
Diffusion-Based Sampling for Deep Active Learning
Dan Kushnir

Bell Laboratories, NOKIA
Murray Hill, New Jersey 07094, USA

Email: dan.kushnir@nokia-bell-labs.coml

Luca Venturi
Meta

New York, NY 10003, USA
Email: luca.venturi.92@gmail.com

Abstract—The remarkable performance of deep neural net-
works depends on the availability of massive labeled training
data. To alleviate the load of data annotation with labels, deep
active learning aims to sample a minimal set of training points
to be labelled which yields maximal model accuracy. We propose
an efficient sampling criterion to sample data for annotation,
which automatically shifts from an exploration type of sampling
to a class-decision-boundary refinement. Our criterion relies
on a process of diffusing the existing label information over
a graph constructed from the hidden representation of the data.
This graph representation captures the intrinsic geometry of
the approximated labeling function. We analyze our sampling
criterion and its exploration - refinement transition in light of the
eigen-spectrum of the diffusion operator. Additionally, we provide
a comprehensive sample complexity analysis that captures the
two phases of exploration and refinement. The diffusion-based
sampling criterion is shown to be advantageous over state-of-
the-art criteria for deep active learning on synthetic and real
benchmark data.

I. INTRODUCTION

Deep learning has provided unprecedented performance in
various semi-supervised learning tasks ranging from speech
recognition to computer vision and natural language processing.
Deep Convolutional Neural Networks (CNN), in particular,
have demonstrated object recognition that exceeds human’s
performance. However, this success comes with the requirement
for massive amounts of labelled data. While data collection at
large scale has become easier, its annotation with labels has
become a bottleneck for execution in many real-life problems.

Active learning provides a plethora of techniques that
allow to sample a set of data points for labeling, which
optimally minimizes the error probability under a fixed budget
of a labeling effort (see [22] for review). A well known
trade-off in active learning is between the exploration and
refinement sampling strategies. Exploration aims at mapping
the joint data and label distribution in order to identify decision
boundaries, and typically yields higher model accuracy at the
earlier stage of active learning over other baseline criteria.
Refinement (also referred to as exploitation), on the other hand,
samples labels at the proximity of a discovered class decision-
boundary, improving its localization. Active learning exhibits
improved performance when the balance between exploration
and refinement is optimal.

Incorporating active learning into deep learning is yet
a challenging task for several reasons. First, the network
representation does not allow to construct a simple probabilistic
sampling criterion that incorporates exploration and refinement.

Thus, state-of-the-art focus on either exploration or on a
refinement type criteria, which often leads to sub-optimal
results. This state drives active deep learning methodology to
focus mostly on simple refinement-type uncertainty sampling
criteria (e.g. [8, 23]), which do not require using the classifier
at the querying stage. Or, on using geometric criteria (e.g. [21])
that only explores the data distribution in its feature space.

We propose a graph Diffusion-based Deep Active Learning
(DDAL) criterion. We utilize the graph diffusion process, learnt
on a graph constructed from the penultimate layer, to derive our
active sampling criterion. In trained networks, the penultimate
representation is highly correlated with the labeling function,
and hence provides an optimal representation to sample the
labeling function. The main contributions of DDAL are:

1) Exploration-refinement trade-off: We derive a sampling
criterion which exhibits an automatic switch from explo-
ration to refinement-based sampling. Our criterion explores
graph nodes that are unreachable via diffusion, and then
refines the boundary where diffusion-derived labels are
ambivalent. This natural switch avoids the need in active
learning for an additional optimization machinery (e.g.
[25]) to decide which criterion type to use. We analyze
the exploration-refinement switch in light of the eigen-
spectrum of the diffusion iterant. We provide a sketch of
the application of our method in Fig 1.

2) Sample complexity analysis: We provide sample com-
plexity analysis for the two phases of exploration and
refinement. The analysis depicts complexity that is loga-
rithmic in N , and linear in the decision boundary set.

3) Empirical validation: DDAL competitive performance
is demonstrated empirically on benchmark data and
compared with eight state-of-the-art active learning criteria.
In particular, those constructed for deep learning.

II. PROBLEM SETUP

Let D be a probability distribution over Rd × [C], where
[C] = {1, ..., C} and C ≥ 2 indicates the number of classes.
Our aim is to find a classifier f : Rd → ∆C (∆C denotes the
space of probability measures over [C]) that minimizes the
classification error probability

E(f) = P(x,y)∼D

{
(argmax

c∈[C]

fc(x)) ̸= y

}
.

Figure 1: Schematic evolution of diffusion-based active sampling on the graph G(V,E,W) constructed on the penultimate
layer. The graph in red represents the constructed graph over all points Xℓ ∪Xpool Black points - current samples, white points
- previous samples, ovals - area of low uncertainty in class label for 3 different color coded labels. Left: active sampling in
early exploration stage. Center: advanced exploration stage of sampling captures the label related clusters. Right: Refinement
(exploitation) stage: black samples focus on the decision boundary between class where highest uncertainty prevails.

In deep learning, we consider the parametric functions

fθ = gθn+1
◦ hn

θn ◦ · · · ◦ h1
θ1 ,

where hi
θi

: Rdi−1 → Rdi (with d0 = d) and gθn+1 : Rdn →
∆C . The parameter θ = {θi}i defines our final model fθ.
Active learning setting. In active learning, one is given a pool
of input data points Xpool = {xi}Ni=1, and a budget Q to select
for labeling. Optionally, a labelled subset Xℓ ⊂ Xpool may also
be given as input. In the following, we denote Xu

.
= Xpool\Xℓ

as the set of unlabeled points in Xpool. The aim of active
learning is to minimize the error E(fθ) while querying only
Q points from Xpool, and training fθ with them.

III. CLASSIFICATION VIA GRAPH DIFFUSION

We use the optimized latent representation to construct a
KNN-based weighted proximity graph G = (V,E), where

Wij = m

(
−ρ(fn

θ (xi), f
n
θ (xj)

σij

)
I{j ∈ N(i)} (1)

with m as a similarity metric, and ρ as a distance metric.
The metric ρ(fn

θ (xi), f
n
θ (xj)) = ∥fn

θ (xi) − fn
θ (xj)∥22, σij =

maxj∈N(i) ρ(f
n
θ (xi), f

n
θ (xj)), and N(i) are the K neighbours

of fn
θ (xi). The transition matrix is defined as

M
.
= D−1W, (2)

where D is diagonal with Dii =
∑

j Wij .
Label diffusion can be considered as a Markov process to

propagate the label information of Xl to Xu. Specifically, the
one-step transition probability between states xi and xj is given
by pij = P{xi → xj} = Mij . We employ a random walk on
G as a mean to assign a label to xi ∈ Xu. The predicted
label of xi is associated with the probability of arriving to a
labeled point fn

θ (x) of class 1 (w.l.o.g.) after performing a
t-step random walk starting at fn

θ (xi). Marking this probability
as pt(y(x) = 1|i), it can be derived by the recursive relation

pt(y(x) = 1|i) =
∑
j

pt−1(y(x) = 1|j)pij . (3)

More formally, we associate the random walk probability
pt(y(x) = 1|i) with the classification probability p(y(xi) =
1|xi). For labeled points x ∈ Xℓ, p(y(x) = y|i) = 1.

Denoting 2pt(y(x) = 1|i) − 1 by χi we observe that
χi ∈ [−1, 1] and its sign can be used to generate binary labels.
Denote

D =

(
Dll 0
0 Duu

)
,W =

(
Wll Wlu

Wul Wuu

)
.

In matrix form χu = [D−1
uuWul|D−1

uuWuu]

(
χl

χu

)
.

Let the graph laplacian L = D −W in the system, then

Luuχu = Wulχl ⇐⇒ LuuXuu = −Lulyl. (4)

(4) above can be solved via the iteration:

χ
(t+1)
i =

1

Luu,ij

−(Lulyl)i −
∑
j ̸=i

Luu,ijχ
(t)
j

 . (5)

(5) is transducing a label χt+1
i to χi as a weighted average of

the labels of its neighbors with the transition probabilities as
weights. The labels are propagated to Xu gradually for t steps.
At the t-th step,

χ
(t)
ic =

1 if xi ∈ Xl & c = yi
−1 if xi ∈ Xl & c ̸= yi

0 if t = 0, else (Mχ
(t−1)
:,c)i if xi ∈ Xu.

We provide the multi-class case in the supplementary material.

IV. ACTIVE LEARNING

We begin with introducing our query selection criterion and
prove its important transition from exploration to refinement.

A. Query criterion.

χ(T) values can be used realize the uncertainty on whether
vertex i ∈ {i1, ..., i|pool|} belongs to class c. Specifically,
Specifically, the magnitude can be used to select a new batch
to query as

X̂ = argminBi∈Xu
min
c∈[C]

∣∣∣χ(T)
c,i

∣∣∣, (6)

where minB denotes the B smallest elements. The selection
criterion in (6) fits the one-vs-all approach above. In supple-
mentary material other variants are suggested.

Ground truth First query batch 14 query batches 44 query batches

Figure 2: Exploration & Refinement in Multiclass Checkerboard. Left to right: Ground truth, 1st batch (exploration, 30%
accuracy), 14 batches (exploration, 82% accuracy) and 44 batches (Refinement, 95% accuracy). Color coding corresponds to
label assignment and intensity to magnitude of weighted labels. Light yellow points represent so-far queried points, black points
represent current query. Transition from exploring the distribution in (0-14 batches) to focus on boundaries (44) batches

B. Exploration and Refinement.
The query criterion (6) enables the exploration of the data

set at early stages of active learning, and a switch to refinement
when exploration has saturated. This observation is based on the
convergence of the diffusion iterant χt to the second eigenvector
ϕ2 of the graph’s Laplacian as t → ∞. We show in our analysis
below that the 2nd eigenfunction can be used to sample data
for labeling with an optimal exploration-refinement trade-off.

To realize this, we observe that at early stages of label
acquisition low magnitude entries in χ correspond to data
points that are unreachable from the training set via diffusion
and need to be explored. At later stages all unlabelled data
points fn

θ (Xu) are reachable via diffusion from the labelled
set fn

θ (Xl). At this stage low magnitude χ entries correspond
to the transition between the two classes -1 and 1. These
nodes capture the eigenvector’s transition from negative to
positive entries. Therefore, sampling these points corresponds
to the refinement of the decision boundary. We provide the
convergence result to the second eigenvector of the graph
Laplacian in Lemma (1):

Lemma 1. Let λ1, ..., λn, ϕ1, ..., ϕn be the solutions to the
system: Lϕ = (1− λ)Dϕ. Then χ(t) converges to ϕ2 via the
iteration (10) with M , as t → ∞.

The eigenvector ϕ2 is a solution to the relaxed Minimal
Normalized Cut problem (MinNCut) [5] in a graph G(V,E,W)
constructed from data representation in the hidden layer fn

θ :

MinNCut = argminh:hTD1=0
hTLh

hTDh
. (7)

Eq. (12) provides an additional view point: at the limit, the
eigenfunction ϕ2 is approximately piece-wise constant with
opposite sign on each of the two blocks corresponding to
the negative and positive labels [5]. Therefore the criterion (6)
captures first the unexplored data points whose label magnitude
is 0 (exactly). Once diffusion from the labelled set reaches
all nodes the eigenfunction has full support. At this stage
the criterion (6) switches to sampling at the eigenfunction’s
inflection point and refines the decision boundary.

Algorithm 1 DDAL

input: data Xpool = {xi}Ni=1, labeled subset X0
ℓ , model fθ

trained on X0
ℓ , Q, B, M, T

while budget Q is not exhausted: do
compute G = (V,E,W) using {fn

θ (xi)}Ni=1

for i = 1 to R = Q
B do

initialize χ(0) according to X0
ℓ ∪ X̂i−1

ℓ

for t = 1 to T do
χ(t) = Mχ(t−1)

χ(t) = χ(t−1)|(X0
ℓ∪X̂i−1

ℓ)
end for
query S = argminB

k∈X̂i
u
minc∈[C]

∣∣∣χ(T)
c,k

∣∣∣
update X̂i

ℓ = S ∪ X̂i−1
ℓ

end for
retrain fθ with X̂i

ℓ

end while

We demonstrate switching from exploration to refinement
on a checkerboard example - Fig. 2. Exploration is observed
to become saturated, as the joint data-label distribution is
sufficiently mapped. At that stage DDAL automatically switches
to refining the decision boundaries. We provide the pseudo
code of DDAL in algorithm 1.

We note that iterations of (5) are only run for a few time steps
instead of until full convergence. In exploration stage labels are
sampled to reduce the diffusion time to convergence by cutting
the distance between the training points. In particular, in the
exploration stage the 0-label magnitude corresponds to points
unreachable from the training set, and therefore the distance
to the nearest training point is reduced by at least T hops in
the random walk with each exploratory label acquisition.

C. Running time and parameter selection

The running time analysis is composed of three parts. The
first part includes the computation of the K-NN graph. The
K-NN proximity search computational cost can be reduced
from the naive search cost by using procedures for K-NN

search based on KD [4] or ball trees [17]. Such methods
have complexity O(dN logN), with d as the dimension of the
space. Other alternatives include approximate search ([6]). In
the second part, the diffusion vector χ is multiplied with the
transition matrix. Addressing its sparsity as O(KN) non-zero
entries, this operation scales linearly in N as O(TKN). T and
K determine the level of confidence imposed by the diffused
training set over the unlabeled set. Higher K imposes strong
confidence in the current labeling hypothesis, but renders the
diffusion more exhaustive. Similarly, large number of iterations
T may result in an overly smoothed (and less informative)
signal χ(T). During exploration, large T imposes an hypothesis
that may be locally correct but is far from being globally
reliable. In our experiments, we use T ≃ logK N , with the
intention to cover most of the graph via diffusion: assuming a
diameter-balanced graph [19]. The cover requires O(logK N)
iterations, if the labelled set is small (i.e. |Xl| ≈ O(1), as
typical in active learning settings). We use K sufficiently high
to allow graph connectivity. This parameter selection leads to
a diffusion process that scales as O(KN logK N).

Finally, a batch of smallest soft-labels needs to be queried.
This requires a quick-sort to be applied to the soft labels
magnitude, which scales O(N logN). We conclude that the
running time of DDAL is O(dN logN + KN logK N +
N logN), whereas for a constant K can be further simplified
to O(dN logN). We note that the number of units in the
penultimate layer d is typically small.

V. SAMPLE COMPLEXITY ANALYSIS

We analyze two fundamental proximity graph structures of
the penultimate layer that model the two stages of exploration
and refinement in the hidden layer graph representation. We
address the binary setting to facilitate the analysis.

The first case addresses the early exploration stage, as the
hidden layers representation is not sufficiently adapted to the
class function, and therefore separation between classes is not
detectable. We model this setting as a K-regular graph or a
grid (similarly to the work of [7]). The binary class function
divides the grid to two regions in which each class resides.
Localization of the decision boundary is still not achieved by
the learner at this exploratory stage, as we show that the query
complexity of a full recovery of the graph-cut scales linearly
in the size of the boundary set and logarithmic in N .

The second case captures a learning stage of a converging
network with a larger training set at the mature refinement stage.
In this phase, well-separated clusters emerge in the hidden layer
representation, which correspond to label assignments.

A. The non-separable grid case.

Definition 1. A d-dimensional weighted grid graph is defined
as the weighted graph G(V,E,W) on the d

√
N × ... × d

√
N

grid of N nodes constructed via the graph Cartesian product
on the d

√
N line graphs. The edge weights Wij are fixed.

Definition 2. The balancedness β of a labelled set C =
{(xi, yi)}Ni=1 is defined as β = minj

|Cj |
N .

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ground truth

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Coreset (explorer)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Uncertainty (refiner)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

DDAL (combined approach)

Figure 3: Exploration vs. refinement in the checkerboard example.
Top: from left to right: (1) Binary checkerboard dataset (2) Points
queried (in yellow) using: coreset exploratory criteria [21] (3)
uncertainty refiner criterion [14] (4) our criterion. Bottom: (left)
Corresponding curves of accuracy versus size of training set, and
(right) accuracy variance demonstrates the advantage and robustness
of the combined exploration-refinement approach in DDAL.

Theorem 1. Let the graph G(V,E,W) correspond to a
d-dimensional regular grid, and assume that the grid is
partitioned by the cut set C of size |∂C| with balancedness
β. Then the sample complexity of BatchQuery for recovering
the cut with probability at least 1 - δ for any δ > 0 is

log 1
βδ

log 1
1−β

+O(d logK N + |∂C|). (8)

B. The separable case.

At the advanced refinement stage the hidden layer representa-
tion has structure comprising separated clusters that correspond
to different label assignments. The K-NN graph, in this case,
has a minimal cut that corresponds to the decision boundary
between the two classes. We analyze the query complexity
of well-separated class samples via a Gaussian Mixture
Model (GMM) w1N (m1,Σ1)+w2N (m2,Σ2) modelling two
densities in the hidden layer representation. The separation

0 200 400 600 800

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200

0.3

0.4

0.5

0.6

0.7

0.8

0.9

500 1000 1500 2000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

500 1000 1500 2000

0.60

0.65

0.70

0.75

0.80

500 1000 1500 2000

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Figure 4: Accuracy vs. queried points. From left to right: MNIST (fully connected), MNIST (convolutional), SVHN, CIFAR10,
and Openml155 datasets. The x-axis represent the labels queried, while the y-axis represents test set accuracy. Legend: (–)
random, (–) uncertainty, (–) coreset, (–) bayes-entropy, (–) entropy, (–) margin, (–) bayes-uncertainty, (–) badge, (- -) diffusion.

S is defined as the minimal distance between the centroids,
relative to the covariance:

S =
∥µi − µj∥

√
d
(√

λmax(Σi) +
√
λmax(Σj)

) . (9)

Theorem 2. Consider a Gaussian Mixture Model of 2 well-
separated (S >> 1) Gaussians of balancedness β. Let
the graph G(V,E,W) be the KNN graph constructed from
the GMM samples with weights according to eq. (1). Then
BatchQuery will recover the decision boundary with proba-

bility 1− δ by querying log 1
βδ

(
log 1

1−β

)−1

points.

VI. EXPERIMENTS
Exploration vs. refinement: a toy example We consider the
binary checkerboard example (Figure 3) to demonstrate the
utility of refinement vs. exploration criteria [3]. The comparison
demonstrates how different criteria tend to operate: Refinement-
based criteria - uncertainty [14], tackle decision boundaries
as soon as they individuate them. Lacking proper exploration,
it results in a completely mis-classified region. On the other
hand, exploratory criterion, such as Coreset [21], does not
fully detect the decision boundary. Finally, DDAL operates in
two phases: first, it explores the distribution to discover all
decision boundary and then localizes them. Accuracy results
and stability results in Figure 3-bottom demonstrate DDALs
performance compared to other criteria.
Benchmark evaluation. In Figure 4 we provide a performance
comparison with other active learning methods. We selected
fundamental approaches: refinement (e.g. uncertainty [13] and
entropy [9]), exploratory (e.g. Coreset [21]), and a combined
approach (e.g. ‘margin’ [20, 15] and Badge [1, 2]). Our selec-
tions were guided by i) comparing the exploration-refinement
trade-off between different active learning approaches, and ii)
comparing deep active learning approaches. We experiment
with the following benchmark classification problems: MNIST,
CIFAR10, Openml155 [24], and SVHN. Additional experi-
mental details are reported in the appendix. The advantage of
DDAL is prominent during the early exploration and transition
to refinement.
Robustness study. We examine the robustness of DDAL and
state-of-the-art for the choice of batch size and number of
epochs in Figure 5. For large batch size the criterion in (6)

10 epochs, BS=200 10 epochs, BS=1K

10 epochs, BS=2K 50 epochs, BS=200

50 epochs, BS=1K 50 epochs, BS=2K

Figure 5: Query size & epochs vs accuracy in Openml 155.
Legend: (–) random, (–) uncertainty, (–) coreset, (- -) diffusion,
(–) bayes-entropy, (–) entropy, (–) bayes-uncertainty.

becomes more exploratory. Namely, it probes points with larger
distance between them. This is more advantageous in the early
stages of learning. Small batches may focus more on refinement
of the decision boundary and may give better gains at later
stages. Conversely, when the batches are small they are revisited
more often by the optimizer in each of the active learning
iterations, and therefore faster convergence is observed.

REFERENCES

[1] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. Deep batch active
learning by diverse, uncertain gradient lower bounds.
arXiv preprint arXiv:1906.03671, 2019.

[2] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. Project. https://
github.com/JordanAsh/badge, 2019.

[3] El-Yaniv R. Luz K. Baram, Y. Online choice of active
learning algorithms. JMLR, 5:255–291, 2004.

[4] J. Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[5] F. R. K Chung. Spectral Graph Theory. CBMS Regional
Conference Series in Mathematics, 92 edition, 1996.

[6] Immorlica N. Indyk P. Mirrokni V. S Datar, M. Locality-
sensitive hashing scheme based on p-stable distributions.
In Proceedings of the 20th annual symposium on Com-
putational geometry, 2004.

[7] X. Zhu G. Dasarathy, R. Nowak. S2: An efficient
graph based active learning algorithm with application
to nonparametric classification. In Proceedings of The
28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pages 503–
522. PMLR, 03–06 Jul 2015.

[8] Islam Riashat Ghahramani Zoubin Gal, Yarin. Deep
bayesian active learning with image data. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1183–1192. JMLR. org, 2017.

[9] Alex Holub, Pietro Perona, and Michael C Burl. Entropy-
based active learning for object recognition. In 2008
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pages 1–8. IEEE,
2008.

[10] Szegedy C. Ioffe, S. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[11] A. Krishnamurthy J. Langford A. Agarwal J. T. Ash,
Chicheng Z. Deep batch active learning by diverse, uncer-
tain gradient lower bounds. In International Conference
on Learning Representations, 2020.

[12] Ba J. Kingma, D. P. Adam: A method for stochastic
optimization. arXiv:1412.6980, 2014.

[13] David D Lewis. A sequential algorithm for training text
classifiers: Corrigendum and additional data. In Acm Sigir
Forum, volume 29, pages 13–19. ACM New York, NY,
USA, 1995.

[14] Gale W. A. Lewis, D. D. A sequential algorithm for
training text classifiers. In ACM SIGIR, pages 3–12,
1994.

[15] Tong Luo, Kurt Kramer, Dmitry B Goldgof, Lawrence O
Hall, Scott Samson, Andrew Remsen, Thomas Hopkins,
and David Cohn. Active learning to recognize multiple
types of plankton. Journal of Machine Learning Research,
6(4), 2005.

[16] H. H. Zhou M. Löffler, A. Y. Zhang. Optimality of
spectral clustering for gmm, 2019.

[17] S. M Omohundro. Five balltree construction algorithms.
International Computer Science Institute Berkeley, 1989.

[18] Gross S. Chintala S. Chanan G. Yang E. DeVito Z. Lin Z.
Desmaison A. Antiga L. Lerer A. Paszke, A. Automatic
differentiation in PyTorch. In NIPS Workshop, 2017.

[19] P. Sparl S. Miklavic. -distance-balanced graphs. Discrete
Applied Mathematics, 244:143 – 154, 2018.

[20] Tobias Scheffer, Christian Decomain, and Stefan Wrobel.
Active hidden markov models for information extraction.
In International Symposium on Intelligent Data Analysis,
pages 309–318. Springer, 2001.

[21] Savarese S. Sener, O. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

[22] B. Settles. Active learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 6(1):1–114, 2012.

[23] Hazırbas C. Triebel R. Cremers D. Stark, F. Captcha
recognition with active deep learning. In Workshop new
challenges in neural computation, page 94, 2015.

[24] Jan van Rijn. Normalized version of the pokerhand data
set.

[25] Ma Z. Nie F. Chang X. Hauptmann A. G. Yang, Y.
Multi-class active learning by uncertainty sampling with
diversity maximization. Int. J. Comput. Vision, 113(2):113–
127, June 2015.

APPENDIX

TRAINING DETAILS

We report the architecture and hyper-parameters used in the
experiments in Section VI for each of the data sets. We used
for most of the data intensive experiments Ubuntu 16.04 on a
machine with 2x Intel Xeon Gold 6126 CPU @2.6GHz/3.7GHz
12C/24T each, 2x512GB SSD for system (RAID0 = 512GB
usable), and 4xNvidia GTX 1080Ti 11GB GPUs.

a) Active learning training: After each batch of queries
the network is trained for a certain number of epochs, starting
from the previous configuration. The reported accuracies are
averaged over 5 runs. All the experiments were performed
using PyTorch [18].

b) Checkerboard: We consider a pool data set of
|Xpool| = 2000 labeled points drawn from the checkerboard
distribution. We start with a training set X0

ℓ composed of 4
points randomly drawn from the pool set for each of the classes
(so that

∣∣X0
ℓ

∣∣ = 8) and train a feed-forward neural network.
The accuracy and its variance are measured on a separate test
data set of Ntest = 200 points drawn from the checkerboard
distribution in Fig. 2. All the results are averaged over 5 runs.

We trained a fully-connected network with 2 hidden layers
of width 30 each. We optimized using SGD with batch size
1, learning rate 0.001 and momentum 0.9. We ran 100 epochs
after each query. The experiments were run on a pool set of
size 2000. The accuracy was evaluated on a separate test data
set sampled from the same distribution (200 points).

c) MNIST: The fully-connected model we used had 2
hidden layers of width 100 and 50 respectively. The convolu-
tional model used was composed by a convolutional layer with
16 channels and a kernel of size 5× 5, a MaxPool layer with a
kernel of size 2 and padding 2, and 2 hidden fully-connected
layers of width 20 each. For both models, we optimized using
Adam [12] with batch size 8 and learning rate 0.001. For both
models, a BatchNorm [10] layer was added before each hidden
fully-connected layer. We ran 100 epochs after each query. The
experiments were run on a pool set formed by a (balanced)
randomly selected subset of the training data set of size 10000.
The accuracy was evaluated on the test data set (10000 points).

d) CIFAR10 : The network used was a VGG-16 archi-
tecture pre-trained on ImageNet. We took the convolutional
part of such network and added 2 fully-connected layers of
width 512 and 20 respectively. A dropout layer was added after
each of these fully-connected layers. Only the fully-connected
layers were trained. We optimized using Adam [12] with batch
size 100. After each query the learning rate was initialized
to 0.0003 and decayed by 0.5 every 30 epochs. We ran 100
epochs after each query. The full training data set (50000
points) was used as pool data set for the experiments. The
accuracy was evaluated on the test data set (10000 points).

e) SVHN : The network used was a VGG-16 architecture.
We optimized using SGD with batch size 50, learning rate
0.005, momentum 0.9 and weight-decay 0.0005. We ran 50
epochs after each query. The experiments were run on a pool
set formed by a (balanced) randomly selected subset of the

training data set of size 20000. The accuracy was evaluated
on the test data set (26032 points).

f) Openml155: For the OpenML, we use a two-layer
Perceptron with ReLU activations (MLP) as in [11]. The
embedding dimensionality of the MLP is 1024, as more capacity
helps the model fit training data. We fit models using cross-
entropy loss and the Adam variant of SGD. We use a learning
rate of 0.0001.

g) DDAL: The following parameters were used for the
diffusion algorithm in the experiments presented in Section VI.
For the experiment with the checkerboard data set (experiment
in Figure 2), we used T = 4, K = 10 and P = 1. For the
experiments with the MNIST data set (experiment in Figure
4), we used T = 5, K = 10 and P = 1. For the experiment
with the CIFAR10 data set (experiment in Figure 4), we used
T = 4, K = 20 and P = 10.

h) Bayesian criterion: In order to perform the active
learning queries using the Bayesian criterion, we added a
dropout layer after each hidden fully connected layer to the
models with no dropout layers.

A. Variants of multi-class extension

In Section IV, we described a possible formulation to
extend the diffusion-based active learning criterion to the
multi-class setting. We propose in the following other possible
formulations.

a) One-vs-all approach: In the one-vs-all setting de-
scribed in Section IV, the batch is queried according to

X̂ = argminBi∈Xu
q
(
χ
(T)
:,i

)
for some chosen function q which measures a notion of
uncertainty at point xi, given the matrix χ(T). In Section
IV, we chose q to be

q
(
χ
(T)
:,i

)
= min

c∈[C]

∣∣∣χ(T)
c,i

∣∣∣, or q
(
χ
(T)
:,i

)
=

∥∥∥χ(T)
:,i

∥∥∥
p

for some p ∈ [1,∞].
b) Multivariate diffusion approach: Moving from the one-

vs-all approach, we can performs the query as follows, using
the property that M is a stochastic matrix. For each data point
xi, we propagate a probability vector χ(t)

i ∈ ∆C . This vector
can be initialized as

χ
(0)
i,c =

1 if i ∈ Xℓ and c = yi

0 if i ∈ Xℓ and c ̸= yi
1
C otherwise

We can therefore diffuse the matrix aggregating the signal for
all the points, χ(t) ∈ RN×C , and diffuse it as in the binary
case:

χ(t) = Mχ(t−1), χ(t)|Xℓ
= χ(0)|Xℓ

Since M is stochastic, it holds that χ(t) ∈ ∆C at each iteration
t. Therefore we can interpret each vector χ(t)

i as a probability
vector of the data point xi belonging to different classes,

obtained by the diffusion above. It therefore makes sense to
choose the points to query as

X̂ = argminBk∈Xu
q
(
χ
(T)
i

)
where q : ∆C → R is some measure of uncertainty. Possible
choices include:

• Uncertainty: q(p) = pc∗ , where c∗ = argmaxc pc;
• Margin: q(p) = pc∗ − pc∗2 , where c∗ is defined as above

and c∗2 = argmaxc∈[C]\{c∗} pc;
• Negative entropy: q(p) =

∑
c∈[C] pc log pc.

B. PROOF OF LEMMA 1

Proposition 1. A general solution to the Jacobi iteration (5)
after t iterations and with initial conditions specified by χ(0)

is given by

χ(t) = (M)tχ(0) = c1λ
t
1ϕ1 + ...+ cnλ

t
nϕn, (10)

where χ
(t)
i:xi∈Xl

= yi, for each t ∈ {0, ..., T}, and c1, ..., cn
are coefficients that are prescribed by the initial condition
χ(0) = c1ϕ1 + ...+ cnϕn, where λ1, ..., λn and ϕ1, ..., ϕn are
the eigenvalues and eigenvectors of M .

Via a simple algebraic manipulation those eigenvectors are
also shown to be the eigenvectors of the graph’s Laplacian:

Proposition 2. λ1, ..., λn, ϕ1, ..., ϕn are also solutions to the
system:

Lϕ = (1− λ)Dϕ, (11)

where L = D −W .

The eigenvector ϕ2 is a solution to the relaxed Minimal
Normalized Cut problem (MinNCut) [5] in a graph G(V,E)
constructed from data representation in the hidden layer fn

θ :

MinNCut = argminh:hTD1=0
hTLh

hTDh
. (12)

We follow on the proposition 1 eq. (10). We first note
that χ(0) has the sign of its non-zero coordinates as the
subset of the coordinates of ϕ2 (up to a sign permutation),
and after each iteration they are restarted. Since ϕ1 has
constant sign (and magnitude) restarting with opposite
signs causes c1 to be suppressed to zero already at
t = 0 . Since ϕ2 ⊥ ϕi for i = 3, ..., N , there have to
be coordinates j1, ..., jk; jk ∈ {1, ..., N − 1}, for which
sign(ϕi(xjm)) ̸= sign(ϕ2(xjm)) 1 ≤ m ≤ k. We consider
two cases:

1) χ(0) contains such non-zero coordinates. For all
eigenvectors ϕi1 , ..., ϕil with such sign inequality
we have that c2 > cil for il ∈ {3, ..., N}, and
since λ2 ≥ λil we have that ϕ2 is dominant. The
restarting of χ prevents it from converging to 0 in case
c2λ2 < 1, and we conclude our proof. For all other
eigen-components (for which χ(0) has 0 coordinates
where sign(ϕi(xjm)) ̸= sign(ϕ2(xjm)) 1 ≤ m ≤ k) the
following case also holds.

2) All coordinates j1, ..., jk in χ(0) are zero: Since for a
well-separated GMM the kernel K is a 2-block stochastic
matrix, point xjm will be transduced only from points xl

for which yjm = yl. For every such point xjm there exist
an iteration t′ such that χ(t′)(xjm) becomes non-zero and
attains the sign of yl. At this t′ all eigen-components
ϕi, i = 3, ..., N in the iterant χ(t′), which have coordi-
nates such that sign(ϕi(xjm)) ̸= sign(χ(t′)(xjm)) 1 ≤
m ≤ k, will be reduced. Once all such points are visited
the dominant component will be ϕ2, and the remaining
components will converge to zero.

C. PROOF OF PROPOSITION 1

The eigenvectors of the kernel M form a complete basis and
therefore any vector in CN can be represented as their linear
combination. What is left to prove is that any initial conditions
can be matched. To this end we need to show that

Sc = χ(0) (13)

can be solved, where S is the matrix whose columns are the
eigenvectors of BJ (the iteration matrix introduced in Section
III for the iteration in eq. (5)). Since the eigenvectors are
linearly independent S is non-singular and (10) always admits
a solution.

D. PROOF OF PROPOSITION 2
Simple algebraic operations yield the result:

D−1Wϕ = λIϕ ⇔ ϕKϕ = λIϕ ⇔ Wϕ = λDϕ ⇔
(D − L)ϕ = λDϕ ⇔ Lϕ = Dϕ− λDϕ ⇔ Lϕ = (1− λ)Dϕ

E. PROOF OF THEOREM 1
We note that eq. (8) is derived from several steps and after reducing

constant factors. We elaborate these steps below:
1) The first term of (8) depends on the balancedness β, and accounts

for the number of queries required to achieve a representative
for every class. The ratio in (8) is a direct result of Lemma 4
in [7].

2) Since at every diffusion step K nodes are transduced with a
label, KT nodes will have a soft label after diffusing from a
labelled node (assuming a connected graph). On the other hand,
the approximate number of labelled nodes needed to cover the
graph with soft labels can be derived in expectation from the ratio
N
KT for connected graphs. When T = O(logK N) all O(N)
unlabelled nodes are reachable in expectation in T iterations, and
O(1) labelled nodes are needed. Exploration involves O(N

KT)
queries to guarantee all nodes have non-zero labels via diffusion.

3) The search process is dictated by the minimal value of the
diffusion soft label (criterion (6)) obtained after each propagation
of the labels from a pair of nodes vi vj of opposite labels, to their
neighbors along the shortest path between them. This propagation
repeats until two nodes of opposite sign are discovered. Since
the absolute value among those two nodes is expected to be
minimal, our query criterion selects one of those nodes to be
queried, and the process repeats until his opposite label neighbor
is queried as well. For a regular graph grid in which all the
transition probabilities are equal, the queried node will reside
at the midpoint between vi and vj , thus resulting in O(logM)
queries, where M is the length of the shortest path between
them.

Since after exploration with T = O(logK N) the maximal
shortest distance between any two nodes vi, vj , of opposite
label is at most 2KT hops, we have that at most log 2KT =
1 + T logK = 1 + logK N · logK queries are required until
the first two connected cut nodes are recovered. Since in a
connected grid each node has K = 2d neighbors. We obtain at
most 1 + d logK N queries are sufficient.

4) The next propagation will reach another cut node in a constant
number of propagations, specifically for any grid in just 2 hops.
Since this is a constant the following queries scale as the size
of the cut - |∂C|.

F. PROOF OF THEOREM 2
We start with auxiliary results (proved below) that show that the

diffusion iteration converges to a minimal cut solution in the graph
G(V,E,W) derived from the top hidden layer, under the separation
requirement. As a result, the decision boundary is recovered accurately
because the GMM cluster assignments correspond to the ground truth
labels.

We start with observing the general form of the solution of the
iteration (5) as in Proposition 1:

χ(t+1) = M t+1χ(0) = c1λ
t
1ϕ1 + ...+ cnλ

t
nϕn, (14)

where χ
(t)
l:xi∈Xl

= yi, for each t ∈ {0, ..., T}, and c1, ..., cn are
coefficients that are prescribed by the initial condition χ(0): χ(0) =
c1ϕ1 + ...+ cnϕn, and λ1, ..., λn and ϕ1, ..., ϕn are the eigenvalues
and eigenvectors of M .

Let λ1, ..., λn and ϕ1, ..., ϕn be the set of eigenvalues and
eigenvectors of M ordered in the decreasing order of the eigenvalues.
Using Proposition 2 and Lemma 1 we show the equivalence of the
iteration solution as t → ∞ to the Minimal Normalized Cut solution
(MinNCut) [5].

As achieved by Lemma 1, the construction of the decision boundary
can be done by following the convergence to the minimal cut solution.
We therefore show that the sample complexity is dominated by the
initial class sampling and the sampling in the exploration stage, which
allows the labels to propagate through the whole graph for a given T .

1) At the initial stage data is queried until at least one sample of
each label exists. Assuming that β is the measure of balancedness
(as definition 2), the first component to consider is the complexity
required to discover all classes, following on Lemma 4 in [7].

2) Next, we are looking to sample a set of labelled nodes such that
when diffused T times all unlabelled nodes will have a non-zero
soft label. As discussed above in the proof of Theorem 1, the
expected number of queries is O(N

KT) to guarantee coverage by
diffusion for almost all nodes in T diffusion steps. On the other
hand, setting T = logK N , renders this complexity as constant
O(1), independent of N , which can be neglected.

3) Once all such points are queried the minimal cut corresponding
to the Gaussian clusters is obtained accurately according to
Lemma 1, for sufficiently large T via the diffusion process.
The optimality of the spectral cut solution here is supported by
Theorem 1.1 in [16], which we give below for completion:
Theorem 3. For N data points generated from a Gaussian
Mixture model, if
• number of clusters is finite
• the sizes of clusters are in the same order
• the minimum distance among centers goes to infinity
• the dimension d is at most in the same order of N
then with high probability, spectral clustering achieves the
optimal clustering rate, which is

l(χ̂, χ∗) = N exp
(
− (1− o(1))

△2

8

)
(15)

where l(·, ·) is the Humming loss function, and △ is the distance
between the centroids.

The theorem provides the final step, showing that ϕ2 is an
optimal solution for finding the decision boundary between the
Guassians in the GMM.

We note that the assumptions of Theorem 3, in particular, the high
separation between the class-clusters (here modeled by the GMM) are
attained due to the highly trained network at the refinement stage. In
this stage the penultimate layer is well trained and present a structured
graph where members of different class are separated.

