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ABSTRACT

Deep learning-based watermarking models play a crucial role in copyright pro-
tection across various applications. However, many high-performance models are
limited in practical deployment due to their large number of parameters. Mean-
while, the robustness and invisibility performance of existing lightweight models
are unsatisfactory. This presents a pressing need for a watermarking model that
combines lightweight capacity with satisfactory performance. Our research iden-
tifies a key reason that limits the performance of existing watermarking frame-
works: a mismatch between commonly used decoding losses (e.g., mean squared
error and binary cross-entropy loss) and the actual decoding goal, leading to pa-
rameter redundancy. We propose two innovative solutions: (1) Decoding-oriented
surrogate loss (DO), which redesigns the loss function to mitigate the influence of
decoding-irrelevant optimization directions; and (2) Detachable projection head
(PH), which incorporates a detachable redundant module during training to han-
dle these irrelevant directions and is discarded during inference. Additionally, we
propose a novel watermarking framework comprising five submodules, allowing
for independent parameter reduction in each component. Our proposed model
achieves better efficiency, invisibility, and robustness while utilizing only 2.2%
of the parameters compared to state-of-the-art frameworks. By improving effi-
ciency while maintaining robust copyright protection, our model is well-suited
for practical applications in resource-constrained environments. The DO and PH
methods are designed to be plug-and-play, facilitating seamless integration into
future lightweight models.

1 INTRODUCTION

Digital watermarking is crucial for protecting the copyright of various digital assets, including im-
ages, videos, and 3D content. Typically, digital watermarking involves two main tasks: information
hiding and extraction. In this process, digital media owners conceal secret information within the
digital media, which can later be extracted to authenticate copyright ownership. In this process, two
crucial properties need to be considered: 1) invisibility, which requires that the visual quality of the
digital media does not significantly degraded after embedding secret information, and 2) robust-
ness, which ensures that even when watermarked digital media encountered various distortions, the
embedded information can be accurately extracted (Wan et al., 2022; Singh, 2023).

In recent years, with the development of deep learning, many deep learning-based watermarking
models have emerged, which utilize complex architectures to improve performance (Liu et al.,
2019; Zhang et al., 2021; Jia et al., 2021; Ma et al., 2022; Fang et al., 2023). However, these
high-performance models often come with a large number of parameters and huge computational
demands, limiting their practical deployment. As a result, fields such as diffusion models (Fernan-
dez et al., 2023; Zhao et al., 2023b) and Neural Radiance Fields (NeRF) (Luo et al., 2023; Jang
et al., 2024) have chosen to adopt lightweight watermarking models like HiDDeN (Zhu et al., 2018)
for copyright protection, as their backbone models are already large and computationally intensive.
Although lightweight models are easy to deploy, they often sacrifice robustness. This limitation
impedes effective and efficient copyright protection in numerous fields, especially where compu-
tational resources are limited, highlighting an urgent need for watermarking models that combine
lightweight capacity with satisfactory performance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

This paper aims to design and train a lightweight watermarking model with state-of-the-art perfor-
mance. To understand the potential reasons limiting the performance of lightweight watermarking
models, we investigate the decoding process. For the decoding task, accuracy serves as a prevalent
evaluation metric. However, the straightforward empirical risk minimization (ERM) formulation
for accuracy includes minimizing the 0-1 loss, which is computationally intractable. Consequently,
researchers resort to differentiable losses (e.g., mean squared error or binary cross-entropy loss)
as tractable surrogate losses, transforming the decoding task into a reconstruction task (Zhu et al.,
2018; Liu et al., 2019; Zhang et al., 2021; Jia et al., 2021; Ma et al., 2022; Fang et al., 2023).
The feasibility of optimization comes at the expense of model efficiency. Our observation reveals
a mismatch between the actual decoding goal and the optimization objectives of the commonly
used decoding losses. By dissecting the decoding losses into deflation, inflation, and regularization
losses, we identify that decoding accuracy depends primarily on the deflation loss. However, in-
flation and regularization losses, while stabilizing training, inevitably consume model parameters,
negatively affecting the efficiency of lightweight models. To address this issue, we propose two
methods. For the first method, we append an additional projection module to the lightweight model
during training. This module manages decoding-irrelevant optimization directions and is discarded
during inference. In the other approach, we propose a new surrogate loss to mitigate the negative
impact of decoding-irrelevant optimization directions while ensuring stable training.

Moreover, previous works typically treat encoders and decoders as basic design units and often lack
detailed categorization of internal functions. This makes it challenging to conduct fine-grained ab-
lation studies. To address this problem, we propose to subdivide encoders and decoders into smaller
functional units and, for the first time, summarize a new deep watermarking framework consisting
of five modules. We construct a lightweight watermarking model within this new framework using
only transposed convolution and convolution layers. Experimental results reveal that certain mod-
ules are crucial when facing specific distortions while contributing minimally to other distortions.
This insight allows us to selectively remove non-essential modules, further compressing the model
with minimal performance degradation.

The main contributions of this paper are summarized as follows: 1) We are the first to identify the
mismatch between the optimization objectives of the commonly used decoding losses (e.g., mean
squared error and binary cross-entropy loss) and the actual decoding goal. Ablation studies confirm
the presence and impact of this mismatch. 2) We propose the detachable projection head (PH) and
decoding-oriented surrogate loss (DO) to mitigate the negative impact of irrelevant optimization di-
rections, enabling lightweight models to achieve state-of-the-art performance. 3) We introduce a
fine-grained deep watermarking framework with five modules. Our experiments analyze the roles
of different modules under various distortions, enabling further model compression with minimal
performance loss. 4) Our lightweight model will see broader application in other fields, especially
where computational resources are constrained. 5) Extensive experiments demonstrate the superior-
ity of our approach over existing models in terms of invisibility, robustness, and efficiency.

2 RELATED WORKS AND PRELIMINARIES

2.1 RELATED WORKS

Image Watermarking Digital watermarking (Van Schyndel et al., 1994) is widely used to protect
copyrights and trace the origins of unauthorized copies. Invisibility and robustness are crucial prop-
erties of digital watermarks. In pursuit of balancing invisibility and robustness, traditional digital
watermarking algorithms often embed watermarks in mid-frequency domain coefficients. The com-
monly used domains include the discrete cosine transform (DCT) domain (Ahmidi & Safabakhsh,
2004), the discrete wavelet transform (DWT) domain (Daren et al., 2001), and the discrete Fourier
transform (DFT) domain (Hamidi et al., 2018). With the advancement of deep learning techniques,
deep learning-based watermarking models have received increasing attention for achieving a better
trade-off between invisibility and robustness. The first deep learning-based watermarking model
was introduced by Kandi et al. (2017), demonstrating the feasibility of using autoencoder convo-
lutional neural networks (CNN) for watermarking tasks. Subsequently, Zhu et al. (2018) proposed
the Encoder-NoiseLayer-Decoder (END) framework, pioneering end-to-end training and incorpo-
rating a noise layer to enhance robustness against various distortions. Jia et al. (2021) introduced
the Mini-Batch of Simulated and Real Jpeg compression (MBRS) training method and advanced
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Squeeze-and-Excitation (SE) blocks (Hu et al., 2018) to improve robustness against JPEG compres-
sion. Ma et al. (2022) developed the Combining Invertible and Non-invertible Mechanisms (CIN),
leveraging invertible neural networks for embedding and extraction, significantly improving invisi-
bility and robustness. Fang et al. (2023) proposed the Flow-based Invertible Network (FIN), which
explored the use of invertible structures as differentiable simulators for both white-box and black-
box distortions, surpassing many state-of-the-art END-based watermarking models. However, in
pursuit of better invisibility and robustness, the watermarking models have become bigger, with
increased computational complexity.

Knowledge Distillation Recently, deep learning has achieved significant success in many fields.
These substantial advancements are mainly due to the massive number of model parameters. Al-
though large-scale models exhibit better performance, the massive storage requirements and high
computational complexity hinder their further deployment. Therefore, knowledge distillation (KD)
has received significant attention, which aims to distill knowledge from a larger model (teacher
model) into a smaller model (student model) to achieve model compression (Hinton et al., 2015;
Kim et al., 2018; Mirzadeh et al., 2020; Zhao et al., 2022). Although knowledge distillation has
been successfully applied in various applications such as visual recognition, speech recognition,
and natural language processing, the theoretical understanding of knowledge distillation is limited
(Cho & Hariharan, 2019; Cheng et al., 2020), and the reasons for its success are not fully clear.
Moreover, when there is a significant difference in model architecture or size between the student
model and the teacher model, this model capacity gap can degrade knowledge transfer (Mirzadeh
et al., 2020; Gao et al., 2021). This implies that typically, the student model performs inferior to the
teacher model. Therefore, obtaining a lightweight model with state-of-the-art performance through
knowledge distillation is challenging.

2.2 PRELIMINARIES

Notations This paper defines several key notions for clarity and consistency in subsequent dis-
cussions. The watermark, denoted as M ∈ {−1, 1}L, and the extracted watermark, denoted as
Mex ∈ RL, are both represented as message sequences of length L. The cover image Ico, water-
marked image Iw, and noised watermarked image Ino are all RGB images that belong to RC×W×H ,
where W and H denote the width and height, respectively. M ⊆ {−1, 1}L and Mex ⊆ RL,
denoted as the support of M and Mex. Ico, Iw, and Ino ⊆ RC×W×H , denoted as the support
of Ico, Iw, and Ino. Denote by f : (M, Ico) → Iw the information hiding function, which em-
beds a secret message into a cover image. Denote by g : Ino → Mex the information extraction
function, which extracts a secret message from a noised watermarked image. These two func-
tions are parameterized by deep neural networks. The indicator function 1{event}, also known
as the 0-1 loss, denotes an indicator function that outputs 1 if an event happens and 0 otherwise.
Lvisual (Ico, Iw) = MSE (Ico, Iw) is the visual loss used to ensure visual quality, whose goal is to
make the watermarked image closely resemble the cover image.

Robustness (accuracy) In the information extraction stage, the decoder g obtains the extracted
watermark Mex from a noised watermarked image Ino. Researchers usually use accuracy or decod-
ing error to characterize the decoder’s robustness. Maximizing accuracy is equivalent to minimizing
the decoding error. The decoding error can be defined as follows:

Error (g(Ino),M) = E

[
1

L

L∑
i=1

1{gi(Ino) ·Mi < 0}

]
(1)

Here gi(·) and Mi denote the ith bit in g(·) and M .

The Gap between Two Objectives As a metric for measuring robustness, decoding error is
straightforward. However, minimizing Equation (1) using deep learning models is computationally
intractable since it cannot be optimized by the gradient descent algorithm. Therefore, researchers
minimize a differentiable surrogate loss to address this challenge. Typically, this chosen surrogate
loss serves as an upper bound for the decoding error, and Bartlett et al. (2006) ensured that minimiz-
ing this differentiable upper bound helps to reduce the decoding error. A commonly used surrogate
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loss is the mean squared error (MSE) loss, which can be represented as follows. For an analysis of
the binary cross-entropy loss (BCE), please refer to Appendix A.

MSE (g(Ino),M) = E

[
1

L

L∑
i=1

(gi(Ino)−Mi)
2

]
(2)

However, minimizing the MSE loss does not perfectly match the objective of reducing the decoding
error. To better understand the impact of this gap on model performance, we dissect the MSE loss
into seven components:

MSE (g(Ino),M) =
1

L
E

[
LW∑
i=1

g2i (Ino)− 2

L−
W∑

i=1

gi(Ino) + 2

L+
W∑

i=1

gi(Ino)︸ ︷︷ ︸
Ldeflation

+2

L−
R∑

i=1

gi(Ino)− 2

L+
R∑

i=1

gi(Ino)︸ ︷︷ ︸
Linflation

+

LR∑
i=1

g2i (Ino)︸ ︷︷ ︸
Lregularization

+L

]
(3)

The proof of Equation (3) is in Appendix A.

According to whether gi(Ino) is correctly decoded (i.e., gi(Ino) · Mi > 0 ), we divide g(Ino)
into two parts with lengths LW and LR. Additionally, we also divide gi(Ino) based on its sign
(i.e., gi(Ino) > 0) into two parts with lengths L+ and L−. The symbols “W” and “R” represent
“Wrong” and “Right”, respectively, while “+” and “-” denote the positive and negative signs of
gi(Ino), respectively. The combination of “W(R)” and “+(-)” represents the parts of g(Ino) that
simultaneously satisfy both conditions.

The objective of penalizing incorrectly decoding bits is completely allocated to the first three terms
of Equation (3). To minimize the MSE loss, these three positive terms will converge to 0. Thus, we
named them as the error deflation loss Ldeflation. Minimizing Ldeflation by always outputting 0 for
any input is a shortcut that may lead to model collapse, making it impossible to decide whether the
output is correct or not. The two terms of Linflation are both composed of correctly decoded parts
(L+(−)

R ). Minimizing Linflation does not directly reduce the decoding error; its primary function is
to push correctly decoded gi(Ino) away from the classification boundary 0, thus preventing model
collapse. The final term, Lregularization, also acts on the correctly decoded parts and serves as a
complement to Linflation. It prevents unbounded growth of correctly decoded gi(Ino), potentially
leading to model output explosion. Among the three optimization directions, only Ldeflation di-
rectly contributes to the goal of the information extraction task. While Linflation and Lregularization

within the MSE loss only play a positive role in stabilizing the training process, these additional
optimization directions, inevitably occupy some model parameters, particularly limiting the perfor-
mance of lightweight models.

3 METHODOLOGY

In this section, we first address the limitations of the surrogate loss identified in Section 2.2 from
two perspectives to explore the potential of lightweight models further. Then, we introduce the roles
of the five modules in the proposed new deep watermarking framework and illustrate the structure
of a lightweight watermarking model built on this framework.

3.1 MITIGATE THE GAP BETWEEN TWO OBJECTIVES

Detachable Projection Head In this method, we continue to use the MSE loss, which ensures the
stability of the model during training. However, during the training phase, we introduce an additional
Detachable Projection Head to handle the redundant optimization directions that are unrelated to
the decoding objective in the MSE loss. During inference, this Detachable Projection Head can
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Figure 1: The proposed deep learning-based framework comprises five modules. The encoder in-
cludes the image preprocessing (IP) module, the message preprocessing (MP) module, and the
feature fusion (FF) module. The decoder contains the noised watermarked image preprocessing
(NWIP) module and the message extraction (ME) module. A noise layer is also introduced between
the encoder and decoder to distort the watermarked image into a noised version.

be discarded to reduce the model’s parameter size, resulting in a lightweight model that can still
decode correctly. The projection head’s main function is normalization when considered separately
from the backbone model. This means projecting the outputs of the backbone model into their
corresponding label values. During training, the projection head does not care about the magnitude
of the backbone model’s outputs but requires these outputs to be distinguishable. If the backbone
model’s outputs are indistinguishable, the projection head cannot correctly project them, making
it impossible to minimize the MSE loss. Therefore, when using MSE loss to optimize the overall
model, the MSE loss forces the projection head’s outputs to be more accurate to their label values.
In turn, the projection head forces the backbone model’s outputs to be more distinguishable by their
label values, aligning well with the decoding goal. A detailed presentation of the distributions of the
decoded messages from both the backbone model and the projection head is available in Appendix
E.8.

Figure 2: The structure of the projection block.

The projection head consists of four identical projection blocks, and the structure of each projection
block is shown in Fig. 2. For the jth block, the input is M j

pex, and the corresponding output is
M j+1

pex , which can be formulated as follows. More details about the training and inference phases of
the detachable projection head method can be found in Appendix C.

M j+1
pex = Aj

(
M j

pex

)
⊗M j

pex +Bj

(
M j

pex

)
(4)

where ⊗ denotes the dot product operation, and A and B are deep learning models. The total loss
function Lprojection can be represented as follows:

LPH = λPH
1 Lvisual + λPH

2 MSE (Mpex,M) (5)

Here, λPH
1 and λPH

2 are weights to balance the trade-off between invisibility and robustness.
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Decoding-Oriented Surrogate Loss In this method, we refrain from using additional modules to
stabilize training. Instead, we opt to mitigate the impact of irrelevant optimization directions from
the MSE loss (for the implementation of BCE loss, please refer to Appendix E.1). Ldeflation is
directly responsible for reducing the decoding error by penalizing incorrectly decoded bits. The
deflation loss in this method is adapted from Ldeflation in Equation (3), which is formulated as
follows:

Ldeflation (g(Ino),M) =
1

L
E

[ L+
W∑

i=1

gi(Ino)−
L−

W∑
i=1

gi(Ino)

]
(6)

We address the limitation in Linflation by introducing a hyperparameter ϵ, named “safe distance”.
This hyperparameter aims to mitigate the redundant impact of Linflation on the model and prevent
output collapse. We recognize that Linflation encourages correctly decoded bits close to the decision
boundary to move further away. However, it lacks a definition of “far enough”, resulting in a broad
influence on all correctly decoded bits, including those already sufficiently far from the boundary.
To address this issue, we define a “safe distance” ϵ. Only correctly decoded bits within a distance ϵ
from the decision boundary are considered. Correctly decoded bits already more than ϵ away from
the boundary are not subject to additional restrictions.

By limiting the influence of Linflation to correctly decoded bits near the decision boundary, this ap-
proach reduces the unnecessary penalization of the model and prevents output collapse. Introducing
the concept of a safe distance ϵ ensures the training stability while enhancing the performance of the
deep watermarking model. Linflation in our method can be formulated as follows:

Linflation (g(Ino),M) =
1

L
E

[ L−and>−ϵ
R∑
i=1

gi(Ino)−
L+and<ϵ

R∑
i=1

gi(Ino)

]
(7)

The total loss function LDO can be represented as follows:
LDO = λDO

1 Lvisual + λDO
2 (Ldeflation + Linflation) (8)

Here, λDO
1 and λDO

2 are weights to balance the trade-off between invisibility and robustness.

3.2 PROPOSED FRAMEWORK

To delve deeper into the encoder and decoder, we propose a novel deep learning-based watermark-
ing framework composed of five modules, as shown in Fig. 1. These modules provide a clearer
functional division of the encoder and decoder, which has helped us find an efficient parameter al-
location method when facing different distortions. We divide the encoder into three parts: 1) The
image preprocessing (IP) module, which aims to extract features from the original image compre-
hensively, facilitating subsequent feature fusion, such as the SE block (Hu et al., 2018) in MBRS
(Jia et al., 2021) and De-END (Fang et al., 2022), or it transforms image features into the frequency
domain to enhance robustness, as seen in CIN (Ma et al., 2022) using the Haar transform. 2) The
message preprocessing (MP) module’s primary task is to generate message features that align in
shape with the image features generated by the image preprocessing module. HiDDeN (Zhu et al.,
2018) employs a non-deep learning method by directly duplicating the messages. On the other
hand, MBRS (Jia et al., 2021) and CIN (Ma et al., 2022) utilize deep learning methods based on
transposed convolution layers. 3) The feature fusion (FF) module integrates the message features
and image features to produce the final watermarked images. StegaStamps (Tancik et al., 2020)
adopts UNet-like model for multi-scale feature fusion, while CIN (Ma et al., 2022) and FIN (Fang
et al., 2023) employ multiple invertible neural blocks for deep feature coupling. We divide the de-
coder into two parts: 4) The noised watermarked image preprocessing (NWIP) module is the
first module directly facing the noise layer. Its role is to mitigate the impact of distortions on the wa-
termarked image and perform the initial extraction of message features from the noised watermarked
images. 5) The message extraction (ME) module is used to further extract the messages from the
preprocessed features and reshape them to match the shape of the messages. In previous decoder
architectures, these two modules were often deeply coupled, requiring uniform dimensions for the
intermediate features. By decoupling, we can investigate the roles of these two modules separately
and selectively remove non-essential modules to further compress the model. More detailed ablation
experiments and analyses of the individual modules’ impact on model performance are provided in
AppendixE.2.
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4 EXPERIMENTS

In this section, we demonstrate the significant reductions in model size and computational com-
plexity achieved by our proposed lightweight model compared to previous works. Additionally, we
validate the effectiveness of our proposed PH and DO methods in improving the model’s invisibility
and robustness. For robustness testing, we chose Combined Noise, which incorporates six different
distortions: Gaussian Blur (GB) with a standard deviation of 2.0 and a kernel size of 7, Median Blur
(MB) with a kernel size of 7, Gaussian Noise (GN) with a variance of 0.05 and a mean of 0, Salt &
Pepper Noise (S&P) with a noise ratio of 0.1, JPEG Compression (JPEG) with a quality factor of
50, and Dropout (DP) with a drop ratio of 0.6. A more detailed experimental setup can be found in
the Appendix E.

4.1 MODEL SIZE AND COMPUTATIONAL COMPLEXITY

To reduce the number of parameters and computational complexity, our proposed lightweight model
only uses basic transposed convolution and convolution layers. The detailed model structure can be
found in Appendix B.

Table 1: Comparison of parameter size and FLOPs with SOTA models.

Method Size FLOPs
Encoder Decoder Total Encoder Decoder Total

CIN 7.25M 36.01M 36.01M 16.56G 17.91G 34.47G
MBRS 0.56M 20.24M 20.80M 8.38G 6.77G 15.15G

FIN 747.80K 747.80K 747.80K 1.78G 1.78G 3.56G
HiDDeN 188.93K 265.47K 454.40K 3.10G 4.29G 7.39G
Proposed 9.31K 7.28K 16.59K 0.15G 0.07G 0.22G

Model Size The proposed lightweight model significantly reduces the number of parameters com-
pared to state-of-the-art (SOTA) models, as shown in Table 1. Specifically, our model uses only
9.31K parameters for the encoder and 7.28K parameters for the decoder, resulting in a total of
16.59K parameters. This is a substantial reduction compared to the other models: CIN (36.01M),
MBRS (20.80M), FIN (747.80K), and HiDDeN (454.40K). This drastic reduction in model size
makes our model highly efficient in terms of storage requirements. The compact size is especially
beneficial for deployment in resource-constrained environments such as mobile devices and embed-
ded systems.

Computational Complexity The proposed model also achieves a remarkable reduction in FLOPs
(Floating Point Operations), which is a critical measure of computational complexity. The FLOPs
for our model are: Encoder (0.15G), Decoder (0.07G), Total (0.22G). In comparison, the FLOPs
for the other models are significantly higher: CIN (34.47G), MBRS (15.15G), FIN (3.56G), and
HiDDeN (7.39G). This indicates that our model not only requires fewer parameters but also operates
with significantly lower computational complexity. This makes it suitable for real-time applications
and scenarios where computational resources are limited

The proposed lightweight model excels in both storage efficiency and computational complexity,
making it a highly practical solution for real-world applications. By significantly reducing the num-
ber of parameters and FLOPs, our model ensures that watermarking can be performed efficiently on
devices with limited resources.

4.2 INVISIBILITY AND ROBUSTNESS AGAINST COMBINED NOISE

In Tables 2 and 3, the four watermarking models—HiDDeN, MBRS, CIN, and FIN—are imple-
mented based on the authors’ public code. For the proposed lightweight model, we used four differ-
ent training methods: BCE loss, MSE loss, detachable projection head (PH), and decoding-oriented
surrogate loss (DO).

Benchmark with SOTA deep watermarking models The benchmark comparisons in Table 2
demonstrate the performance of various watermarking models under combined noise. Due to space
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Figure 3: Visual comparison of watermarked images. Top: cover image. Middle: watermarked im-
age. Bottom: the magnified difference |Iw−Ico|×10 between the cover image and the watermarked
image.

Table 2: Benchmark comparisons on invisibility and robustness against combined noise. BCE, MSE,
PH, and DO refer to the BCE loss, MSE loss, detachable projection head, and decoding-oriented
surrogate loss.

Method PSNR↑ Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

HiDDeN 27.28 74.59 74.63 77.36 77.81 77.17 75.28 76.14
MBRS 40.72 99.76 98.85 97.68 99.95 99.89 99.38 99.25

CIN 40.31 99.78 86.01 97.39 100 99.84 99.58 97.10
FIN 41.58 99.80 99.90 96.46 99.99 99.97 99.56 99.28

Lightweight Model+BCE 39.11 99.55 97.04 96.04 99.79 99.80 98.80 98.50
Lightweight Model+MSE 39.31 99.04 90.53 98.28 99.95 99.95 98.18 97.66
Lightweight Model+PH 41.67 99.99 98.92 97.21 99.99 99.96 99.59 99.28
Lightweight Model+DO 41.70 100 99.12 97.40 100 100 99.63 99.36

constraints, Table 2 uses PSNR as a representation of visual quality. For additional metrics related
to visual quality, please refer to Appendix E.4. The comparison of performance under single noise
with other models is reported in Appendix E.5. When using the original MSE loss, the proposed
lightweight model shows inferior performance compared to other state-of-the-art (SOTA) large mod-
els such as CIN, FIN, and MBRS. This is evident from the average accuracy (Ave) values, which
serve as an overall indicator of performance against combined noise. Although the lightweight
model reduces parameter and computational complexity, it still cannot achieve the robustness of the
larger models when using MSE losses. This highlights the inherent limitations of the lightweight
model under the original MSE loss.

The introduction of the detachable projection head (PH) and decoding-oriented surrogate loss (DO)
methods significantly enhances the performance of the proposed lightweight model in terms of both
invisibility and robustness. Both PH and DO methods lead to a notable improvement compared to
the MSE loss. PH Method: The detachable projection head improves the robustness and invisibility
of the model without increasing the model size. The average accuracy reaches 99.36%, which
is significantly higher than the MSE method. DO Method: The decoding-oriented surrogate loss
not only achieves the highest average accuracy of 99.36%, but also outperforms the other SOTA
models including CIN and MBRS in terms of invisibility without adding any extra parameters or
compromising efficiency. This demonstrates the effectiveness of the DO method in releasing the
lightweight model’s capability. The visual quality for these models is shown in Fig. 3.

Benchmark with knowledge distillation method Table 3 illustrates the results obtained when
training the lightweight model using knowledge distillation (Hinton et al., 2015), where our pro-
posed lightweight model serves as the student model and larger models act as teacher models. It is
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Table 3: Benchmark comparisons on invisibility and robustness against combined noise. KD (·)
represents the proposed lightweight model trained using knowledge distillation, where the proposed
model serves as the student model and (·) denotes the teacher model.

Method PSNR↑ Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

KD (HiDDeN) 27.20 65.06 75.89 75.40 73.82 75.39 74.52 73.35
KD (MBRS) 38.98 83.40 88.17 87.82 93.42 92.70 89.05 89.09

KD (CIN) 38.90 65.75 85.03 86.86 90.29 86.98 82.92 82.97
KD (FIN) 40.10 96.04 96.25 95.76 97.96 97.60 96.39 96.67

Lightweight Model+BCE 39.11 99.55 97.04 96.04 99.79 99.80 98.80 98.50
Lightweight Model+MSE 39.31 99.04 90.53 98.28 99.95 99.95 98.18 97.66
Lightweight Model+PH 41.67 99.99 98.92 97.21 99.99 99.96 99.59 99.28
Lightweight Model+DO 41.70 100 99.12 97.40 100 100 99.63 99.36

observed that the performance of the student model, guided by knowledge distillation, tends to de-
grade compared to the corresponding teacher model in Table 2 across various distortions. This degra-
dation becomes more pronounced as the disparity in model size between the student and teacher
models increases. This phenomenon underscores a limitation of knowledge distillation, where the
effectiveness diminishes when there is a substantial gap in model capacities.

Among the student models, KD (FIN) performs the best, outperforming the lightweight model
trained with MSE loss. This highlights the effectiveness of knowledge distillation in compressing
model parameters and improving model efficiency. However, despite the improvements achieved by
KD, the superiority of the PH and DO remains consistent. Even with higher invisibility, the proposed
methods consistently outperform KD (FIN) across all single distortions. In summary, while knowl-
edge distillation can compress model parameters and improve efficiency, the PH and DO methods
consistently outperform it. The proposed methods exhibit remarkable effectiveness in enhancing
the lightweight model’s performance, making them valuable tools for optimizing lightweight water-
marking models for real-world applications.

4.3 INVISIBILITY AND ROBUSTNESS AGAINST DIFFUSION-BASED ATTACKS

Unlike incorporating distortions as a noise layer during training, we acknowledge that utilizing
a diffusion model as a noise layer is impractical. However, the purification processes described
in PRGAI (Zhao et al., 2023a) and DiffPure (Saberi et al.) attacks both involve adding noise to
the watermarked image, followed by multi-denoising steps. To simulate this type of attack, we
employed a new composite noise layer: the watermarked images first pass through a Gaussian noise
layer, followed by a median filter layer.

Table 4: Benchmark comparisons on invisibility and robustness against diffusion-based attack.

Method t=0.03 t=0.05 t=0.1 t=0.02
PSNR(dB) Acc(%) PSNR(dB) Acc(%) PSNR(dB) Acc(%) PSNR(dB) Acc(%)

PRGAI Attack:
MSE 29.11 99.21 28.90 99.02 28.47 98.67 27.59 98.61
PH 29.22 99.90 29.11 99.70 28.52 99.31 27.66 99.51
DO 29.79 100 29.53 99.12 28.97 98.82 28.03 98.57

DiffPure Attack:
MSE 36.08 100 34.43 99.80 31.62 67.68 27.75 53.91
PH 36.21 100 34.48 99.80 31.64 69.24 27.86 56.26
DO 36.25 100 34.60 100 31.76 74.22 27.77 57.23

From Table 4, our model demonstrates nearly perfect robustness against the PRGAI attack. For the
DiffPure attack, our results indicate that at t = 0.05, the accuracy of our method remains approx-
imately 99.51%, despite a PSNR drop of about 4 dB. At t = 0.1, the DO method still achieves
74.22% accuracy, although the quality of the image after diffusion purification significantly de-
grades. While the semantic content of the image remains intact, there is notable detail loss (as
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shown in Appendix D), rendering such high t levels unacceptable for scenarios requiring detailed
image preservation.

In these challenging conditions, our DO method retains 74.22% accuracy, demonstrating its robust-
ness. Reducing the denoising steps t helps preserve image details but also decreases the effectiveness
of watermark removal. Thus, diffusion-based purification attacks have not yet fully evolved to elim-
inate watermarks without compromising image quality. Our method retains an advantage against
these attacks by employing a composite noise layer of Gaussian noise and median filtering.

Table 5: Comparison of invisibility and robustness against combined noise by training with different
components in MSE loss.

Method PSNR↑ Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

Lregularization 85.47 49.67 50.08 50.40 49.81 50.25 49.91 50.02
Linflation 5.16 49.78 49.78 49.78 49.78 49.78 49.78 49.78
Ldeflation 40.62 99.75 91.83 98.19 99.91 99.60 98.56 97.97
MSE 39.31 99.04 90.53 98.28 99.95 99.95 98.18 97.66
DO 41.70 100 99.12 97.40 100 100 99.63 99.36

4.4 ABLATION STUDY

Impact of MSE components on model performance Table 5 presents the performance of the pro-
posed lightweight model when trained using different components of the MSE loss: Lregularization,
Linflation, and Ldeflation. The results provide insights into the impact of each component on the
model’s performance in terms of invisibility and robustness against combined noise. The results
demonstrate that using Lregularization or Linflation in isolation does not effectively reduce the de-
coding error. Lregularization and Linflation result in poor decoding accuracy, suggesting that these
components do not contribute positively to the information extraction task and can lead to issues such
as output collapse or explosion. In contrast, training the model with Ldeflation alone achieves better
performance than the original MSE loss, particularly in robustness metrics. This improvement stems
from the removal of irrelevant optimization directions, which allows the model to utilize previously
consumed parameters more effectively. Despite these gains, the training process remains unstable,
often requiring multiple adjustments to the weight of Ldeflation to avoid model collapse. Addition-
ally, while Ldeflation improves robustness, the DO method still outperforms it in both visual quality
and average accuracy, particularly for JPEG compression. In conclusion, while Ldeflation shows
potential in enhancing the lightweight model’s performance, the stability and overall effectiveness
of the DO method make it a superior choice for improving both invisibility and robustness in deep
watermarking models.

5 CONCLUSION

This paper enhances the efficiency of deep learning-based watermarking models. We identify a
mismatch between the commonly used decoding losses and the information extraction task. To ad-
dress this, we propose the detachable projection head (PH) and decoding-oriented surrogate loss
(DO), which reduce the impact of irrelevant components and improve model efficiency. We validate
our methods by designing a lightweight model that achieves state-of-the-art visual quality and ro-
bustness against various distortions. Additionally, we introduce a five-module deep learning-based
watermarking framework, providing a finer-grained division of the encoder and decoder. Ablation
studies reveal effective module selection strategies for different distortions. Extensive experimen-
tal results demonstrate the superiority of our proposed method over existing models in terms of
invisibility, robustness, and efficiency. However, there is room for improvement. For PH, while
the lightweight model is retained for inference, the training stage requires additional storage space
and computational resources to jointly train the detachable projection head, leading to inefficiencies
during training. For DO, although it avoids additional modules during training and inference, it in-
troduces a new hyperparameter, the safe distance ϵ. As shown in Appendix E.10, achieving optimal
performance requires manual tuning of ϵ, which is not straightforward.
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A PROOF

Equation (3) (restated). MSE loss can be decomposed into seven terms as follows:

MSE (g(Ino),M) =
1

L
E

[
LW∑
i=1

g2i (Ino)− 2

L−
W∑

i=1

gi(Ino) + 2

L+
W∑

i=1

gi(Ino)

+2

L−
R∑

i=1

gi(Ino)− 2

L+
R∑

i=1

gi(Ino) +

LR∑
i=1

g2i (Ino) + L

]

We divide the decoded bits gi(Ino) from the decoded message g(Ino) into two groups based on
whether they are correctly or incorrectly decoded, with lengths LR and LW respectively. Addition-
ally, we can also divide these bits based on their sign into two groups with lengths L+ and L−. The
combinations R (right) and W (wrong) with + (positive) and − (negative) represent the decoded
bits that satisfy both conditions.

Proof. We expand the MSE loss in Equation (2) as follows:

MSE (g(Ino),M) = E

[
1

L

L∑
i=1

(gi(Ino)−Mi)
2

]
(9)

=
1

L
E

[
L∑

i=1

g2i (Ino)− 2

L∑
i=1

Migi(Ino) +

L∑
i=1

M2
i

]
(10)

The expectation in Equation (10) contains three terms, and the first term can be further decomposed
into two more terms.

L∑
i=1

g2i (Ino) =

LW∑
i=1

g2i (Ino) +

LR∑
i=1

g2i (Ino) (11)

The second term can be further decomposed into four more terms.

L∑
i=1

Migi(Ino) =

L−
W∑

i=1

Migi(Ino) +

L+
W∑

i=1

Migi(Ino) +

L−
R∑

i=1

Migi(Ino) +

L+
R∑

i=1

Migi(Ino) (12)

The four terms contain gi(Ino) as follows: gi(Ino) decoded incorrectly and with a negative sign,
gi(Ino) decoded incorrectly and with a positive sign, gi(Ino) decoded correctly and with a negative
sign, and gi(Ino) decoded correctly and with a positive sign. Therefore, the values of Mi in these
four groups are +1, -1, -1, and +1, respectively. Then, Equation (12) can be transformed as follows:

L∑
i=1

Migi(Ino) =

L−
W∑

i=1

gi(Ino)−
L+

W∑
i=1

gi(Ino)−
L−

R∑
i=1

gi(Ino) +

L+
R∑

i=1

gi(Ino) (13)

Since Mi ∈ {−1, 1}, the third term can be rewritten as follows:

L∑
i=1

M2
i = L (14)

Combining Equations (11), (13), and (14) yields:

1

L
E

[
LW∑
i=1

g2i (Ino)− 2

L−
W∑

i=1

gi(Ino) + 2

L+
W∑

i=1

gi(Ino)

+2

L−
R∑

i=1

gi(Ino)− 2

L+
R∑

i=1

gi(Ino) +

LR∑
i=1

g2i (Ino) + L

]
(15)
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BCE loss can be decomposed into four terms as follows:

The decomposition process for BCE loss is similar to that of MSE loss. However, there are a few key
points to note: 1) M ∈ {0, 1}L; 2) The direct output of the decoder, gi(Ino), need to pass through
the sigmoid activation function σ(·); 3) The classification boundary is no longer 0 but rather 0.5.
Therefore, based on whether σ(gi(Ino) is correctly decoded (i.e., (σ(gi(Ino))− 0.5) · (Mi− 0.5) >
0), we divide σ(gi(Ino) into two parts with lengths LR and LW . We further categorize σ(gi(Ino)
based on its relationship with 0.5 (i.e., σ(gi(Ino) > 0.5)) into two parts with lengths L+ and L−.

BCE (σ(g(Ino)),M) = − 1

L
E

[ L−
W∑

i=1

log(σ(gi(Ino))) +

L+
W∑

i=1

log(1− σ(gi(Ino)))︸ ︷︷ ︸
Ldeflation

+

L−
R∑

i=1

log(1− σ(gi(Ino))) +

L+
R∑

i=1

log(σ(gi(Ino)))︸ ︷︷ ︸
Linflation

]

The objective of penalizing incorrectly decoded bits is also totally reflected in the first two terms. To
minimize the BCE loss, these terms encourage σ(gi(Ino)) to converge to the boundary at 0.5. The
two components of Linflation are both comprised of correctly decoded parts (L+(−)

R ). Minimizing
Linflation does not directly reduce the decoding error; rather, its primary function is to push cor-
rectly decoded σ(gi(Ino)) away from the classification boundary at 0.5. Although Lregularization is
not explicitly included in the decomposition of BCE loss, the limitation on the unbounded growth of
the model output σ(gi(Ino)) is implicitly enforced by the sigmoid activation function, as its output
is constrained between 0 and 1.

Proof. The BCE loss is as follows:

BCE (σ(gi(Ino))),M) = − 1

L
E

[
L∑

i=1

Mi · log(σ(gi(Ino))) + (1−Mi) · log(1− σ(gi(Ino)))

]
(16)

= − 1

L
E

[
L∑

i=1

Mi · log(σ(gi(Ino))) +
L∑

i=1

(1−Mi) · log(1− σ(gi(Ino)))

]
(17)

The expectation in Equation (17) contains two terms, and the first term can be further decomposed
into two more terms.

L∑
i=1

Mi · log(σ(gi(Ino))) =
L−

W∑
i=1

1 · log(σ(gi(Ino))) +
L+

W∑
i=1

0 · log(σ(gi(Ino)))

+

L−
R∑

i=1

0 · log(σ(gi(Ino))) +
L+

R∑
i=1

1 · log(σ(gi(Ino))) (18)

=

L−
W∑

i=1

log(σ(gi(Ino))) +

L+
R∑

i=1

log(σ(gi(Ino))) (19)

The second term can also be further decomposed into two more terms.

L∑
i=1

Mi · log(1− σ(gi(Ino))) =

L+
W∑

i=1

log(1− σ(gi(Ino))) +

L−
R∑

i=1

log(1− σ(gi(Ino))) (20)
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Combining Equations (19) and (20) yields:

− 1

L
E

[ L−
W∑

i=1

log(σ(gi(Ino))) +

L+
W∑

i=1

log(1− σ(gi(Ino)))

+

L−
R∑

i=1

log(1− σ(gi(Ino))) +

L+
R∑

i=1

log(σ(gi(Ino)))

]
(21)

B PROPOSED LIGHTWEIGHT MODEL STRUCTURE

Here, we provide a comprehensive overview of the proposed lightweight model depicted in Fig. 4,
which exclusively employs fundamental transposed convolution and convolution layers. The activa-
tion function utilized between each pair of layers is LeakyReLU.

In previous works, the partitioning of the encoder submodule has been well established, whereas
our contribution lies in the delineation of the decoder. The separation of the two modules within
the decoder is based on a specific criterion: layers with a stride of 1, which do not reduce the
shape of the input, are designated as data processing layers, while layers with a stride greater than
2, which do reduce the input shape, are designated as data extraction layers. Previous approaches,
such as those in MBRS and CIN, often mix or alternate these two kinds of layers. In our framework,
however, these two kinds of layers are grouped into two distinct blocks, the noised watermarked
image preprocessing (NWIP) module and the message extraction (ME) module. This division is
primarily a structural separation. Since NWIP and ME are trained simultaneously and share the
same objective function, a complete functional distinction between them is not feasible. However,
the advantage of this structural separation is that the two modules do not need to share the same
number of channels. This allows us to independently reduce the parameters of each part, enabling a
more focused study and design of the decoder.

Figure 4: The structure of the proposed lightweight model. IP module represents image preprocess-
ing module. MP module represents message preprocessing module. FF module represents feature
fusion preprocessing. NWIP module represents noised watermarked image preprocessing module.
ME module represents message extraction module.

C THE TRAINING AND INFERENCE PHASES OF PH

Training Phase: As illustrated in Fig. 5, the backbone network structure used in the Detachable
Projection Head (PH) method is identical to that of the MSE loss-based backbone network, except
for the addition of four identical projection blocks after the original decoder. Specifically, M j

pex

denotes the input to the jth Projection Block. Notably, M1
pex is the output of the original backbone

network, denoted as Mex.

For the decoder loss calculation, the MSE loss-based method uses the direct output Mex from the
backbone network. In contrast, the PH method utilizes the output of the last projection block, M5

pex
(since there are four projection blocks), for computing the MSE loss.
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Figure 5: The decoding process of detachable projection head method.

Inference Phase: As shown in Fig. 5, during inference, the PH method retains only the backbone
network. We compute the decoding accuracy based on the output of the backbone network, Mex.

This section highlights how the PH method integrates the proposed lightweight structure during
both the training and inference phases. The additional projection blocks in the training phase help
refine the decoder output, while during inference, we simplify the structure to use only the backbone
network for efficiency.

D LIMITATIONS OF DIFFUSION-BASED ATTACKS

Figure 6: Visual comparison of images attacked by diffusion with different denoising time steps t.

E EXTENSIVE EXPERIMENTAL DETAILS AND RESULTS

Datasets and Settings All networks are trained on the COCO dataset (Lin et al., 2014) and tested
on the classical USC-SIPI image dataset (Viterbi, 1977). The number of channels C, width W , and
height H of the images are set to 3, 128, and 128, respectively; the length L of the secret message
is set to 64. The safe distance ϵ in LDO is set to 0.1, and both λ

PH(DO)
1 and λ

PH(DO)
2 are initially

set to 1. All experimental models are implemented through PyTorch (Collobert et al., 2011) and
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run on NVIDIA RTX 3090 (24GB). As for the optimizer, we used the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 1e-3 and default hyperparameters. In the training phase, we
apply a combination of seven types of distortions: Gaussian Blur (GB) with a standard deviation of
2.0 and a kernel size of 7, Median Blur (MB) with a kernel size of 7, Gaussian Noise (GN) with
a variance of 0.05 and a mean of 0, Salt & Pepper Noise (S&P) with a noise ratio of 0.1, Dropout
(DP) with a drop ratio of 0.6, JPEG Compression (JPEG) with a quality factor of 50, and JPEGSS
(simulated differentiable JPEG distortion) with a quality factor of 50. These distortions are applied
in combination to simulate a variety of noise conditions, ensuring the model can effectively handle
different types of degradation during training.

Benchmarks To evaluate the efficiency, robustness, and invisibility of the proposed method, four
widely used watermarking models are selected for comparison including HiDDeN (Zhu et al., 2018),
MBRS (Jia et al., 2021), CIN (Ma et al., 2022) and FIN (Fang et al., 2023). For robustness testing, we
choose six different distortions (“Gaussian Blur”, “Median Blur”, “Gaussian Noise”, “Salt & Pepper
Noise”, “JPEG Compression” and “Dropout”), as well as a “Combined Noise” incorporating these
six distortions.

Metrics For efficiency, we show the model size and the Floating Point Operations (FLOPs), where
lower values signify higher efficiency. The peak signal-to-noise ratio (PSNR) is chosen to evaluate
the visual quality of watermarked images. A larger PSNR value suggests smaller alterations from
the original image, thus reflecting better invisibility. For robustness, decoding accuracy (ACC) is
utilized as the metric. A higher ACC indicates better robustness.

E.1 DEVELOP THE DECODING-ORIENTED SURROGATE LOSS FROM BCE LOSS

Similarly, the deflation loss here is adapted from Ldeflation in Equation (21), which is formulated
as follows:

LBCE
deflation = − 1

L
E

[ L−
W∑

i=1

log(σ(gi(Ino))) +

L+
W∑

i=1

log(1− σ(gi(Ino)))

]
(22)

LBCE
inflation in here can be formulated as follows:

LBCE
inflation = − 1

L
E

[ L0.5<and>0.5−ϵ
R ∑

i=1

log(1− σ(gi(Ino))) +

L0.5+ϵ<and>0.5
R ∑

i=1

log(σ(gi(Ino)))

]
(23)

The total loss function LBCE
DO can be represented as follows:

LBCE
DO = λDO

1 Lvisual + λDO
2 (LBCE

deflation + LBCE
inflation) (24)

Table 6: Comparison of Performance between DO (MSE-based) and DO (BCE-based) Methods

Method PSNR↑ Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

DO (MSE) 41.70 100 99.12 97.40 100 100 99.64 99.36
DO (BCE) 41.10 100 98.11 97.96 100 99.94 99.74 99.29

The comparative experiments for the DO method based on BCD loss are shown in Table 6. As can
be seen, the performance of DO (MSE-based) and DO (BCE-based) are very similar.

E.2 IMPACT OF INDIVIDUAL MODULES ON MODEL PERFORMANCE

Fig. 1 shows a deep learning-based watermarking framework composed of five modules. Among
them, the MP (Message Preprocessing) module and ME (Message Extraction) module are essen-
tial as they are directly responsible for the transformation and extraction of watermarks. Therefore,
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Table 7: Benchmark comparisons on invisibility and robustness against different single distortions.

Model S&P Noise (%) Gaussian Noise (%)
PSNR(dB)↑ r=0.08 0.09 0.1 PSNR(dB)↑ var=0.03 0.04 0.05

w/o IP 67.19 99.97 99.93 99.87 39.94 99.94 99.70 99.25
w/o FF 67.02 99.87 99.92 99.75 39.68 99.98 99.76 99.34

w/o NWIP 56.66 97.43 97.25 96.29 39.54 99.92 99.78 99.33
Whole Model 67.75 99.97 99.96 99.94 39.91 99.97 99.82 99.51

Model JPEG Compression (%) Dropout (%)
PSNR(dB)↑ QF = 50 60 70 PSNR(dB) ↑ r=0.6 0.5 0.4

w/o IP 49.70 95.73 96.95 98.46 72.04 98.22 99.59 99.81
w/o FF 49.62 90.79 92.36 94.08 71.63 95.55 97.78 98.79

w/o NWIP 49.55 91.38 93.20 94.81 70.01 96.99 99.75 99.95
Whole Model 49.73 99.06 99.75 99.99 72.64 99.50 99.95 99.98

Model Gaussian Blur (%) Median Blur (%)
PSNR(dB)↑ σ = 0.5 1 2 PSNR(dB)↑ w = 3 5 7

w/o IP 67.84 99.96 99.34 99.63 49.15 99.63 99.69 98.75
w/o FF 67.31 98.55 96.99 94.02 49.47 99.45 98.67 96.08

w/o NWIP 62.36 84.25 79.44 65.12 45.85 99.31 99.78 99.00
Whole Model 67.91 100 99.99 99.57 49.95 99.97 99.82 99.26

Table 7 focuses on the remaining three modules and examines their impact under various single
distortions. The performance difference between the model without the IP (Image Preprocessing)
module and the whole model is minimal, indicating its limited contribution to the overall model
performance. However, the roles of the FF (Feature Fusion) module and the NWIP (Noised Wa-
termarked Image Preprocessing) module are consistently significant across various distortions. The
absence of the NWIP module leads to severe degradation in performance under Gaussian blur and
S&P noise. In summary, when model size is constrained, effective parameter allocation is crucial to
handle different distortions in varying application scenarios. Our results highlight the importance of
the FF and NWIP modules in maintaining robustness and invisibility of the watermark, while the IP
module has a relatively minor impact.

E.3 THE CAPACITY OF LIGHTWEIGHT MODEL

For testing the capacity of the lightweight model, the cover images are 3-channel color images with
a width and height of 128×128. We follow the noiseless environment setting described in HiDDeN
(Zhu et al., 2018), meaning there is no noise layer to distort the watermarked images Iw. Instead,
Iw is directly fed into the decoder for the accuracy test. The specific experimental results are shown
in Table 8.

Table 8: The Capacity of Lightweight Model.

Method Message Length Bits Per Pixel PSNR(dB) Accuracy(%)

PH + Lightweight Model

64 0.0013 43.15 100
256 0.0052 42.14 100
1024 0.0208 41.11 100
4096 0.0833 40.41 100

16384 0.3333 39.12 100

DO + Lightweight Model

64 0.0013 42.91 100
256 0.0052 42.14 100
1024 0.0208 41.03 100
4096 0.0833 40.12 100

16384 0.3333 39.01 100
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E.4 BENCHMARK COMPARISONS ON VISUALLY QUALITY

Additional evaluations of the visual quality across the seven models under combined noise condi-
tions were conducted. In addition to the previously discussed PSNR, four other metrics, including
SSIM, LPIPS, l2, and linf , are also incorporated. The methods, DO and PH, consistently outper-
form the other models in all these metrics, with the exception of SSIM, which is slightly lower when
compared to MBRS.

Table 9: Benchmark comparisons on visual quality base on five different metrics.

Method PSNR (dB)↑ SSIM↑ LPIPS↓ l2 ↓ linf ↓
HiDDeN 27.28 0.87 0.062 85.12 0.38
MBRS 40.72 0.98 0.004 4.19 0.16

CIN 40.31 0.97 0.003 5.03 0.13
FIN 41.58 0.97 0.014 3.46 0.08

Lightweight Model+MSE 39.31 0.97 0.005 5.67 0.12
Lightweight Model+PH 41.67 0.97 0.002 3.46 0.07
Lightweight Model+DO 41.70 0.97 0.001 3.36 0.06

E.5 INVISIBILITY AND ROBUSTNESS AGAINST SINGLE NOISE

In Table 10, the proposed lightweight model, using the MSE loss, exhibits inferior performance com-
pared to other SOTA large models (CIN, FIN, MBRS) under certain single distortions. Specifically,
significant discrepancies are observed in Gaussian blur and median blur. Under Gaussian blur, the
proposed lightweight model (MSE) shows lower invisibility and robustness compared to the MBRS,
with a more pronounced difference observed under median blur, particularly when compared to the
MBRS and CIN.

In contrast, our proposed methods, the detachable projection head (PH), and the decoding-oriented
surrogate loss (DO), show significant enhancements over the MSE loss. Notably, the PH and
DO methods outperform MSE loss across almost all single distortions, showcasing higher PSNR
and improved robustness. Noteworthy is the success of the DO method in enabling the proposed
lightweight model to surpass other SOTA large models without increasing model parameters or sac-
rificing efficiency, demonstrating a significant advantage.

These findings underscore the considerable performance gains achievable by adopting PH and DO
methods over traditional MSE loss in deep learning-based watermarking models, particularly in the
context of lightweight models.

E.6 VISUAL QUALITY UNDER COMBINED NOISE

In Fig. 3, we present the watermarked images Iw embedded with watermarks by four different mod-
els, HiDDeN, MBRS, CIN, and FIN, as well as the lightweight models trained using three different
methods when facing combined noise. It can be observed that not only do the watermark patterns
differ significantly among the four different models, but also the watermark patterns generated by
the lightweight models with the same architecture vary under different training methods. Although
our methods, PH and DO, do not directly affect the encoder, since the encoder and decoder are
trained together, the losses generated by PH and DO during backpropagation will also be propa-
gated to the encoder, thereby influencing the watermark patterns. From Table 2, it can be seen
that the lightweight models trained with PH and DO not only exhibit improved robustness but also
achieve enhanced visual quality. Therefore, this influence is positive.

E.7 THE EFFECT OF DISCRIMINATOR ON PROPOSED LIGHTWEIGHT MODEL

For the watermarking task, the discriminator serves as an additional module. In our work, to clearly
demonstrate and validate the effectiveness of the proposed DO and PH methods, we chose to mini-
mize the influence of other factors that could affect the model’s visual quality and robustness. There-
fore, we did not use the discriminator in our model.
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Table 10: Benchmark comparisons on invisibility and robustness against different single distortions.
MSE, PH, and DO refer to the original MSE loss, detachable projection head, and decoding-oriented
surrogate loss.

Model S&P Noise (%) Gaussian Noise (%)
PSNR(dB)↑ r=0.08 0.09 0.1 PSNR(dB)↑ var=0.03 0.04 0.05

HiDDeN 31.93 96.81 96.73 96.69 26.57 87.64 87.31 87.14
MBRS 67.73 99.95 99.91 99.89 40.36 99.89 99.53 99.05

CIN 66.31 98.12 97.41 97.26 39.77 99.91 99.33 98.42
FIN 63.53 99.44 99.25 99.02 40.35 99.87 99.41 99.04

MSE 66.86 99.67 99.61 99.43 40.34 99.76 99.13 98.82
PH 67.34 99.96 99.97 99.86 40.16 99.81 99.38 98.73
DO 67.75 99.97 99.96 99.94 40.38 99.88 99.53 99.08

Model JPEG Compression (%) Dropout (%)
PSNR(dB)↑ QF = 50 60 70 PSNR(dB) ↑ r=0.6 0.5 0.4

HiDDeN 24.68 78.72 79.58 79.86 30.31 86.65 86.69 86.84
MBRS 47.82 96.01 97.85 99.31 70.48 99.05 99.91 99.98

CIN 48.47 84.77 88.58 93.36 63.41 97.07 98.73 99.22
FIN 48.76 98.24 99.51 100 62.58 99.22 99.61 99.68

MSE 48.47 99.00 99.52 99.72 71.86 98.69 99.69 99.70
PH 49.68 99.02 99.55 99.85 71.27 99.43 99.85 100
DO 49.73 99.06 99.75 99.99 72.64 99.50 99.95 99.98

Model Gaussian Blur (%) Median Blur (%)
PSNR(dB)↑ σ = 1 2 PSNR(dB)↑ w = 5 7

HiDDeN 29.02 81.76 60.65 34.12 79.28 75.03
MBRS 65.78 99.84 99.21 49.85 99.77 99.56

CIN 63.32 98.83 97.66 49.08 98.86 98.44
FIN 52.51 99.80 97.27 41.97 99.54 99.13

MSE 57.50 99.35 98.85 48.98 99.38 98.06
PH 65.47 99.34 98.55 49.84 99.75 98.93
DO 67.91 99.99 99.57 49.95 99.82 99.26

Table 11: Benchmark comparisons on invisibility and robustness with and without Discriminator
(DIS).

Method PSNR↑ Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

DO w/o DIS 41.70 100 99.12 97.40 100 100 99.64 99.36
DO w DIS 41.21 100 98.57 97.79 99.99 100 99.70 99.34

PH w/o DIS 41.67 99.99 98.92 97.21 99.99 99.96 99.59 99.28
PH w DIS 41.07 100 98.73 97.64 100 100 99.49 99.31

Table 12: Benchmark comparisons on visual quality base on five different metrics with and without
Discriminator (DIS).

Method PSNR (dB)↑ SSIM↑ LPIPS↓ l2 ↓ linf ↓
DO w/o DIS 41.70 0.97 0.001 3.46 0.06
DO w DIS 41.21 0.97 0.001 3.74 0.08

PH w/o DIS 41.67 0.97 0.002 3.36 0.07
PH w DIS 41.07 0.97 0.002 3.84 0.09

To further illustrate the impact of including or excluding the discriminator on the visual quality
and robustness of our proposed lightweight model, we conducted extensive experiments using the
method from MBRS (Jia et al., 2021). The specific experimental results are shown in Table 12 and
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Table 11. As seen, the presence or absence of the discriminator does not significantly affect the
visual quality and robustness of our method.

Table 13: Comparison of Parameter Size and FLOPs Between the Lightweight Model and the Dis-
criminator.

Method Size FLOPs

Discriminator 113.15K 1.86G
Lightweight Model 16.59K 0.22G

Furthermore, as shown in Table 13, the parameters and computational complexity of the discrimi-
nator are 6.8 times and 8.5 times larger than those of the entire lightweight model, respectively. To
maintain the lightweight nature of the overall model, we also chose not to include the discriminator.

E.8 IN-DEPTH ANALYSIS OF THE DETACHABLE PROJECTION HEAD (PH)

Figure 7: The smoothed distribution of decoded
values for PH method with projection head.

Figure 8: The smoothed distribution of decoded
values for PH method without projection head.

The Difference Between the PH Method With and Without the Projection Head As illustrated
in Fig. 7 and Fig. 8, the output distribution from the backbone model with projection head is densely
centered around -1 and 1. This is expected, as the objective of the MSE loss is to push the outputs as
close to the targets as possible. In contrast, the distribution of outputs decoded from the backbone
model without projection head is more dispersed. This suggests that the projection head’s main
function is normalization when considered separately from the backbone model.

Table 14: Benchmark comparisons on invisibility and robustness with and without projection head.

PH Blocks PSNR Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

PH(w phw) 40.74 99.98 98.43 98.07 99.94 100 99.14 98.90
PH(w/o ph) 40.74 100 98.62 98.03 99.99 100 99.54 99.31

The Effect of Removing the Projection Head on Inference Performance Table 14 shows that
discarding the projection head has a negligible impact on the model’s performance during infer-
ence. As analyzed in the “Detachable Projection Head” section, the projection head mainly handles
“normalization” which is not essential for the decoding goal. For decoding, only relative values are
necessary.

Impact of Block Number and Channel Number in the Projection Head on Inference Perfor-
mance For the experiments involving the number of blocks, we fixed the channel number at 32.
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Table 15: Influence of projection block numbers.

PH Blocks PSNR Dropout JPEG GN S&P GB MB Ave
(dB) (%) (%) (%) (%) (%) (%) (%)

0 37.49 99.43 95.92 98.75 99.96 99.96 99.37 98.90
1 39.14 100 97.28 98.73 100 100 99.84 99.31
2 40.29 99.99 97.90 98.69 100 100 99.43 99.34
3 40.34 100 98.28 98.12 100 100 99.78 99.36
4 40.74 100 98.62 98.03 99.99 100 99.54 99.36
5 40.96 99.99 98.40 97.81 100 100 99.57 99.30

Table 16: Influence of channel numbers in projection block.

Channel PSNR Dropout JPEG GN S&P GB MB Ave
Numbers (dB) (%) (%) (%) (%) (%) (%) (%)

4 40.44 99.09 93.88 97.58 99.98 99.92 98.54 98.17
8 40.56 98.66 94.49 98.11 100 99.81 98.73 98.30
16 41.43 100 97.22 97.75 99.99 100 99.50 99.09
32 41.67 99.99 98.92 97.21 99.99 99.96 99.59 99.28

From Table 15, we observe a slight performance degradation as the block number decreases. Simi-
larly, for the experiments with varying channel numbers, we fixed the block number at 4. As shown
in Table 16, reducing the channel dimension also results in a slight decline in model performance.

From these two experiments, we can conclude that there is a trade-off between the size of the PH
module and the performance of the lightweight model. Users can refer to these findings to select an
appropriate PH size based on their computational resources and application requirements.

E.9 IMPACT OF λ
PH(DO)
1 AND λ

PH(DO)
2

As shown in Table 17 and 18, initially, both and are set to 1 at the beginning of training. Through-
out the training process, we increase the value of λ

PH(DO)
1 every 30 epochs. The tables below

show the final values of λPH(DO)
1 and λ

PH(DO)
2 , along with the corresponding visual quality and

average accuracy of the model under combined noise. Our experiments indicate that λPH(DO)
1 and

λ
PH(DO)
2 represent a trade-off between the visual quality of the encoder and the decoding accuracy

of the decoder. Larger values of lead to better visual quality but will result in reduced decoding ac-
curacy. There is no one-size-fits-all standard for them. Users who prioritize the visual quality of the
watermarked images and are willing to accept a reduction in accuracy might opt for higher values
of λPH(DO)

1 . Conversely, if decoding accuracy is more critical, lower λPH(DO)
1 values should be

chosen.

Table 17: The influence of λPH
1 and λPH

2 for PH.

Method λPH
1 λPH

2 PSNR(dB) Ave(%)

PH

1 1 31.58 100
10 1 36.36 99.85

100 1 40.74 99.36
1000 1 45.84 95.54

10000 1 55.47 83.40

E.10 IMPACT OF SAFE DISTANCE

In Table 19, we report the visual quality and decoding accuracy under combined noise with different
safe distances ϵ. Our experiments utilize the proposed lightweight model and the decoding-oriented
surrogate loss (DO loss).
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Table 18: The influence of λDO
1 and λDO

2 for DO.

Method λDO
1 λDO

2 PSNR(dB) Ave(%)

DO

1 1 27.58 100
10 1 31.30 100

1000 1 36.48 100
100000 1 43.15 98.47

1000000 1 49.03 93.16

Table 19: The influence of safe influence ϵ in the decoding-oriented surrogate loss (DO loss).

Safe Distance ϵ
PSNR↑ Dropout JPEG GN S&P GB MB Ave

(dB) (%) (%) (%) (%) (%) (%) (%)

0.001 41.19 99.97 98.39 97.87 99.99 99.97 99.48 99.28
0.01 41.23 100 97.66 97.57 100 99.97 99.68 99.15
0.05 41.47 100 98.35 96.98 99.99 100 99.88 99.20
0.1 41.70 100 99.12 97.40 100 100 99.63 99.36
0.5 41.46 99.99 97.06 97.83 99.98 100 99.73 99.10
1.0 41.11 100 98.46 97.19 99.98 100 99.74 99.23

10.0 38.41 99.51 96.88 98.99 100 100 99.36 99.12

E.11 INVISIBILITY AND ROBUSTNESS AGAINST GEOMETRIC DISTORTIONS

Table 20: Benchmark comparisons on invisibility and robustness against geometric distortions,
where RA represents RandomAffine, RP represents RandomPerspective, and RET represents Ran-
domElasticTransform.

Method PSNR RP RA RET Ave
(dB) (%) (%) (%) (%)

HiDDeN 37.08 66.65 66.30 69.63 67.53
MBRS 48.09 98.05 98.44 99.71 98.73

FIN 42.05 73.63 74.45 99.51 82.53

MSE with Lightweight Model 39.89 82.22 82.34 99.41 87.99
PH with Lightweight Model 42.33 83.26 83.24 99.72 88.74
DO with Lightweight Model 43.66 84.23 84.69 99.68 89.53

MSE with Lightweight Model + 48.04 94.59 97.11 98.40 96.70
PH with Lightweight Model + 48.14 98.07 98.56 99.62 98.75

DO with Lightweight Model + 48.42 98.79 99.51 99.83 99.38

Our work primarily aims to explore the feasibility of lightweight deep learning-based watermarking
models. To this end, we validate the effectiveness and applicability of the proposed training methods,
DO and PH, using a model with an intentionally simple structure and minimal parameters. We
further investigate the broader applicability of these methods to different scenarios.

While our original lightweight model demonstrates strong robustness and visual quality against
combined and multi-single distortions, achieving significant parameter reduction without compro-
mising robustness across all distortion types remains inherently challenging. The distortions evalu-
ated above are primarily digital channel-based distortions, which tend not to alter the geometric fea-
tures of images significantly. Consequently, the substantial parameters and architectural components
(e.g., the SE block in MBRS) designed for handling geometric distortions can be reduced without
impacting performance in these cases. This characteristic explains why our original lightweight
model, combined with the proposed DO and PH methods, performs effectively under such digital
distortions.

However, experiments in Table 20 reveal that our lightweight model’s robustness declines when sub-
jected to geometric distortions like RandomPerspective (RP), RandomAffine (RA), and RandomE-
lasticTransform (RET). These distortions introduce greater complexity, requiring more sophisticated
feature extraction to achieve optimal performance. While our original lightweight model does not
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achieve the best performance under geometric distortions, the DO method still ranks second, just
behind MBRS.

To address this limitation, we extended the original lightweight model to enhance its robustness
against geometric distortions. Specifically, we modified the noised watermarked image preprocess-
ing (NWIP) module, the first module interacting with the noise layer, by incorporating an SE block
and increasing the intermediate channel count from 12 to 32. The enhanced model, referred to as
Lightweight Model +, achieves significant improvements in robustness to geometric distortions. De-
spite the enhancements, its total parameter count remains remarkably low at 56.01K, representing
only 12.33% of HiDDeD, 7.49% of FIN, 0.27% of MBRS, and 0.16% of CIN.

As shown in Table 20, the enhanced Lightweight Model + achieves substantial improvements across
all geometric distortions. When coupled with the DO method, it attains the best performance in
visual quality and robustness against all three distortions. The PH method also performs strongly,
achieving comparable robustness, with only a slight gap in RandomElasticTransform, while outper-
forming MBRS in both visual quality and average accuracy.

In summary, the proposed training methods, DO and PH, exhibit broad applicability across various
lightweight model architectures. We believe these methods will prove instrumental in advancing
the development of lightweight watermarking models and will assist other researchers in achieving
superior performance in this domain.

F LIMITATIONS

We propose two effective training methods: the detachable projection head (PH) and the decoding-
oriented surrogate loss (DO). For PH, although we retain and use only the lightweight model during
the inference stage, the training stage still requires additional storage space and computational re-
sources to jointly train the detachable projection head, which is not efficient during training. For DO,
while it does not require extra modules during training or inference, it introduces a new hyperpa-
rameter, the safe distance ϵ. To achieve optimal performance, manual tuning of this hyperparameter
is required, as demonstrated in Appendix E.10, which is not straightforward. Furthermore, as dis-
cussed in Appendix E.11, there is still room for improvement regarding geometric distortions. How-
ever, future researchers aiming to train lightweight models can readily adopt our training approaches
to enhance model performance without modifying the underlying architecture. In conclusion, our
work represents a significant advancement in balancing efficiency and robustness in watermarking
models.
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