition 1). However, that
is false because the probability of a pure strategy cannot be increased beyond 1. We mention this to
provide further intuition for why our “warm-up” loss L(x) is only valid for interior equilibria.

Note that ||⇧T�(rk
xk
)||  ||r

k
xk
|| because ⇧T� is a projection. Therefore, this improves the naive

bounds on exploitability and distance to best responses given using the “raw” gradientrk
xk

.
Lemma 3. The exploitability of a joint strategy x, is upper bounded by a function of L(x):

✏ 

r
2n

mink ⌘k

p
L(x)

def
= f(L). (4)

4.4 UNBIASED ESTIMATION

As discussed in Section 3, a primary obstacle to unbiased estimation of L(x) is the presence of
complex, nonlinear functions of random variables, with the projection of a point onto the simplex
being one such example (see ⇧� in Table 1). However, ⇧T�, the projection onto the tangent space
of the simplex, is linear! This is the key that allows us to design an unbiased estimator (Lemma 5).

Our proposed loss requires computing the squared norm of the expected value of the gradient
under the players’ mixed strategies, i.e., the l-th entry of player k’s gradient equals rk

xkl
=

Ea�k⇠x�kuk(akl, a�k). By analogy, consider a random variable Y . In general, E[Y ]2 6= E[Y 2].
This means that we cannot just sample projected-gradients and then compute their average norm to
estimate our loss. However, consider taking two independent samples from two corresponding identi-
cally distributed, independent random variables Y (1) and Y

(2). Then E[Y (1)]2 = E[Y (1)]E[Y (2)] =
E[Y (1)

Y
(2)] by properties of expected value over products of independent random variables. This is

a common technique to construct unbiased estimates of expectations over polynomial functions of
random variables. Proceeding in this way, definerk(1)

xk as a random variable distributed according to
the distribution induced by all other players’ mixed strategies (j 6= k). Let rk(2)

xk be independent and
distributed identically to rk(1)

xk . Then

L(x) = E[
X

k

⌘k(r̂
k(1)
xk
�

1

mk
(1>
r̂

k(1)
xk

)1
| {z }

projected-gradient 1

)>(r̂k(2)
xk
�

1

mk
(1>
r̂

k(2)
xk

)1
| {z }

projected-gradient 2

)] (5)
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Exact Sample Others Sample All
Estimator of rk(p)

xk [uk(akl, x�k)]l [uk(akl, a�k ⇠ x�k)]l mkuk(akl ⇠ U(Ak), a�k ⇠ x�k)el
r̂

k(p)
xk Bounds [0, 1] [0, 1] [0,mk]

r̂
k(p)
xk Query Cost

Qn
i=1 mi mk 1

L̂ Bounds ±1/4
P

k ⌘kmk ±1/4
P

k ⌘kmk ±1/4
P

k ⌘km
3
k

L̂ Query Cost n
Qn

i=1 mi 2nm̄ 2n

Table 2: Examples and Properties of Unbiased Estimators of Loss and Player Gradients (r̂k(p)
xk ).

where r̂k(p)
xk is an unbiased estimator of player k’s gradient. This estimator can be constructed in

several ways. The most expensive, an exact estimator, is constructed by marginalizing player k’s
payoff tensor over all other players’ strategies. However, a cheaper estimate can be obtained at the
expense of higher variance by approximating this marginalization with a Monte Carlo estimate of
the expectation. Specifically, if we sample a single action for each of the remaining players, we can
construct an unbiased estimate of player k’s gradient by considering the payoff of each of its actions
against the sampled background strategy. Lastly, we can consider constructing an estimate of player
k’s gradient by sampling only a single action from player k to represent their entire gradient. Each
of these approaches is outlined in Table 2 along with the query complexity (Babichenko, 2016) of
computing the estimator and bounds on the values it can take (Lemma 9).

We can extend Lemma 3 to one that holds under T samples with probability 1� � by applying, for
example, a Hoeffding bound: ✏  f

�
L̂(x) +O(

q
1
T ln(1/�)

�
.

4.5 INTERIOR EQUILIBRIA

We discussed earlier that L(x) captures interior equilibria. But some games may only have partially
mixed equilibria, i.e., equilibria that lie on the boundary of the simplex. We show how to circumvent
this shortcoming by considering quantal response equilibria (QREs), specifically, logit equilibria. By
adding an entropy bonus to each player’s utility, we can

• guarantee all equilibria are interior,

• still obtain unbiased estimates of our loss,

• maintain an upper bound on the exploitability ✏ of any approximate Nash equilibrium in the
original game (i.e., the game without an entropy bonus).

Define u
⌧
k(x) = uk(x) + ⌧S(xk) where Shannon entropy S(xk) = �

P
l xkl ln(xkl) is 1-strongly

concave with respect to the 1-norm (Beck and Teboulle, 2003). It is known that Nash equilibria of
entropy-regularized games satisfy the conditions for logit equilibria (Leonardos et al., 2021), which
are solutions to the fixed point equation xk = softmax( 1⌧r

k
xk
). The softmax makes clear that

all probabilities have positive mass at positive temperature.

Recall that in order to construct an unbiased estimate of our loss, we simply needed to construct
unbiased estimates of player gradients. The introduction of the entropy term to player k’s utility is
special in that it depends entirely on known quantities, i.e., the player’s own mixed strategy. We
can directly and deterministically compute ⌧

dS
dxk

= �⌧(ln(xk) + 1) and add this to our estimator of

r
k(p)
xk : r̂k⌧(p)

xk = r̂k(p)
xk + ⌧

dS
dxk

. Consider our loss function refined from (2) with changes in blue:

L
⌧ (x) =

X

k

⌘k||⇧T�(r
k⌧
xk
)||2. (6)

As mentioned above, the utilities with entropy bonuses are still concave, therefore, a similar bound
to Lemma 2 applies. We use this to prove the QRE counterpart to Lemma 3 where ✏QRE is the
exploitability of an approximate equilibrium in a game with entropy bonuses.
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Figure 1: Effect of Sampled Play on a Biased Loss. The first row displays the expectation of the
upper bound guaranteed by our proposed loss L

⌧ . The second row displays the expectation of
NashConv under sampled play, i.e.,

P
k ✏k where ✏k = Ea�k⇠x�k [maxak u

⌧
k(a)] � Ea⇠x[u⌧

k(a)].
To be consistent, we add the offset n⌧W (1/e) to NashConv per Lemma 16, which relates the
exploitability at positive temperature to that at zero temperature. The resulting loss surface clearly
shows NashConv fails to recognize any interior Nash equilibrium due to its inherent bias.

Lemma 4. The entropy regularized exploitability, ✏QRE , of a joint strategy x, is upper bounded as:

✏QRE 

r
2n

mink ⌘k

p
L⌧ (x)

def
= f(L⌧ ). (7)

Lastly, we establish a connection between quantal response equilibria and Nash equilibria that allows
us to approximate Nash equilibria in the original game via minimizing our modified loss L⌧ (x).
Lemma 16 (L⌧ Scores Nash Equilibria). Let L⌧ (x) be our proposed entropy regularized loss
function with payoffs bounded in [0, 1] and x be an approximate QRE. Then it holds that

✏  n⌧(W (1/e) +
m̄� 2

e
) + 2

r
nmaxk mk

mink ⌘k

p
L⌧ (x) (8)

where W is the Lambert function: W (1/e) = W (exp(�1)) ⇡ 0.278.

This upper bound is plotted as a heatmap for a familiar Chicken game in the top row of Figure 1. First,
notice how pure equilibria are not visible as minima for zero temperature, but appear for slightly
warmer temperatures. Secondly, notice that NashConv in the bottom row is unable to capture the
interior Nash equilibrium because of its high bias under sampled play. In contrast, our proposed loss
L
⌧ is guaranteed to capture all equilibria at low temperature ⌧ .

5 ANALYSIS

In the preceding section we established a loss function that upper bounds the exploitability of an
approximate equilibrium. In addition, the zeros of this loss function have a one-to-one correspondence
with quantal response equilibria (which approximate Nash equilibria at low temperature).

Here, we derive properties that suggest it is “easy” to optimize. While this function is generally
non-convex and may suffer from a proliferation of saddle points (Figure 2) , it is Lipschitz continuous
(over the relevant subset of the interior) and bounded. These are two commonly made assumptions in
the literature on non-convex optimization, which we leverage in Section 6. In addition, we can derive
its gradient, its Hessian, and characterize its behavior around global minima.
Lemma 17. The gradient of L⌧ (x) with respect to player l’s strategy xl is

rxlL
⌧ (x) = 2

X

k

⌘kB
>
kl⇧T�(r

k⌧
xk
) (9)

where Bll = �⌧ [I �
1
ml

11>]diag( 1
xl
) and Bkl = [I � 1

mk
11>]Hk

kl for k 6= l.
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Figure 2: Analysis of Loss Landscape. We reapply the analysis of (Dauphin et al., 2014), originally
designed to understand the success of SGD in deep learning, to “slices” of several popular extensive
form games. To construct a slice (or meta-game), we randomly sample 6 deterministic policies
and then consider the corresponding n-player, 6-action normal-form game at ⌧ = 0.1 (with payoffs
normalized to [0, 1]). The index of a critical point xc (rxL

⌧ (xc) = 0) indicates the fraction of
negative eigenvalues in the Hessian of L⌧ at xc; ↵ = 0 indicates a local minimum, 1 a maximum,
else a saddle point. We see a positive correlation between exploitability (y-axis), projected-gradient
norm (x-axis), and ↵ (color) indicating a lower prevalence of local minima at high exploitability.

Lemma 19. The Hessian of L⌧ (x) can be written

Hess(L⌧ ) = 2
⇥
B̃

>
B̃ + T⇧T�(r̃

⌧ )
⇤

(10)

where B̃kl =
p
⌘kBkl, ⇧T�(r̃⌧ ) = [⌘1⇧T�(r1⌧

x1
), . . . , ⌘n⇧T�(rn⌧

xn
)], and we augment T (the

3-player approximation to the game, T k
lqk) so that T l

lll = ⌧diag3( 1
x2
l
).

At an equilibrium, the latter term disappears because ⇧T�(rk⌧
xk
) = 0 for all k (Lemma 1). If X

was Rnm̄, then we could simply check if B̃ is full-rank to determine if Hess � 0. However, X is a
simplex product, and we only care about curvature in directions toward which we can update our
strategy profile x. Toward that end, define M to be the n(m̄+ 1)⇥ nm̄ matrix that stacks B̃ on top
of a repeated identity matrix that encodes orthogonality to the simplex:

M(x) =

2

666666664

�⌧
p
⌘1⇧T�(

1
x1
)
p
⌘1⇧T�(H1

12) . . .
p
⌘1⇧T�(H1

1n)
...

...
...

...
p
⌘n⇧T�(Hn

n1) . . .
p
⌘n⇧T�(Hn

n,n�1) �⌧
p
⌘n⇧T�(

1
xn

)
1>
1 0 . . . 0
...

...
...

...
0 . . . 0 1>

n

3

777777775

(11)

where ⇧T�(z 2 Ra⇥b) = [Ia �
1
a1a1>

a ]z subtracts the mean from each column of z and 1
xi

is
shorthand for diag( 1

xi
). If M(x)z = 0 for a nonzero vector z 2 Rnm̄, this implies there exists a z

that 1) is orthogonal to the ones vectors of each simplex (i.e., is a valid equilibrium update direction)
and 2) achieves zero curvature in the direction z, i.e., z>(B̃>

B̃)z = z
>(Hess)z = 0, and so Hess

is not positive definite. Conversely, if M(x) is of rank nm̄ for a quantal response equilibrium x, then
the Hessian of L⌧ at x in the tangent space of the simplex product (X =

Q
i Xi) is positive definite.

In this case, we call x polymatrix-isolated: polymatrix because we only require information of the
local polymatrix approximation of the game (i.e., the H

i
ij matrices) to construct M and isolated

because it implies x is not connected to any other equilibria.
Definition 1 (Polymatrix-Isolated Equilibrium). A Nash equilibrium x⇤ is polymatrix-isolated iff x⇤

is isolated according to its local polymatrix game approximation.

By analyzing the rank of M , we can confirm that many classical matrix games including Rock-
Paper-Scissors, Chicken, Matching Pennies, and Shapley’s game all induce strongly convex L

⌧ ’s at
zero temperature (i.e., they have unique mixed Nash equilibria). In contrast, a game like Prisoner’s
Dilemma has a unique pure strategy that will not be captured by our loss at zero temperature.

6 ALGORITHMS

We have formally transformed the approximation of Nash equilibria in NFGs into a stochastic

optimization problem. To our knowledge, this is the first such formulation that allows one-shot
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Figure 3: Comparison of SGD on L
⌧=0 against baselines on four games evaluated in (Gemp et al.,

2022). The number of samples used to estimate each update iteration (i.e., minibatch size) is indicated
by s. From left to right: 2-player, 3-action, nonsymmetric; 6-player, 5-action, nonsymmetric; 4-player,
66-action, symmetric; 3-player, 286-action, symmetric. SGD struggles at saddle points in Blotto.

unbiased Monte-Carlo estimation which is critical to introduce the use of powerful algorithms capable
of solving high dimensional optimization problems. We explore two off-the-shelf approaches.

6.1 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is the workhorse of high-dimensional stochastic optimization. It comes
with guaranteed convergence to stationary points (Cutkosky et al., 2023), however, it may converge
to local, rather than global minima. It also enjoys implicit gradient regularization (Barrett and
Dherin, 2020), seeking “flat” minima and performs approximate Bayesian inference (Mandt et al.,
2017). Despite the lack of global convergence guarantee, we find it performs well empirically in
games previously examined by the literature: modified Shapley’s (Ostrovski and van Strien, 2013),
GAMUT D7 (Nudelman et al., 2004), Blotto (Arad and Rubinstein, 2012). Figure 3 shows SGD
is competitive with scalable techniques to approximating NEs: FTRL (Shalev-Shwartz and Singer,
2006; Shalev-Shwartz et al., 2012), Regret Matching (Hart and Mas-Colell, 2000), ADIDAS (Gemp
et al., 2022). Shapley’s game induces a strongly convex L (see Section 5) leading to SGD’s strong
performance. Blotto reaches low, but nonzero ✏, demonstrating the challenges of saddle points.

6.2 HIGH PROBABILITY, GLOBAL POLYNOMIAL CONVERGENCE RATES VIA BANDITS

We explore one other algorithmic approach to non-convex optimization based on minimizing regret,
which enjoys finite time global convergence rates. X -armed bandits (Bubeck et al., 2011) system-
atically explore the space of solutions by refining a mesh over the joint strategy space, trading off
exploration versus exploitation of promising regions. Several approaches exist (Bartlett et al., 2019;
Valko et al., 2013) with open source implementations, e.g., (Li et al., 2023). Applying X -armed
bandits to our L⌧ can be thought of as a stochastic generalization of the exclusion method and other
bandit approaches for Nash equilibria (Berg and Sandholm, 2017; Zhou et al., 2017).

Equipped with these techniques, we can establish a high probability polynomial-time global conver-
gence rate to Nash equilibria in n-player, general-sum games under mild assumptions. The quality of
this approximation improves as ⌧ ! 0, at the same time increasing the constant on the convergence
rate via the Lipschitz constant

p
L̂ defined below. For clarity, we assume users provide a temperature

in the form ⌧ = 1
ln(1/p) with p 2 (0, 1) which ensures all equilibria have probability mass greater

than p
m⇤ for all actions (Lemma 11). Lower p corresponds with lower temperature.

Theorem 4 (BLiN PAC Rate). Assume ⌘k = ⌘ = 2/L̂, ⌧ = 1
ln(1/p) , and a previously pulled arm is

returned uniformly at random (i.e., t ⇠ U([T ])). Then for any w > 0

✏t  w

h
n

ln(1/p)

�
W (1/e) +

m̄� 2

e

�
+ 4(1 + (4c2Cz)

1/3)
p
nm⇤L̂

⇣ lnT
T

⌘ 1
2(dz+2)

i
(12)

with probability (1 � w
�1)(1 � 2T�2) where W (1/e) ⇡ 0.278, m⇤ = maxk mk, 2|L⌧

|  c 

1
4

⇣
ln(m⇤)
ln(1/p) + 2

⌘
(Lemma 10), L̂ =

⇣
ln(m⇤)
ln(1/p) + 2

⌘⇣
m⇤2

p ln(1/p) + nm̄

⌘
(Corollary 1), the zooming

dimension dz = 1
2nm̄, and the zooming constant Cz = |X

⇤
|
�1

⇣
4

r2⌘��1

⌘nm̄
(Corollary 33).

The convergence rate for BLiN (Feng et al., 2022) depends on bounds on the exploitability in terms
of the loss (Lemma 16), bounds on estimates of the loss (Lemma 10), Lipschitz bounds on the
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Figure 4: Bandit-based (BLiN) Nash solver applied to an artificial 7-player, symmetric, 2-action
game. We search for a symmetric equilibrium, which is represented succinctly as the probability of
selecting action 1. The plot shows the true exploitability ✏ of all symmetric strategies in black and
indicates there exist potentially 5 NEs (the dips in the curve). Upper bounds on our unregularized
loss L capture 4 of these equilibria, missing only the pure NE on the right. By considering our
regularized loss, L⌧ , we are able to capture this pure NE (see zoomed inset). The bandit algorithm
selects strategies to evaluate, using 10 Monte-Carlo samples for each evaluation (arm pull) of L⌧ .
These samples are displayed as vertical bars above with the height of the vertical bar representing
additional arm pulls. The best arms throughout search are denoted by green circles (darker indicates
later in the search). The boxed numbers near equilibria display the welfare of the strategy.

infinity norm of the gradient (Corollary 1), and the number of distinct strategies (nm̄ =
P

k mk).
This result also depends on the near-optimality or zooming-dimension dz and zooming constant
Cz which quantify the number of near optimal states. In particular, we assume L(s(z)) is locally
(��1)-strongly convex with respect to || · ||1 about each global optimum within a ball of radius r⌘ .
Here, s : [0, 1]n(m̄�1)

!
Q

i �
mi�1 is any function that maps from the unit hypercube to a product

of simplices; we analyze two such maps in the appendix. Next, we present an additional convergence
rate result using an alternative X -bandit approach, StoSOO (Valko et al., 2013).
Theorem 5 (StoSOO Rate). Corollary 1 of Valko et al. (2013) implies that with probability (1 �
w

�1)(1� �) for any w > 0, a uniformly randomly drawn arm (i.e., t ⇠ U([T ])) achieves

✏t  w

h
n

ln(1/p)
(W (1/e) +

m̄� 2

e
) +

p
2nm⇤L̂

vuut
⇠1

s
logb(Tk/�)

2 logb(e)k
+ ⇠2b

� 1
dC

p
T/k

i
(13)

where d = n(m̄�1), ⇠1 = (2+22/d), ⇠2 = 1
4db

2(1+2/d), k = T logb(T )
�3, b is the branching factor

for partitioning cells, and the near-optimality constant C = |X
⇤
|
�1
p
2⇡d

⇣
b2d2

5r2⌘��2

⌘d/2
(Lemma 39).

Here we assume L(s(z)) is locally (��2)-strongly convex with respect to || · ||2 about each global
optimum within a ball of radius r⌘. Theorem 5 implies a Õ(T�1/4) global convergence rate
(Proposition 2), however this is achieved only after an exponential-length burn in time.

7 CONCLUSION

In this work, we proposed a stochastic loss for approximate Nash equilibria in normal-form games.
An unbiased loss estimator of Nash equilibria is the “key” to the stochastic optimization “door”
which holds a wealth of research innovations uncovered over several decades. Thus, it allows the
development of new algorithmic techniques for computing equilibria. We consider bandit and vanilla
SGD methods in this work, but theses are only two of the many options now at our disposal (e.g,
adaptive methods (Antonakopoulos et al., 2022), Gaussian processes (Calandriello et al., 2022),
evolutionary algorithms (Hansen et al., 2003), etc.). Such approaches as well as generalizations of
these techniques to extensive-form, imperfect-information games are promising directions for future
work. Similarly to how deep learning research first balked at and then marched on to train neural
networks via NP-hard non-convex optimization, we hope computational game theory can march
ahead to make useful equilibrium predictions of large multiplayer systems.
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