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Abstract

The past decade has seen data privacy emerge as a fundamental and pressing issue.
Among the tools developed to tackle it, differential privacy has emerged as a central
and principled framework, with specific variants capturing various threat models.
In particular, the recently proposed shuffle model of differential privacy allows for
promising tradeoffs between accuracy and privacy. However, the shuffle model
may not be suitable in all situations, as it relies on a distributed setting where all
users can coordinate and trust (or simulate) a joint shuffling algorithm.
To address this, we introduce a new model, the group shuffle model, in which users
are partitioned into several groups, each group having its own local shuffler. We
investigate the privacy/accuracy tradeoffs in our model, by comparing it to both the
shuffle and local models of privacy, which it some sense interpolates between. In
addition to general relations between group shuffle, shuffle, and local privacy, we
provide a detailed comparison of the cost and benefit of the group shuffle model, by
providing both upper and lower bounds for the specific task of binary summation.

1 Introduction

While distributed machine learning and, more generally, distributed computing have been around for
a long time, they recently have picked up significant speed, with the need to process and learn from
distributed data becoming pervasive. Privacy considerations have also become front and center, due
to the need to process sensitive or personal user data.

Differential privacy (DP) [8] has emerged as principled way to address the latter aspect, by providing
a mathematical framework to quantify and guarantee the privacy provided by a given algorithm.
Several variants of DP have been proposed, each addressing a different “threat” model – which parties
involved can be trusted with the data, and which must be protected against – and as a result each
coming with different trade-offs between privacy and utility.

In the central model of DP (often simply referred to as DP), all users trust a central party, known as
the curator or analyzer, with their data. The curator then runs an algorithm on this raw data, and the
output of this algorithm is the quantity which is then required to reveal little about the original inputs.
This privacy requirement allows for quite good utility, but does not protect against privacy leaks by
the curator itself. On the other side of the spectrum, in the local model of DP (LDP) [13, 12, 7], each
user privatises their data before sending it to the central entity, thus guaranteeing privacy against all
parties involved. The resulting privacy guarantee is very strong, but comes at a cost of much lower
utility achievable.

An intermediate setting is the recently introduced shuffle model of privacy [6, 3], which only requires
users to trust a third party, the “shuffler,” which upon receiving their messages applies a uniformly
random permutation before delivering the shuffled result to the analyzer. This trusted third party, in
view of the simple task it performs, can be efficiently implemented using cryptographic primitives
(e.g., multiparty computation (MPC)); yet, by only requiring the shuffled messages to provide privacy
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Figure 1: The proposed Group Shuffle model with 12 users and 4 Groups. Xi’s and Zi’s are inputs of
users and outputs of randomizers respectively, where each group has a independent shuffler.

guarantees instead of the original set of messages, shuffle privacy allows for much better utility than
LDP, sometimes even comparable to that achievable in the central DP model.

Unfortunately, even this seemingly minimal requirement (a common, trusted shuffler) can be hard or
impossible to achieve. This could be the case where users are distributed across disparate entities, such
as different companies, or even countries, each with incompatible infrastructures or requirements.
Coordination across those various entities to agree on or simulate a common shuffler could be
technically infeasible, legally impossible, or politically complicated; still, each of those entities could
quite easily implement a shuffler of their own. Addressing this type of scenario calls for a new privacy
model, the group shuffle model, which we introduce below (see Section 2 for the formal definition).

In the group shuffle model, users are partitioned into a fixed number of groups, and to each group
corresponds a different (independent across groups) shuffler. Doing so has three immediate conse-
quences: first, this removes the need for the different entities (corresponding to the groups) to agree
on a single trusted third party. Second, by having a much smaller number of inputs to each shuffler,
one can hope for an easier implementation, and better efficiency overall. Finally, this provides
better robustness: even if one or some of the shufflers were to be compromised by users behaving
adversarially or security breaches on the shufflers, only the privacy of the corresponding fraction of
users could be jeopardised.

Organization. We formally define our new model in Section 2, before comparing and relating it to
the local and shuffle models in Section 3, where we provide general results and reductions between
the three. We then provide in Section 4, as an important and illustrative example, an extensive study
of what can be achieved in the group shuffle model for the problem of binary summation. Finally, we
conclude in Section 5 by discussing some aspects of our model and directions for future work.

2 Our model

We now introduce our privacy model, after setting up the required notation. Hereafter, we consider a
setting with n users, each of them with their own datum, which takes values in X .

A protocol P = (R,S,A, k) in our model, analogously to the shuffle model, is comprised of 3
algorithms:

• A randomizer R : X × {0, 1}r → Y∗. Each user has a randomizer which converts an input
and a public random bits to m-message. The number of messages can be variable; i.e., m
itself can be a random variable.

• k shufflers, each an instance of the same S : Y∗ → Y∗. S takes a (multi)set of messages
and uniformly permutes these messages.

• An analyzer A : Y∗ × {0, 1}r → Z . The analyzer gets as input an (unordered) tuple of
messages with a public random bits, and processes them in order to estimate or compute a
function f(x1, x2, . . . , xn) of the n inputs.

In the above, the parameter k denotes the number of groups. In contrast to the usual shuffle model,
which includes a single shuffler, in the group model, there are k independent shufflers, permuting the
messages of disjoint subsets of the n users. For simplicity, we hereafter assume that n is divisible
by k, and that the n users are partitioned into k groups of n′ := n

k users. Hence, the output of the
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protocol is
P(~x) = A(Sk ◦ Rn(~x,W ),W ) (1)

where ~x = (x1, . . . , xn) is dataset of n inputs to the users, W is a public random string, and we
define Sk ◦ Rn(~x,W ) by

(S1(R(x1,W ), . . . ,R(xn′ ,W )), . . . , Sk(R(x(k−1)n′+1,W ), . . . ,R(xkn′ ,W )). (2)

Definition 1 (Group Shuffle private). Let ε > 0 and δ ∈ [0, 1]. A protocol P = (R,S,A, k) is
(ε, δ)-differentially private in the group shuffle model if Sk ◦ Rn(~x,w) is (ε, δ)-differentially private
for every fixed w ∈ {0, 1}r.
Remark 1. From the definition, we see that for k = 1 we obtain the definition of the shuffle model.
On the other hand, if k = n, our model will coincide with the local privacy model (In this case, the
shufflers do not do anything).

3 Relation to LDP and Shuffle DP

In this section, we investigate the relation between our model, group shuffle, and other previous
models – with a focus on the local and shuffle models. As discussed in Remark 1, those two models
can be seen as the two extremes of the group shuffle model, for k = n and k = 1, respectively. Thus,
it is natural to ask about how the group shuffle model interpolates between them: that is, how the
privacy/utility trade-off evolves, as a function of k. To start, we provide the following lemma, which
establishes a necessary and sufficient condition for privacy in the group shuffle model.
Lemma 1. A protocol P = (R,S,A, k) is (ε, δ)-group shuffle private if, and only if, for all ~x ∈ XN
and i ∈ [k], Si(R(x(i−1)n′+1, w), . . . , R(xin′ , w)) is (ε, δ)-differentially private for all w ∈ {0, 1}r.

In other words, P is (ε, δ)-group shuffle private if, and only if, the output of each of the k groups is
individually (ε, δ)-shuffle private. We will extensively use this lemma in the remainder of this paper,
as a crucial tool for our proofs.

Local model. In the local model (LDP), we assume the lowest level of confidence from the users
towards the other parties, which as a consequence typically leads to much lower utility achievable.
We next provide two theorems which relate the group shuffle and LDP models, and are extensions of
previous, analogous theorems connecting shuffle and local models.
Theorem 2 (Extension of [6, Theorem 6.2]). If a single-message protocol P = (R,S,A, k) is
(ε, δ)-group shuffle private, thenR by itself satisfies (ε+ ln n

k , δ)-differential privacy.

The above theorem is an extension of [6, Theorem 6.2]. Its proof is straightforward and based on the
equivalent definition of group shuffle DP given in Lemma 1. As the shuffle version from [6, Theorem
6.2], this lemma can be used to obtain lower bounds for group shuffle DP, from LDP lower bounds.

A powerful and appealing method for obtaining shuffle DP algorithms from LDP ones is the so-
called “amplification by shuffling” [9, 1, 10]. In particular, the recent work [10] provides an optimal
amplification lemma, showing how shuffling the output of LDP algorithms results in a shuffle
private algorithms with much better (shuffle) privacy guarantees. We here extend their result, [10,
Theorem 3.1], to the group shuffle model; for simplicity, and in view of our definition of group shuffle
privacy, we only focus here on the case of non-adaptive protocols.
Theorem 3 (Extension of [10, Theorem 3.1] to Group Shuffle). Let P = (R,A) be εL-LDP for n
users, partitioned into k groups of equal size. Upon randomly permuting the concatenated outputs
within each group, for every δ ∈ [0, 1] we obtain an (ε, δ)-group shuffle protocol with

ε =


O
(
εL

√
k log(1/δ)

n

)
, εL ≤ 1

O
(√

eεL k log(1/δ)
n

)
, εL > 1

(3)

provided that εL ≤ log n
16k log (2/δ) .

Note that the distinction between this theorem and the original theorem is that we cannot uniformly
permute all messages of users (equivalently, all inputs of users), but instead use a different and
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independent permutation for each group. As a result, the amplification worsens by a factor roughly√
k (i.e., amplifying by roughly

√
k/n instead of 1/

√
n), which matches what one would expect for

both extreme cases k = 1 and k = n.

Conversion to and from the shuffle model. Although we do not provide a generic, all-purpose
conversion between group shuffle and shuffle models, we describe some relationships between the
two in Appendix B.3.

4 The example of binary summation

In this section, we focus on the fundamental problem of binary summation, where each of the n users
holds a bit xi ∈ {0, 1}, and the goal is to privately estimate their sum S(~x) =

∑n
i=1 xi. We analyze

this particular task, extensively studied and well understood under DP, LDP, and shuffle DP, as a
guiding example to understand the performance (accuracy) of algorithms in the group shuffle model.

Various protocols have been proposed for this problem in the shuffle DP literature, most of them
yielding an unbiased estimator of the sum S(~x). We show how, leveraging this, one can derive a group
shuffle protocol from a shuffle DP one. After that, we will show the optimality of our conversion, by
lower bounding the MSE of any group shuffle protocol for binary summation.
Theorem 4. Let P be (ε, δ)-shuffle private and its output be an unbiased estimate for the sum of
n′ binary inputs. Suppose that, for all inputs, the MSE of this protocol is O(g(ε, δ, n′)). Then, b
concatenating the k independent instances of this protocol we obtain an (ε, δ)-group shuffle private
protocol for n := kn′ users whose MSE is O(k · g(ε, δ, n′)).

In particular, using the nearly optimal (pure) shuffle DP protocol of [11] for binary summation, we
obtain the following:1

Corollary 5. There exists an (ε, 0)-group shuffle private protocol P for binary summation with MSE
Oε(k), in which each user sends Oε

(
log n

k

)
single-bit messages.

Note that the above conversion affects the MSE by a factor of k. It is natural to wonder if this loss is
inherent in a conversion from shuffle to group shuffle DP. In our next theorem, we show that this is
the case for binary summation, by lower bounding the MSE of any group shuffle private protocol.
Theorem 6. Let P be any (ε, δ)-group shuffle private for binary summation. Then, the MSE of this
protocol must be Ω

(
k
ε2

)
.

Proof idea. The proof of this theorem relies on a conversion to the local model, for which we know
that the MSE of any (ε, δ)-LDP protocol for binary summation is at least Ω

(
n
ε2

)
. Using this fact

enables us to establish our lower bound via a reduction.

5 Discussion and future work

We proposed a new privacy model, the group shuffle model, intermediate between the local and
shuffle models and appropriate for situations the latter cannot be used, due, e.g., to implementation,
policy, or security reasons. We investigated some of the relations between our model and existing
ones in Section 3, and provided some conversion theorems. Moreover, we analyzed the type of
privacy/utility tradeoffs one could expect in the group shuffle model, by focusing in Section 4 on
the important example of binary summation, where we provided some upper and lower bounds. We
believe investigating further the group shuffle model to be an appealing and well-motivated research
direction. We list below some questions of interest.

• Can we design a new algorithm for binary summation which is specific to the group model,
i.e., does not rely on a conversion from either the LDP or shuffle model?

• Is there a generic, more efficient conversion from a group shuffle private protocol to shuffle
private one? How can we improve the proposed conversion?

• What is the optimal communication complexity achievable, and how does it interpolates
between those of the local and shuffle models?

• What if we allow each group to have a different randomizer, instead of requiring all users to
use the same? Can this lead to more efficient protocols?

1While [11] only proved an absolute error guarantee, one can check their algorithm achieves the stated MSE.
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Appendices

A Proof of Lemma 1

Proof. We prove separately the two directions of the lemma. First, assume that the whole vector is
(ε, δ)-differentially private, and fix 1 ≤ i ≤ k. By post-processing, if we apply a function that maps
the whole output message vector to only the i-th group’s output, the result is still (ε, δ)-differentially
private. This implies the output of i-th group is (ε, δ)-differentially private individually, completing
one of the two directions.

Assume now that the output of each group is (ε, δ)-differentially private. Note that by the definition
of our model, the outputs of the shufflers are independent. For ease of notation, we denote the input
and output of the i-th group by Xi and Si(Xi) respectively. Let A be an arbitrary subset, and write it
as the Cartesian product A = A1 × · · · ×Ak, where Ai is a subset of the i-th shuffler’s output space;
we then have
P[(S1(X1), S2(X2), . . . , Sk(Xk)) ∈ A] = P[(S1(X1), S2(X2), . . . , Sk(Xk)) ∈ A1 × . . .×Ak]

= P[S1(X1) ∈ A1]× · · · × P[Sk(Xk) ∈ Ak] , (4)
where the last equality follows from the independence assumption of the Sis. Assume that X ′ is
adjacent toX , meaning that both are the same except for a user’s input in the j-th group. By definition
of differential privacy for the j-th group we have

P[Sj(Xj) ∈ Aj ] ≤ eε · P
[
Sj(X

′
j) ∈ Aj

]
+ δ, (5)

so that, multiplying both sides by
∏

1≤i≤k
i 6=j

P[Si(Xi) ∈ Ai] and using (4) yields that

P[(S1(X1), S2(X2), . . . , Sk(Xk)) ∈ A] ≤
∏

1≤i≤k
i 6=j

P[Si(Xi) ∈ Ai]
(
eε · P

[
Sj(X

′
j) ∈ Aj

]
+ δ
)

= eε · P
[
(S1(X1), . . . , Sj(X

′
j), . . . , Sk(Xk)) ∈ A1 × . . .×Ak

]
+ δ

∏
1≤i≤k
i 6=j

P[Si(Xi) ∈ Ai]

≤ eε · P[(S1(X ′1), S2(X ′2), . . . , Sk(X ′k)) ∈ A] + δ , (6)

where the last inequality uses that
∏

1≤i≤k
i 6=j

P[Si(Xi) ∈ Ai] ≤ 1.

Remark 2. Note that, in the above proof, we did not use the assumption that each group had the
same number of members. Thus, the lemma generalizes to an extension of our model where each
group can have a different number of users, instead of n′ = n/k.

B Relation to Other models

B.1 Proof of Theorem 2

To start, we state the general theorem of [6].
Theorem 7 ([6, Theorem 6.2]). If a single-message protocol P = (R,S,A) is (ε, δ)-shuffle private,
thenR by itself satisfies (ε+ lnn, δ)-differential privacy.

Proof. From Lemma 1, we know that if P = (R,S,A, k) is (ε, δ)-group shuffle private, then each
output of groups’ shufflers satisfies (ε, δ)-DP. As, in our model, each group consists of some users
and a trusted shuffler, we can use Theorem 7 for each group individually. It follows thatR should
satisfies (ε+ ln n

k , δ)-differential privacy. (Note that the original, as ours, focuses on the privacy, and
thus the analyzer A itself is irrelevant to the result.)

Remark 3. As for Lemma 1, in the above proof, we did not require the assumption that groups had
the same size. Specifically, each group had a different number of users, then we can obtain thatR
satisfies (ε+ lnM, δ)-DP, where M is the minimum number of users in any of the k groups.
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B.2 Proof of Theorem 3

Before proving the theorem, we review the original theorem and its consequence.

Theorem 8 (Short version of [10, Theorem 3.1]). Let P = (R,A) be εL-LDP for n users. For every
δ ∈ [0, 1] such that εL ≤ log n

16 log (2/δ) , by shuffling the outputs of the n users we obtain a protocol
which is (ε, δ)-shuffle private, with

ε ≤ log

1 + 8
eεL − 1

eεL + 1


√
eεL log 4

δ√
n

+
eεL

n

 . (7)

In particular, as [10] stated, we have two regimes for ε with respect to εL,

ε =


O
(
εL

√
log(1/δ)

n

)
, εL ≤ 1

O
(√

eεL log(1/δ)
n

)
, εL > 1.

(8)

Proof of Theorem 3. The proof is based on the converse side of Lemma 1. We use the amplification
method of Theorem 8 for each group separately. Therefore, as all k groups have the same size, we
can obtain (ε, δ)-differential privacy with

ε =


O
(
εL

√
k log(1/δ)

n

)
, εL ≤ 1

O
(√

eεL k log(1/δ)
n

)
, εL > 1.

(9)

Now by using again Lemma 1, we know that if output of each group satisfies (ε, δ)-differential privacy,
the whole concatenated vectors of all groups satisfies (ε, δ)-differential privacy; this concludes the
proof.

B.3 Relation to Shuffle models

We currently do not have a general conversion from shuffle to group shuffle model for all tasks.
However, if we assume that the output of the analyzer is a specific statistic that can be calculated
from many similar statistics (e.g, sum, frequency statistic (in some cases), etc.) then we can obtain a
protocol in the group shuffle model from one in the shuffle model.

Specifically, we can simply concatenate the output of k shuffle protocols with n
k users; the analyzer

then first simulates separately the analyzers of each of the k groups, before aggregating those k
outputs. Although this conversion is simple, it can in some cases lead to a tight or nearly tight bound
in terms of accuracy for some tasks. We described this conversion in Section 4 for binary summation.

Note that the above is a conversion from k shuffle protocols on n
k users to a group shuffle protocol on

k groups of nk users. If we had shuffle protocols with more than n
k users, then, by setting some inputs

to a dummy value, e.g., 0 in the binary summation, the conversion would still go through.

Finally, we do not at the moment have any non-trivial conversion for the other direction, i.e., to derive
a shuffle protocol from a group shuffle one; we see this as an interesting direction for future work.

C Completed proofs of binary sum problem

C.1 Proof of Theorem 4

Proof. The proof relies on a straightforward idea. Consider k instances of given P . We assign each
group of users to an instance. Now, we want to construct our group shuffle protocol: the randomizer
of each user will be the same as the current protocol. We use a shuffler for each group. Clearly, by
using Lemma 1, we have (ε, δ)-group shuffle privacy. In our analyzer, we first estimate the sum of
each group using the given analyzer. After that, we simply obtain the output by summing up the k
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estimations. For simplicity assume that the Ei is the Mean Squared Error of i-th group’s estimation
and ET is our desired protocol MSE value. By using the fact that each estimation is unbiased, we get

ET = E1 + . . .+ Ek. (10)

Furthermore, we assume that there exists a global function g such that for every input, Ei is
O(g(ε, δ, n′)). Therefore, we have

ET = k · O(g(ε, δ, n′)) = O(k · g(ε, δ, n′)) , (11)

which completes the proof.

C.2 Some notes on Corollary 5

Our starting point is [11, Algorithm 2]; which, once the expression for the output is corrected to
Y = n

2 + 1
(1−p) (

∑
y∈R

(y − d
2 )), is indeed an unbiased estimate of the sum.2 Now, we analyze the

accuracy of the protocol. As we are interested in the MSE of protocol, we will bound the MSE, which
is a (slightly) stronger statement than the expected absolute error bound they provide. We use their
notation and show that the MSE is O

(
log 1

ε

ε3

)
.

Proof. Fix a dataset ~x = (x1, . . . , xn). Assume that the output of protocol is Y , as given above; and
denote the truncated discrete Laplace distribution by D := DLapd(d/2, s), whose parameters are d
and s. We have

MSE = E

[
(Y −

n∑
i=1

xi)
2

]
. (12)

Define Zi := 1
1−p (Yi − d

2 ) + 1
2 − xi, where Yi is equal to number of one received from the i-th user.

It is clear that

Y −
n∑
i=1

xi =

n∑
i=1

Zi (13)

where the Zi’s are independent. Note that EY ′∼D[Y ′] is equal to d
2 , and so

E[Zi] =
1

2
− xi + p

(
1

1− p
(EY ′∼D[Y ′]− d

2
)

)
+ (1− p)

(
1

1− p

(
xi −

1

2

))
= 0. (14)

Hence,

Var[Zi] = E
[
Z2
i

]
=

1

(1− p)2
E

[(
Yi −

d

2

)2
]
−
(

1

2
− xi

)2

=
1

(1− p)

(
xi −

1

2

)2

+
p

(1− p)2
VarY ′∼D[Y ′]−

(
1

2
− xi

)2

=
p

1− p

(
1

2
− xi

)2

+
p

(1− p)2
VarY ′∼D[Y ′] (15)

≤ p

(1− p)2
(
1

4
(1− p) + 2s2) (16)

Where (16) obtained from the fact VarY ′∼D[Y ′] ≤ 2s2. Finally, we have

E

[
(Y −

n∑
i=1

xi)
2

]
= E

[
(

n∑
i=1

Zi)
2

]
=

n∑
i=1

E
[
Z2
i

]
≤ np

(1− p)2
(
1

4
(1− p) + 2s2).

We should set s = 10
ε and p = 100e100ε log(1/(1−e−0.1ε))

d(n+1)/2e(1−e−0.1ε) , as per the privacy analysis of [11]. According
to their assumption, we know that 1

n2/3 ≤ ε < c0 holds where c0 is a sufficient small constant. Now,

2We note that the typo in their expression for the output does not affect their privacy analysis.
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while the above expression is a little unwieldy, one can check that 1
1−p = O(1) (for sufficient large

n). Hence,

np

4(1− p)
+

2nps2

(1− p)2
=

np

4(1− p)
+

200np

ε2(1− p)2

≤ O
(
e100ε log(1/(1− e−0.1ε))

(1− e−0.1ε)

)
+O

(
e100ε log(1/(1− e−0.1ε))

ε2(1− e−0.1ε)

)
.

We know that ε is upper bounded by c0 and by using 1
1−e−0.1ε ≈ 1

0.1ε , we have

O
(
e100ε log(1/(1− e−0.1ε))

(1− e−0.1ε)

)
+O

(
e100ε log(1/(1− e−0.1ε))

ε2(1− e−0.1ε)

)
≤ O

(
log( 1

ε )

ε

)
+O

(
log( 1

ε )

ε3

)
= O

(
log( 1

ε )

ε3

)
. (17)

This completes the proof. Finally, note that by using the above upper bound along with Jensen’s

inequality, we get an expected absolute error ofO
(√

log( 1
ε )

ε3/2

)
, which retrieves the bound of [11].

C.3 Proof of Theorem 6

Before the proof, we recall the following theorem, which is [5, Theorem 9].
Theorem 9 ([4] and [2]). Let P be (ε, δ)-local private protocol for binary summation with n users.
If the additive error is up to α with constant probability, then we must have α = Ω(

√
n
ε ).

Further, it is known that the MSE of any locally private protocol for binary summation is Ω( nε2 ).

Proof. We prove this theorem by a reduction to the local model. Assume that we have k users. We
randomly assign each user to a group. In each group, we set one input to the assigned user and set all
other inputs to 0. We know that the output of each shuffler is (ε, δ)-differentially private with respect
to the group’s input. Therefore, in our construction, the outputs of groups are differentially private
with respect to the assigned users. As a result, the whole protocol yields a local model protocol with
k users. By invoking the MSE lower bound, stated above, we can thus bound the MSE of the protocol
by Ω( kε2 ). This concludes the proof, as we established that the MSE of the original group shuffle
protocol had to be Ω( kε2 ) in the worst case.

Remark 4. Note that in the proof, we only used the fact each group has at least an input. Therefore,
even if the groups’ sizes are not equal, the lower bound of Ω( kε2 ) still holds.

9


	Introduction
	Our model
	Relation to LDP and Shuffle DP
	The example of binary summation
	Discussion and future work
	Proof of Lemma 1
	Relation to Other models
	Proof of Theorem 2
	Proof of Theorem 3
	Relation to Shuffle models

	Completed proofs of binary sum problem
	Proof of Theorem 4
	Some notes on Corollary 5
	Proof of Theorem 6


