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Abstract
Several works have developed eviction policies
to remove key-value (KV) pairs from the KV
cache for more efficient inference. The focus
has been on compressing the KV cache after the
input prompt has been processed for faster token
generation. In settings with limited GPU memory,
and when the input context is longer than the gen-
eration length, we show that by also compressing
the KV cache during the input processing phase,
larger batch sizes can be used resulting in signifi-
cantly higher throughput while still maintaining
the original model’s accuracy.

1. Introduction
This work is focused on increasing LLM inference through-
put using limited GPU memory more efficiently in scenarios
where it is expected that the input context will be longer
than the generation length, such as for summarization tasks
or in-context learning. Attention-based LLM inference is
comprised of two stages: processing the input context (pre-
filling), where the input’s KV cache is computed and the first
new token is generated, and token generation (decoding),
where one token is generated per forward pass of the model.
Prefilling can be computed in parallel, making it compute
bound, whereas decoding is memory bandwidth bound, as
it requires reloading the KV cache each generation step
(Shazeer, 2019).

Several works (see Section 2) have proposed KV cache
eviction policies to remove unimportant KV pairs from the
KV cache during decoding, where in general, the KV cache
size |kv| is restricted to a maximum size of |kv| KV pairs
per attention head and batch sample.

There are cases where only compressing the KV cache dur-
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ing decoding can maximize throughput. Given a fixed batch
size b and sufficient GPU memory to perform prefilling, KV
cache compression should only be done during decoding:
We want to process the entire input prompt in parallel during
prefilling, and transfer the least amount of data during de-
coding. Another example is when the input sequence length
s < |kv|, which can occur when the input context is much
shorter than the expected generation length.

This work concentrates on tasks where s is expected to be
larger than the generation length, with a fixed GPU memory
budget, and the freedom to choose b. When s > |kv| and
the KV cache is only compressed during decoding, the GPU
memory used per attention head for (s − |kv|)b KV pairs
during prefilling will be left idle during decoding. This
most importantly limits the maximum b which can be used.
Restricting the KV cache size to |kv| during both prefilling
& decoding (P&D) then enables higher GPU usage and
throughput by being able to increase b.

Compressing the KV cache during prefilling creates new
challenges and potential trade-offs:

1. Slower prefilling: The input prompt must now be pro-
cessed in a block-wise manner while using a KV cache
eviction algorithm.

2. KV pair error: After the first block, error will exist in
the non-evicted KV pairs of the input prompt, being
computed using the compressed KV cache of past input
prompt tokens.

3. Suboptimal KV pair eviction: All of the input prompt
KV pairs can no longer be observed before deciding
which KV pairs to evict.

Numerical experiments, consisting of different tasks, LLM
architectures and GPU models, show that the ability to in-
crease b by using P&D KV cache eviction outweighs any
decrease in speed or accuracy incurred by the challenges
listed above. Significantly higher throughput (44.0% higher
on average) was achieved compared to an upper bound on
the throughput using decoding-only compression, while
maintaining the accuracy of the full KV cache model (2.2%
lower on average).

In what follows, Section 2 summarizes the literature on
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KV cache eviction methods, Section 3 describes Batch-Max
(BM), a candidate P&D KV cache eviction method, Section
4 describes the experimental setup and results, with the
paper concluding in Section 5.

2. Literature Review
The papers H2O (Zhang et al., 2023), SqueezeAttention
(Wang & Gan, 2024), FastGen (Ge et al., 2024), SnapKV (Li
et al., 2024), Scissorhands (Liu et al., 2023), TOVA (Oren
et al., 2024), and SimLayerKV (Zhang et al., 2024) propose
different decoding-only KV cache eviction methods.

After prefilling, H2O compresses the KV cache, then adds
and removes one KV pair every generation step, keeping the
KV cache split evenly between a window of the most recent
KV pairs and those with the largest sum of past attention
scores.

SqueezeAttention uses different KV cache sizes per layer,
measuring their importance during prefilling based on the
cosine similarity between their input and output. Their
method was tested with different eviction rules including
H2O.

FastGen selects one of several different KV cache compres-
sion policies (including H2O) to compress each attention
head by minimizing GPU memory usage while ensuring a
minimum recovery of attention weights, based on the KV
cache of the input prompt.

SnapKV only compresses the KV cache one time after pre-
filling using an eviction rule similar to H2O, keeping a
window w of recent KV pairs and the KV pairs with the
largest sum of attention weights over w, which go through a
pooling layer to avoid sparse selections.

Scissorhands also keeps a window of recent KV pairs but
evicts older pairs based on how often their attention scores
are below average over a window of past tokens. This work
also considers using different KV cache sizes per layer, as
well as only evicting KV pairs every t > 1 generation steps.

TOVA simply removes the token with the lowest attention
score based on the current query, which benefits from not
being biased (see Section 3.2 for more discussion).

SimLayerKV identifies “lazy” layers which follow the at-
tention pattern discovered in StreamingLLM (Xiao et al.,
2024). If the average attention given to recent tokens and the
first four “attention sink” tokens surpasses a threshold, the
layer is deemed lazy, with only these KV pairs being kept
during the decoding phase, with non-lazy layers keeping
their full KV cache.

EasyKV (Ren & Zhu, 2024) proposes an eviction policy,
RoCo, which splits the KV cache between pairs with the
highest attention weight standard deviations and highest

average attention weights. KV cache compression is consid-
ered during prefilling, decoding, or in both stages, depend-
ing on the input and generation lengths, e.g. only prefilling
compression is performed for CNN/DM (see Section 4),
since the input should be longer than the generation length
for this summarization task. Compression is done by pro-
cessing and evicting KV pairs in a block-wise manner when
prefilling, and adding and removing one KV pair per gener-
ation step. The focus of EasyKV was on the improved accu-
racy of RoCo compared to other eviction rules (including
H20, ScissorHands, and TOVA), with no experiments using
b > 1, or any attempt to examine the effect on throughput
using P&D compression.

3. Batch-Max
An implementation of P&D KV cache compression is now
described. Let sj equal the input sequence length of samples
j = 1, ..., b, and s := max

j
sj . To perform inference in

parallel, s− sj pad tokens are added from the left to each
sample j. The size of the KV cache is restricted to |kv| KV
pairs per attention head and sample.

3.1. P&D KV Cache Eviction

After processing the first block of input tokens during prefill-
ing, which can equal up to |kv| tokens, KV pairs are evicted
every p ∈ N tokens, where once |kv| = |kv|, p KV pairs
are removed, see Algorithm 1.

Algorithm 1 P&D KV Cache Eviction
Input: s ∈ N: padded input sequence length of all
samples; |kv| ∈ N: maximum KV cache size per head
and sample; p(= 64) ∈ N: KV cache eviction amount;
max gen ∈ N: maximum number of generated tokens
Prefilling:
t1 = min(s, |kv|)
process tokens [0, t1 − 1]
while t1 < s do

remove p KV pairs
t0 = t1
t1 = min(s, t0 + p)
process tokens [t0, t1 − 1]

end while
Decoding:
for t = 1 to max gen−1 do

if |kv| = |kv| then
remove p KV pairs

end if
generate token s+ t− 1

end for
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3.2. Average Attention Eviction Rule

H20 ranks KV pairs for eviction based on the sum of
their past attention weights. Considering a zero-initialized
(variable-sized) vector sum weights ∈ R|kv| for each at-
tention head and sample, in each forward pass with a block
of inputs of length I ∈ N, let it be updated as

sum weights+ =

I∑
i=1

attn weights[i],

where attn weights[i] ∈ R|kv| contains the attention
weights for the query generated from the ith input in the
block. For example, in Algorithm 1, when t1 = t0 + p
during prefilling, I = p, and during decoding I = 1. Let
kv ids ∈ Z|kv|

≥0 be the position IDs of the tokens the KV
pairs were generated from, with curr id ∈ Z≥0 being the
current position ID. During prefilling curr id = t1 − 1 and
during decoding curr id = s+ t− 1.

Ranking based on sum weights is biased towards KV pairs
generated from earlier tokens given that the entries of earlier
KV pairs are the sum of more (i.e. curr id+1− kv ids[i])
attn weights vectors. In addition, the average value in
attn weights generated from a token with position ID
i equals 1

min(i+1,|kv|) , which is larger for earlier tokens.
For example, the first computed KV pair gets an initial
sum weights value of 1 and is the sum of curr id + 1
attn weights, whereas the sum weights value of the most
recent token only equals 1

min(curr id+1,|kv|) if it receives the
average value of attn weights.

This bias has been remedied by not evicting a window of
recent KV pairs in past works. We instead evict KV pairs
with the smallest average attention weights,

ave weights =
sum weights

curr id+ 1− kv ids
,

where the division is done element-wise. This simple evic-
tion rule directly corrects for the mentioned bias without
having to separate KV pairs based on recency. This eviction
rule also forms a part of RoCo (Ren & Zhu, 2024) which, in
addition, protects KV pairs from eviction based on the stan-
dard deviation of their attention weights. Simply evicting
based on ave weights was found to maintain sufficient ac-
curacy, while also making our experiments clearer by using
a hyperparameter-free eviction rule.

4. Experiments
Our goal is to observe if higher throughput can be achieved
by using P&D KV cache eviction compared to decoding-
only eviction. Our candidate method for P&D compression
is Batch-Max (BM), using Algorithm 1 with the average
attention eviction rule described in Section 3.2. Instead of

Algorithm 2 Extreme Decoding-only KV Cache Eviction
Input: s ∈ N: padded input sequence length of all sam-
ples; |kv| ∈ N: maximum KV cache size per head and
sample; max gen ∈ N: maximum number of tokens to
generate
Prefilling:
process tokens [0, s− 1]
remove all but the most recent KV pair
Decoding:
for t = 1 to max gen−1 do

generate token s+ t− 1
if |kv| = |kv| then

remove all but the most recent KV pair
end if

end for

trying every variation of the methods described in Section 2,
we consider a form of extreme decoding-only compression
(ED, Algorithm 2) which gives an upper bound on the po-
tential throughput decoding-only compression can produce.
ED uses the simplest eviction rule, by only keeping the
most recent KV pair, and with |kv| = 2, it always loads the
smallest non-empty KV cache, making it the fastest possible
decoding-only KV cache eviction algorithm.

The throughput of BM is compared with ED, while keeping
its accuracy close to the full KV cache model (FKV). Exper-
iments were performed on three tasks: CNN/DM (1-shot,
Nallapati et al. 2016), NarrativeQA (2-shot, Kočiský et al.
2018), and GSM8K (16-shot, Cobbe et al., 2021). Two
LLM architectures on different GPU models were used:
Llama-2-13b-chat (Touvron et al., 2023) on 4 (CNN/DM &
NarrativeQA) or 2 (GSM8K) NVIDIA V100 (32GB) GPUs,
and Phi-3.5-mini-instruct (3.8B, Abdin et al., 2024) on 4
NVIDIA TITAN V (12GB) GPUs.

4.1. Experimental Procedure & Analysis

In all experiments, the smallest batch size b0 such that ED
with |kv| = 2 ran out of memory was found. Using a batch
size of b = b0−1, the highest possible throughput using ED
was computed, as well as the accuracy of FKV. We then tried
to maximize the throughput of BM by increasing b, while
maintaining the same level of accuracy as FKV by keeping
|kv| sufficiently large. The choice of p = 64 for BM was
used for all experiments, which was found to reasonably
balance speed (eviction every p processed/generated tokens)
and accuracy (|kv| ≥ |kv| − p). For the Llama-2 experi-
ments in Table 1, ED with |kv| = 65 was also tested, which
corresponds to p = 64 in BM, to ensure that the throughput
with |kv| = 2 was higher.

We were able to consistently generate higher throughput
using BM compared to ED. In the Llama-2 experiments in
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Task: CNN/DM
Method b |kv| rouge-2 tokens/s
ED 5 2 OOM OOM
ED 4 2 0.000 42.0
ED 4 65 0.003 41.5
FKV 4 N/A 0.145 30.3
BM 32 1024 0.146 73.8
BM 40 896 0.142 80.3
Task: NarrativeQA
Method b |kv| rouge-2 tokens/s
ED 5 2 OOM OOM
ED 4 2 0.000 40.0
ED 4 65 0.001 39.3
FKV 4 N/A 0.312 26.4
BM 15 1792 0.314 43.3
BM 16 1728 0.310 46.2
Task: GSM8K
Method b |kv| accuracy tokens/s
ED 4 2 OOM OOM
ED 3 2 0.000 30.3
ED 3 65 0.000 30.1
FKV 3 N/A 0.340 22.9
BM 8 1536 0.341 39.3
BM 10 1408 0.327 43.7

Table 1. Llama-2-13b-chat experiments comparing ED (Alg. 2),
full KV cache (FKV), and Batch-Max (BM). Relevant values to
compare are in bold.

Table 1, two results for BM are given for each task, one
keeping the rouge-2 or accuracy always slightly greater than
FKV, where the throughput was on average 38.0% higher
than ED, and the other keeping the accuracy of BM near
FKV, where on average the throughput is 50.4% higher than
ED, and the accuracy is on average 98.0%, and at least equal
to 96.3% of FKV’s accuracy. In Table 2, the experiments
using Phi-3.5 are given, where on average the throughput
is 37.7% higher than ED, and the accuracy is on average
97.6%, and at least equal to 96.5% of FKV’s accuracy.

4.2. Further Details

In order to fairly measure throughput, 512 tokens were
always generated, ignoring any EOS tokens. Llama-2’s
maximum sequence length is 4096, whereas Phi-3.5
supports up to 128K tokens. For consistency, we limited
the maximum input length to 3584 = 4096 − 512 for all
experiments, which only affected the CNN/DM dataset.
The evaluation was performed on 960 same-seed randomly
chosen test set samples, which is divisible by D :=
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, ...}.
Only using batch sizes b ∈ D ensured that all experiments
were evaluated on the exact same samples. In all experi-
ments, ED ran out of memory with b0 ≤ 5, resulting in

Task: CNN/DM
Method b |kv| rouge-2 tokens/s
ED 3 2 OOM OOM
ED 2 2 0.001 29.0
FKV 2 N/A 0.153 27.0
BM 5 2176 0.148 36.3
Task: NarrativeQA
Method b |kv| rouge-2 tokens/s
ED 3 2 OOM OOM
ED 2 2 0.000 28.0
FKV 2 N/A 0.360 26.5
BM 6 1984 0.351 37.4
Task: GSM8K
Method b |kv| accuracy tokens/s
ED 3 2 OOM OOM
ED 2 2 0.000 28.4
FKV 2 N/A 0.783 27.1
BM 8 1664 0.774 43.8

Table 2. Phi-3.5-mini-instruct experiments comparing ED (Alg. 2),
full KV cache (FKV), and Batch-Max (BM). Relevant values to
compare are in bold.

there being no restriction from choosing b ∈ D. For all but
one experiment (Phi-3.5 CNN/DM) max(b) + 1 /∈ D when
using BM. In practice, when not trying to fairly compare
with ED and FKV, higher throughput can be expected by
freely maximizing b ∈ N. When choosing |kv| for BM, mul-
tiples of 128 {896, 1024, 1408, 1536, 1664, 1792, 2176}
were tried, which was further refined in two experiments to
multiples of 64 {1728, 1984}.

5. Conclusion
With the goal of maximizing LLM inference throughput,
the use of KV cache eviction during both the prefilling and
decoding phases was explored. A simple implementation
was proposed, Batch-Max, using an average attention evic-
tion policy, which was able to significantly increase the
throughput compared to an upper bound on the throughput
using any decoding-only KV cache eviction method, while
maintaining the accuracy of the full KV cache model. Our
experiments indicate that in settings with limited GPU mem-
ory and where input sequences are expected to be longer
than the generation length, KV cache compression during
both prefilling and decoding should be used given that it
enables larger batch sizes, resulting in higher throughput,
while not incurring significant accuracy degradation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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specifically highlighted here.
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Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Hermann,
K. M., Melis, G., and Grefenstette, E. The NarrativeQA
Reading Comprehension Challenge. TACL, 6:317–328,
2018.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. SnapKV: LLM
Knows What You are Looking for Before Generation.
arXiv:2404.14469, 2024.

Liu, Z., Desai, A., Liao, F., Wang, W., Xie, V., Xu, Z.,
Kyrillidis, A., and Shrivastava, A. Scissorhands: Exploit-
ing the Persistence of Importance Hypothesis for LLM
KV Cache Compression at Test Time. In NeurIPS, pp.
52342–52364, 2023.

Nallapati, R., Zhou, B., dos Santos, C. N., Çaglar Gülçehre,
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