
Bridging the Gap Between Human and Automated Planning on the Tower of
London Task

Chenyuan Zhang, Charles Kemp, Nir Lipovetzky
The University of Melbourne

chenyuanz@student.unimelb.edu.au, c.kemp@unimelb.edu.au, nir.lipovetzky@unimelb.edu.au

Abstract

Understanding problem solving or planning has been a shared
challenge for both AI and cognitive science since the birth of
both fields. We modelling human behaviour using a planning-
based approach on the Tower of London (TOL) task, a close
relative of the Tower of Hanoi problem that has been exten-
sively studied by psychologists. We characterize the task us-
ing the Planning Domain Definition Language (PDDL) and
evaluate an adaptive online planner and a family of well-
known planners, including online planners, optimal planners
and satisficing planners. Each planner is evaluated based on
its ability to predict the actions and planning times of par-
ticipants in a new behavioral experiment. Our results suggest
that participants use a range of strategies but that an adap-
tive lookahead planner provides the best overall account of
both human actions and human planning times. This finding
is consistent with the view that humans differ from standard
AI planners by integrating a mechanism for evidence accu-
mulation.

Introduction
When preparing a three course meal, fixing a leaky pipe
or building a garden box, people must string together a se-
quence of actions in order to achieve a goal. Tasks like these
are typically known as problem solving tasks by cognitive
scientists and planning tasks by AI researchers. Problem
solving or planning is a hallmark of intelligent behavior,
and has been extensively studied by both AI researchers and
cognitive scientists since the development of the Logic The-
orist in 1956, a theorem prover sometimes described as the
first AI program (Gugerty 2006; Newell and Simon 1956).
In subsequent decades, psychologists have studied human
performance on a wide range of problem solving tasks, in-
cluding water jug problems (Atwood and Polson 1976) and
the tower of Hanoi (Kotovsky, Hayes, and Simon 1985).

Planned behavior can be distinguished from reflex behav-
ior, similar to the distinctions regarding goal-directed ver-
sus habitual behavior, model-based versus model-free de-
cision making, and type II versus type I reasoning (Mattar
and Lengyel 2022). Reflex-based approaches do not con-
sider the outcome of each action or evaluate the utility of
these outcomes, which limits their ability to perform well
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in dynamic situations. Both approaches are used by humans
and animals, and in order to study human planning behavior,
it is essential to choose tasks that cannot be solved through
reflexive behavior, forcing participants to rely on planned
behavior to solve the problem.

In this study, we build on an approach to planning that was
initially developed by researchers including Newell, Simon
et al. (1972). We have selected a simple task that is suitable
for laboratory study and is unlikely to be solved through re-
flexive behavior (Mattar and Lengyel 2022). For us the task
is the Tower of London (TOL) problem, a variant of the well-
known Tower of Hanoi problem. Our goal is to identify a
planning algorithm that matches human performance on the
TOL task, and towards that end we evaluate a set of plan-
ning algorithms including several inspired by state-of-the art
approaches in AI. Our approach therefore falls squarely in
the tradition established by researchers like Newell and Si-
mon who used computational models such as the General
Problem Solver (GPS) to account for human performance
on tasks like the Tower of Hanoi (Newell, Simon et al. 1972;
Kotovsky, Hayes, and Simon 1985).

The Newell-Simon approach to problem solving arguably
reached its pinnacle in the 1970s, and has been pursued less
actively from the mid 1990s onwards (Ohlsson 2012). There
are at least two reasons, however, why this approach may be
worth revisiting. First, AI researchers have developed new
approaches to planning that may help to capture aspects of
human problem solving. For example, from the mid 1990s
modern planning algorithms have relied on domain-general
heuristics that can be derived automatically from a problem
representation via relaxations (Geffner 2013). This approach
to deriving heuristics could potentially lead to new models of
human problem solving that can be applied to broad families
of problems without requiring problem-specific strategies.

Second, psychologists have continued to construct new
models to account for several aspects of human decision
making (Solway and Botvinick 2015; Mormann et al. 2010).
A key issue explored in recent modeling work is the trade-
off between time cost and decision quality. Models explor-
ing this idea build on the idea of bounded rationality (Si-
mon 1990) and the framework of rational analysis (Ander-
son 1989). An agent that makes optimal use of bounded cog-
nitive resources must decide when to stop the search process
and act, and recent work on metareasoning has explored this



stopping problem (Anderson and Oates 2007; Tajima et al.
2019). Solway and Botvinick (2015) use an evidence accu-
mulation mechanism to model performance in a two-step
decision problem, but applying a similar approach to more
complex sequential decision making problems (e.g. TOL) is
a challenge that has not yet been addressed.

The next section summarizes some of the previous com-
putational work on problem solving that forms the backdrop
for the work described here. We then describe the Tower of
London task and the behavioral experiment. The following
sections introduce the specific planners that we evaluate and
discusses the extent to which they account for the behav-
ioral data. To preview our results, we find that people tend
to use different strategies under different conditions and that
the adaptive lookahead planner provides the best overall ac-
count of human performance.

Models of Human Problem Solving
Perhaps the most influential cognitive model of problem
solving is the General Problem Solver (Newell, Simon et al.
1972) and this model can be regarded as a variant of breadth
first search. Subsequent work in this tradition used produc-
tion systems such as ACT-R (Lebiere and Anderson 1993),
4CAPS (Varma and Just 2006) and SOAR (Laird, Newell,
and Rosenbloom 1987) to develop models of problem solv-
ing on tasks including the Tower of Hanoi (Ruiz and Newell
1989) and the Tower of London (Varma and Just 2006).

In recent years researchers have departed from the ear-
lier emphasis on production systems by considering a range
of alternative approaches. Kuperwajs, Van Opheusden, and
Ma (2019) used a tree search model with a domain-specific
heuristic to predict human performance on a two-player
game. Working within the framework of bounded rational-
ity, Callaway et al. (2018) derived a meta-level Markov de-
cision process model to simulate human behavior on a navi-
gation task known as Mouselab. Donnarumma, Maisto, and
Pezzulo (2016) developed an approach that combines proba-
bilistic inference with subgoaling to account for human per-
formance on the Tower of Hanoi task.

Across the recent literature there is evidence that the ex-
tent to which people look ahead while planning varies across
individuals and across tasks (Callaway et al. 2021; Kryven
et al. 2022). Meder et al. (2019) found that an approach that
looks ahead only one step provided the best account of hu-
man performance in the 20-questions game, while Krusche
et al. (2018) found that people have a planning horizon of
at least 3 steps in the farming game that they considered.
Several studies demonstrate that time pressure can lead to a
shallower search tree (Keramati et al. 2016; Van Opheusden
et al. 2017).

Most recent studies use non-deterministic or partially ob-
servable environments so that humans cannot easily derive
optimal solutions (Kryven et al. 2022; Krusche et al. 2018),
and there has been relatively little work on fully observable
deterministic environments (e.g. TOL) in recent years. Our
work, however, belongs to the Newell and Simon tradition
that explores what can be learned from human performance
on deterministic, fully observable-tasks.

a)     Start state      Goal state

b)     Start state      Goal state

c)

Figure 1: Tower of London problem. (a) A problem instance
requiring two moves to transition from the start state to the
goal state. (b) A problem instance requiring five moves. (c)
Start Hierarchy is a structural parameter that classifies each
instance as unambiguous (all balls on one peg), partially
ambiguous or completely ambiguous (all balls on different
pegs). The “ambiguity” refers to the initial action: unam-
biguous actions allow only one action, but completely am-
biguous instances allow 4 possible actions.

Tower of London Task
Figure 1a shows an instance of the problem. The board il-
lustrated in the figure has pegs that can hold up to 1, 2 and
3 balls respectively from left to right. Participants are given
the board in some initial state, then asked to move balls from
peg to peg until the board matches some specified goal state.
The instance in Figure 1a can be solved in just two moves,
but the shortest solution of the instance in Figure 1b involves
5 moves.

Previous work on the TOL has focused on identifying
structural parameters that appear to influence the difficulty
of a problem instance, and one such parameter is shown
in Figure 1c (Kaller et al. 2004, 2011; Berg et al. 2010).
Berg et al. (2010) carried out an experiment in which partici-
pants solved a set of TOL problems with optimal solutions of
length between 4 and 7, and used their data to evaluate how
5 structural parameters relate to measures of human perfor-
mance. A small amount of work has attempted to model the
actions people choose when solving TOL problems (Varma
and Just 2006; Donnarumma, Maisto, and Pezzulo 2016),
but to our knowledge no previous work on the TOL task at-
tempts to model both action selection and planning time as
we do here.

AI Planning and Planners
Planning is the model-based approach to reasoning about the
action(s) needed to achieve a goal given an initial scenario.
In order to apply AI planners to the TOL problem, we trans-
late the task into the propositional subset of the Planning



Domain Definition Language (PDDL), which is a standard
language for modelling planning problems that extends the
expressivity of the well known STRIPS language (Haslum
et al. 2019). To encode the height constraints in the task, we
simply enumerate all possible ball locations. In our setting,
since there are just three pegs with heights of 1, 2, and 3
respectively, we have 6 different locations in total. In each
state, there is a fluent (proposition) for each ball recording
its current location. In addition, we also mark whether each
ball is free to move and whether each location is available.
For example, in the start state of Figure 1a, the red ball is in
LOC3-3 (the third position on peg 3). There is no other ball
on the red ball, so it is free to move to other locations. LOC1-
1 is available, so we can execute the action that moves the
red ball from LOC3-3 to LOC1-1 and the successor state is
the middle state in Figure 1c.1.

All of the AI planners evaluated here use the represen-
tation just described, but there is another way to model the
problem within the PDDL framework. Namely, we can de-
compose each move action into two steps: first pick up a ball
from one peg and then put it down on a peg. The major ad-
vantage of this approach is that it allows a player to pick up
a ball then return it to the same peg, which occurs occasion-
ally in our behavioral data. However, most previous work on
the TOL treats each move as a single action and we follow
the same approach for consistency.

Our model evaluation aimed to consider a set of planning
algorithms (i.e. planners) that is broadly representative of
prior work on planning in the fields of AI and psychology.
The following sections describe the 6 different planners that
we settled on.

Cognitive Architecture
4CAPS The 4CAPS (Cortical Capacity-Constrained Con-
current Activation-based Production System) cognitive ar-
chitecture integrates both symbolic and connectionist mod-
els, while also accounting for the cognitive constraints of
human beings. This architecture proposes that functions are
distributed and dynamically balanced across independent
processors, which are designed to mimic different brain re-
gions. Like other cognitive architectures, 4CAPS is imple-
mented as a production system. This involves two types of
memory: declarative memory, which stores knowledge (akin
to predicates in automated planning), and procedural mem-
ory, which specifies the effects and conditions of actions, as
well as the action selection criteria (similar to actions and
search algorithms in automated planning).

We chose 4CAPS to represent the broader family of cog-
nitive architectures because an existing 4CAPS model of
the TOL task is publicly available, and has previously been
used to account for both behavioral and brain imaging data
(Varma and Just 2006; Newman et al. 2003). This model in-
cludes some productions that are specific to the TOL task,
and therefore does not qualify as a fully general model of
problem solving.

1The PDDL representation of the start state of Figure 1a is {(in
RED LOC3-3), (in ORANGE LOC3-2), (in BLUE LOC3-1), (free
LOC1-1), (free LOC2-1), (free LOC2-2), (clear RED)}

Classical Planners
Classical planners search until a complete path to the goal
has been found.

BFS The three-peg TOL problem is sufficiently small that
Breadth First Search (BrFS) is a viable algorithm. BrFS first
tries all possible actions from the start state, and adds all
states reached in this way to a queue. It then repeatedly takes
a state from the front of the queue, tries all actions from that
state, and adds all resulting states to the end of the queue,
effectively always expanding the state closest to the initial
state that has not been expanded yet. Proceeding in this way
guarantees that BrFS will find an optimal solution, but the
algorithm is blind because it does not consider the goal when
choosing the state to expand next.

ASTAR ASTAR search algorithm (Hart, Nilsson, and
Raphael 1968) is commonly used as a baseline heuristic
search planner in AI planning research. A heuristic is a func-
tion that takes a state as input and returns an estimate of
the distance between the state and the goal. A heuristic-
based algorithm can therefore potentially capture the idea
that people are most likely to focus on intermediate states
that promise to bring them closer to their ultimate goal. If
equipped with an admissible heuristic, then ASTAR is guar-
anteed to find an optimal solution.2 When choosing which
state to expand next, ASTAR picks the state that minimizes
the cost to reach that state plus the heuristic estimate of the
distance to the goal. Here we use the goal-counting heuris-
tic, a domain-independent heuristic that can be automati-
cally derived from the PDDL description of the problem,
which evaluates a state based on how many goals are yet to
be achieved (in our case, how many balls are not yet in their
final positions).3 This heuristic is equivalent to the “percep-
tual distance” heuristic in the psychological literature (Don-
narumma, Maisto, and Pezzulo 2016), and has been explored
by researchers including Simon (1963).

GBFS The heuristic search algorithm used in most state-
of-the-art satisficing planners is greedy best-first search
(GBFS) (Heusner, Keller, and Helmert 2017). In contrast to
ASTAR, GBFS expands states using only the heuristic func-
tion, and chooses the state that lies closest to the goal accord-
ing to this function. GBFS is not guaranteed to find an op-
timal solution and hence produces satisficing planners that
trade off solution quality and solution speed. When com-
bined with the goal-counting heuristic, GBFS yields a search
strategy that captures some of the core ideas of means-ends
analysis (Newell, Simon et al. 1972).

Online Planners
Online planners are able to choose an action before a com-
plete path has been found, and have been previously ex-
plored as models of human problem solving (Kuperwajs,
Van Opheusden, and Ma 2019; Krusche et al. 2018). One

2A heuristic function is admissible if it never overestimates the
real distance between a state and the goal state

3The goal-counting heuristic is admissible. The ASTAR plan-
ner in this paper is therefore guaranteed to find an optimal solution.



prominent approach is Monte-Carlo Tree Search, but we
did not consider this approach because it is best-suited for
stochastic environments and the TOL is a deterministic task.
Instead, we evaluate two lookahead planners that both rely
on the goal-counting heuristic.

Lookahead The basic lookahead planners we consider
have a fixed horizon that was set to values from 1 to 7 (max-
imum solution length). The planner evaluates the value of a
state recursively using the minimal state value of its succes-
sors, and the state values of all leaf nodes are based on the
heuristic function (goal-counting in this work). After com-
puting these state values, the planner chooses the path with
minimal estimated cost. If multiple paths have the same min-
imal value, the planner randomly chooses one of these paths.

Adaptive Lookahead (A-LH) Although many online
planners (e.g. Monte-Carlo Tree search) use a fixed plan-
ning horizon or a pre-defined timing budget, a small amount
of work in AI has explored methods for optimizing looka-
head depth (Bulitko, Levner, and Greiner 2002). For exam-
ple, Kryven et al. (2022) develop a model with an adaptive
planning horizon for a task that involves navigating through
a maze.

Here we propose and evaluate an adaptive lookahead
planner (see Algorithm 1) that draws on prior work
on evidence integration and human meta-reasoning (Sol-
way and Botvinick 2015; Anderson and Oates 2007;
Chenyuan Zhang and Lipovetzky 2023). To achieve a bal-
ance between exploration and exploitation, this planner uses
the upper confidence bound (UCB) algorithm as an action
selection strategy (Kocsis and Szepesvári 2006), and keeps
searching (evidence integration) until enough nodes have
been expanded to suggest that the difference in value be-
tween the best action and the second best action exceeds
some decision threshold. Our implementation in this work
sets the threshold θ to 1 because the goal-counting heuris-
tic is integer-valued. The exploration constant in UCB algo-
rithm is set to 1.

Once the adaptive lookahead planner has either identified
a goal or exceeded the decision threshold, the probability of
selecting an action is calculated by using the softmax dis-
tribution (Sutton and Barto 2018) on the values of the suc-
cessors in the search tree that resulted from the planner’s
search, with smaller node value corresponding to higher se-
lection probabilities. We employ this probabilistic action se-
lection strategy because it allows us to more closely mimic
human behavior, which often involves random or suboptimal
actions.

Implementation
All classical planners, as well as the heuristics were imple-
mented using the LAPKT framework (Ramirez, Lipovetzky,
and Muise 2015). BrFS, and the online planners were im-
plemented in Python. For 4caps, we used v1.2 of the TOL
model.

Behavioral Experiment
To allow us to compare the planners just described, we
ran a behavioral experiment to collect fine-grained behav-

Algorithm 1: Adaptive Lookahead
Parameters: Decision Threshold θ, Exploration constant C
Input: Search space P, Search goal g, Current state s0
Output: Action selected a, Number of expanded nodes
n (used as a proxy for the planning time for this
step)

1: Let tree = Tree(s0), n = 0 {Construct a tree rooted on
state s0}

2: Let node = tree.root,v′ = −∞,v′′ = −∞{v′ and v′′ de-
note the best child node value and second best child
node value of the root node respectively}

3:
4: while tree.root is expanded and |v′− v′′| ≤ θ do
5: while node is expanded do
6: node =UCBSelect(node,C)
7: end while
8:
9: if node.state is g then

10: return a← select(tree.root),n
11: end if
12:
13: n← n+1
14: for succ in P.successors(node.state) do
15: node.children.add(Node(succ,gc(succ)))

{Initialize the new generated node using goal
counting heuristic}

16: tree.update(gc(succ)) {Backpropogate the new
evidence so values of all ancestor nodes are up-
dated by selecting the best child node}

17: end for
18:
19: Update v′,v′′
20: end while
21:
22: return a← select(tree.root),n

ioral data (including response times) as participants solve
instances of the TOL. Berg et al. (2010) previously ran a
comprehensive experiment on the TOL, but their data are
not publicly available. We therefore ran our own experiment
using the same problem instances that they considered.

Our experiment included two between-participant condi-
tions: a full condition and a no-constraint condition. In the
full condition participants were asked to form a full plan to
the target configuration before making their first move, and
given feedback after each instance indicating whether they
had found an optimal solution. In the no-constraint condi-
tion participants were simply asked to solve the task without
any further instruction. The full condition matches the proce-
dure used by Berg et al. (2010), and explicitly instructs par-
ticipants to act as a classical offline planner. In the absence
of this instruction, we anticipated that participants would be-
have more like an online planner.

We pre-registered the behavioral experiment on AsPre-
dicted (see https://aspredicted.org/STK 41D). The experi-
ment was programmed in javascript using the jspsych tool-
box (De Leeuw 2015).



Instances. Following Berg et al. (2010), we considered all
117 problem instances with optimal solutions between 4 and
7 in length. For each instance, we generate a corresponding
PDDL file automatically using the Python package Tarski
(Francés, Ramirez, and Collaborators 2018).

Participants. 239 participants from standard sample com-
pleted the experiment on Prolific. Participants were ran-
domly assigned to one of the two conditions, and completed
39 TOL instances randomly picked from 117 instances. Our
final data set included 130 participants in the full condition
and 109 in the no-constraint condition.

Outliers. Observations with abnormal response times
were excluded according to a preregistered criterion. For
each instance, responses more than 3 standard deviations
away from the mean initial planning time for that instance
were considered abnormal. As a result, 239 out of 9321
(2.5%) responses are classified as outliers and excluded
from our analysis.

Results
We consider two behavioral measures: the initial action se-
lected for an instance and the initial planning time, or the
time taken to select the initial action. Focusing on the first
action only simplifies our analyses and facilitates compar-
isons across a relatively large set of planners.

Human Performance in Two Conditions
We first compare human performance across the two condi-
tions (full vs no-constraint) as shown in Figure 2. We focus
on three performance measures. Extra moves (Figure 2a) is
defined as the difference between the length of the plan pro-
vided by a participant and the length of the optimal plan.
We also computed the proportion of participants who select
an optimal first move (Figure 2b), and considered the time
required to select this move (Figure 2c).

Figure 2 shows that participants in the full condition tend
to generate plans that are 1.16 steps shorter than plans in
the no-constraint condition, and that the first move in the
full condition is more likely to be optimal (61% vs 44%).
On average, however, participants in the full condition take
an extra 11.23 seconds to produce this first move. Student’s
t-tests suggest that all three differences are statistically sig-
nificant: extra moves (t(238) =−8.12, p < 0.0001), optimal
first action proportion (t(238) = 10.85, p < 0.0001) and ini-
tial planning time (t(238) = 15.07, p < 0.0001).

Each data point in Figure 2 shows a participant rather
than an instance, but an analysis at the level of problem in-
stances produced converging results. For a given instance,
plans generated in the full condition tend to have fewer
steps (t(116) = −7.99, p < 0.0001), are more likely to in-
clude an optimal first move (t(116) = 12.51, p < 0.0001),
and have a longer planning time for the the first move
(t(116) = 20.29, p < 0.0001).

All of these results suggest that our condition manipula-
tion had the expected effect, and that participants rely on dif-
ferent problem-solving strategies across the two conditions.
We can now ask which planners provide the best account of
responses in the two conditions.

(a) (b) (c)

Figure 2: Comparison between the full and no-constraint
conditions. (a) Extra moves (b) Optimal first action propor-
tions (c) Initial planning times. Each data point shows mean
performance per participant.

Predicting Action Selection
We first evaluate the extent to which the models can accu-
rately predict the first action selected by participants. For
each instance, we use the behavioral data to estimate a distri-
bution over initial actions chosen for that instance. We com-
pare these distributions with distributions derived from the
models using cross-entropy, which is commonly used as a
measure of how well the model can approximate human re-
sponses. Since most of the models are non-stochastic and
assign a probability of 1 to one action and 0 to all others, in-
spired by Jarušek and Pelánek (2010), we introduced a noise
parameter of 0.05 that is evenly distributed over all applica-
ble actions for all models in order to address the issue of
zero probabilities.

The results are summarized in Figure 3. Across both
conditions, the online planners outperform the classical
planners, and A-LH achieves the best overall performance
(smallest cross-entropy). The paired t-tests showed that A-
LH had a significant advantage over the second best plan-
ners in both conditions (t(116) =−5.02, p < 0.0001 for the
full condition with LH4 and t(116) = −3.32, p = 0.001 for
the no-constraint condition with LH3). Although the poor
performance of classical planners was anticipated in the no-
constraint condition, the fact that they performed worse than
the random baseline, despite participants being instructed to
behave like classical planners in the full condition, is note-
worthy. This finding indicates that classical planners may
have limited psychological validity even under conditions
that are most favorable to them. Nevertheless, the observa-
tion that LH4 is the second best planner in the full condi-
tion and LH3 is the second best planner in the no-constraint
condition suggests that individuals might engage in deeper
thinking in the full condition.

Predicting Initial Planning Time
We now turn to initial planning times, and use Linear Mixed
Effects Model to evaluate our family of planners. We first
considered a regression model that is unrelated to all of our
planners and has model string

IPT∼ 1+ condition+order+(1|instance)+(1|participant)

The model takes initial planning time (IPT, measured in mil-
liseconds) as the dependent variable, and includes fixed ef-
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Figure 3: Evaluation of planner predictions about initial
action selection. (a) Cross-entropy of human distribution
with respect to model distribution for the full condition.
(b) Cross-entropy for the no-constraint condition. Each data
point shows the cross-entropy for one instance, and smaller
values of cross-entropy indicate better fits.

fects for condition (full or no-constraint) and order (an in-
teger from 1 to 39 that indicates the order in which a par-
ticipant encountered a given instance). The model also in-
cludes random effects for instance and participant that as-
sume normally distributed variability for both factors, which
are denoted as 1—instance and 1—participant respectively.
We obtained similar results regardless of whether instance is
treated as a fixed or a random effect.

As expected, the base model performed better than the
three simpler alternatives that omit either or both of the
fixed effects. The Bayesian Information Criterion (BIC) was
smaller for the base model than for the three alternatives by
a factor of at least 81.

For the base model, the estimate for condition is 11192.72
(95%CI [9734.34, 12651.33]), which suggests that re-
sponses were around 11 seconds slower in the full condi-
tion compared to the no-constraint condition. The estimate
for order was -102 (95%CI [-123.36, -81.19]), suggesting
that participants became around 0.1 second faster with each
additional instance that they solved. This order effect is con-
sistent with the work of Berg et al. (2010), who report that
solution times decrease with experience.

For each planner, we then asked whether the base model
could be improved by replacing the random effect of in-
stance with a fixed effect for planner response time, which is
operationalized as the number of states expanded by a plan-
ner. For example, if the adaptive lookahead model predicted
human planning times perfectly, then including response
times for this model as a predictor in Equation should al-
low the resulting regression model to perfectly account for
the human data. BIC values for each of these regression
models are shown in Table 1. Among the fixed lookahead
models, LH4 and LH6 achieved the best performance in the

Table 1: BIC scores for regression models that take ini-
tial planning time as the dependent variable and incorpo-
rate planner predictions or structural parameters (OC and
SH). For readability, scores are shown as offsets relative to
110066 (full condition) and 82053 (no-constraint condition).

Category Planner full no-constraint

Baseline
random 625 141
OC 47 114
SH 584 0

Cognitive Architecture 4caps 120 89

Classical Planner
BFS 38 101
ASTAR 4 83
GBFS 162 104

Online Planner

LH1 597 78
LH2 598 80
LH3 597 79
LH4 342 70
LH5 110 88
LH6 52 95
LH7 87 110
A-LH 0 87

no-constraint and full conditions respectively. Table 1 also
includes baselines that result from replacing the random ef-
fect in Equation with fixed effects for optimal cost (OC,
or the length of the shortest solution) and start hierarchy
(SH, see Figure 1c). We consider both optimal cost and start
hierarchy because these structural parameters predicted hu-
man performance best among the full set considered by Berg
et al. (2010).

As expected, the online planners perform better than the
classical planners in the no-constraint condition. In the full
condition, one of the classical planners (ASTAR) performs
relatively well but the best planner for this condition is the
adaptive lookahead model. Our results for planning time are
therefore broadly compatible with the finding in Figure 3
that the adaptive lookahead planner performs well across
both conditions.

Table 1 reveals, however, that the single best predic-
tor for the no-constraint condition is not a planner but
rather the Start Hierarchy parameter shown in Figure 1c. It
makes sense that participants should respond quickly when
there is only one possible initial action (i.e. the instance
is completely unambiguous), but common sense and previ-
ous work (Berg et al. 2010) suggest that people’s responses
are influenced by factors that go beyond Start Hierarchy
alone. The strong performance of Start Hierarchy for the no-
constraint condition therefore suggests that all of the plan-
ners that we evaluated are relatively far from a comprehen-
sive account of human performance.

Individual Differences
The analysis summarized by Table 1 used individual-level
data but did not focus on individual differences. A similar
regression approach, however, can be applied to the subset
of the data provided by a single participant, which yields re-
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Figure 4: (a) Individual-level analysis of initial planning
times. Panels (a) and (b) show regression scores for the full
and no-constraint conditions, and each datapoint represents
an individual participant that is identified as the outline for
that particular planner.

gression scores indicating the extent to which each planner
or structural parameter predicts the responses of that partic-
ipant. Distributions of these regression scores across indi-
viduals are shown in Figure 4. Consistent with Table 1, the
individual level analysis suggests that the adaptive looka-
head and ASTAR planners provide the best account of the
full condition, and that Start Hierarchy provides the best
account of the no-constraint condition. In the full condi-
tion, ASTAR and the adaptive lookahead planner account
for the responses of some individuals relatively well (regres-
sion scores around 0.6), but in the no-constraint condition no
regression score for any individual exceeds 0.5. The results
therefore suggest that none of the models provides a good
account of individual performance in the no-constraint con-
dition.

Discussion and Conclusion
We applied a set of planners to the TOL task and evaluated
their ability to predict actions and response times collected
in a new behavioral experiment. Prior work on the TOL task
often asks participants to form a complete plan before act-
ing (Berg et al. 2010), and in this condition we found that
an adaptive lookahead planner provides the best account of
both actions and response times. This planner allows the size
of the search tree to depend on the difficulty of the current
instance, and the good performance of this planner suggests
that people flexibly navigate a speed-accuracy tradeoff when
approaching sequential decision-making tasks.

The differences we observed between the full and no-
constraint conditions confirm that people’s problem solv-
ing strategies depend on task requirements, but our planner
evaluation did not provide a consistent picture about perfor-
mance in the no-constraint condition. The adaptive looka-
head planner provided the best account of action selection
in this condition, but our analysis of response times found
that none of the planners was more predictive than a sim-
ple structural parameter (Start Hierarchy). It may not be sur-
prising that removing task constraints increases variability
and makes experimental data more difficult to model, but
our results suggest that more work is needed to develop a

satisfying account of human performance in this condition.
In this study, we utilized a regression model to account for
the impact of condition and order independent of the current
adaptive lookahead planner. However, it’s important to note
that the planner is highly adaptable and can capture these ef-
fects by incorporating adjustable components. For example,
the condition effect could be controlled by adjusting the de-
cision threshold, such that a larger threshold in full condition
induces deeper thinking depth. Additionally, the order effect
could be modeled as a more accurate heuristic estimation as
participants gain more experience. These components could
also potentially be adjusted to model the various degrees of
suboptimality observed in human problem-solving. There-
fore, exploring these possibilities is a crucial future direction
in this field of research.

We presented a simple initial analysis of individual partic-
ipants that revealed substantial variability, and future work
can model individual differences more directly by introduc-
ing individual-level parameters to the models. For example,
the success of the current adaptive lookahead model moti-
vates future versions of the model that allow the decision
threshold to vary across individuals.

When using the planning-based approach to model human
behavior, it is important to consider not only the planner but
also the alignment between human mental representations
and the problem representation used by the planner. At least
two representations of the TOL task can be considered. Our
analysis treated pick-and-put as a single action, but an al-
ternative modeling approach treats pick and put as two sep-
arate actions. We evaluated both representations and found
that both of them led to similar conclusions, but more tar-
geted experiments may be able to reveal which of the two
is closer to the representation used by people. Similarly, our
models used the goal-counting heuristic, but we also eval-
uated other general heuristics derived from widely used re-
laxations such as the delete-relaxation (Bonet and Geffner
2001), and found that these alternative heuristics produced
similar results in our setting. Future studies, however, can
consider experiments that aim to distinguish which of these
heuristics provide the best account of human behavior.

While our approach may be criticized for focusing solely
on the initial action and planning time, our results demon-
strate the challenging nature of predicting human behavior
in these early stages of decision-making. Given that sub-
sequent planning stages are highly dependent on the initial
planning stage, accurately mimicking human behavior in the
initial planning stage is essential to predicting complete ob-
servations. Thus, our work represents an essential contribu-
tion towards developing a more comprehensive model for
comparing planning algorithms with human responses in se-
quential decision-making.

Perhaps the most general message from our work is that
the planning-based approach to human problem solving de-
serves to be revisited. Our results suggest that even rela-
tively simple tasks such as the Tower of London continue
to present challenges for cognitive models, and combining
ideas from both cognitive psychology and AI planning con-
tinues to be a promising way to address these challenges.
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