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ABSTRACT

We explore user interaction-based test-time adaptation (UITTA), which adapts a
model to shifted test distributions with supervision signals from model-user in-
teractions. Model adaptation in TTA can fail since models learn from the noisy
pseudo-labels of the test data. UITTA achieves better adaptation from user feed-
back on top-K predictions within two rounds of simulated interactions. To have
real-time adaptation, we further accelerate model optimization by reducing the
cost of gradient backpropagation, through random dropping of backward paths.
Simulation experiments on cross-lingual transfer, domain generalization, and cor-
ruption robustness show that low-cost user feedback can significantly boost TTA
in performance, even competing with online active learning which however needs
expensive human annotation. By accelerating pre-trained language models, we
reduce 70% – 90% backpropagation cost with only a small drop in performance.

1 INTRODUCTION

When was the Apple company
built? 

What do you think of my answer? 
Good or bad?

Bad

OK. Which answer below is correct?  
a. April 1, 1976;  b. 1980; c. None of them

April 1, 1976

1977

Thank you for your
feedback!

(Top 1 prediction, but uncertain about it.)

(1st round: Binary feedback over top 1
output.)

(2nd round: Select a correct label or none
from the remaining top K predictions.)

Apple was founded on April 1, 1976, by Steve Jobs, Steve Wozniak

and Ronald Wayne to develop and sell Wozniak's Apple I personal

computer. It was incorporated by Jobs and Wozniak as Apple Computer,

Inc. in 1977 and the company's next computer, the Apple II, became a

best seller and one of the first mass-produced microcomputers. Apple

went public in 1980 to instant financial success.

Figure 1: Illustration of a two-round inter-
action between the user and a QA system.

Real-world machine learning systems suffer from mis-
matched distributions during training time and test
time (Belinkov & Bisk, 2018; Gan & Ng, 2019; Wang
et al., 2021c; Rychalska et al., 2019; Hendrycks & Diet-
terich, 2019; Tu et al., 2020). In the last few years, test-
time adaptation (TTA) that adapts to arbitrary test distri-
butions has been a consistent theme of machine learning
research (Wang et al., 2021a). The dominant paradigm to
achieve test-time adaptation is based on self-training (Lee
et al., 2013). Insofar as self-training is an effective method
for generating pseudo-labels (Xie et al., 2020; Sohn et al.,
2020; Pham et al., 2021), a mismatched test-time distribu-
tion renders the pseudo-labels less applicable, since it may
inject too much noise as illustrated in Fig. 2. In addition, a
changing test distribution over a long time horizon makes
the situation worse (Wang et al., 2022).

That the training set and test set are drawn i.i.d from the
same distribution is an in-built assumption in machine
learning. It points us to another alternative approach,
active learning (Ein-Dor et al., 2020; Settles, 2009), to
reason about the changing distribution. Active learning
adopts an active learner to query an oracle (user or expert)
to label the unlabeled test data to reduce noises. However,
it is prohibitively expensive to run an on-the-fly data labeling process.

Motivated by the aforementioned difficulties, we propose user interaction-based test time adaptation
(UITTA) that involves users in the adaptation loop. UITTA aims to identify and possibly correct
the noises by model-user interactions and explores an efficient way to reduce the user cost (as in
Fig. 1). UITTA requires the model to learn to query data whose predictions it is uncertain about. It
explores a low-cost labeling paradigm on data instances, where user feedback is sought on the top
K (e.g., 2) model predictions. Such a labeling approach has potential since the gold label is likely
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Figure 2: Model accuracy measured from top K predictions. For data with high entropy, low accuracy is
observed in top one predictions, but accuracy improves significantly in top 3, 5 and 10 predictions.

to be found in the top few model predictions as supported by Fig. 2. The cost of user annotation
can be further reduced through a well-designed user interface (Gao et al., 2022; Kratzwald et al.,
2020) to fit the scenario of on-the-fly data labeling. As evidenced by Shuster et al. (2022), user
feedback (e.g., binary feedback or free-form text) can be adequately collected in practice to improve
an open-domain dialogue system.

The user feedback is incorporated as supervision signals to update the model, together with the con-
fident unsupervised signals from the model. However, model optimization could be costly in TTA,
especially when there are a large number of parameters in the model, e.g., a pre-trained language
model (PLM) (Devlin et al., 2019). Since lower layers in deep neural networks learn general knowl-
edge, instead of task-specific knowledge learnt by the upper layers (Merchant et al., 2020; Yosinski
et al., 2014), we accelerate model updating by reducing the cost of gradient backpropagation, where
the backpropagation is randomly stopped when it reaches a certain layer. We focus on speeding up
the training of PLMs built on transformer layers (Vaswani et al., 2017) in this work.

We simulate the model-user interaction of UITTA on cross-lingual transfer (Hu et al., 2020), do-
main generalization in machine reading comprehension (Fisch et al., 2019), and robustness to image
corruptions (Hendrycks & Dietterich, 2019). We empirically look into how the choice of K affects
the adaptation performance, the generalization of user feedback to changes in test distributions, the
efficiency of involving humans in the loop, and the effects of perturbation in user feedback.

Contributions

• We study an under-explored setting which is test-time adaptation from model-user interaction.
• UITTA emphasizes the efficiency of user involvement and explores how to reduce the cost of

involving users during interactions.
• We further propose a simple but effective method to reduce the cost of model optimization in

pre-trained language models.
• Extensive simulation experiments are conducted. We find that UITTA significantly boosts the

performance over TTA baselines with only 30% to 40% user involvement. Top-K feedback is
even comparable to active learning which however needs costly human annotation.

• By saving up to 70% to 90% of backpropagation cost, our acceleration method achieves results
comparable to those without speed-up.

2 RELATED WORK

Test-Time Adaptation TTA adapts a source model from a training distribution to a test distribution,
happening during test time. Extensive methods have been proposed to learn on test data for adapta-
tion, including entropy minimization (Wang et al., 2021a), test-time classifier adjustment (Iwasawa
& Matsuo, 2021), and batch norm estimation (Nado et al., 2020), which needs no modification to the
training-time loss compared to TTT (Sun et al., 2020), TTT+ (Liu et al., 2021b), and MT3 (Bartler
et al., 2022). Some other works consider more issues in TTA. For example, Niu et al. (2022) study
how to prevent the model from forgetting source knowledge during model adaptation, Wang et al.
(2022) consider a more challenging setting where the test distributions change over time, and Khu-
rana et al. (2021) study how to update the model with only one test sample on the fly.
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Data Usage Optimization Loss Feedback
Setting # Train # Test # Train # Test # Test
Unsupervised Domain Adaptation xS, yS xT L(xS, yS) + L(xT ) - None
Test-time Adaptation (TTA)† - xT - L(xT ) None
Online Active Learning (OAL)♭ - xT - L(xT ) + L(xT , yT ) (xT , yT )

User Interaction-based TTA (UITTA) - xT - L(xT ) + r · L(xT , y′T ) ⟨r, (xT , y′T )⟩

Table 1: Compared settings. yT is a gold label and y′T is a noisy label. r is a binary value: 1 for correct label,
and 0 for wrong label. UITTA and OAL both request users to annotate a model’s uncertain data, but UITTA

only needs feedback on top K outputs instead of full annotation. †Wang et al. (2021a). ♭ Settles (2009).

Learning with Human Feedback There are many tasks that have explored human-in-the-loop
processing to reduce the cost of data annotation and further improve the model. User feedback has
been explored in semantic parsing (Lawrence & Riezler, 2018; Elgohary et al., 2021; Yao et al.,
2020; Elgohary et al., 2020), machine translation (Mendonça et al., 2021; Kreutzer & Riezler, 2019;
Nguyen et al., 2017), document summarization (Stiennon et al., 2020; Gao et al., 2018), and question
answering (Kratzwald et al., 2020; Gao et al., 2022), where most of them focus on how to train a
model from scratch after deployment. BlenderBot-3 (Shuster et al., 2022) is a dialogue system that
interacts with users to improve itself continually, where it exploits various feedback types such as
binary feedback, feedback in human language, etc. Our work focuses on a model robustness to
distribution shift, by adapting through a novel two-round interaction.

Robustness in NLP Building robust NLP models attracts more attention in recent years (Wang
et al., 2021c). Ribeiro et al. (2020) propose to measure model robustness in NLP. Some work (Goel
et al., 2021; Wang et al., 2021b) provides platforms to evaluate NLP models. Some work aims to
determine a model’s weakness on specific NLP tasks such as dialogue understanding (Liu et al.,
2021a), machine translation (Belinkov & Bisk, 2018), question answering (Gan & Ng, 2019), etc.
Related benchmarks study cross-lingual transfer (Hu et al., 2020), domain generalization or adapta-
tion (Fisch et al., 2019), and robustness to language corruptions (Ravichander et al., 2021).

3 PROBLEM DEFINITION

Online TTA Test-time adaptation (TTA) (Wang et al., 2021a) adapts a source model fθ0 trained
from a training distribution S to a test distribution T , by learning from the unlabeled test data. We
focus on online TTA in this work, which means that at each time t, the model fθt first returns its
prediction on the input xt and then updates itself with xt on the fly. The updated model parameters
θ′t will be carried over to the next time instance t+ 1: θt+1 ← θ′t.

UITTA VS. OAL Different from previous settings (as summarized in Table 1), we study user
interaction-based test-time adaptation (UITTA) which tries to gather user feedback to achieve better
adaptation. Online active learning (OAL) (Settles, 2009) selects a model’s uncertain data for anno-
tation (a gold label is assigned to a data instance) over a stream of data. OAL is similar to UITTA,
but OAL needs full human annotation instead of explicit user feedback, so OAL costs user much
more than UITTA. We consider OAL to be the upper bound of UITTA.

We study two different adaptation scenarios: (1) Constant Adaptation: The test distribution stays
unchanged all the time; (2) Continual Adaptation: As studied in Wang et al. (2022), the test
distribution changes over time, which is harder than the first scenario.

4 METHOD

4.1 ONLINE TEST-TIME ADAPTATION BY USER INTERACTION

UITTA aims to identify and possibly correct the noises caused by self-training-based methods.
UITTA tries to reduce the user cost during interaction through two mechanisms which are discussed
in this section: learning to identify a model’s uncertain data and incorporating binary user feedback
on top K model predictions. Specifically, at time t, the input is xt. The model generates a list of top
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Algorithm 1 User Interaction-based Test-time Adaptation (UITTA)
Input: Source model fθ0 ; α to rescale the threshold; K top predictions; T gradient steps.
1: Do warm-up to obtain l̄;
2: for xt ∈ {x1, x2, · · · } do # each xt is a batch
3: θt ← θ′t−1;
4: Generate top K predictions Yt as in Eq. 1 and y

(0)
t ∈ Yt;

5: if L
(
fθt(xt), y

(0)
t

)
< αl̄ then

6: ▷ Model is certain about its prediction.
7: lt(θt)← L

(
fθt(xt), y

(0)
t

)
;

8: else
9: ▷ Model is uncertain about the prediction and starts the interaction.

10: ⟨rt, (xt, yt)⟩ ← INTERACTION(xt, Yt);
11: lt(θt)← rt · L

(
fθt(xt), yt

)
;

12: end if
13: Obtain θ′t by updating model with lt(θt) for T gradient steps;
14: end for
15: function INTERACTION(x, Y ) # Binary feedback repeats on each prediction from Y
16: return ⟨1, (x, y(0))⟩ if user leaves good feedback to y(0) ∈ Y ; ▷ 1st round interaction
17: Show predictions Y − {y(0)} with K − 1 outputs to the user; ▷ 2nd round interaction
18: return ⟨1, (x, y(1))⟩ if user selects y(1) from Y − {y(0)} else ⟨0, (x, y(0))⟩;
19: end function

K predictions of xt (denoted as Yt) as follows:

Yt = argmax
Y ′
t :|Y ′

t |≤K

∑
i∈Y ′

t

fθt(xt)[i] (1)

where y
(0)
t = argmax

i
fθt(xt)[i] is the top one prediction.

Learning to Query The model first decides whether or not it can trust the top one prediction y
(0)
t

based on cross-entropy loss, similar to least confidence selection used in active learning (Settles,
2009). Only data that are uncertain to the model can trigger user involvement. Mask mt denotes
whether the model is certain (mt = 1) or uncertain (mt = 0) about the prediction y

(0)
t :

mt = 1 if L
(
fθt(xt), y

(0)
t

)
< αl̄ else 0 (2)

where L
(
fθt(xt), y

(0)
t

)
is the cross-entropy loss, and only prediction with a loss smaller than the

threshold is treated as certain. To determine the threshold, we perform warm-up at the start of model
adaptation. That is, in the first several adaptation steps, all the data are presented to the user to
request feedback. Then the cross-entropy losses of the data with good feedback are averaged to
obtain l̄, which approximately determines the loss of gold labels. α is a hyper-parameter to rescale
l̄ and it is set to 1 in most of the experiments. Only 1% or 5% of the test data is used to perform
warm-up in our experiments.

User Feedback on Top K Predictions After identifying the model’s uncertain data, the model starts
its interaction with the user. We denote the returned user feedback after interaction as ⟨rt, (xt, yt)⟩
where rt is a binary value 1 or 0 and yt is a label for the input xt decided by the user. We simulate two
rounds of interactions. 1st Round: The user provides binary feedback to the predicted label y(0)t .
If the user provides good feedback, then ⟨1, (xt, y

(0)
t )⟩ is returned. 2nd Round: If bad feedback is

provided, then the model shows the remaining outputs which are Yt − {y(0)t } to the user, where the
user has to select a satisfying prediction or none from the list. Suppose the user selects a satisfying
label y(1)t from the list, then ⟨1, (xt, y

(1)
t )⟩ is returned; otherwise, ⟨0, (xt, y

(0)
t )⟩ is returned.

Model Adaptation After interaction, the model incorporates the user feedback as supervision signal
to update itself. On the model’s certain data, the model updates like self-training (Lee et al., 2013).
Specifically, the model at time t updates with the following loss:

lt(θt) = mt · L
(
fθt(xt), y

(0)
t

)
+ (1−mt) · rt · L

(
fθt(xt), yt

)
(3)
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If the model is certain about the prediction (mt = 1), the model updates with its predicted label;
otherwise (mt = 0), the model updates with the user feedback ⟨rt, (xt, yt)⟩ from interaction. lt(θt)
can be optimized for T gradient steps to obtain an updated model θ′t which will be carried over to
the next time instance t+ 1: θt+1 ← θ′t. Detailed pseudocode is shown in Algorithm 1.

4.2 FAST UITTA WITH PRE-TRAINED LANGUAGE MODELS

Forward Backward Backward

Figure 3: Random dropping of gradient
backpropagation from one certain layer.

To fulfill real-time adaptation, we reduce the cost of model
optimization during model adaptation. Based on the ob-
servation that lower layers in deep neural networks capture
general information but upper layers learn task-specific in-
formation (Yosinski et al., 2014), we reduce the update
frequency in lower layers by randomly freezing these lay-
ers in each updating step. In this way, the cost of gradient
backpropagation could be substantially reduced.

We focus on optimizing pre-trained language mod-
els (PLMs) (Devlin et al., 2019), since PLMs have been
widely used in NLP as foundation models (Bommasani
et al., 2021) but with a large number of parameters.

Specifically, suppose there are L layers in total, i.e., transformer layers (Vaswani et al., 2017) in
PLMs. We pre-define a layer number N and a drop probability p. As shown in Fig. 3, during gradi-
ent backpropagation, when the gradient reaches layer N , backpropagation is randomly cut off (layers
less than or equal to N are frozen) with drop probability p. Suppose the backward cost is 1, we can
calculate the approximate expected saved backward cost q during model optimization as:

q(L,N, p) = p · N
L

(4)

We only calculate the cost of gradient backpropagation in transformer layers other than layers such
as the embedding layer and extra linear layers built for task-specific classification. Note that the
embedding layer would also be frozen if backward gradients are cut off in transformer layers.

5 EXPERIMENTS

We conduct simulation experiments to investigate UITTA on constant and continual adaptation.
Then model acceleration is evaluated, and noisy user feedback is then discussed.

5.1 SETTINGS

Datasets We study cross-lingual transfer, domain generalization, and corruption robustness.

For cross-lingual transfer, we use the benchmark XTREME (Hu et al., 2020), where Wikiann (Pan
et al., 2017), Universal Dependencies v2.5 (Nivre et al., 2018), XQuAD (Artetxe et al., 2020), and
MLQA (Lewis et al., 2020) are evaluated. Models are trained from English corpus, and transferred
to target languages such as Germany, Japanese, etc.

For domain generalization, we use the datasets from MRQA (Fisch et al., 2019), consisting of
datasets in 6 domains for machine reading comprehension. We use SQuAD (Rajpurkar et al., 2016)
as source, and the datasets in MRQA as targets, which are HotpotQA (Yang et al., 2018), Natu-
ralQA (Kwiatkowski et al., 2019), NewsQA (Trischler et al., 2017), SearchQA (Dunn et al., 2017),
and TriviaQA (Joshi et al., 2017).

For corruption robustness, CIFAR10-C, CIFAR100-C, and ImageNet-C (Hendrycks & Dietterich,
2019) are evaluated, for the task of image classification. For each dataset, there are 15 corruption
types and the highest corruption severity level 5 is studied in our work.

The datasets are summarized in Table 2. The models are trained with source datasets, then evalu-
ated (adapted) on each subset of each target set. On each target dataset, the average results over all
subsets are reported, but the result of MRQA takes the average of the 6 target sets.

Baselines We compare the following baselines with our method UITTA in different setups:
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Distribution Shift Dataset Task Source Target |Subset| |Test|

Cross-lingual Transfer XTREME

NER en Wikiann 25 10,000-13,165
POS en Universal Dependencies 14 2,414-22,362
MRC SQuAD XQuAD 11 1,190
MRC SQuAD MLQA 7 4,517–11,590

Domain Generalization MRQA MRC SQuAD

HotpotQA 1 5,901
NaturalQA 1 12,836
NewsQA 1 4,212
SearchQA 1 16,980
TriviaQA 1 7,785

Corruption Robustness - IC
CIFAR10 CIFAR10-C 15 10,000
CIFAR100 CIFAR100-C 15 10,000
ImageNet ImageNet-C 15 5,000

Table 2: Datasets evaluated in this work. MRC: machine reading comprehension. IC: image classification.
Models are first trained on source datasets, and then adapted on each subset of each target dataset. |Subset| is
the number of subsets in the target set. |Test| shows the range of the subset size.

• Source The model is trained with the source distribution without adaptation at test time.

• PL The test-time adaptation baseline which predicts pseudo-labels on the test data and updates
itself with such labels using cross-entropy loss (Lee et al., 2013).

• Tent TTA baseline which is similar to PL but optimizes entropy loss (Wang et al., 2021a).

• UITTA-K Our method by generating top K predictions. We study UITTA with different Ks.
When K is equal to 1, then only the 1st round of interaction is conducted which requests the user
to leave binary feedback to the top 1 prediction.

• OAL The baseline of online active learning which is the same as UITTA, but requires full
annotation from the user. The model obtains a gold label for the model uncertain data after
interaction. OAL serves as an upper bound of UITTA-K.

For UITTA-K and OAL, the models need to identify model uncertain data to receive user feedback.
Here, we compare them to the setting where all data are annotated by users during adaptation.

Evaluation For UITTA and OAL, we evaluate the model performance with its top 1 prediction, not
the one corrected by users from the top K predictions during interaction.

Model Setups For experiments of cross-lingual transfer and domain generalization, the source
models are all based on a pre-trained language model which is XLMR-base (Conneau et al., 2020).
For POS and NER tasks, user feedback is applied at token level. For QA tasks, the start and end
positions are treated independently and each receives user feedback. For experiments on image
corruption robustness, we take the model settings from Wang et al. (2022). For all the baselines, we
try to maintain the batch size, learning rate, etc. that are independent from the algorithm to be the
same. More training details are shown in Appendix 7.1.

5.2 CONSTANT ADAPTATION

In constant adaptation, the test distribution stays the same during adaptation. Model adaptation is
not accelerated here. The experimental results are shown in Table 3 and Fig 4.

TTA baselines cannot consistently improve the adaptation results. For image corruption, PL
and Tent can consistently improve over source by a large margin, but such consistent improvements
do not hold on NLP datasets, where PL and Tent drop a lot in POS and MRQA. PL is better than
Tent in NLP tasks, in contrast to the CV datasets.

UITTA consistently improves the adaptation performance, and larger K leads to better results.
In POS, XQuAD, MLQA, and MRQA which are hard for PL and Tent to improve, UITTA-3 brings
around 8-point increase on average. For image corruption, UITTA-5 improves over Tent by around
3 points. Comparing UITTA with different Ks, we find larger K leads to better performance. There
is an especially large performance improvement from K = 1 to K = 2, 3, 5, since K = 1 can only
identify the noises which cannot be corrected without other top predictions (Gao et al., 2022).

UITTA is efficient in exploiting user participation. UITTA can achieve better performance with
less user involvement by learning to identify the data on which it is not confident. As shown in
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NER POS XQuAD MLQA MRQA C10-C C100-C IN-C
Metric F1 F1 EM / F1 EM / F1 EM / F1 Metric Err. Err. Err.
Source 61 75.5 56.0 / 72.2 48.9 / 66.0 40.1 / 52.8 Source 43.5 46.4 82.4
PL 65.3 73.0 57.9 / 73.1 49.1 / 65.8 37.1 / 48.4 PL 19.8 32.2 66.9
Tent 64.6 66.7 56.9 / 72.6 48.0 / 65.0 35.0 / 46.1 Tent 18.6 31.0 64.6
Model Uncertainty
UITTA-1 70.6 80.5 60.4 / 75.0 51.1 / 67.6 38.5 / 51.0 UITTA-1 16.1 30.2 64.5
|HITL| 31 26 28 30 21 |HITL| 22 42 60
UITTA-2 72.4 81.9 64.9 / 78.2 53.4 / 69.8 44.1 / 56.4 UITTA-3 15.4 29.7 63.1
|HITL| 34 28 33 35 26 |HITL| 29 43 58
UITTA-3 73.2 82.9 65.8 / 79.2 54.1 / 70.6 49.8 / 62.2 UITTA-5 15.1 29.5 62.6
|HITL| 36 29 35 39 44 |HITL| 31 44 58
OAL 73.6 83.7 66.1 / 80.3 54.3 / 71.2 52.6 / 64.6 OAL 15.1 29.4 61.4
|HITL| 38 32 43 54 66 |HITL| 33 45 58
Full
UITTA-1 73.3 81.4 61.2 / 75.6 52.0 / 68.6 39.1 / 51.6 UITTA-1 16.0 30.0 63.2
UITTA-2 73.4 83.8 66.6 / 79.8 54.2 / 70.9 49.6 / 62.0 UITTA-3 15.2 29.9 62.0
UITTA-3 73.5 84.3 67.0 / 80.6 54.5 / 71.3 50.5 / 63.0 UITTA-5 15.0 29.6 61.5
OAL 73.8 84.3 66.2 / 80.8 54.3 / 71.4 52.7 / 64.9 OAL 14.9 29.6 61.0

Table 3: Results of constant adaptation. Model Uncertainty: model uncertain data is identified for users to
annotate. Full: all the test data is annotated by users. |HITL (human-in-the-loop)| means the proportion of
tokens (NER and POS) or sum of start and end positions (XQuAD and MLQA) or images (image datasets) in
test data that is annotated. On the left, average results over 3 random runs are reported except Source.

Figure 4: Constant adaptation results w.r.t. the cost of user annotation. Left to right: target language of ru from
NER, target language of el from XQuAD, and target domain of HotpotQA from MRQA.

Table 3, in the setting of Model Uncertainty, using around 30% to 40% user involvement can achieve
comparable results to the setting of Full, which is consistent with the result of Fig. 4.

UITTA with larger K can achieve results comparable to OAL. Contrary to full annotation used
in OAL, UITTA only requires user feedback on top K outputs where the data may not receive a
gold label after interaction. However, UITTA with larger K (3 or 5) can compete with OAL, since
the gold label usually exists in the top predictions and there is no need to search the full label space,
which is also evidenced by Fig. 2 where the top-3 and -5 accuracies are much better than top-1.

5.3 CONTINUAL ADAPTATION

Continual adaptation requires the model to adapt to test distributions changing over time without
stopping. The results are presented in Table 4, where model acceleration is not applied.

PL and Tent perform worse in continual adaptation. As studied in Wang et al. (2022), continual
adaptation is more challenging than constant adaptation, which causes TTA baselines to perform
worse in such a case. In this work, we further verify this conclusion on some NLP tasks, shown by
the results in the left part of Table 4.

UITTA generalizes well to continual adaptation. As Table 4 indicates, changing of test distribu-
tions cannot result in worse results with UITTA. Instead, it even improves the results in most of the
datasets, especially in image corruption, on which UITTA-5-con. further improves over UITTA-5
by about 3 to 6 points. As in Fig. 5, UITTA-con. outperforms UITTA during adaptation. Two rea-
sons explain this phenomenon. First, UITTA eases the problem of overfitting to noisy labels during
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NER POS XQuAD MLQA MRQA C10-C C100-C IN-C
Metric F1 F1 F1 F1 F1 Metric Err. Err. Err.
Source 62.9 74.2 70.9 66 52.8 Source 43.5 46.4 82.4
PL 66.1 71.0 72.0 65.8 48.4 Tent 18.6 31.0 64.6
PL-con. 64.50.8 59.85.2 71.50.3 65.20.3 47.13.3 Tent-con. 20.21.1 62.83.2 66.50.6
CoTTa - - - - - CoTTa 16.30.1 32.60.2 63.71.9
UITTA-1 71.5 79.3 75.0 67.6 51 UITTA-1 16.1 30.2 64.5
UITTA-1-con. 73.40.6 82.23.0 74.70.3 68.20.1 52.00.5 UITTA-1-con. 15.50.1 29.00.2 60.10.9
UITTA-3 73.3 82.0 78.2 70.6 62.2 UITTA-5 15.1 29.5 62.6
UITTA-3-con. 76.50.1 84.90.3 80.70.2 71.50.2 60.83.7 UITTA-5.con. 12.60.1 26.40.2 56.90.6
OAL 73.4 82.8 80.2 71.2 64.6 OAL 15.1 29.4 61.4
OAL-con. 76.60.1 85.30.4 81.60.2 71.80.1 65.50.5 OAL-con. 12.50.1 26.00.1 55.30.4

Table 4: Results of continual adaptation. Methods with con. denote working in the setting of continual adapta-
tion. For each target dataset, we construct 5 random orders of the subsets from the dataset to set the test scenario
of changing over time. The average results and standard deviation over these orders are reported. CoTTa is a
baseline proposed for continual adaptation for image classification from Wang et al. (2022).

Figure 5: Continual adaptation in one spe-
cific order in XQuAD. Relative F1 gains
over the source baseline are calculated.

Order of the adaption (->)

re
l. 

F1

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

es de el ru tr ar vi th hi

PL PL-con. UiTTa-3 UiTTa-3-con.

Data UITTA-3 N = 12
p = 0.9 p = 0.8 p = 0.5

POS Wall-clock Time (s) 839.7 528.3 581.2 743.3
F1 82.9 79.8 80.6 81.4

XQuAD Wall-clock Time (s) 632.0 418.1 443.9 551.4
F1 79.2 75.4 76.2 78.1

MRQA Wall-clock Time (s) 312.5 182.8 206.6 273.0
F1 64.5 61.7 62.6 63.6

Table 5: Results of wall-clock time (in seconds) used to train the
model on each dataset based on XLMR-base. On each dataset,
the total time used is summed up over all subsets.

adaptation. Second, UITTA can make use of the knowledge learned from the past distributions,
which may benefit learning in the current and future adaptation.

5.4 FAST ADAPTATION

In this section, we show the effectiveness of our method to accelerate model optimization. We first
evaluate XLMR-base (Conneau et al., 2020), which has 12 transformer layers. We study our method
UITTA-3. We show the results w.r.t. saved backward cost (calculated by Eq. 4) in Fig. 6, and the
wall-clock times used to run the model are also calculated in Table 5. More results evaluated on
XLMR-large with UITTA-1 and -3 are shown in Fig. 8, 9, 10 in the Appendix.

Permanent freezing cannot compete with random freezing. To compare with random freezing,
we freeze the layers lower than 6, 9, and 12 permanently (the rightmost points on each curve are the
corresponding results). As Fig. 6 indicates, freezing lower layers starting from no. 6 permanently
would have 50% saved cost, but freezing lower 9 or 12 layers randomly, the performance can be im-
proved with the same cost or maintained with less cost. Freezing layers under 9 and 12 permanently
would be close to source without adaptation, though around 80% or 100% cost is saved.

Maintaining the same performance, larger N would have more cost saved. From the results
of Fig. 6, we find that using larger N can have more backward cost saved. The reason may be
that though more lower layers are frozen when N is large, the higher layers can still learn the task
information well, which also indicates the large capacity of the pre-trained language model.

Saving up to 70% – 90% backward cost, the performance only drops a bit. For example,
in XQuAD and MRQA, with 70% backward cost saved, the F1 result drops by around 2 points
in XQuAD and 1.5 points in MRQA. XQuAD drops from 79.2 to 76 when the saved cost further
reaches 80%, and MRQA can still maintain at 62 compared to original result 64.5 with 90% cost
saved. We further calculate the actual wall-clock time used in model adaptation, in which the for-
ward and backward time costs are both counted. The experiments are conducted on one A100 GPU.
As shown in Table 5, we can achieve a good trade-off between performance and optimization cost,
e.g., setting N to 12 and p to 0.8. Similar observation can be seen in XLMR-large shown in Table 8.
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Figure 6: Constant adaptation results on XLMR-base w.r.t. backward cost saved. Various combinations of
the layer number N and drop probability p are evaluated, where N is selected from {6, 9, 12} and p from
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. p = 1 means freezing the lower layers for the whole time of adaptation.

Figure 7: Constant adaptation results with noisy user feedback. Noise rate is the probability of generating the
two types of noises which are combined here. -Full means all the data are annotated by users.

5.5 ANALYSIS OF PERTURBATION IN USER FEEDBACK

Users may leave noisy/wrong feedback to the model. In our case, we can consider two types of noise
that the user may generate, where the user regards a wrong label as correct (feedback is ⟨1, (x, y(1))⟩
but y(1) is a wrong label), or the user cannot recognize the gold label existing in the top-K list and
the final feedback is ⟨0, (x, y(0))⟩. To simulate the first type of noise, we randomly return a label
from the top-K predictions. For the second type of noise, feedback with r = 1 is randomly set to 0.
We study constant adaptation and the results are in Fig. 7, where the noisy rate is the probability to
generate the two types of noises which are combined.

UITTA can tolerate a large noise rate. The noisy feedback can bring down the performance of
UITTA. However, when the noise rate is smaller than 20%, UITTA still has a large margin over PL
and source. Furthermore, we find UITTA-1 and UITTA-3 can still be better than the baselines of PL
and source under noise rate up to 40%.

However, extremely noisy rates can fail UITTA and larger K would have worse performance.
When the noise rate reaches around 50%, UITTA would have no advantages over PL and source,
and could have even worse results when exceeding 50%. Larger K will result in worse performance
after UITTA starts to be worse than PL and source, since larger K would cause a high probability
to return a wrong label from the top-K predictions. In practice, users can be confused by the many
predictions returned by the model and would make a mistake more easily.

6 CONCLUSION

We study test-time adaptation with model-user interaction. UITTA improves the efficiency of user
interaction to make online data labeling less costly. UITTA explores user feedback on top K model
predictions, which is cheaper than full annotation adopted in active learning. Simulation experiments
demonstrate its effectiveness. We also propose a simple but effective method to speed up model
optimization.
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Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 16888–16905. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/niu22a.html.
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NER POS XQuAD MLQA CIFAR10-C CIFAR100-C ImageNet-C

PL
LR: 5e-7
T : 5
BATCH SIZE: 32

LR: 5e-7
T : 5
BATCH SIZE: 32

T : 5
BATCH SIZE: 8
LR: 1e-6

T : 3
BATCH SIZE: 16
LR: 1e-6

T : 1 T : 1 T : 5 (constant)
1 (continual)

Tent
LR: 5e-7
T : 5
BATCH SIZE: 32

LR: 5e-7
T : 5
BATCH SIZE: 32

T : 5
BATCH SIZE: 8
LR: 1e-6

T : 3
BATCH SIZE: 16
LR: 1e-6

T : 1 T : 1 T : 5 (constant)
1 (continual)

UITTA

warm-up: 0.01
α: 1
K: 1,2,3
LR: 5e-7
T : 5
BATCH SIZE: 32

warm-up: 0.01
α: 1
K: 1,2,3
LR: 5e-7
T : 5
BATCH SIZE: 32

T : 5
warm-up: 0.01
α: 1
K: 1,2,3
BATCH SIZE: 8
LR: 1e-6

T : 3
warm-up: 0.01
α: 1
K: 1,2,3
BATCH SIZE: 16
LR: 1e-6

warm-up: 0.05
K: 1,3,5
α: 1
T : 5

warm-up: 0.05
K: 1,3,5
α: 1
T : 5

warm-up: 0.05
K: 1,3,5
α: 1
T : 5

OAL

warm-up: 0.01
α: 1
K: inf
LR: 5e-7
T : 5
BATCH SIZE: 32

warm-up: 0.01
α: 1
K: inf
LR: 5e-7
T : 5
BATCH SIZE: 32

T : 5
warm-up: 0.01
α: 1
K: inf
BATCH SIZE: 8
LR: 1e-6

T : 3
warm-up: 0.01
α: 1
K: inf
BATCH SIZE: 16
LR: 1e-6

warm-up: 0.05
K: inf
α: 1
T : 5

warm-up: 0.05
K: inf
α: 1
T : 5

warm-up: 0.05
K: inf
α: 1
T : 5

Table 6: Hyper-parameters used for each baseline. For CIFAR10-C, CIFAR100-C and ImageNet-C, other
hyper-parameters can be found in Wang et al. (2022).

MRQA HotpotQA NaturalQA NewsQA SearchQA TriviaQA

PL
T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

Tent
T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

T : 1
BATCH SIZE: 32
LR: 1e-6

UITTA

T : 1
warm-up: 0.01
α: 1
K: 1,2,3
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 1
K: 1
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 1
K: 1
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 0.3
K: 1
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 0.3
K: 1
BATCH SIZE: 32
LR: 1e-6

OAL

T : 1
warm-up: 0.01
α: 1
K: inf
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 1
K: inf
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 1
K: inf
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 0.3
K: inf
BATCH SIZE: 32
LR: 1e-6

T : 1
warm-up: 0.01
α: 0.3
K: inf
BATCH SIZE: 32
LR: 1e-6

Table 7: Hyper-parameters in MRQA.

7 APPENDIX

7.1 TRAINING DETAILS

For experiments of cross-lingual transfer and domain generation, the source models are all based on
a pre-trained language model which is XLMR-base (Conneau et al., 2020). For UITTA and OAL,
1% test data is used to do warm-up to obtain the threshold l̄. For POS and NER tasks, the user
feedback is applied to token levels. And for QA tasks, the start and end positions are treated inde-
pendently and receive the user feedback separately. For experiments on corruption robustness, we
take the model settings from Wang et al. (2022). The source models for CIFAR10-C, CIFAR100-C
and ImageNet-C are WideResNet-28, Hendrycks2020AugMix-ResNeXt and Standard-R50, respec-
tively. The proportion of test data to do warm-up is 5%. For all of the baselines, we try to maintain
the batch size, learning rate and etc. that are independent from the algorithm itself the same.

We show the hyper-parameters for model training in Table 6 and Table 7.

7.2 MORE EXPERIMENTAL RESULTS
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Figure 8: Constant adaptation results w.r.t. cost of backward saved based on UITTA-1. XLMR-base is accel-
erated. Various combinations of the layer N and drop probability p are evaluated, where N is selected from
{6, 9, 12} and p from {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. p = 1 means freezing the lowers layers for the whole time
of adaptation.
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Figure 9: Constant adaptation results w.r.t. cost of backward saved based on UITTA-1. XLMR-large is accel-
erated. Various combinations of the layer N and drop probability p are evaluated, where N is selected from
{12, 18, 24} and p from {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. p = 1 means freezing the lowers layers for the whole
time of adaptation.

Data UITTA-1 N = 24
p = 0.9 p = 0.7 p = 0.5

XQuAD Wall-clock time (s) 1,079.9 587.7 698.2 811.1
F1 81.3 80.3 80.7 81.0

MRQA Wall-clock time (s) 1,167.4 590.4 720.3 857.0
F1 70.6 68.5 69.6 70.0

Data UITTA-3 N = 24
p = 0.9 p = 0.7 p = 0.5

XQuAD Wall-clock time (s) 1,080.8 603.0 706.4 817.7
F1 85.4 81.7 83.4 84.2

MRQA Wall-clock time (s) 1,166.4 593.4 721.4 854.3
F1 74.2 70.4 72.0 72.8

Table 8: The wall-clock time (measured in seconds) used to train the model on each dataset, where XLMR-
large is evaluated. On each dataset, the total used time is summed over all subsets.
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Figure 10: Constant adaptation results w.r.t. cost of backward saved based on UITTA-3. XLMR-large is
accelerated. Various combinations of the layer N and drop probability p are evaluated, where N is selected
from {12, 18, 24} and p from {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. p = 1 means freezing the lowers layers for the
whole time of adaptation.
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