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ABSTRACT

Text-to-video (T2V) generation has recently garnered significant attention thanks
to the large multi-modality model Sora. However, T2V generation still faces two
important challenges: 1) Lacking a precise open sourced high-quality dataset.
The previously popular video datasets, e.g.WebVid-10M and Panda-70M, overly
emphasized large scale, resulting in the inclusion of many low-quality videos and
short, imprecise captions. Therefore, it is challenging but crucial to collect a precise
high-quality dataset while maintaining a scale of millions for T2V generation. 2)
Ignoring to fully utilize textual information. Recent T2V methods have focused on
vision transformers, using a simple cross attention module for video generation,
which falls short of making full use of semantic information from text tokens. To
address these issues, we introduce OpenVid-1M, a precise high-quality dataset with
expressive captions. This open-scenario dataset contains over 1 million text-video
pairs, facilitating research on T2V generation. Furthermore, we curate 433K 1080p
videos from OpenVid-1M to create OpenVidHD-0.4M, advancing high-definition
video generation. Additionally, we propose a novel Multi-modal Video Diffusion
Transformer (MVDiT) capable of mining both structure information from visual
tokens and semantic information from text tokens. Extensive experiments and
ablation studies verify the superiority of OpenVid-1M over previous datasets and
the effectiveness of our MVDiT.

1 INTRODUCTION

Text-to-video (T2V) generation, which aims to create a video sequence based on the condition of
a text describing the video, is an emerging visual understanding task. Thanks to the significant
advancements of large multi-modality model Sora (Brooks et al., 2024), T2V generation has recently
garnered significant attention. For example, based on DiT (Peebles & Xie, 2023), OpenSora1,
OpenSoraPlan (Lab & etc., 2024) and recent works (Wang et al., 2023c; Lu et al., 2023) utilize the
collected million-scale text-video datasets to reproduce Sora. However, these diffusion models (Ma
et al., 2024a; Wang et al., 2023a; Lu et al., 2023; Chen et al., 2023c; Wang et al., 2023c) still faces
two critical challenges: 1) Lacking a precise high-quality video dataset. Previously popular video
datasets, such as WebVid-10M and Panda-70M, overly emphasized large scale, resulting in the
inclusion of many low-quality videos and short, imprecise captions. Therefore, collecting a precise
high-quality text-to-video dataset while maintaining a scale of millions is challenging but crucial for
T2V generation. 2) Ignoring to fully utilize textual information. Recent T2V methods have focused
on vision transformer (e.g., STDiT in OpenSora), using a simple cross attention module, which falls
short of making full use of semantic information from text tokens.

In this work, we curate a precise high-quality dataset named OpenVid-1M, which comprises over 1
million in-the-wild video clips, all with resolutions of at least 512×512, accompanied by detailed
captions. As shown in Figure 1, our OpenVid-1M has several characteristics: 1) Superior in quantity:
Compared to specific-scenario datasets like UCF-101, which are typically tailored for particular
contexts with limited video clips, our OpenVid-1M stands out as a million-level dataset designed
for open scenarios,enhancing model generalization and enabling video generation across diverse
scenes. 2) Superior in visual quality: OpenVid-1M is strictly selected from the aspects of aesthetics,
temporal consistency, motion difference, and clarity assessment. We also curate OpenVidHD-0.4M to

1https://github.com/hpcaitech/Open-Sora
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UCF-101: Biking.

WebVid-10M: Apples in the garden.

The video captures a man driving a 
convertible sports car on a sunny day. 
He is wearing a red plaid shirt, 
glasses, and a watch. The car's top is 
down, and the man is holding the 
steering wheel with both hands. The 
car is moving on a road with a clear 
sky and green hills in the background. 
The man appears to be enjoying the 
drive, and the overall atmosphere of 
the video is cheerful and relaxed.

OpenVid-1M (Ours)Existing text-to-video datasets

Panda-70M: A woman is cutting vegetables on a wooden table.

Figure 1: Comparison of OpenVid-1M to the existing text-to-video datasets. Specific-scenario
datasets like UCF-101 contain low rasolution videos with simple captions (categories), WebVid-10M
contains low-quality videos with watermarks and Panda-70M contains many flickering (or still)
and blurry videos along with imprecise captions. In contrast, our OpenVid-1M contains a million
high-quality video clips coupled with expressive and precise captions (we highlight nouns in green,
verbs in blue, and easily overlooked details in purple).

advance research in high-definition video generation. Specifically, OpenVid-1M far outstrips the
commonly-used WebVid-10M (Bain et al., 2021) in both resolution and video quality, as WebVid-
10M includes low-quality, watermarked videos. Meanwhile, Panda-70M (Chen et al., 2024c) contains
many videos with low aesthetics, static, flickering, excessively dynamic or poor clarity, whereas
our OpenVid-1M is curated to ensure high-quality visuals across various aspects. 3) Expressive in
caption: Specific-scenario datasets like UCF-101 use category labels as captions, while datasets
like WebVid-10M and Panda-70M often have short, imprecise captions. In contrast, our OpenVid-
1M provides expressive captions, enabling the generation of rich, coherent video content through the
multimodal model LLaVA-v1.6-34b (Liu et al., 2024).

To address the second challenge, we propose a novel Multi-modal Video Diffusion Transformer
(MVDiT). Unlike previous DiT architectures (Lab & etc., 2024; Ma et al., 2024a) that focus on
modeling the visual content, our MVDiT features a parallel visual-text architecture to mine both
structure information from visual tokens and semantic information from text tokens to improve the
video quality. MVDiT extracts visual and text tokens, combines them into a multi-modal feature, and
enhances token interaction through a self-attention module. Then, a multi-modal temporal-attention
module ensures semantic and structural consistency, while a multi-head cross-attention module
integrates text semantics into visuals.

Our contributions are threefold: 1) We introduce OpenVid-1M, a million-level high-quality dataset
with expressive captions for facilitating video generation. 2) We validate OpenVid-1M on T2V
task with two models, i.e. STDiT and our proposed MVDiT, which makes full use of semantic
information from text tokens to improve visual quality. 3) We further demonstrate the superiority
of OpenVid-1M on video restoration task.

2 RELATED WORK

Text-to-video Datasets. Existing text-to-video training datasets can be categorized into two classes:
Specific-scenario and open-scenario. Specific-scenario datasets (Yu et al., 2023a; Yuan et al., 2024;
Rossler et al., 2019; Soomro et al., 2012; Xiong et al., 2018; Siarohin et al., 2019) typically consist of
a limited number of text-video pairs collected for specific contexts. For example, UCF-101 (Soomro
et al., 2012) is a action recognition dataset which contains 101 classes and 13,320 videos in total.
Taichi-HD (Siarohin et al., 2019) contains 2,668 videos recording a single person performing Taichi.
ChronaMagic (Yuan et al., 2024) comprises 2,265 high-quality time-lapse videos with accompanying
text descriptions. As a pioneering open-scenario T2V dataset, WebVid-10M (Bain et al., 2021)
comprises 10.7 million text-video pairs with a total of 52K video hours. Panda-70M (Chen et al.,
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Table 1: Data processing pipeline. The first three steps can be processed in parallel to enhance
processing efficiency, while the subsequent steps are processed sequentially.

Pipeline Tool Computation
Resources

Processing
Time (hours)

Remark

Aesthetics score LAION Aesthetics Predictor 32 A100 320 Get high aesthetics score set SA

Temporal consistency CLIP (Radford et al., 2021) 48 A100 173 Obtain moderate consistency set ST

Motion difference UniMatch (Xu et al., 2023) 48 A100 59 Obtain moderate amplitude of motion Set SM

Intersection of quali-
fied videos

Intersection - - Obtain intersection: SI = SA ∩ ST ∩ SM

Clarity assessment DOVER-Technical (Wu et al., 2023) 8 A100 25 Obtain clear and high-quality video set S
Clip extraction Cascaded Cut Detector (Blattmann

et al., 2023)
8 A100 30 Split multi-scene videos: S̃ = Detector(S)

Video caption LLaVA-v1.6-34b (Liu et al., 2023a) 8 A100 46 Obtain long captions for the videos

2024c) collects 70 million high-resolution and semantically coherent video samples. Recently,
InternVid (Wang et al., 2023d) proposes a scalable approach for autonomously constructing a video-
text dataset using large language models, resulting in 234 million video clips with text descriptions.
However, WebVid-10M contains low-quality videos with watermarks, Panda-70M contains lots of
static, flickering, low-clarity videos along with short captions, while InternVid primarily focuses
on video understanding tasks. In contrast, our OpenVid-1M comprises over 1 million high-quality
in-the-wild video clips, with 433K in 1080p resolution, accompanied by expressive captions.

Text-to-video Models. Current text-to-video generation methods can be divided into: UNet (Khacha-
tryan et al., 2023; Ge et al., 2023; Wang et al., 2023a; Chen et al., 2023a; 2024a; Yu et al., 2023b;
Zeng et al., 2023), and DiT based methods (Ma et al., 2024a; Chen et al., 2023c; Lu et al., 2023).
UNet based methods have been widely studied. Modelscope (Wang et al., 2023a) introduces a spatio-
temporal block and a multi-frame training strategy to enhance text-to-video synthesis, achieving
State-of-the-Art (SOTA) results. VideoCrafter (Chen et al., 2024a) investigates the feasibility of
leveraging low-quality videos and synthesized high-quality images to obtain a high-quality video
model. DiT based video duffusion models have recently garnered significant attention. Sora (Brooks
et al., 2024) revolutionizes video generation. Latte (Ma et al., 2024a) employs a simple and general
video Transformer as the backbone to generate videos. Recently, OpenSora1, trained based on a
pretrained T2I model (Chen et al., 2023b) and a large text-to-video dataset, aims to reproduce Sora. In
contrast to the previous DiT structures, we propose a novel MVDiT that features a parallel visual-text
architecture, mining both structure information from visual tokens and semantic information from
text tokens to improve the video quality.

3 CURATING OpenVid-1M

This section outlines the date processing steps in Table 1. OpenVid-1M is curated from ChronoMagic,
CelebvHQ (Zhu et al., 2022), Open-Sora-plan (Lab & etc., 2024) and Panda2. Since Panda is much
larger than the others, here we primarily describe the filtering details on our downloaded Panda-50M.

Aesthetics Score. Visual aesthetics are crucial for video content satisfaction and pleasure. To enhance
text-to-video generation, we filter out videos with low aesthetics scores using the LAION Aesthetics
Predictor. This results in a subset SA with the top 20% highest-scoring videos from Panda-50M. For
the other three datasets, we select the top 90% to form subset S′

A.

Temporal Consistency. Video clips with temporal consistency are crucial for training. We use
CLIP (Radford et al., 2021) to extract visual features and measure temporal consistency by analyzing
cosine similarity between adjacent frames. Clips with high scores (nearly static) and low scores
(frequent flickering) are filtered out, yielding a suitable subset, ST , from Panda-50M. For the other
datasets with good temporal consistency, no filtering is performed.

Motion Difference. We employ UniMatch (Xu et al., 2023) to assess optical flow as a motion
difference score, selecting videos with smooth movement, since temporal consistency alone is
insufficient to filter out high-speed objects that still maintain consistency. Videos with high flow
scores, indicating rapid motion, are unsuitable for training. We filter out clips with the highest and
lowest scores in Panda-50M to create subset SM . For the other three datasets, we derive a subset,
S′
M , without applying the remaining processing steps. Instead, we directly calculate the intersection

of S′
A and S′

M to obtain S′ = S′
A ∩ S′

M , i.e., Ours-0.4M illustrated in Figure 2.

2Since we can only download 50M, we refer to this version Panda-50M in this work.
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Figure 2: Comparisons on video statistics between OpenVid-1M and Panda-50M.

0.15

0.05

0.20

0.01

Figure 3: Left: Clarity distribution of OpenVid-1M. We also present 4 samples to visualize the
clarity differences. Samples outlined in green contour are blurry with low clarity scores, while those
outlined in red contour are clearer with high clarity. Middle & Right: OpenVid-1M contains diverse
distributions of video category and duration.

Clarity Assessment. High-clarity videos are essential for T2V generation. Since Panda-50M contains
many blurry clips, we filter those with very low clarity, as shown in Figure 3. We calculate the
intersection of the three sets from Panda to obtain SI = SA ∩ ST ∩ SM , resulting in aesthetically
pleasing, stable videos with smooth movement. Using the DOVER (Wu et al., 2023) model, we
estimate the DOVER-Technical score for each clip in SI and retain high-clarity videos with clean
textures. Finally, we select the top 30% of clips with the highest scores to form the video set S.

Clip Extraction. Beyond the aforementioned steps, some video clips may contain multiple scenes,
thus we introduce the Cascaded Cut Detector (Blattmann et al., 2023) to split multi-scene clips in S

to achieve clip extraction, ensuring each contains only one scene. After clip extraction, we obtain S̃
from Panda-50M, i.e., Ours-0.6M illustrated in Figure 2.

Video Caption. As highlighted in Sora technical report, detailed captions greatly benefit video
generation. After obtaining the video clip set, we recaption them using large multimodal model,
LLaVA-v1.6-34b (Liu et al., 2023a), to create expressive descriptions. Since CelebvHQ lacks captions,
we also provide captions for its video clips. Figure 2(d) compares the length of our prompts with
those in Panda-50M, showing our expressive prompts offer a significant advantage by providing richer
semantic information. We compile our high-quality dataset, OpenVid-1M (i.e., Ours-0.6M + Ours-
0.4M). Additionally, we meticulously select 1080p videos from OpenVid-1M to construct OpenVidHD-
0.4M, advancing the High-Definition (HD) video generation within the community.

4 DATA PROCESSING AND STATISTICAL COMPARISON

Data Processing Differences against SVD (Blattmann et al., 2023). Our data processing pipeline
draws inspiration from the SVD pipeline, yet several distinctions exist: 1) Visual quality evaluation:

4
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Table 2: Comparisons with previous text-to-video datasets. Our OpenVid-1M is a million-level,
high-quality and open-scenario video dataset for training high-fidelity text-to-video models.

Dataset Scenario Video clips Average length (seconds) Duration (hours) Resolution Caption

UCF101 Action 13K 7.2 2.7 320×240 N/A
Taichi-HD Human 3K - - 256×256 N/A
SkyTimelapse Sky 35K - - 640×360 N/A
FaceForensics++ Face 1K - - Diverse N/A
WebVid Open 10M 18.7 52k 596×336 Short

ChronoMagic Metamorphic 2K 11.4 7 Diverse Long
CelebvHQ Portrait 35K 6.6 65 512×512 N/A
OpenSoraPlan-V1.0 Open 400K 24.5 274 512×512 Long
Panda Open 70M 8.5 166k Diverse Short

OpenVid-1M (Ours) Open 1M 7.2 2.1k Diverse Long
OpenVidHD-0.4M (Ours) Open 433K 9.6 1.2k 1920×1080 Long

Both SVD and our OpenVid-1M utilize an aesthetic predictor to retain highly aesthetic videos.
Additionally, OpenVid-1M integrates the recent model DOVER (Wu et al., 2023) to assess the video
clarity, preserving high-quality videos with clean textures. 2) Motion evaluation: SVD utilizes the
traditional Farneback optical flow method and RAFT (Teed & Deng, 2020) to estimate optical flows.
In contrast, OpenVid-1M adopts a more efficient UniMatch (Xu et al., 2023) to achieve better optical
flows, addressing not only static videos but also those with fast movements. 3) Time consistency
evaluation: SVD employs clip extraction solely to prevent sudden video changes, whereas OpenVid-
1M additionally removes flicker videos. 4) Processing efficiency: SVD initially extracts video clips and
then filters from a large pool, while OpenVid-1M first selects high-quality videos and then extracts
clips, significantly enhancing processing efficiency. Finally, OpenVid-1M will be made publicly
available, while the training dataset in SVD is not.

Comparison with Panda-50M. The statistical comparisons between OpenVid-1M and Panda-50M
are illustrated in Figure 2. 1) Video Aesthetics Distribution: Our subsets Ours-0.6M and Ours-0.4M
exhibit higher aesthetics scores compared to Panda-50M, suggesting superior visual quality. 2)
Video Motion Distribution: Our subsets display a higher proportion of videos with moderate motion,
implying smoother and more consistent motion. Conversely, Panda-50M appears to contain numerous
videos with flickering and static scenes. 3) Video Temporal Consistency Distribution: Our subsets
exhibit a more balanced distribution of moderate temporal consistency values, whereas Panda-50M
includes videos with either static or excessively dynamic motion. 4) Caption Length Distribution: Our
subsets feature significantly longer captions than Panda-50M, providing richer semantic information.
Overall, OpenVid-1M demonstrates superior quality and descriptive richness, particularly in aesthetics,
motion, temporal consistency, caption length and clarity as well.

Comparisons with Other Text-to-video Datasets. We compare our OpenVid-1M and OpenVidHD-
0.4M to several previous datasets in Table 2. We also present video categories and durations statistics
of OpenVid-1M in Figure 3. As shown, OpenVid-1M is a million-scale, high-quality and open-
scenario video dataset designed for training high-fidelity text-to-video models. Specifically, OpenVid-
1M consists of 1,019,957 clips, averaging 7.2 seconds each, with a total video length of 2,051
hours. Compared to previous million-level datasets, WebVid-10M contains low-quality videos
with watermarks and Panda-70M contains many still, flickering, or blurry videos along with short
captions. In contrast, our OpenVid-1M contains high-quality, clean videos with dense and expressive
captions generated by the large multimodal model LLaVA-v1.6-34b. Additionally, compared to
previous high-quality datasets that are usually designed for specific scenarios with limited video
clips, our OpenVid-1M is a large-scale dataset for open scenarios, including portraits, scenic views,
cityscapes, metamorphic content, etc.

5 METHOD

Inspired by MMDiT (Esser et al., 2024), we propose a Multi-modal Video Diffusion Transformer
(MVDiT) architecture. Shown in Figure 4, its architecture diverges from prior methods (Lab & etc.,
2024; Ma et al., 2024a) by emphasizing a parallel visual-text structure for mining both structure from
visual tokens and semantic from text tokens. Each MVDiT layer encompasses four steps: Initial
extraction of visual and linguistic features, integration of a novel Multi-Modal Temporal-Attention
module for improved temporal consistency, facilitation of interaction via Multi-Modal Self-Attention
and Multi-Head Cross-Attention modules, and subsequent forwarding to the final feedforward layer.
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5.1 FEATURE EXTRACTION
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Figure 4: Overview of MVDiT with
parallel visual-text architecture. Con-
catenation is indicated by c⃝ and split
is indicated by s⃝.

Given a video clip, we adopt a pre-trained variational au-
toencoder to encode input video clip into features in latent
space. After being corrupted by noise, the obtained video
latent is input into a 3D patch embedder to model the tem-
poral information. Then, we add positional encodings and
flatten patches of the noised video latent to a patch encoding
sequence X ∈ RT×C×HW . Following Chen et al. (2023b),
We input the text prompts into the T5 large language model
(Raffel et al., 2020) for conditional feature extraction. Then,
we embed the text encoding to match the channel dimension
of the visual tokens to obtain the text tokens Ŷ ∈ RC×L,
where L represents the length of the text tokens. Finally, we
take the text and noised visual tokens as input of MVDiT.

5.2 MULTI-MODAL VIDEO DIFFUSION TRANSFORMER

Multi-Modal Self-Attention Module. We design a Multi-
Modal Self-Attention (MMSA) module. Text tokens Ŷ are
repeated by T times along the temporal dimension to gener-
ate Y ∈ RT×C×L. We adopt adaptive layer normalization
both in text branch and visual branch to encode timestep
information into the model. Then, we concatenate the visual
tokens with text tokens to generate the multi-modal feature
Fs ∈ RT×C×(HW+L), which is input into the MMSA mod-
ule containing a Self-Attention Layer (SAL):

Fs
SAL = SAL(Concat(AdaLN(X, t1),AdaLN(Y, t1)))

(1)
AdaLN(X, t1)) = γ1

1LayerNorm(X) + β1
1 . (2)

The self-attention operation is conducted to promote the
interaction between visual tokens and text tokens in each
frame, which can be implemented easily with matrix multiplication. Notably, since each video frame
is paired with a unique text prompt, the text tokens vary across frames after the SAL, where they
receive structural information from different frames. Then, we split the visual tokens and text tokens
from the enhanced multi-modal features. Following Chen et al. (2023b), we also regress dimension-
wise scaling parameter α, which is applied before residual connections within the Transformer block.
It can be formulated as follows:

Xs
SAL,Y

s
SAL = Split(Fs

SAL), X
s = X+ α1

1X
s
SAL, Y

s = Y + α2
1Y

s
SAL. (3)

Multi-Modal Temporal-Attention Module. After obtaining the enhanced visual features and text
features, we build a Multi-Modal Temporal-Attention(MMTA) module on the top of the MMSA to
efficiently capture temporal information. Unlike the temporal attention used in previous methods
(Lab & etc., 2024; Ma et al., 2024a), we consider capturing temporal information from both the text
features and the visual features. Specifically, we concatenate the tokens from two branches to obtain
the multi-modal feature Ft ∈ RT×C×(HW+L). We then input Ft into the MMTA module, where a
Temporal-Attention Layer (TAL) is used to conduct communication along the temporal dimension:

Xt
TAL,Y

t
TAL = Split(TAL(Concat(AdaLN(Xs, t2),AdaLN(Ys, t2)))), (4)

Xt = Xs + α1
2X

t
SAL, Y

t = Ys + α2
2Y

t
SAL. (5)

This design enables the model to learn both structural temporal consistency from visual information
and semantic temporal consistency from textual information. For simplicity, temporal positional
embedding is omitted.

Multi-Head Cross-Attention Module. While the MMSA module merges tokens from both modal-
ities for attention, T2V still requires an explicit process to embed semantic information from text

6
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Figure 5: Left: Comparison with SOTA T2V models on VQAT , GPU type and resolution. The
color of the middle dot in each circle indicates GPU type, and circle diameter represents video
resolution. Middle: Curves of FVD with different number of GPUs. More GPUs accelerates the
model’s convergence. Right: Curves of clip temporal score and warping error. Our T2V model
typically starts to stabilize at 35K steps and achieves temporal consistency around 50K steps.

tokens into visual tokens. The absence of semantic information may impair video generation perfor-
mance. Therefore, we introduce a Cross-Attention Layer (CAL) to facilitate direct communication
between text and visual tokens. Specifically, we take the flattened visual tokens Xt ∈ RT×C×HW as
Query and text tokens Yt ∈ RT×C×L as Key and Value, and input them into a cross-attention layer:

Xc = CAL(Xt,Yt) +Xt. (6)

Afterward, both the visual and text tokens are passed through a feedforward layer. Since a single
MVDiT layer updates both token types, this process can be repeated iteratively to enhance video gen-
eration performance. After N iterations, the final visual feature is used to predict noise and covariance
at time t. Our MVDiT is inspired by MMDiT, whose effectiveness has been thoroughly validated.
Importantly, our work is the first to emphasize a parallel visual-text structure for extracting structural
information from visual tokens and semantic information from text tokens in T2V generation.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics. We adopt proposed OpenVid-1M to train our MVDiT. OpenVidHD-
0.4M is used further for HD video generation. WebVid-10M and Panda-50M are adopted for dataset
comparisons. We evaluate our model on public benchmark in Liu et al. (2023b), which evaluates
text-to-video generation model based on visual quality, text-video alignment and temporal consis-
tency. Specifically, we adopt aesthetic score (VQAA) and technical score(VQAT ) for video quality
assessment. We evaluate the alignment of input text and generated video in two aspects, including
image-video consistency (SD_score) and text-text consistency (Blip_bleu). We also evaluate temporal
consistency of generated video with warping error and semantic consistency (Clip_temp_score).

Implementation Details. We use Adam (Kingma & Ba, 2014) as optimizer, and the learning rates is
set to 2e− 5. We sample video clips containing 16 frames at 3-frame intervals in each iteration. We
adopt random horizontal flips and random crop to augment the clips during the training stage. All
experiments are conducted on NVIDIA A100 80G GPUs. We adopt PixArt-α (Chen et al., 2023b)
for weight initialization and employ T5 model as the text encoder. The training process starts with
256×256 models, whose weights are then used to train 512×512 models, and these in turn serve as
pretrained weights for 1024×1024 models. Starting with low-resolution training equips the model
with coarse-grained modeling capabilities, while subsequent high-resolution finetuning enhances
its ability to capture fine details. This staged approach reduces both computational cost and overall
training time compared to directly starting with high-resolution training.

6.2 COMPARISON WITH STATE-OF-THE-ART MODELS

In this section, we evaluate our method’s performance and compare it with other models. For each
model, we employ a consistent set of 700 prompts from Liu et al. (2023b) to generate videos. Metrics
from Liu et al. (2023b) is used to evaluate the quality of generated videos.

Quantitative Evaluation. The comparison between our method and others is summarized in
Table 3 and Figure 5. Our model achieves the highest VQAA (73.46%) and the second best VQAT

(68.58%), indicating superior video aesthetics and clarity. Additionally, it achieves the second best
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Table 3: Comparison with state-of-the-art text-to-video generation methods. The best results are
marked in bold, while the second best ones are underscored.

Method Resolution Training Data VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓
Lavie (Wang et al., 2023c) 512×320 Vimeo25M 63.77 42.59 22.38 68.18 99.57 0.0089

Show-1 (Zhang et al., 2023) 576×320 WebVid-10M 23.19 44.24 23.24 68.42 99.77 0.0067
OpenSora-V1.1 512×512 Self collected-10M 22.04 23.62 23.60 67.66 99.66 0.0170

Latte (Ma et al., 2024a) 512×512 Self collected-330K 55.46 48.93 22.39 68.06 99.59 0.0203
VideoCrafter (Chen et al., 2023a) 1024×576 WebVid-10M; Laion-600M 66.18 58.93 22.17 68.73 99.78 0.0295
Modelscope (Wang et al., 2023b) 1280×720 Self collected-Billions 40.06 32.93 22.54 67.93 99.74 0.0162

Pika 1088×612 Unknown 59.09 64.96 21.14 68.57 99.97 0.0006
OpenSoraPlan-V1.2 (Lab & etc., 2024) 640×480 Self collected-7.1M 23.25 65.86 19.93 69.21 99.97 0.001

CogVideoX-5B (Yang et al., 2024) 720×480 Self collected-35M 35.12 76.86 24.21 68.91 99.79 0.0077

Ours 1024×1024 OpenVid-1M 73.46 68.58 23.45 68.04 99.87 0.0052

Table 4: Comparisons with previous representative text-to-video training datasets. The STDiT
model used in OpenSora is adopted and kept the same for all of the cases. For fair comparison,
training iterations are selected at the same step (50K) for fair comparison. All models with 256×256
resolution are adequately trained on 32 A100 GPUs for at least 14 days to reach 50K iterations.

Resolution Training Data VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓
256×256 WebVid-10M (Bain et al., 2021) 13.40 13.34 23.45 67.64 99.62 0.0138
256×256 Panda-50M (Chen et al., 2024c) 17.08 9.60 24.06 67.47 99.60 0.0200
256×256 OpenVid-1M (Ours) 17.78 12.98 24.93 67.77 99.75 0.0134

1024×1024 WebVid-10M (4× Super-resolution) 69.26 65.74 23.15 67.60 99.64 0.0137
1024×1024 Panda-50M (4× Super-resolution) 63.25 53.21 23.60 67.44 99.57 0.0163
1024×1024 Panda-50M-HD 13.48 42.89 21.78 68.43 99.84 0.0136
1024×1024 OpenVidHD-0.4M (Ours) 73.46 68.58 23.45 68.04 99.87 0.0052

Clip_temp_score (99.87%), demonstrating its good ability on temporal consistency. Overall, our
model shows robust performance across various metrics while using less training data, demonstrating
the superiority of our OpenVid-1M, highlighting its effectiveness in text-to-video generation tasks.

The comparison between OpenVid-1M and previous representative text-to-video training datasets
is listed in Table 4. We adopt STDiT model used in OpenSora for all of the cases. In 256 × 256
resolution, the model trained with our OpenVid-1M generates the best scores across all metrics except
VQAT. This is reasonable, as the low resolution of the videos prevents showcasing the high quality
of OpenVid-1M. The similar conclusion can be found in 1024×1024 resolution results, indicating the
superiority of OpenVid-1M in generating high-quality videos. Moreover, our OpenVidHD-0.4M can
be directly used to train high-definition (e.g., 1024× 1024) videos, whereas WebVid-10M cannot
and Panda-50M has not yet undergone resolution- and quality-level filtering. To compare results
at 1024× 1024 resolution, we use ×4 video super-resolution to generate 1024× 1024 videos from
models trained on WebVid-10M and Panda-50M. Clearly, training with our OpenVidHD-0.4M yields
better scores than combining other datasets with super-resolution. We also manually select 1080P
videos from Panda-50M to create Panda-50M-HD for a fairer comparison. We can see that the
model trained on our OpenVid-1M demonstrates superior performance, while the model trained
on Panda-50M-HD performs poorly. This discrepancy may be attributed to the low-quality videos
in Panda-50M-HD (e.g., low aesthetics and clarity, nearly static scenes, and frequent flickering), a
problem our data processing pipeline effectively avoids.

Qualitative Evaluation. Visual comparisons are shown in Figure 6. The first column demonstrates
that our model generates clearer, more aesthetically pleasing and more detailed videos due to our
high-resolution OpenVid-1M. In the second example, our model demonstrates a strong ability on
prompt understanding, accurately depicting the ‘android’ and ‘surrounded by colorful Easter eggs’
from the text. In the third column, unrealistic dust appears in front of the car in videos from Lavie and
VideoCrafter, while our model better captures the ‘kicking up dust’, highlighting its superior motion
quality. We emphasize our method’s ability to generate clearer and more aesthetically pleasing videos
compared to closed-source commercial product Pika, which are trained on much larger datasets and
with more computational resources. We present higher resolution versions in Figure 13, Figure 14
and Figure 15 for clearer comparison. Figure 5 presents a comprehensive analysis of the proposed
model’s performance against SOTA T2V models across various metrics.

Video Restoration. We further demonstrate the superiority of OpenVidHD-0.4M on the video restora-
tion task. As shown in Table 5, we used OpenVidHD-0.4M to synthesize 130K training samples
to train a video restoration model I2VGen-XL for arbitrary-resolution super-resolution, compar-
ing it with the SOTA video restoration method, Upscale-A-Video (Zhou et al., 2024). The results

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

La
vi

e
O

.S
.P

. V
1.

1
Vi

de
o

C
ra

ft
er

Pi
ka

O
ur

s

“a pickup truck kicking up dust on a back road.”“a triceratops charging down a hill.”
“a paranoid android freaking out and jumping into 
the air because it is surrounded by colorful Easter 

eggs.”

Figure 6: Visual comparison of different T2V generation models. Please zoom in for more details.

Table 5: Quantitative comparison of models trained on different datasets for video restoration.
Method Training Dataset Dataset Size PSNR↑ SSIM↑ LPIPS↓ DOVER↑ E∗

warp ↓
Upscale-A-Video (CVPR 2024) WebVid, YouTube ∼370K 23.43 0.6195 0.2731 0.4863 0.00532

Ours OpenVidHD-0.4M ∼130K 23.49 0.7165 0.2015 0.5351 0.00283

LR Upscale-A-Video Ours

Figure 7: Visual comparison of restoring low-resolution (LR) video from UDM10 (Tao et al., 2017).

show that our model outperforms across all metrics (both in fidelity and perception), demonstrating
that OpenVidHD-0.4M significantly improves performance, even without task-specific design opti-
mizations, due to its high quality. The visual comparison in Figure 7 shows that the model trained
with OpenVidHD-0.4M produces clearer textures and more accurate structures.

6.3 ABLATION STUDY

Ablations on Resolution, Architectures and Training Data. Results are depicted in Table 6.
We can draw the following conclusions: 1) Higher resolution leads to better metric scores. 2) The
proposed MVDiT further improves both VQAA and VQAT compared to STDiT, indicating higher
video quality and greater diversity. 3) More high-quality training data results in better metric scores.

Ablations on MVDiT. As shown in Table 7, we conduct ablations on MHCA module and scaling
parameter α on MVDiT-256. From the results, we can draw the following conclusions: MHCA boosts
video quality and alignment, and parameter α improves video quality and convergence. Notably,
we observed that removing α causes the loss to decrease very slowly, indicating that α accelerates
training, consistent with the findings reported in Peebles & Xie (2023). Please note that after removing
MMTA, the model is unable to generate videos and instead produces multiple unrelated images,
completely failing to meet the requirements for video generation.

Ablations on Data Processing Steps. We then discuss effectiveness of each data processing
step in OpenVid-1M, shown in Table 8: 1) Temporal screening improves Clip_temp_score and
warping_error, enhancing temporal consistency. 2) Screening for aesthetics, temporal and motion
boosts VQAA, VQAT , and Blip_bleu, suggesting better aesthetics and text understanding in generated
videos. 3) Screening for clarity significantly improves VQAA and VQAT . 4) Combining all four
steps yields the highest scores in most metrics.

Human Preference on Captions. In Table 9, we compare Panda’s short captions with our generated
long captions on 1, 117 validation samples, evaluated by 10 volunteers. Volunteers assessed captions
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Table 6: Ablations on different resolutions, architectures and training data. For models trained
with 256×256 resolution, training iterations are selected at the similar steps for fair comparison.
‘Pretrained Weight’ means initializing with a corresponding pretrained model, e.g., ‘MVDiT-256’
indicates that the MVDiT model with 256×256 resolution is used as the pretrained weight.

Model Resolution Training Data Pretrained Weight VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓
STDiT 256×256 Ours-0.4M PixArt-α 11.11 12.46 24.55 67.96 99.81 0.0105
STDiT 512×512 Ours-0.4M STDiT-256 65.15 59.57 23.73 68.24 99.80 0.0089

MVDiT 256×256 Ours-0.4M PixArt-α 22.39 14.15 23.72 67.73 99.71 0.0091
MVDiT 256×256 OpenVid-1M PixArt-α 24.87 14.57 24.01 67.64 99.75 0.0081
MVDiT 512×512 OpenVid-1M MVDiT-256 66.65 63.96 24.14 68.31 99.83 0.0008

Table 7: Ablation studies on the effectiveness of modules in MVDiT.
Setting VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓

w/o MHCA 13.9 12.35 19.74 67.58 99.73 0.0113
w/o α 3.16 3.55 14.38 66.94 99.01 0.0561

MVDiT 22.39 14.15 23.72 67.73 99.71 0.0091

Table 8: Ablation studies on the effectiveness of each data processing step. The number of training
data (0.6M), training iterations (50K) and resolution (256×256) for each setting are kept the same.

Settings
Aesthetics Temporal Motion Clarity VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓

✔ 19.48 10.39 24.07 67.61 99.70 0.0137
✔ 20.40 10.90 23.31 67.57 99.73 0.0113

✔ 16.78 9.39 23.91 67.44 99.58 0.0217
✔ ✔ ✔ 20.32 11.42 24.43 67.62 99.71 0.0123
✔ ✔ ✔ ✔ 30.26 14.05 23.43 67.66 99.81 0.0081

Table 9: Evaluation of human preference on captions over 1, 117 samples and 10 volunteers.
Omission Hallucinations Distortion Temporal Mismatch Mean Preference

Panda’s short captions 3.18 4.29 3.84 3.53 3.71 19.25%
Our generated long captions 4.53 4.08 4.28 3.99 4.22 80.75%

across four criteria: (1) Omission: missing key elements, (2) Hallucinations: imagined elements, (3)
Distortion: accuracy of attributes like color and size, and (4) Temporal mismatch: accuracy of event
sequences. Each pair was rated from 1 to 5 (higher is better), and preferences were recorded. The
results show: (1) The long captions provide richer descriptions, particularly in element accuracy and
temporal events. (2) Though some hallucinations occur, accurate descriptions dominate. (3) Both
captions can still be improved in modeling motion. (4) Long captions are strongly preferred overall.

7 CONCLUSION

In this work, we propose OpenVid-1M, a novel precise high-quality datasets for text-to-video gen-
eration. Comprising over 1 million high-resolution video clips paired with expressive language
descriptions, this dataset aims to facilitate the creation of visually compelling videos. To ensure the
inclusion of high-quality clips, we designed an automated pipeline that prioritizes aesthetics, tempo-
ral consistency, and fluid motion. Through clarity assessment and clip extraction, each video clip
contains a single clear scene. Additionally, we curate OpenVidHD-0.4M, a subset of OpenVid-1M for
advancing high-definition video generation. Furthermore, we propose a novel Multi-modal Video
Diffusion Transformer (MVDiT) capable of achieving superior visually compelling videos, making
full use of our powerful dataset. Extensive experiments and ablative analyses affirm the efficacy
of OpenVid-1M compared to prior famous datasets, including WebVid-10M and Panda-50M.

Limitations. Despite advancements in T2V generation, our model, like previous SOTA models, also
faces limitations in modeling the physical world. It sometimes struggles with intricate dynamics
and motions of natural scenes, leading to unrealistic videos. We believe that with more high-quality
training data, our model could be further scaled up and enhanced to handle such limitation.
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A MORE IMPLEMENTATION DETAILS

A.1 DATA PROCESSING PIPELINE

Aesthetics and Clarity Assessment. We adopted the LAION Aesthetic Predictor and DOVER (Wu
et al., 2023) to separately assess aesthetic and clarity scores due to their fast inference speeds and
alignment with human preferences. These qualities make them efficient and well-suited for integration
into our pipeline for processing million-level video data.

Temporal Consistency. Extracting CLIP representations has proven effective for computing cosine
similarity between images. We calculate the CLIP similarity (Radford et al., 2021) between every
two adjacent frames in the video and take the average as an indicator of the temporal consistency,
measuring the coherence and consistency of the video frames.

Motion Difference. To measure motion amplitude, we utilize UniMatch (Xu et al., 2023), a
pretrained state-of-the-art optical flow estimation method that is both efficient and accurate. We
calculate the flow score between adjacent frames of the video, taking the squared average of the
predicted values to represent motion dynamics, where higher values indicate stronger motion effects.

Clip Extraction. Our observations reveal that fade-ins and fade-outs between consecutive scenes
often go undetected when using a single cut detector with a fixed threshold. To address this, we
employ a cascade of three cut detectors (Blattmann et al., 2023), each operating at different thresholds.
This approach effectively captures sudden changes, fade-ins, and fade-outs in videos.

Filtering Ratios. We randomly sampled a subset from the collected raw data and processed it
through our data processing pipeline. A panel of evaluators was then tasked with assessing these
video subsets, determining whether the videos at each processing step met our requirements. Based
on their preferences, we derived score thresholds and filtering ratios for each step after multiple
evaluations. Figure 10 provides visualizations of the videos with varying clarity, aesthetic, motion,
and temporal consistency scores computed by our pipeline.

A.2 DIFFERENCES BETWEEN MVDIT AND MMDIT

Multi-Modal Self-Attention Module. We design a Multi-Modal Self-Attention (MMSA) module
based on the self-attention module of MMDiT. To handle video data, we repeat the text tokens T
times and then concatenate the text tokens with video frame tokens using the same method as MMDiT.
The self-attention operation is conducted along spatial and within the same frame. This provides a
simple yet effective adaptation of MMDiT to video data input.

Multi-Modal Temporal-Attention Module. Since MMDiT lacks the ability to generate videos, we
introduce a novel Multi-Modal Temporal-Attention (MMTA) module on top of the MMSA module to
efficiently capture temporal information in video data. To retain the advantages of the dual-branch
structure in MMSA, we employ a similar approach in MMTA, incorporating a temporal attention
layer to facilitate communication along the temporal dimension.

Multi-Head Cross-Attention Module. Since the absence of semantic information may impair
video generation performance, explicitly embedding semantic information from text tokens into
visual tokens is helpful. To address this, we introduce a novel cross attention layer to enable direct
communication between text and visual tokens.

B AN EXPLORATION OF VIDEO CAPTION

We develop an improved chain-of-thought pipeline based on the recent powerful LLaVA-Video-
72B model(Zhang et al., 2024). This approach enhances instance-level detail in the videos and
reduces hallucinations by segmenting and analyzing objects individually. Specifically, we carefully
selected 22K videos from OpenVid-1M to recaption using LLaVA-v1.6-34b (Liu et al., 2023a),
ShareGPT4Video (Chen et al., 2024b), and LLaVA-Video-72B-Improved (Ours). We fine-tuned
STDiT-256 model using these three subsets, and the experimental results are shown in Table 10. The
results show that training on the dataset with our fine-grained captions leads to improved performance
on alignment.
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Table 10: Ablation studies on different caption methods.
Method VQAA↑ VQAT ↑ Blip_bleu↑ SD_score↑ Clip_temp_score↑ Warping_error↓

LLaVA-v1.6-34b (Liu et al., 2023a) 16.08 14.61 24.05 68.34 99.73 0.0093
ShareGPT4Video (Chen et al., 2024b) 16.29 15.74 24.07 68.31 99.71 0.0099

LLaVA-Video-72B-Improved 16.89 14.86 24.24 68.39 99.79 0.0096

“a dog wearing vr goggles on a boat.”
“a little girl stands in a park, holding out 
her hand as she feeds a flock of colorful 

birds fluttering around her..”

1.7×
speedup

Figure 8: Left: Similarity for different attention values at different timesteps. Right: We compare
the generation quality between accelerated model and original model at 1024 resolution.

C ACCELERATION FOR HD VIDEO GENERATION

Diffusion models, though powerful, often suffer from high computational costs and slow inference,
especially for high-definition video generation. This is due to the sequential denoising process and
attention computation, which has an O(L2) complexity based on token length L. Inspired by Ma
et al. (2024b), we observed significant temporal consistency in attention values between consecutive
steps of the reverse denoising steps (Figure 8), revealing redundancy. These values can be cached
and reused to accelerate denoising without retraining. Specifically, at timestep t, attention values are
computed normally. At t− 1, cached values for Self-Attention, Temporal-Attention, Cross-Attention,
and Feedforward layers are reused, repeating this process every two steps. As shown in Figure 8,
this method achieves up to a 1.7× speedup at 1024 resolution, with minimal quality impact. This
indicates that diffusion models trained on OpenVidHD-0.4M can be accelerated efficiently without
compromising quality.

D EXAMPLES OF OpenVid-1M DATASET

In Figure 9, we visualize some samples from our OpenVid-1M. We randomly select samples
with 512 × 512 and 1920 × 1080 resolution, respectively. With well designed data processing
pipeline, OpenVid-1M demonstrates superior quality and descriptive richness, particularly in aesthet-
ics, motion, temporal consistency, caption length and clarity as well.

E MORE TEXT-TO-VIDEO EXAMPLES

We present more visual results of our model. As depicted in Figure 11, the first column illustrates our
model’s proficiency in generating aesthetically pleasing content with a painting style. The second
column showcases the superior text alignment of the videos generated by our model, accurately
depicting ‘crashed down’ from the text. The third and fourth columns highlight our model’s ability to
produce intricate dynamics and motions, e.g., ‘motorcycle race’ and ‘gallop across’.

F VIDEO DURATIONS COMPARISON WITH OTHER DATASETS

We present video durations comparison between our OpenVid-1M and other million level text-to-video
datasets in Figure 12. Specifically, OpenVid-1M consists of 1,019,957 clips, averaging 7.2 seconds
each, with a total video length of 2,051 hours. Compared to previous million-level datasets, WebVid-
10M contains low-quality videos with watermarks and Panda-70M contains many still, flickering, or
blurry videos along with short captions. In contrast, our OpenVid-1M contains high-quality, clean
videos with dense and expressive captions.
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The video features a man with dark hair and a beard, wearing a red plaid shirt and a black 
jacket. He is holding a microphone with the word ""RODE"" on it. The man is standing in 
front of a building with a large screen displaying a colorful advertisement...

A breathtaking aerial view of a rocky coastline at sunset. The sun is descending behind the 
rocks, casting a warm, golden glow that contrasts beautifully with the deep blue of the 
ocean. The waves, white and frothy, crash against the jagged rocks...

A serene scene of a lake nestled amidst nature. A wooden dock, weathered by time and 
elements, extends invitingly into the calm waters of the lake. The lake itself is encircled by 
a lush expanse of green grass...

In the vast expanse of the azure sky, dotted with fluffy white clouds, stands a majestic 
giraffe. The giraffe, with its long, graceful neck reaching towards the heavens, is facing 
towards the right side of the scene. Its head is turned slightly towards us...

The video captures the majestic beauty of a snow-covered mountain range at sunset. The style of the video is serene and tranquil, with a focus on the natural beauty of the landscape. 
The camera angle is from a distance, allowing the viewer to take in the full scope of the mountain range. The colors in the video are vibrant and rich, with the pink and orange hues of 
the sunset contrasting beautifully against the white snow. The overall effect is a stunning portrayal of nature's grandeur...

In the video, a woman is seen preparing food in a colorful outdoor kitchen. She is wearing a blue shirt and is standing behind a counter filled with various ingredients and utensils. The 
counter is adorned with a variety of fruits, vegetables, and bottles, suggesting that she is in the process of cooking or baking. The outdoor setting is lush and green, with trees and plants 
surrounding the kitchen area. The woman appears to be in the middle of her cooking process, as she is seen handling a bowl and a cutting board...

Figure 9: Examples of OpenVid-1M dsataset.
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Figure 10: Visualizations of the videos with varying (a) clarity, (b) aesthetic, (c) motion, and (d)
temporal consistency scores.
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“Unicorn sliding on a rainbow.”

“A motorcycle race through the city streets night.”

“Three horses gallop across a wide open field, tails and manes flying in the 
wind.”

“A snow avalanche crashed down mountain peak, causing destruction and 
mayhem.”

Figure 11: More text-to-video showcases.

 

Figure 12: Comparisons on video durations with previous million level text-to-video datasets.
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“a triceratops charging down a hill.”
Figure 13: Visual comparison of different T2V generation models. Our model generates clearer,
more aesthetically pleasing and more detailed videos due to our high-resolution OpenVid-1M.
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“a paranoid android freaking out and jumping into the air because it is 
surrounded by colorful Easter eggs.”
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Figure 14: Visual comparison of different T2V generation models. Our model demonstrates a strong
ability on prompt understanding, accurately depicting the ‘android’ and ‘surrounded by colorful
Easter eggs’ from the text.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

La
vi

e
O

.S
.P

. V
1.

1
Vi

de
o

C
ra

ft
er

Pi
ka

O
ur

s

“a pickup truck kicking up dust on a back road.”
Figure 15: Visual comparison of different T2V generation models. Our model better captures the
‘kicking up dust’, highlighting its superior motion quality.
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