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ABSTRACT

Graph Convolutional Network (GCN) has become one of the most successful
methods for graph representation learning. Training and evaluating GCNs on
large graphs is challenging since full-batch GCNs have high overhead in mem-
ory and computation. In recent years, research communities have been devel-
oping stochastic sampling methods to handle large graphs when it is unreal to
put the whole graph into a single batch. The performance of the model depends
largely on the quality and size of subgraphs in the batch-training. Existing sam-
pling approaches mostly focus on approximating the full-graph structure but care
less about redundancy and randomness in sampling subgraphs. To address these
issues and explore a better mechanism of producing high-quality subgraphs to
train GCNs, we proposed the Linguine framework where we designed a meta-
model to prune the subgraph smartly. To efficiently obtain the meta-model, we
designed a joint training scenario with the idea of hardness based learning. The
empirical study shows that our method could augment the accuracy of the cur-
rent state-of-art and reduce the error incurred by the redundancies in the subgraph
structure. We also explored the reasoning behind smart pruning via its visualiza-
tion.

1 INTRODUCTION

Graph Representation Learning has attracted much attention from the research communities in re-
cent years, with emerging new work every year. Graph Convolution Neural Networks (GCNs) were
proposed as the extension of Convolutional Neural Networks(CNNs) (LeCun et al., 1995) on geo-
metric data. The first spectral-based GCN was designed on Spectral Graph Theory (Bruna et al.,
2013) and was extended by many following works (Henaff et al., 2015; Defferrard et al., 2016).
Over recent years, the spatial-based counterpart (Kipf & Welling, 2016a) gained more attention
and had facilitated many machine learning tasks (Wu et al., 2020; Cai et al., 2018) including semi-
supervised node classification (Hamilton et al., 2017b), link prediction (Kipf & Welling, 2016b;
Berg et al., 2017) and knowledge graphs (Schlichtkrull et al., 2018). In this work, we primarily
focused on large-scale spatial-based GCNs (Hamilton et al., 2017a; Chen et al., 2018b; Gao et al.,
2018; Huang et al., 2018; Zeng et al., 2019; Zou et al., 2019; Chiang et al., 2019), where a given
node aggregates hidden states from its neighbors in the previous layer, followed by a non-linear
activation to obtain the topological representation.

However, as the graph gets larger, GNN models suffer from the challenges imposed by limited
physical memory and exponentially growing computation overhead. Recent work adopted sampling
methods to handle the large volume of data and facilitate batch training. The majority of them
could be classified as 3 types, layer-wise sampling (Hamilton et al., 2017a; Gao et al., 2018; Huang
et al., 2018; Zou et al., 2019), node-wise sampling (Chen et al., 2018b) and subgraph sampling
(Chiang et al., 2019; Zeng et al., 2019). In layer-wise sampling, we take samples from the neighbors
of a given node in each layer. The number of nodes is growing exponentially as the GCNs gets
deeper, which resulted in ’neighbor explosion’. In node-wise sampling, the nodes in each layer are
sampled independently to form the structure of GCNs, which did avoid ’neighbor explosion’. But
the GCN’s structure is unstable and resulted in inferior convergence. In subgraph sampling, the
GCNs are trained on a subgraph sampled on the original graph. The message was passed within
the subgraph during training. This approach resolved the problem of neighbor explosion and can
be applied to training deep GCNs. However, the subgraph’s structure and connectivity had a great
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impact in the training phase. It might result in suboptimal performance and slow convergence if
the subgraph is overly sparse (Chen et al., 2018b). Different sampling methods can make a huge
difference in the final accuracy and the convergence speed as shown in (Zeng et al., 2019). In the
context of large-scale GCN training, the limitations in GPU memory makes the maximum batch size
restricted. Research communities are actively seeking efficient sampling methods to deal with the
challenges in scalability, accuracy, and computation complexity on large-scale GCNs.

The initiative of subgraph GCN is a stochastic approach to approximate their full-graph counterparts.
However, experiments showed that GCN trained with partial information can achieve even less
bias. (Zou et al., 2019) This was even more so when variance reduction is applied in GCN’s training,
which overcomes the negative effect induced by subgraph GCNs and improves its convergence speed
as well as inference performance. (Hamilton et al., 2017a; Chen et al., 2018a; Zeng et al., 2019)
However, the inner mechanism behind this random sample has yet to be studied.

GCNs are also made to be deeper and more complicated with architecture design. The model over-
comes the drawbacks of the gradient vanishing problem via applying Deep CNN’s residual/dense
connection and dilated convolution, achieving state of art performance on open graph bench-
marks. (Li et al., 2019; 2020; Weihua Hu, 2020) However, as their model is significantly larger
(amounting to more than 100 layers in some occasions) than previous approaches, the model is suf-
fered from high computation overhead and memory cost. With the model taking up much space, the
batch sizes are also strictly limited. We aim to provide an easier solution to train complex models
while maintaining a relatively large receptive field in the graph, and keeping the training quality.

We propose Linguine framework. In each forward pass, we ’smartly prune’ inferior nodes to ex-
tract a concentrated smaller subgraph from the large subgraph randomly sampled previously. There-
fore, we reduce the batch size and the memory requirement in training the model. We are also able
to train the complex GCNs with larger receptive field and achieve better performance with the same
budget. We parameterize the decision function in smart pruning with a light-weight meta-model,
which is fed with the meta-information we obtained from training a light-weight proxy model. This
keeps the extra cost of algorithm under control. Our framework is built upon existing subgraph
sampling methods and utilize joint training to learn the meta-model. Our meta-model improved the
quality of the subgraphs in training via actively dropping redundant nodes from its receptive field
and concentrate the information.

We summarize the contributions of this work as follows:

1. We designed a new training framework Linguine which aims to train high-performance
GCNs on large graphs via model-parameterized smart pruning techniques.

2. Linguine provides a joint-training algorithm called bootstrapping, originally designed
to train the meta-model in smart pruning, but also has a favorable impact in augmenting
existing models and converge to better solutions with scalability and lower bias. It is also
an effective algorithm inspired by the idea in the real-world learning process.

3. Empirical study justified that Linguine framework worked well on different scaled pub-
lic benchmarks and compares favorably to previous methods.

4. We did an analysis on the mechanism behind smart-pruning via graph visualization.

2 RELATED WORK

Our framework was inspired and built upon two popular branches in Machine Learning.

Graph Neural Networks Many GNNs have emerged over the recent years. Spatial-based GCNs
are the most popular approaches among them and have gained broad interest from research com-
munities (Atwood & Towsley, 2016; Niepert et al., 2016; Gilmer et al., 2017). They stack multiple
graph convolutional layers to extract high-level representations. In each layer, every node in the
graph aggregates the hidden states from its neighbors on the previous layer. The final output is the
embedding of each node in the graph. Existing work on GCNs utilized sampling technique to per-
form efficient minibatch training. Common approaches can be categorized as Layer-wise Sampling,
Node-wise Sampling and Subgraph Sampling. In Layer-wise sampling and Node-wise Sampling,
the layers are sampled recursively from top to bottom to form mini-batches. The major difference
between Node-wise Sampling and Layer-wise Sampling lied in the sampling mechanism.
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Figure 1: Illustration of Subgraph GCN: (a) Layer-wise Sampling (b) Node-wise Sampling (c)
Subgraph Sampling

Node-wise Sampling sampled from the whole graph dataset whereas Layer-wise Sampling only fo-
cused on the neighbors from the upper layer.

In Subgraph Sampling we only sample once and propagate through the subgraph to formalize batch
training. Among work in Layer-wise Sampling, GraphSAGE (Hamilton et al., 2017a) performed
uniform Node-wise Sampling on the neighbors of nodes in the previous layer. (Ying et al., 2018)
introduced the importance score to each neighbor and performed weighted aggregation to enhance
the model. The potential drawback of Layer-wise Sampling is Neighbor Explosion where we created
an overly-large receptive field in the bottom layer and resulted in memory overflow.

In Node-wise Sampling, FastGCN (Chen et al., 2018b) performs sampling independently across all
layers and perform importance sampling on the node level to reduce the variance. This approach
was further extended by LADIES (Zou et al., 2019) which performs importance sampling adaptively
from top to bottom.

Recently, Subgraph Sampling emerged as a low complexity solution for large-scale GCN training.
ClusterGCN (Chiang et al., 2019) performs clustering on the graph. This work partitions the graph
into densely connected clusters. Random sampling is performed on the cluster level to form mini-
batches in training. GraphSAINT (Zeng et al., 2019) directly sampled the mini-batches at node-level.
This approach also performed normalization at the node level to reduce the sampling variance. It
achieves the new state of the art performance on multiple public datasets. The main difference
between Subgraph Sampling and other approaches is that GCN is trained on the subgraph instead of
a massage passing flow containing different nodes on different layers.

Sampling subgraph has been an important method leveraging limited memory to achieve better
performance. However, the variance introduced by sampling negatively impacts the training. Recent
approaches adopted Variance Reduction (Hamilton et al., 2017a; Chen et al., 2018a; Zeng et al.,
2019) to stochastically approximate the activations of sampled nodes. which was shown to boost
the final model performance and convergence speed (Zeng et al., 2019). Besides, empirical study
found that different sampling methods can also create a great gap in the final performance of GCNs
and varied convergence speed.

The advance of deepening GCNs has drawn extensive attention in the research community, lever-
aging the computation power of high-performance GPU devices. (Li et al., 2019) adapted residual
connections and dilated convolutions into GCNs. (Li et al., 2020) proposed a general aggregation
function, which further improves the capacity of deep GCNs.

Meta-Learning Our work is inspired by recent meta-learning and model-teaching approaches,
which is also a trendy topic in recent years.

Learning to Learn, or Meta-Learning (Schmidhuber, 1987; Thrun & Pratt, 2012) was proposed as
an exploration of using automatic learning via transferring knowledge learned from meta tasks. It
was designed as a two-level structure, in which the meta-level model evolves slowly and the task
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model progresses quickly. Recently, meta-learning has been utilized in different machine learning
scenarios. There is work trying to design optimizer and neural network architectures. (Andrychow-
icz et al., 2016; Li & Malik, 2016; Zoph & Le, 2016). Other approaches similar to Meta-Learning is
Teaching (Anderson et al., 1985; Goldman & Kearns, 1992), which can be categorized as machine-
teaching and hardness based methods. Machine teaching (Zhu, 2013) is to construct a minimal
training set for the student model to learn a target model. However, due to the strong assumption
of the oracle’s existence in machine teaching. Hardness-based models are proposed on the assump-
tion that a data order from easy to hard can benefit model training. There are many different works
in the hardness-based method. Curriculum Learning (CL) (Bengio et al., 2009; Spitkovsky et al.,
2010; Graves et al., 2017) utilizes a hardness measure based on a heuristic understanding of data.
Self-paced learning(SPL) (Kumar et al., 2010) heuristically define the scheduling of training data
in an easy-to-hard manner. Learning to Teach (Fan et al., 2018; Wu et al., 2018) designed a new
teacher-student model and perform transferable model teaching.

Our meta-model incorporates graph topological information and node-wise performance informa-
tion into meta information. We used a learned model instead of heuristic and fixed rules in the model
to explore the optimal policy.

3 METHODS

In this section, we introduce the background of our problem, followed by the formal definition of
Linguine framework.

3.1 PRELIMINARIES

A GCN learns representation of an un-directed, arributed graph G(V,E) where each node v ∈ V

has attribute xv ∈ Rf . Let A be the adjacency matrix and Ã be the normalized one. (i.e., Ã =

D−
1
2AD−

1
2 , where D is the diagonal degree matrix). The activation of node v is x

(l)
v ∈ Rf(l)

,
and the weight matrix is W (l). Note that xv = x

(1)
v . The rules of forward propogation per layer is

defined as:
x(l+1)
v = σ

(∑
u∈V

Ãv,uW
(l)x(l)

u

)
(1)

where Ãv,u is the scalar element of Ã. And σ is the activation function.

The propogation of Subgraph GCN can be summarized as:

x̂(l+1)
v = σ

(∑
u∈V

Âv,uW
(l)x̂(l)

u

)
(2)

Âu,v is the stochastic adjacency martix we sampled previously. It is also a mapping in U → V
where U and V are subspaces of hidden-state space of layer l and l + 1 respectively. The x̂u is the
l-layer embeddings of sampled nodes. As have been addressed previously on the 3 different types
of subgraph GCNs, the main diference can be formally defined with Âu,v: In node-wise sampling,
Âu,v is stochastically sampled from A with |U| rows and |V| columns, where the number of nodes is
not necessarily identical. In layer-wise sampling, the Âu,v is similar to that in node-wise sampling
where the cross-section of those rows and columns is 1. Meanwhile, the set U is a subset of V,
making Âu,v a surjective mapping. In subgraph sampling, the set U and V are identical, which
implied that the same adjacency matrix Âu,v in every layer. In this case, the mapping is isotonic,
which keeps the network structure stable and facilitates the deepening of GCNs.

The goal of training a Subgraph GCN is to perform batch training with each batch containing a
subset of V and approximate the effect of training a full graph GCN.

The learning tasks can be categorized as inductive and transductive. In the inductive setting, we
assume neither attributes nor connections of the test node can be seen in the training phase whereas
in the transductive setting we have access to them. The inductive model is much more challenging
to train as shown in (Hamilton et al., 2017a) and has to generalize to unseen graphs.
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Figure 2: Linguine Framework

3.2 LINGUINE FRAMEWORK

Linguine follows the design philosophy of utilizing a Meta-Model to optimize the training of
subgraph GCNs. We divide the whole framework into 2 consecutive parts: Bootstrapping and Smart
Pruning. In Bootstrapping we designed a joint training scenario detailed in 3.2.1 and algorithm 1
.We also analyzed the convergence of it under the convex scenario. In Smart Pruning we designed
algorithm 2 and detailed the mechanism in 3.2.2

Our goals are set as follows: (1) Optimizing the subgraphs to minimize information loss and achieve
better generalization. (2) Leveraging limited memory to achieve scalable learning (3) Utilizing the
model feedback to optimize the training process.

Algorithm 1 Bootstrapping
Input Full Graph G(V,E,X), light-weight GCN Glight

Output Learned Meta-Model M
1: Initialize meta-information I(V) , meta-model weight WM , Glight

2: for minibatch i from 0 to N do
3: Randomly Sample a subgraph Gsample(Vsample,Esample,Xsample) = sample(G)
4: Fed M with I(Vsample) and get pruning weight W
5: Normalize W and get Ŵ
6: Xsample = Xsample � Ŵ
7: Fed Glight with Gsample and calculate task loss L
8: if i is even then
9: Calculating ∂L

∂WGlight
and update Glight

10: else
11: Calculating ∂L

∂WM
and update M

12: end if
13: Update I(Vsample)
14: end for

3.2.1 BOOTSTRAPPING

In algorithm 1, the meta-model is designed as a 2-layer vanilla GCN. The light-weight GCN (i.e.
Glight) is used as a proxy, escalating the training of meta-model. The meta-information (i.e. I(V))
includes 3 types of information from the model feedback: (Fan et al., 2018): (1) Model information
(i.e. average loss in the past epochs in training set, the loss oberserved so far on validation set
) (2) Node information (i.e. nodes’ predicted labels) (3) Joint information (i.e. predicted class
probabilities of Subgraph GCN in previous epochs)

The meta-model is jointly trained with a lightweight GCN where the update of the meta-model and
the light-weight GCN are trained alternately. The goal of bootstrapping is to obtain a potent meta-
model selective of existing subgraphs with the most informative nodes while weakening the redun-
dant nodes. The light-weight design expedites the training process since it is budget-friendly. The
sampling algorithm is user-defined. We use random-node subgraph sampling in our experiments,
which is the simplest and most cost-effective.
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Algorithm 2 Smart Pruning
Input Full Graph G(V,E,X), Meta-model M , Meta-information I(V), Desired Subgraph Scale K
Output High Performance GCN G

1: Initialize GCN weight WG

2: for each minibatch do
3: Randomly sample a subgraph Gsample(Vsample,Esample,Xsample) from G
4: Feed M with I(Vsample) and obtain pruning score W
5: Select top-K nodes in V and prune the rest, forming Gprune

6: Normalize top K score and drop the rest, getting ŴtopK

7: Xprune = Xprune � ŴtopK

8: Feed G with Gprune and calculate task loss L
9: Backpropogate with ∂L

∂WG
and update G

10: Update I(Vprune)
11: end for

Formally, the update of model weight of minibatch i can be explicitly written as (For simplicity, we
take fixed step vanilla gradient descent as scenario):

w = w − η∇MLi(W ) (3)
w = w − η∇GLi(W ) (4)

∇G and ∇M are the partial gradients on GCN and meta-model respectively. Since the parameters
of GCN and meta-model are independent of each other, formally, 〈∇M ,∇G〉 = 0.

We then provide a theorem on the convergence on this joint training scenario in convex scenario and
leave the proof in the appendix.

Theorem 1 (Convergence of Joint Training) Suppose the function f : Rn → R is convex and
differentiable, and that its gradient is Lipschitz continuous with constant L > 0. Then if we run
gradient descent for k iterations with a fixed step size η ≤ 1

L under the joint training theme, it will
yield a solution f(x(t)) which satisfies:

f(x(t))− f(x∗) ≤ ‖x
(0) − x∗‖22
ηt

(5)

where f(x∗) is the optimal value. This means that joint training theme of convex function is guar-
anteed to converge and it converges with rate O(1/t).

3.2.2 SMART PRUNING

In Smart Pruning, the meta-model is fixed and acts as a scorer on the previously sampled subgraph.
We keep the nodes with top K scores in the subgraph while pruning the rest before forwarding it to
the target GCN. The meta-model is then acting like a teacher akin to that of (Wu et al., 2018; Kumar
et al., 2010), who selects the proper ’material’ (e.g. subgraphs) for the student model (e.g. complex
GCNs) to learn. The meta-model is still fed with the meta-information from the student model alike
Bootstrapping. This is akin to teachers getting feedback (i.e. what has been well received and what
has not) from their students and adaptively changing the teaching contents for the next lecture in the
real world. Since the full graph is overly large to digest by the student model, the meta-model is also
acting as a concentrator and enlarges the receptive field while keeping a relatively small mini-batch
size. This is done through dropping the redundant nodes from the existing subgraphs by pruning,
our assumptions of redundancy are characterized as: (1) Nodes that are hard to learn by existing
model (i.e. having high training loss) (2) Nodes that affect its neighbors’ categorization. (i.e. nodes
with high degree) These two assumptions have been discussed in the experiment visualization at
Appendix D.

4 EXPERIMENTS

The purpose of our experiments is to answer the following questions: (1) How would bootstrap-
ping algorithm compare with original methods? (2) How would graph sampling methods affect the
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Datasets PPI Flickr Reddit Yelp OGB-Product

Vanilla GCN 0.515(0.006) 0.492(0.003) 0.933(0.000) 0.378(0.001) 0.756(0.002)
GraphSAGE 0.637(0.006) 0.501(0.013) 0.953(0.001) 0.634(0.006) 0.785(0.001)

FastGCN 0.513(0.032) 0.504(0.001) 0.924(0.001) 0.265(0.053) -
ClusterGCN 0.875(0.004) 0.481(0.005) 0.954(0.001) 0.609(0.005) 0.790(0.003)

GraphSAINT-RN 0.960(0.001) 0.507(0.001) 0.962(0.001) 0.641(0.000) 0.781(0.002)
GraphSAINT-RW 0.981(0.004) 0.511(0.001) 0.966(0.001) 0.653(0.003) 0.791(0.002)

DeepGCN - - - - 0.810(0.002)
RW + Bootstrapping 0.988(0.003) 0.517(0.002) 0.974(0.001) 0.680(0.004) 0.803(0.002)
RN + Bootstrapping 0.980(0.004) 0.512(0.003) 0.970(0.003) 0.672(0.003) 0.790(0.002)

Table 1: F1-micro benchmark on node classification task

outcome of bootstrapping? (3) How many nodes should we prune to achieve commendable perfor-
mance? (4) How does the pruning work?

We address the above problem by comparing the different algorithmic compositions of bootstrapping
with the current state of arts as well as the vertical comparison within the pruning algorithm. The
code we implemented in Pytorch is available online1.

4.1 DATASETS

PPI: Protein-protein interaction networks from (Zitnik & Leskovec, 2017). Our goal is classi-
fying protein functions based on the interactions between human tissue proteins. Flickr: Flickr
dataset from (Zeng et al., 2019) We did categorization on the images based on the properties of
online images.Reddit: Reddit dataset comes from (Hamilton et al., 2017a), containing Reddit posts
collecting from different communities. We did a prediction on the communities of online posts us-
ing user comments. Yelp: Yelp dataset comes from (Zeng et al., 2019), containing relationships
between custom reviewers, on which we did categorization of types of businesses with customer
reviewers and their friendship. Open Graph Benchmarks: (OGB for short) is a diverse set of chal-
lenging benchmark datasets (Weihua Hu, 2020). We used Ogbn-proteins where the major task is to
categorize the protein based on the associations between different proteins. Ogbn-products comes
from the Amazon product co-purchasing network. This dataset is also used in (Chiang et al., 2019)
but it is modified on the split ratio to produce a much more challenging task. We did a classification
task on the products’ category. Dataset statistics are in Table 2

4.2 BASELINES

We used normally trained large-scale GCN as baselines for comparison: Vanilla GCN2 (Kipf &
Welling, 2016a) is the simplest spatial-based GCN. GraphSage3 (Hamilton et al., 2017a) is a typical
layer-wise sampling method. FastGCN4 (Chen et al., 2018b) is a typical node sampling method.
ClusterGCN5 The first subgraph-sampling GCN algorithm. GraphSAINT (Zeng et al., 2019) is
another typical subgraph sampling method and the state of art method. DeepGCNs (Li et al., 2019;
2020) deepens the GCNs and is by far the most parameterized GCN, which scales up to 8 to 10
times the parameter of previous GCNs in some cases with 10 times the layer of regular one. It is
also straining the memory budget of GPUs and requires very high computation power with long
convergence time.

4.3 RESULTS

Bootstrapping We examine the effect of doing joint training in the bootstrapping phase. Our im-
plementation of GCN is a 2 layer SageNet. Hamilton et al. (2017a) Random node(RN for short)

1https://github.com/anonym-code/LINGUINE
2https://github.com/tkipf/gcn
3https://github.com/williamleif/GraphSAGE
4https://github.com/matenure/FastGCN
5https://github.com/benedekrozemberczki/ClusterGCN
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and random walk(RW for short) as sampling algorithm respectively. Our experiments show that the
Bootstrapping algorithm can achieve state-of-art performance on public datasets. All baselines are
reported at their best parameter settings on 2-layer GCN as has been studied extensively in (Zeng
et al., 2019). We also compared the influence of different batch sizes in Bootstrapping in the ap-
pendix C. The result shows that our joint training strategy has a bigger improvement over existing
methods on larger datasets. However, as has been discussed in 3.2.1, the joint training theme has
lower convergence speed in experiments, roughly using 1.5 times the number of epochs to converge
than the one trained directly, this can be partially justified in the theoretical results we give in the
theorem 1.

Smart Pruning We did experiments on OGB-Protein on a 24 layer DeepGCN backbone. The
result is Figure 3. The implementation is using a 2-layer vanilla GCN as the light-weight proxy
model in the algorithm 2. We adjust different batch sizes as well as pruning ratio and extensively
studied the effect of smart pruning. We found that smart pruning could improve the generalization of
complex GCN model when the batch sizes are limited and achieve commendable performance. One
interesting symptom is that we achieve the best model performance when the pruning ratio around
0.8. We can achieve even performance with the original at 0.5. This implies that we do not need
the whole subgraph as the training set to achieve the optimal generalization. The pruning process
removed some of the redundancies and helped the model to ’focus’ on the key elements in the graph.
However, when we continued to prune more nodes from the subgraph, the performance dropped. As
the pruning ratio goes lower, more nodes are out of reach, which sparsifies the graph and caused bad
generalization. We did an extensive visualization of the pruning process to explore the mechanism
behind it. It shows that the first batch of nodes we pruned out are those with high loss and high
degrees. These nodes are difficult for the model to learn since the background knowledge is over-
complicated as their adjacent nodes might belong to totally different classes. Learning these nodes is
also complicating the learning process. This explanation follows the idea that in the real world, the
learning process is a hardness-based process for human beings. We provide a more detailed analysis
in the appendix D.

(a) (b) (c)

Figure 3: (a) is the test result of OGB-Protein on smart pruning with different batch sizes and
pruning ratio, we used two settings of bootstrapping/smart pruning batch sizes configuration. Means
and standard deviation is reported accordingly. Experiments are based on 20 runs of the same
algorithm with different initialization. (b) One visualization of the real-time pruned subgraph during
training at 0.7 pruning ratio on Yelp dataset. Color bar is of loss scale. The original subgraph size is
1000.(c) The original subgraph is in (b)

5 CONCLUSION AND FUTURE WORK

We have presented Linguine as a subgraph GCN training framework. Our design on bootstrap-
ping and smart pruning algorithm improved the quality of GCN models. Extensive empirical study
and visualization of the pruning procedure had justified the rationale of pruning subgraphs. Future
directions included incorporating such mechanisms into designing better sampling methods in train-
ing and the study of training GCNs with partial information from the original graphs to achieve
better generalization and efficiency.
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A PROOF OF CONVERGENCE

We give a detailed proof of convergence on the joint training theme. We had the assumption that∇f
is L-Smooth and 〈∇D,∇M 〉 = 0 which implies that ∇Mf and ∇Df is Lipschitz continuous with
constant L and ηt ≡ η < 1

L and

‖∇Mf‖22 + ‖∇Df‖22 = ‖∇f‖22 (0)

In the joint training we can derive the bound of ∆t+1 = f(xt+1)− f(xt) as

f(xt+1)− f(xt) ≤ ∇if(xt)>(xt+1 − xt) +
L

2
‖xt+1 − xt‖22

= −ηt‖∇if(xt)‖22 +
η2tL

2
‖∇if(xt)‖22

≤ −η
2
‖∇if(xt)‖22 (1)

where i = M when t is odd and i = D when t is even.

It follows that
‖xt+1 − x∗‖22 = ‖xt − x∗ − η(∇if(xt)−∇if(x∗))‖22

= ‖xt − x∗‖22 − 2η〈xt − x∗,∇if(xt)−∇if(x∗)〉+ η2‖∇if(xt)−∇if(x∗)‖22

≤ ‖xt − x∗‖22 −
2η

L
‖∇f(xt)−∇f(x∗)‖2x + η2‖∇if(xt)−∇if(x∗)‖22

≤ ‖xt − x∗‖22 − η2‖∇if(xt)−∇if(x∗)‖22
= ‖xt − x∗‖22 − η2‖∇if(xt)‖22

where i = M when t is odd and i = D when t is even. This is followed by
‖xt+2 − x∗‖22 ≤ ‖xt − x∗‖22 − η2‖∇f(xt)‖22 (2)

according to (1).

Using Convexity and Cauchy-Schwarz inequality we obtain:
f(x∗)− f(xt) ≤ ∇if(xt)>(x∗ − xt) ≤ −‖∇if(xt)‖2‖xt − x∗‖2 (3)

It follows (2) by

‖∇f(xt)‖22 = ‖∇Mf(xt)‖22 + ‖∇Df(xt)‖22 ≥ 2
(f(xt)− f(x∗)

‖xt − x∗‖2

)2
≥ 2
(f(xt)− f(x∗)

‖x0 − x∗‖2

)2
(4)

Setting ∆t := f(xt)− f(x∗) and combing the above bounds (1)(2)(3)(4) yield

∆t −∆t ≤ −
η

‖x0 − x∗‖22
∆2

t

Dividing both sides by ∆t∆t+1 and rearranging terms give
1

∆t+1
≥ 1

∆t
+

η

‖x0 − x∗‖2
∆t

∆t+1

≥ 1

∆t
+

η

‖x0 − x∗‖2

≥ 1

∆1
+

ηt

‖x0 − x∗‖2
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Using the fact that f is decreasing on every iteration, we have

1

∆t
≥ ηt

‖x0 − x∗‖2
and

f(xt)− f(x∗) ≤ ‖x
0 − x∗‖22
ηt

as claimed.

B DATASET STATISTICS

Datasets Nodes Edges Feature Classes Class Type Train/Val/Test

PPI 14,755 225,270 50 121 Multi 0.66/0.12/0.22
Flickr 89,250 889,756 500 7 Single 0.50/0.25/0.25
Reddit 232,965 11,606,919 602 41 Single 0.66/0.10/0.24
Yelp 716,847 6,977,410 300 100 Multi 0.75/0.10/0.15

ogbn-protein 132,534 39,561,252 8 112 Multi 0.65/0.16/0.19
ogbn-product 2,449,029 61,859,140 100 47 Single 0.081/0.016/0.903

Table 2: Statistics for datasets

C HYPERPARAMETER EVALUATION

Since we found that batch size of subgraphs greatly determines the actual impacts the performance
of GCNs, we explored the results trained with different batchsizes. This showcased it is important
that we made the right choice on the batch sizes in training large graph GCNs.

Sampler Batch Size PPI Yelp Flickr Reddit

Random Node

2000 0.901 0.573 0.470 0.933
4000 0.942 0.587 0.485 0.954
6000 0.958 0.595 0.504 0.970
8000 0.972 0.603 0.508 0.969

10000 0.980 0.648 0.512 -
12000 0.976 0.672 0.511 -

Random Walk

2000 0.934 0.584 0.496 0.962
4000 0.983 0.623 0.505 0.969
6000 0.962 0.642 0.506 0.974
8000 0.982 0.663 0.513 0.972

10000 0.988 0.647 0.517 -
12000 0.987 0.682 0.514 -

Table 3: Detailed Result of Bootstrapping on various batch sizes

D VISUALIZATION OF SUBGRAPHS IN TRAINING

We take the snapshots of subgraphs before and after smart pruning and visualized them together
with the degree histogram as well as loss histograms in 9. We used batch size 1000 for clarity of
figures and showcased the smart-pruned subgraphs at different levels of pruning ratio and training
epochs. The figure shows that our pruning method is especially good at selecting low-loss nodes
during training and simplifying the graph structure. Also, as the training proceeds, the pruned graph
became more sparse with most low-loss nodes exists. The performance of GCNs are the best in the
ratio of 0.9 and 0.7 can also be attested in the visualization since we preserved most of the details
in the graph and cut off nodes concentrating at a ’high loss hull’. However, when the pruning ration
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continues to go lower, where we preserve less structure within the graph, the performance didn’t
seem to improve anymore but drops monotonically. This can be caused by less information in the
graph, as many nodes are ignored in the training process. It is also surprising that we can maintain
more than 90% accuracy with only 30% nodes in the graph.

We can conclude that, since the model has a strong tendency to overfit at the verge of different
classes, removing some training data through meta-learning could be an effective approach espe-
cially in geometric deep learning, where the graph structure itself determines the network structure.
We have seen work adding up more and more structure (more complicated aggregation functions,
more layers .etc) to achieve better model capacity on learning large graphs, however, this work
addresses the problem from a different direction, rather than adding up, we aim to remove the re-
dundancies. On the other hand, we also take the message that GCN itself might also be an over-
parameterized on large graphs.

(a)1 (original) (b) 0.9

(c) 0.7 (d) 0.5

(e) 0.3

Figure 4: Pruning example on 1000 node subgraph of Yelp training with different ratio at epoch 100,
color on loss scale
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(a)1 (original) (b) 0.9

(c) 0.7 (d) 0.5

(e) 0.3

Figure 5: Pruning example on 1000 node subgraph of Yelp training with different ratio at epoch 500,
color on loss scale
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(a)1 (original) (b) 0.9

(c) 0.7 (d) 0.5

(e) 0.3

Figure 6: Pruning example on 1000 node subgraph of Yelp training with different ratio at epoch 500,
color on loss scale
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(a)1 (original) (b) 0.9

(c) 0.7 (d) 0.5

(e) 0.3

Figure 7: Pruning example on 1000 node subgraph of Yelp training with different ratio at epoch 700,
color on loss scale
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(a) Epoch 100 (b) Epoch 300

(c) Epoch 500 (d) Epoch 700

(e) Epoch 900 (f) Epoch 1100

(g) Epoch 1300 (h) Epoch 1500

Figure 8: Loss Histogram of Flickr dataset at different epochs and pruning ratio
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(a) Epoch 100 (b) Epoch 300

(c) Epoch 500 (d) Epoch 700

(e) Epoch 900 (f) Epoch 1100

(g) Epoch 1300 (h) Epoch 1500

Figure 9: Degree Histogram of Flickr dataset at different epochs and pruning ratio
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