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Abstract
Self-supervised learning (SSL) methods via joint
embedding architectures have proven remarkably
effective at capturing semantically rich represen-
tations with strong clustering properties, magi-
cally in the absence of label supervision. De-
spite this, few of them have explored leveraging
these untapped properties to improve themselves.
In this paper, we provide an evidence through
various metrics that the encoder’s output encod-
ing exhibits superior and more stable clustering
properties compared to other components. Build-
ing on this insight, we propose a novel positive-
feedback SSL method, termed Representation
Self-Assignment (ReSA), which leverages the
model’s clustering properties to promote learn-
ing in a self-guided manner. Extensive experi-
ments on standard SSL benchmarks reveal that
models pretrained with ReSA outperform other
state-of-the-art SSL methods by a significant mar-
gin. Finally, we analyze how ReSA facilitates
better clustering properties, demonstrating that
it effectively enhances clustering performance at
both fine-grained and coarse-grained levels, shap-
ing representations that are inherently more struc-
tured and semantically meaningful.

1. Introduction
Self-supervised learning (SSL) has emerged as a transfor-
mative paradigm in universal representation learning (Oord
et al., 2018; Bachman et al., 2019; He et al., 2020; Chen
et al., 2020a; Bao et al., 2021; Oquab et al., 2023; Assran
et al., 2023), consistently surpassing supervised learning in
downstream performance. Joint embedding architectures
(JEA), in particular, aim to learn invariance of the same data
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Figure 1. The positive-feedback SSL framework. It involves the
model generating representations that possess semantically clus-
tering information. This clustering information is leveraged to
design self-supervised loss function, which is then employed to
more effectively guide the model’s learning process.

under different transformations and noise (Bachman et al.,
2019; He et al., 2020; Chen et al., 2020a), with demonstrated
exceptional effectiveness in visual representation learning.
Although such a pretext task may intuitively seem unrelated
to capturing semantic relationships, extensive studies (Caron
et al., 2018; 2021; Assran et al., 2022b) have demonstrated
the strong correlation between its learned representations
and semantic information.
Ben-Shaul et al. (2023) take a further step to characterize
the semantic structures learned by JEA into hierarchic clus-
tering properties, indicating SSL-trained representations
exhibit a centroid-like geometric structure and induce three
levels of semantic clustering: augmentation sample level,
semantic classes, and superclass level. This intriguing find-
ing reveals that SSL methods based on JEA can facilitate
strong clustering capabilities during training, but also raises
the question of whether these properties hold untapped po-
tential that can be further leveraged to improve SSL itself.

Contributions. In this paper, we aim to investigate the
design of SSL methods by leveraging the inherent cluster-
ing properties of representations, enabling a closed-loop
positive-feedback SSL framework, as illustrated in Figure 1.
To achieve this goal, we propose three key questions and
our main contributions are summarized as follows:

• Where to extract clustering properties from? We
demonstrate through various metrics that the encoder’s
output, referred to as encoding, exhibits superior and
more stable clustering properties compared to other
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components, such as embedding and the hidden layer
outputs within the projector.

• How to leverage clustering properties? We pro-
pose a novel SSL method, termed Representation Self-
Assignment (ReSA), which employs an online self-
clustering mechanism to leverage the model’s inher-
ent clustering properties, thereby facilitating positive-
feedback learning. Standard experiments demonstrate
that ReSA surpasses existing state-of-the-art methods
in both performance and training efficiency.

• Whether it facilitates better clustering properties?
We examine whether and how ReSA facilitates better
clustering properties, demonstrating that it excels at
both fine-grained and coarse-grained learning, shaping
representations that are inherently more structured and
semantically meaningful.

2. Background, Related Work, & Notation
2.1. Self-Supervised Learning
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ü 2. Contrastive Learning via Representation Soft Assignment 
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Figure 2. The basic notations for joint embedding architectures
(JEA) in SSL.

Joint embedding architectures (JEA). Let B denote a
mini-batch input sampled uniformly from a set of images
D, and T denote the set of data transformations available
for augmentation. We consider a pair of neural networks
Fθ and F ′

θ′ , parameterized by θ and θ′ respectively. They
take as input two randomly augmented views, X = T (B)
and X′ = T ′(B), where T , T ′ ∈ T; and they output the
embeddings Z = Fθ(X) and Z′ = F ′

θ′(X′). The networks
are trained with an objective function that minimizes the
distances between embeddings obtained from different (two)
views of the same images:

L(B, θ) = EB∼D, T ,T ′∼T ℓ
(
Fθ(T (B)), F ′

θ′(T ′(B))
)
. (1)

where ℓ(·, ·) is a loss function, which aims to learn invari-
ance of data transformations.

In particular, the JEA usually consist of a shared encoder
Eθe(·) and projector Gθg (·), commonly referred to as a
Siamese Network (Chen & He, 2021). As shown in Figure 2,
their outputs H = Eθe(X) ∈ Rde×m and Z = Gθg (H) ∈
Rdg×m are referred to as encoding and embedding, respec-
tively (where m is the mini-batch size, de and dg are their
corresponding feature dimensions). Under this notation,
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Figure 3. Comparison of clustering metrics in encoding H and
embedding Z across various self-supervised pretrained models. All
methods utilize a ResNet-18 encoder pretrained on CIFAR-10 for
1000 epochs. Circular markers represent metrics computed using
encodings, while cross markers correspond to metrics derived from
embeddings. All metrics are computed on the entire training set,
and similar trends can be observed in the validation set.

we have Fθ(·) = Gθg (Eθe(·)) with learnable parameters
θ = {θe, θg}. It is worth noting that extensive work (Chen
et al., 2020a; Gupta et al., 2022) has demonstrated that us-
ing the encoding as the representation for downstream tasks
achieves much better performance than using embedding,
so that the projector is only used during the pre-training
process and discarded in inference.

Self-supervised paradigms. The main challenge with
JEA is representation collapse, where both branches pro-
duce identical and constant outputs regardless of the inputs.
Numerous paradigms have been proposed to avoid collapse,
including contrastive learning methods (Chen et al., 2020a;
He et al., 2020; Chen et al., 2020b; 2021; Liu et al., 2022)
that attract different views from the same image (positive
pairs) while pushing apart different images (negative pairs),
and non-contrastive approaches (Grill et al., 2020; Caron
et al., 2020; 2021; Weng et al., 2024) which directly align
positive targets without incorporating negative pairs. Al-
though Ben-Shaul et al. (2023) had demonstrated that the
encodings learned through SSL are highly correlated with
semantic classes and exhibit strong clustering capabilities,
few methods have leveraged this clustering ability to facili-
tate positive-feedback learning. A closely related work (Ma
et al., 2023) exploits the encoding’s augmentation robust-
ness to re-weight the positive alignment in the SSL objective
functions; however, it still overlooks the rich clustering in-
formation inherent in the encodings.

2



Clustering Properties of Self-Supervised Learning

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V
H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

0 100 200 300 400 500
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.10

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.20

0.30

0.40

0.50

0.60

Li
ne

ar
 v

al
 a

cc
.

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AR
I

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

2.0

4.0

6.0

8.0

10.0

12.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

CD
N

V

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

-0.20

-0.15

-0.10

-0.05

0.00

SC
 m

ea
n

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.08

0.09

0.10

0.10

0.10

0.11

0.11

0.12

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

SC
 s

td

H
P0
P1
Z

0 100 200 300 400 500
Epoch

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

SC
 s

td

H
P0
P1
Z

S
im

C
LR

V
IC

R
eg

S
w

A
V

Figure 4. Comparison of linear evaluation accuracy and clustering metrics of encoding H, embedding Z, and the hidden layer outputs
within the projector P during the training process. The experiments are conducted using SimCLR, VICReg, and SwAV, employing a
ResNet-18 encoder pretrained on CIFAR-100 for 500 epochs. The projector is a standard three-layer MLP with BN and ReLU activations,
containing two hidden linear layers, so their outputs are denoted as P0 and P1.

2.2. The Information Distinction in JEA
The projector has become an indispensable component of
JEA-based SSL. However, the theoretical dynamics of its
optimization and the reasons behind its success remain an
open question within the community. Some works have
attempted to explain these principles. For example, Jing
et al. (2022) empirically discovered that applying SSL loss
either to encoding or embedding led to a significant decrease
in the rank of the corresponding features. They argued that
this rank reduction indicates a loss of diverse information,
which, in turn, reduces generalization capability. This expla-
nation aligns with the hypothesis in SimCLR (Chen et al.,
2020a), where the additional projector acts as a buffer to
prevent information degradation of the encoding caused by
the invariance constraint. Additionally, Gupta et al. (2022)’s
null space analysis for the projector posited that the pro-
jector might implicitly learn to select a subspace of the
encoding, which is then mapped into the embedding. In this
way, only a subspace of the encoding is encouraged to be
style-invariant, while the other subspace can retain more
useful information.

Therefore, the SSL constraint can cause the embedding to
lose information, which may include not only clustering-
irrelevant features such as background information, but also
class-relevant information, making it difficult to determine
which—encoding or embedding—exhibits better clustering
performance in this context. In such cases, this paper first an-
alyzes the differences between the two in terms of clustering
properties empirically.

3. Exploring Clustering Properties of SSL
Ben-Shaul et al. (2023) find that within the encoder of JEA,
the clustering ability of features improves progressively as
intermediate layers get deeper. However, it remains un-
clear whether the projector exhibits a similar trend. To
quantitatively evaluate the clustering performance of these
components, we employ widely recognized metrics such
as the Silhouette Coefficient (SC) (Rousseeuw, 1987) and
Adjusted Rand Index (ARI) (Hubert & Arabie, 1985). In
particular, a larger mean value of SC (SCmean) indicates
stronger local clustering ability in the representation, and
a smaller standard deviation (SCstd) reflects better stabil-
ity in local clustering 1. Meanwhile, higher ARI values
correspond to enhanced global clustering properties. The
detailed introduction of these metrics can be found in the
Appendix A.

Using these metrics, we first evaluate the clustering abili-
ties of encoding H and embedding Z across various self-
supervised pretrained models in CIFAR-10 (Krizhevsky
et al., 2009) dataset, which contains only 10 classes and is
commonly used for cluster analysis (Ben-Shaul et al., 2023).
It is evident in Figure 3 that, across most SSL models, encod-
ings achieve visibly higher ARI and SCmean, as well as lower
SCstd values, compared to embeddings. These observations
reflect common grounds of SSL models: Encodings not only

1The ‘clustering ability’ refers to how well the vectors can
represent the underlying structure of the data, while ‘stability’ sig-
nifies that the clustering results are more consistent across the data
points, meaning fewer outliers and more stable cluster assignments.
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Figure 5. The framework of Representation Self-Assignment
(ReSA). Here, no grad. denotes that the operation does not in-
volve gradient propagation, norm signifies that each sample is
L2-normalized to compute cosine similarities, and sinkhorn refers
to the Sinkhorn-Knopp algorithm used for clustering assignment.

possess richer semantic information but also demonstrate
high-quality clustering properties. These include excellent
local clustering ability (SCmean) and stability (SCstd), global
clustering capability and similarity measure effectiveness
(ARI). An exception to this pattern is observed with SwAV
and BYOL, whose embeddings also perform well across
these metrics. We speculate that this may be due to the
design of their loss functions, which enables the embed-
dings to learn effective clustering properties. For instance,
SwAV learns by predicting cluster assignments directly on
the embeddings.
To gain deeper insights into the evolution of clustering prop-
erties of each component during training, we conduct exper-
iments on the CIFAR-100 (Krizhevsky et al., 2009) dataset,
which features a more complex set of categories, using three
methods: SimCLR, VICReg, and SwAV. The results are
shown in Figure 4. Overall, the encodings demonstrate a
consistent improvement in all clustering metrics through-
out training. In contrast, the ones of embeddings degrade
significantly during the later stages of training. Moreover,
the clustering metrics of the hidden layer outputs within the
projector show notable differences and weaknesses com-
pared to those of the encodings, despite P0 being separated
by only a single linear layer and achieving nearly the same
linear evaluation accuracy as the encodings.
In summary, the experiments above demonstrate that encod-
ings exhibit superior and more stable clustering properties
compared to embeddings and the hidden layer outputs within
the projector across various SSL models. This finding high-
lights the potential of leveraging encoding as the optimal
representation for clustering, providing a foundation for de-
signing positive-feedback SSL systems that capitalize on
these robust clustering properties.

4. Leverage Clustering Properties for
Positive-Feedback Learning

Based on above analyses, we design a novel positive-
feedback SSL method, which derives Representation Self-

Assignment (ReSA) to guide the loss function among em-
beddings Z and Z′. See Figure 5 for the clear framework.

4.1. Online Self-Clustering

Following notations in Section 2.1, we apply the encod-
ing H as the representation to perform clustering. Unlike
previous approaches, e.g. SwAV (Caron et al., 2020) and
DINOv2 (Oquab et al., 2023) employing learnable proto-
types to map features into the clustering space, we treat
samples in H = [h1, . . . ,hm] simultaneously as points to
be clustered and as anchors. In details, we first calculate
the cosine self-similarity matrix by SH = H⊤H, where
samples in H are L2−normalized as hi/∥hi∥2,∀i. Then
the online clustering assignment AH is computed upon SH

using the iterative Sinkhorn-Knopp (Cuturi, 2013) as shown
in Algorithm 1.

Algorithm 1 Sinkhorn-Knopp Algorithm
Require: Cosine self-similarity matrix SH ∈ Rm×m, reg-

ularization parameter ϵ > 0, all-ones column vector 1m,
iteration count T , Hadamard product ◦

Ensure: Doubly stochastic matrix AH

Initialize Q← exp(SH/ϵ)⊤∑
i,j exp(SH/ϵ)

Initialize marginals: c← 1
m1m

for t = 1 to T do
Compute row sums: u← Q1m

Normalize rows: Q← Q ◦
(
c
u

)
1⊤
m

Compute column sums: v← Q⊤1m

Normalize columns: Q← Q ◦ 1m

(
c
v

)⊤
end for
Normalize columns again: Q← Q ◦ 1m

(
1

Q⊤1m

)⊤

Return AH ← Q⊤

We follow SwAV which uses only 3 iterations and sets the
regularization parameter ϵ = 0.05. This algorithm does not
involve gradient propagation, enabling it to be efficiently
implemented on GPUs (Caron et al., 2020). After obtaining
the doubly stochastic matrix AH as the assignment, it can
naturally be utilized to guide relationship between the em-
beddings Z and Z′. Specially, we use the cross-entropy loss
to promote the learning process:

ℓReSA = − 1

2m

(∑
i,j

AH ◦ logD(Z⊤Z′)+

∑
i,j

A⊤
H ◦ logD(Z′⊤Z)

) (2)

where D(Z⊤Z′) =
exp(Z⊤Z′/τ)

exp(Z⊤Z′/τ)1m
and D(Z′⊤Z) are prob-

ability distributions derived through the softmax function.
τ is a scalar temperature hyperparameter, ◦ stands for
Hadamard product, and 1m is the all-ones column vector.
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Comparison to SwAV. As a pioneering SSL method
based on online clustering, SwAV (Caron et al., 2020) em-
ploys a ‘swapped’ prediction mechanism (which is also
adopted by DINOv2 (Oquab et al., 2023)), where the cluster
assignment of one view is predicted from the embedding of
another view. This is achieved by minimizing the following
objective:

ℓSwAV = − 1

2m

(∑
i,j

Q′ ◦ logD(Z⊤C)+

∑
i,j

Q ◦ logD(Z′⊤C)

) (3)

where C ∈ Rdg×K is the prototype matrix learned by back-
propagation, and Q = sinkhorn(Z⊤C) is the cluster assign-
ment using Sinkhorn-Knopp algorithm. The key differences
and advantages of our ReSA compared to SwAV (and DI-
NOv2) can be summarized as follows: (1) ReSA computes
clustering assignments on encoding with high-quality clus-
tering properties, whereas SwAV performs it on the less
stable embedding. (2) SwAV requires learnable prototypes,
which often necessitate complex design strategies, such
as freezing prototypes during the early stages of training
and use a large number of prototypes K to ensure stability,
whereas ReSA directly extracts clustering information from
the representations. (3) SwAV executes the Sinkhorn-Knopp
algorithm multiple times, corresponding to the number of
global augmented views. In contrast, ReSA only requires a
single execution of this algorithm regardless of the number
of augmented views. This highlights the efficiency of ReSA,
particularly under multi-crop scenarios.

Comparison to InfoNCE. As a well-known contrastive
loss function, InfoNCE (Oord et al., 2018) aims to maximize
the similarity between positive pairs while minimizing the
similarity between the negative pairs, thereby approximating
the optimization of mutual information as follows:

ℓInfoNCE = − 1

2m

(∑
i,i

logD(Z⊤Z′)+
∑
i,i

logD(Z′⊤Z)

)
(4)

It is evident that when AH equals the identity matrix, ReSA
and InfoNCE are entirely equivalent. In other words, ReSA
guides the relationship among embeddings through assign-
ments obtained via self-clustering, whereas InfoNCE em-
ploys the identity matrix as a hard matching target, strictly
enforcing the maximization of distances between all nega-
tive pairs, which may inadvertently push samples belonging
to the same category further apart during training, thereby
disrupting the underlying semantic cluster structure (Wang
& Liu, 2021; Huang et al., 2024).

4.2. A Gradient Perspective on ReSA

Many works have conducted in-depth theoretical studies on
InfoNCE, such as the alignment and uniformity properties

observed by Wang & Isola (2020), the hardness-aware prop-
erty discovered by Wang & Liu (2021) through gradient
analysis, and the probabilistic model of InfoNCE derived
by Bizeul et al. (2024) from the perspective of mutual infor-
mation. Since the motivation for our proposed ReSA does
not have a direct connection with the evidence lower bound
of mutual information, in this section, we provide an intu-
itive gradient analysis to further understand the optimization
mechanism of ReSA.

Given the L2-normalized embedding vectors Z =
[z1, . . . , zm] and Z′ = [z′1, . . . , z

′
m], the InfoNCE formula

on zi can be writen as (omitting the symmetric terms):

ℓInfoNCE(zi) = − log

(
exp(si,i/τ)∑m

k=1 exp(si,k/τ)

)
(5)

where si,j = z⊤i z
′
j ,∀i, j. Defining the probability Pi,j =

exp(si,j/τ)∑m
k=1 exp(si,k/τ)

, the gradients of InfoNCE with respect to
the positive similarity si,i and the negative similarity si,j
(i ̸= j) are formulated as (Wang & Liu, 2021):

∂ℓInfoNCE(zi)

∂si,i
= −1

τ

∑
k ̸=i

Pi,k,
∂ℓInfoNCE(zi)

∂si,j
=

1

τ
Pi,j

(6)

Similarly, our ReSA formula on zi can be writen as:

ℓReSA(zi) = −
m∑
j=1

AH
(i,j) log

(
exp(si,j/τ)∑m
k=1 exp(si,k/τ)

)
(7)

By contrast, the gradient of ReSA with respect to the sim-
ilarity si,j for any pair of samples (∀i, j) takes exactly the
same analytical form:

∂ℓReSA(zi)

∂si,j
=

1

τ
(Pi,j −AH

(i,j)) (8)

Based on the gradient analysis above, we know that In-
foNCE explicitly distinguishes between the gradient forms
of positive and negative similarities. This restrictive mecha-
nism naturally leads to harmful gradient updates for negative
sample pairs within the same class. In contrast, ReSA elimi-
nates the distinction between positive and negative samples
and adapts to optimize the similarity of all sample pairs by
leveraging self-clustering of the encodings, thereby address-
ing a key challenge in contrastive learning.

4.3. Impact of Image Augmentation on ReSA
Having introduced the learning process of ReSA, it is es-
sential to consider another critical aspect of SSL: image
augmentation, which has long been acknowledged as a key
factor in enhancing the performance of self-supervised meth-
ods (Chen et al., 2020b; Grill et al., 2020). Standard prac-
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Figure 6. Investigate the impact of image augmentation on ReSA.
The experiments are conducted employing a ResNet-18 encoder
pretrained on ImageNet-100 for 200 epochs. The starting posi-
tions of bars represent results of the standard augmentation. The
symbols ‘−’ on the x-axis indicate the removal of a specific trans-
formation from the standard augmentation. ‘Weak’ denotes the
weak augmentation that includes only ResizedCrop and Horizon-
talFlip.

tices involve employing a variety of complex transforma-
tions with random probabilities, such as ResizedCrop, Col-
orJitter, Grayscale, GaussianBlur, and HorizontalFlip, to
increase the task’s complexity and improve the robustness of
the learned representations. However, for clustering-based
SSL methods, overly aggressive augmentations can distort
the original image information, making it harder for the
model to discern meaningful patterns (Zheng et al., 2021),
which may result in incorrect clustering assignments. To
address this, we systematically evaluate the effect of each
transformation technique on ReSA’s clustering performance
during training and its linear evaluation accuracy.
Since ReSA only requires extracting clustering information
from the encodings of one single view, we only need to
adjust the image augmentation for that specific view, while
the standard augmentation setting can be applied to the
other view(s). Subsequently, we conduct experiments us-
ing the high-resolution ImageNet-100 (Tian et al., 2020)
dataset, and the results are presented in Figure 6. It is evi-
dent that removing any single transformation improves the
clustering performance of the representations, with Resized-
Crop (replaced with fixed CenterCrop) having the most
significant impact. However, its removal leads to a substan-
tial decline in representation quality, indicating the critical
role of ResizedCrop in learning invariance. The removal
of ColorJitter, Grayscale, or GaussianBlur each results

in improvements across various metrics, whereas remov-
ing HorizontalFlip causes a slight drop in val accuracies.
Based on these findings, we design a weak augmentation
for ReSA, which includes only ResizedCrop and Horizon-
talFlip, and discover that this design not only significantly
enhances the clustering performance of the representations
but also improves their overall quality. We note that these
findings align with the results observed in ReSSL (Zheng
et al., 2021), where weak augmentation enables the model
to better capture the relationships among samples.

In summary, we have completed the introduction of the
ReSA framework as shown in Figure 5, which leverages
clustering information extracted from the encoding to guide
the design of the loss function, thereby achieving positive-
feedback self-supervised learning.

5. Experiments on Standard SSL Benchmark
In this section, we conduct extensive experiments on stan-
dard SSL benchmarks to evaluate the effectiveness of
ReSA. We perform pretraining from scratch on a variety of
datasets, including CIFAR-10/100, ImageNet-100, and Ima-
geNet (Deng et al., 2009), utilizing diverse encoders such as
ConvNets and the ViT. Furthermore, we compare the perfor-
mance of ReSA with state-of-the-art SSL methods across a
range of downstream tasks, e.g. linear probe evaluation and
transfer learning. The full PyTorch-style algorithm as well
as details of implementation is provided in Appendix B.

5.1. Evaluation for Classification

Evaluation on small and medium size datasets. Follow-
ing the benchmark in solo-learn (da Costa et al., 2022), we
first perform pretraining and classification evaluations on
CIFAR-10/CIFAR-100, and ImageNet-100, strictly adher-
ing to the same experimental settings as other methods with-
out introducing any additional tricks. The results in Table 1
reveal that ReSA consistently outperforms state-of-the-art
methods, even those with carefully optimized parameters,
across all datasets. Particularly noteworthy is ReSA’s per-
formance in k-nearest neighbors classification, surpassing
other methods with absolute accuracy improvements of ap-
proximately 3% to 8% on CIFAR-10 and 5% to 13% on
CIFAR-100. These findings highlight that ReSA captures
representations with superior clustering structures.

Evaluation on ImageNet. Following the ImageNet evalu-
ation protocol commonly used by SSL methods, we pretrain
ResNet-50 encoders with ReSA for varying numbers of
epochs. As shown in Table 2, ReSA consistently outper-
forms other methods on the large-scale ImageNet dataset.
Remarkably, after only 100-epoch training, ReSA surpasses
the performance of SimCLR, SwAV, and SimSiam trained
for 800 epochs. With 200 epochs, ReSA exceeds state-of-
the-art methods such as MoCoV3, Barlow Twins, VICReg,
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Table 1. Classification top-1 accuracies of a linear and a k-nearest neighbors (k = 5) classifier for different loss functions and datasets.
The table is mostly inherited from solo-learn (da Costa et al., 2022). All methods are based on ResNet-18 with two augmented views
generated from per sample and are trained for 1000-epoch on CIFAR-10/100 with a batch size of 256 and 400-epoch on ImageNet-100
with a batch size of 128. The bold values indicate the best performance, and the underlined values represent the second highest accuracy.

Method CIFAR-10 CIFAR-100 ImageNet-100
linear k-nn linear k-nn linear k-nn

SimCLR (Chen et al., 2020a) 90.74 85.13 65.78 53.19 77.64 65.78
BYOL (Grill et al., 2020) 92.58 87.40 70.46 56.46 80.32 68.94
SwAV (Caron et al., 2020) 89.17 84.18 64.88 53.32 74.28 63.84
SimSiam (Chen & He, 2021) 90.51 86.82 66.04 55.79 78.72 67.92
MoCoV3 (Chen et al., 2021) 93.10 89.47 68.83 58.23 80.36 72.76
W-MSE (Ermolov et al., 2021) 91.55 89.69 66.10 56.69 76.23 67.72
DINO (Caron et al., 2021) 89.52 86.13 66.76 56.24 74.92 64.30
Barlow Twins (Zbontar et al., 2021) 92.10 88.09 70.90 59.40 80.16 72.14
VICReg (Bardes et al., 2022) 92.07 87.38 68.54 56.32 79.40 71.94
CW-RGP (Weng et al., 2022) 92.03 89.67 67.78 58.24 76.96 68.46
INTL (Weng et al., 2024) 92.60 90.03 70.88 61.90 81.68 73.46

ReSA (ours) 93.53 93.02 72.21 66.83 82.24 74.56

Table 2. ImageNet classification top-1 accuracy of a linear classi-
fier based on ResNet-50 encoder. All methods are pretrained with
two 2242 augmented views generated from per sample. Given
that one of the objectives of SSL methods is to achieve high per-
formance with small batch sizes (Chen et al., 2020b; Chen & He,
2021), it’s worth noting that our ReSA can also perform effectively
when trained with a small batch size of 256.

Method batch size pretrained epochs
100 200 800

SimCLR 256 57.5 62.0 66.5
4096 66.5 68.3 70.4

SwAV 256 65.5 67.7 -
4096 66.5 69.1 71.8

MoCoV3 1024 67.4 71.0 72.4
4096 68.9 - 73.8

BYOL 4096 66.5 70.6 74.3
Barlow Twins 2048 67.7 70.2 73.2
VICReg 2048 68.6 70.8 73.1

SimSiam 256 68.1 70.0 71.3
1024 68.0 69.9 71.1

MEC 256 70.1 - -
1024 70.6 71.9 74.0

INTL 256 69.5 71.1 73.1
1024 69.7 71.2 73.3

ReSA (ours) 256 71.9 73.4 -
1024 71.3 73.8 75.2

and INTL, all trained for 800 epochs. When extended to
800 epochs, ReSA achieves a linear classification accuracy
of 75.2%, a level that methods like SwAV and DINO only
reach by employing the multi-crop (Caron et al., 2020) trick.
These results underscore ReSA’s exceptional potential for
training on large-scale datasets. Additionally in Table 3, we
conduct preliminary evaluations of ReSA’s training capabil-
ity on the Vision Transformer, using a standard ViT-S/16,
which has a comparable number of parameters to ResNet-50.
We do not incorporate extensive training tricks, yet ReSA
still outperform DINO in both linear and k-nn classification.

Table 3. ImageNet classification top-1 accuracy of a linear and a
k-nearest neighbors (k = 20) classifier based on a standard ViT-
S/16 encoder. All models are pretrained for 300-epoch with two
2242 views.

Classifier BYOL SwAV MoCoV3 DINO ReSA

linear 71.4 68.5 72.5 72.5 72.7
k-nn 66.6 60.5 67.7 67.9 68.3

Table 4. Comparison of Computational overhead among various
SSL methods. For fairness, we set the batch size to 1024 with two
2242 augmented views pretraining on ImageNet, and perform all
measurements including peak memory (GB per GPU) and training
time (hours per epoch) on the same environment and machine
equipped with 8 A100-PCIE-40GB GPUs using 32 dataloading
workers under mixed-precision.

Method encoder memory time

SwAV ResNet-50 13.7 0.19
ViT-S/16 14.8 0.17

MoCoV3 ResNet-50 14.6 0.19
ViT-S/16 15.5 0.22

DINO ResNet-50 15.5 0.20
ViT-S/16 16.4 0.21

ReSA (ours) ResNet-50 14.6 0.16
ViT-S/16 15.6 0.12

5.2. Analysis on Computational Overhead
In Table 4, we provide a fair comparison of the training
costs among ReSA and several SSL methods. The results
show that ReSA has memory consumption comparable to
MoCoV3 but achieves faster training speeds, especially on
ViTs, where it is nearly twice as fast. This improvement is
attributed to ReSA’s simpler image augmentation settings
and the removal of batch normalization (BN) from the pro-
jector and predictor MLPs. Additionally, ReSA outperforms
DINO in both memory usage and training time. This ad-
vantage stems from DINO’s reliance on an extremely high-
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Table 5. Transfer Learning to COCO detection and instance seg-
mentation. All competitive methods are based on ResNet-50 with
200-epoch pretraining on ImageNet. We follow MoCo (He et al.,
2020) to apply Mask R-CNN (1 × schedule) fine-tuned in COCO
2017 train, evaluated in COCO 2017 val.

Method COCO detection COCO instance seg.
AP50 AP AP75 AP50 AP AP75

Scratch 44.0 26.4 27.8 46.9 29.3 30.8
Supervised 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR 57.7 37.9 40.9 54.6 33.3 35.3
MoCoV2 58.8 39.2 42.5 55.5 34.3 36.6
BYOL 57.8 37.9 40.9 54.3 33.2 35.0
SwAV 57.6 37.6 40.3 54.2 33.1 35.1
SimSiam 59.3 39.2 42.1 56.0 34.4 36.7
Barlow Twins 59.0 39.2 42.5 56.0 34.3 36.5
MEC 59.8 39.8 43.2 56.3 34.7 36.8
INTL 60.9 40.7 43.7 57.3 35.4 37.6

ReSA (ours) 61.1 41.0 44.3 57.7 35.7 38.4

dimensional prototype (e.g., output dimension = 65536),
which significantly impacts training efficiency. Finally,
while SwAV exhibits the smallest memory footprint among
the methods due to its absence of momentum networks, its
training speed remains slower than ReSA. This is because
SwAV also requires a higher-dimensional prototype and
performs the Sinkhorn-Knopp algorithm twice per iteration.

5.3. Transfer to Downstream Tasks
To evaluate the quality of representations learned by ReSA,
we transfer our pretrained model to downstream tasks, in-
cluding COCO (Lin et al., 2014) object detection and in-
stance segmentation. For these tasks, we adopt the baseline
codebase from MoCo (He et al., 2020). Most results re-
ported in Table 5 are inherited from SimSiam paper (Chen &
He, 2021). Notably, ReSA also achieves better performance
compared to other methods on both tasks, highlighting its
strong potential for downstream applications.

6. How ReSA Shapes Better Clustering
Properties?

In this section, we utilize visualizations and additional ex-
periments to illustrate the differences among the represen-
tations learned by ReSA and other SSL methods, as well
as to investigate whether and how ReSA facilitates better
clustering properties.

Firstly, we track the evolution of clustering metrics for each
component during ReSA training, as shown in Figure 9. It
can be clearly observed that while ReSA exhibits relatively
slow performance improvement in the early stages of train-
ing, it significantly outperforms other methods in the later
stages. Interestingly, all components of ReSA demonstrate
strong clustering properties, suggesting that leveraging high-
quality clustering information from the encodings to guide
the learning of embeddings enables the projector layers to

SimCLR VICReg SwAV
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a rider on a dark-colored horse
horse head
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Figure 7. T-SNE visualization of SSL representations on CIFAR-
10. All methods are pretrained for 1000 epochs on CIFAR-10
using ResNet-18, with encodings utilized as representations to
visualize all training data. For the multiple centroids observed in
the bird and horse categories, we enclose points of each subclass
with convex polygons and display the corresponding images.

also acquire robust clustering performance.

6.1. ReSA Excels at Fine-grained Learning

Furthermore, in Figure 7, we visualize the representation
distributions learned by ReSA and other SSL methods on
CIFAR-10 using T-SNE (van der Maaten & Hinton, 2008).
Notably, the representations learned by ReSA exhibit clear
separations between different classes, whereas those learned
by other methods show varying degrees of overlap, making
it difficult to discern distinct boundaries.

Another intriguing observation is the presence of multiple
centroids within the bird and horse categories in the rep-
resentations. Upon further investigation of the samples
corresponding to these centroids, we find that, unlike the
neural collapse (Papyan et al., 2020) in supervised learning
(where samples of the same class collapse to a single point),
SSL models are capable of capturing more fine-grained fea-
tures, such as color distinctions (e.g., cassowary vs. ostrich),
structural differences (e.g., whole horse vs. horse head), and
the presence of multiple objects (e.g., a rider on a horse).
Moreover, compared to other methods, ReSA demonstrates
a superior ability to distinguish these fine-grained features.
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Table 6. Transfer learning to fine-grained datasets based on ResNet-50 pretrained on ImageNet. We employ a k-nearest neighbors classifier
(k = 5, 10, 20), without requiring additional training or parameter tuning. The model weights for all other methods are sourced directly
from their respective official codebases. † indicates that these methods employ the multi-crop trick, i.e. generating two 2242 views and six
962 views for each image, which can enhance performance but comes at the cost of additional computational overhead.

Method pretrained ImageNet-1K CUB-200-2011 Pets-37 Food-101 Flowers-102
epochs 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20

MoCoV3 1000 67.9 68.9 68.9 46.8 48.8 50.4 85.4 86.5 86.5 56.3 58.6 59.7 83.4 81.6 80.9
VICReg 1000 64.3 65.2 65.6 33.4 35.4 36.3 81.5 82.0 82.3 56.9 59.6 61.0 83.4 83.2 82.6

INTL 800 63.6 64.8 65.1 26.7 28.0 29.4 78.4 79.5 79.7 55.6 58.1 59.2 78.8 77.6 77.2
ReSA (ours) 800 69.2 69.9 69.9 56.5 58.5 59.9 85.8 87.2 87.5 58.3 60.4 61.3 84.4 83.6 83.6

SwAV† 800 64.3 65.5 65.7 26.2 27.3 28.4 77.2 77.3 77.1 54.7 57.4 58.7 79.3 79.9 78.4
DINO† 800 66.4 67.4 67.6 33.8 35.5 36.8 81.1 81.6 80.9 58.2 60.8 61.8 84.8 84.1 83.7

SimCLR VICReg SwAV

MoCoV3 DINO ReSA (ours)
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Figure 8. T-SNE visualization of SSL representations on CIFAR-
100. We enclose points of each subclass with convex polygons.

To further substantiate this, we transfer models pretrained on
ImageNet to fine-grained datasets for evaluation. As shown
in Table 6, ReSA consistently outperforms other SSL meth-
ods on fine-grained datasets, with particularly considerable
improvements observed on the CUB-200-2011.

6.2. ReSA also Stands Out in Coarse-grained
Representations

Finally, we explore ReSA’s performance at the coarse-
grained level. Specifically, we select CIFAR-100 for vi-
sualization, as its 100 classes can be grouped into 20 coarse-
grained superclasses. For clarity, we randomly selected 5
superclasses for T-SNE visualization, as shown in Figure 8.
It is evident that all other methods exhibit dense overlap on
the CIFAR-100 dataset, resulting in numerous indistinguish-
able outliers. In contrast, our ReSA effectively identifies
these hard samples, clustering them correctly within their re-
spective groups. We believe this capability of ReSA is a key
factor behind its superior accuracy with the k-nn classifier,
substantially exceeding other SSL methods. Furthermore,
as shown in Table 7, we evaluate the performance of var-
ious SSL models using coarse-grained labels and observe

Table 7. CIFAR-100 classification top-1 accuracy of a linear and a
k-nearest neighbors (k = 5) classifier based on 100 fine-grained
classes and 20 coarse-grained superclasses.

Method fine-grained coarse-grained
linear k-nn linear k-nn

SimCLR 65.8 53.2 72.5 67.2
SwAV 64.9 53.3 70.0 66.3

MoCoV3 68.8 58.2 76.4 68.6
DINO 66.8 56.2 72.9 70.2

VICReg 68.5 56.3 74.3 69.9

ReSA (ours) 72.2 66.8 79.8 78.8

that ReSA consistently achieves much higher accuracies
than its counterparts. These experimental results confirm
that ReSA also demonstrates exceptional performance in
coarse-grained learning.

We also present ablation studies, along with a discussion of
potential future research presented in Appendix C.

7. Conclusion
In this work, we demonstrate the feasibility of leveraging the
rich clustering properties inherent in SSL models, particu-
larly within encodings, to enable a positive-feedback mecha-
nism. Building upon this, we propose ReSA, which exhibits
exceptional performance across a wide range of benchmarks
and excels at both fine-grained and coarse-grained learning.
We believe this dual capability would take a step toward
addressing the long-standing challenge of reconciling the
seemingly conflicting demands of fine-grained and coarse-
grained visual representations within a unified framework,
thereby advancing the development of large-scale visual
foundation models.
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A. Details of Clustering Metrics
To quantitatively compare the clustering ability of the encoding, embedding, and the hidden layer outputs within the
projector, we first define the following metrics in supervised settings (assign samples with the same true label to the same
cluster). Let X = {x1, x2, . . . , xN} be a set of N data points, and Y = {y1, y2, . . . , yN} be the corresponding set of true
labels.

Definition A.1. (Silhouette Coefficient, SC) The Silhouette Coefficient (Rousseeuw, 1987) is a measure of how similar a
sample is to its own cluster compared to its nearest cluster. For a given data point xi, sc(xi) is defined as:

sc(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(9)

where a(xi) is the average distance from point xi to all other points xj that share the same true label yi = yj , and b(xi) is
the minimum average distance from point xi to all points xj that have a different true label yi ̸= yj .

Based on this definition, we know that SC focuses on measuring the local clustering ability of features, with higher values
indicating better local clustering ability. Although the SC ranges from [−1, 1], the diversity of features learned through SSL
can cause a large value of max(a(xi), b(xi)), leading to a smaller effective range for SC. Therefore, in this paper, we note
that SC > 0 indicates that the sample has been assigned to the correct cluster. For population statistics, we can compute the
mean SCmean and standard deviation SCstd over all data points in X .

Definition A.2. (Adjusted Rand Index, ARI) The Adjusted Rand Index (Hubert & Arabie, 1985) is a measure of the
agreement between two partitions of data, adjusted for chance grouping. Given the true labels Y and a set of predicted labels
Y ′ = {y′1, y′2, . . . , y′N}, the ARI is defined as:

ARI =
RI− E[RI]

max(RI)− E[RI]
(10)

where RI is the Rand Index, and E[RI] is its expected value under random labeling.

In practice, the ARI can be computed using a contingency table between Y and Y ′. Let nij denote the number of data
points assigned to the i-th cluster in Y and the j-th cluster in Y ′. Defining ai =

∑
j nij and bj =

∑
i nij , then the ARI is

calculated as:

ARI =
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where

(
n
2

)
= n(n−1)

2 is the binomial coefficient. The ARI ranges from [−0.5, 1], where an ARI close to 1 indicates a perfect
agreement between the true and predicted labels, and an ARI close to 0 suggests that the prediction is no better than random
assignment.

Typically, we apply k-means (k is set to the true number of classes) clustering on X to obtain the pseudo labels Y ′.
Subsequently, ARI is used to measure the agreement between true and pseudo labels, thereby reflecting global clustering
ability of the features and the extent to which similarity measures effectively capture the data structure.

B. Details of Implementation
In this section, we provide the details and hyperparameters for ReSA pretraining and downstream evaluation.

B.1. Datasets

• CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), two small-scale datasets composed of 32 × 32 images with 10
and 100 classes, respectively.

• ImageNet-100 (Tian et al., 2020), a random 100-class subset of ImageNet (Deng et al., 2009).
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• ImageNet (Deng et al., 2009), the well-known largescale dataset with about 1.3M training images and 50K test images,
spanning over 1000 classes.

• COCO2017 (Lin et al., 2014), a large-scale object detection, segmentation, and captioning dataset with 330K images
containing 1.5 million object instances.

• We also evaluate on fine-grained datasets including CUB-200-2011 (Wah et al., 2011), Oxford-IIIT-Pets (Parkhi et al.,
2012), Food-101 (Bossard et al., 2014), and Oxford-Flowers (Nilsback & Zisserman, 2008).

B.2. Implementation Details of ReSA Pretraining

For clarity, we first provide the algorithm of ReSA in PyTorch-style pseudo-code:
# E, Em: encoder, momentum encoder

# G, Gm: projector mlp, momentum projector mlp

# P: predictor mlp (optional)

# Tw, T: weak, standard augmentation

# temp: temperature = 0.4

for x in loader: # load a minibatch x with m samples

x1, x2 = Tw(x), T(x) # two augmentation views

h1, h2 = E(x1), E(x2) # encodings

z1, z2 = G(h1), G(h2) # embeddings (mxd)

if P: z1, z2 = P(z1), P(z2) # predicted embeddings

with torch.no_grad():

update_momentum_params(0.996 -> 1) # exponential moving average

h1m, h2m = Em(x1), Em(x2) # momentum encodings

z1m, z2m = Gm(h1m), Gm(h2m) # momentum embeddings (mxd)

assign = sinkhorn(cos_sim(h1, h1m)) # compute representation assignment

loss = cross_entropy(cos_sim(z1, z2m) / temp, assign) + \

cross_entropy(cos_sim(z2, z1m) / temp, assign)

return loss / 2

def cos_sim(x, y):

return norm(x) @ norm(y).T # L2-normalize

def cross_entropy(x, y):

loss = mean(y * log_softmax(x, dim=1) + y.T * log_softmax(x.T, dim=1))

return - loss / 2

def sinkhorn(scores, eps=0.05, niters=3): # Here ‘scores’ should be a square matrix

Q = exp(scores / eps).T

Q /= Q.sum()

m , _ = Q.shape

c = ones(m) / m

for _ in range(niters):

u = Q.sum(dim=1)

Q *= (c / u).unsqueeze(1)

Q *= (c / Q.sum(dim=0)).unsqueeze(0)

return (Q / Q.sum(dim=0, keepdim=True)).T
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Universal settings. In all experiments conducted in Section 5, we adopt a momentum network, consistent with the
practices of most existing self-supervised learning (SSL) methods (Grill et al., 2020; Chen et al., 2021; Caron et al., 2021;
Liu et al., 2022; Weng et al., 2024). While the momentum network is not necessary to prevent collapse in ReSA, it has
been shown to effectively promote long-term learning in SSL models (He et al., 2020; Chen & He, 2021). The momentum
coefficient, temperature, and Sinkhorn-Knopp parameters in ReSA are configured in accordance with the pseudo-code
provided earlier, without requiring further tuning. Furthermore, a standard three-layer MLP is employed as the projector,
featuring a hidden layer dimension of 2048 and an output embedding dimension of 512. For training on large-scale datasets,
such as ImageNet-1K, we follow the practices of MoCoV3 (Chen et al., 2021) and MEC (Liu et al., 2022), appending a
two-layer MLP predictor to the projector in ReSA. The hidden layer and embedding dimensions of the predictor are kept
identical to those of the projector. Additionally, we adopt a conventional configuration: when using ConvNets as the encoder,
batch normalization (BN) and ReLU activation are incorporated into the hidden layers of both the projector and predictor.
However, for ViT-based encoders, we draw inspiration from DINO (Caron et al., 2021), omitting BN and replacing ReLU
with the gaussian error linear units (GELU) activation. This modification ensures that ReSA operates as a BN-free system
during ViT training, eliminating the need for BN synchronization and offering an improvement in training efficiency.

Building on the aforementioned settings, the only modifications required pertain to optimizer-related parameters, including
the learning rate, weight decay, and the number of warmup epochs. These adjustments are made in accordance with the
specific encoder architecture and dataset used. Nonetheless, certain settings remain fixed. For instance, we adopt the linear
scaling rule, setting the learning rate as lr = base lr× batch size/256. After the warmup phase, the learning rate follows a
cosine decay schedule (Loshchilov & Hutter, 2017).

Details in training ConvNets. We follow the exact same optimization settings and parameters as INTL (Weng et al.,
2024) when pretraining ConvNets. The SGD optimizer is used and detailed parameters are provided in Table 8. The only
exception is when training ResNet-50 on ImageNet for 800 epochs, where we reduce the base lr to 0.4 to ensure training
stability. Additionally, it is worth noting that we observe a slight performance drop in ReSA when the learning rate decreases
to a very small value during the later stages of training. We hypothesize that an excessively small learning rate may amplify
the regularization effect of weight decay in SGD, causing the weights to diverge from the optimal solution. To address this,
we set the minimum learning rate in the cosine decay schedule to 0.1 ∗ lr.

Table 8. Optimizer-related parameters in ReSA pretraining.

Method dataset encoder predictor optimizer batch size base lr weight decay warmup

ReSA

CIFAR-10 ResNet-18 SGD 256 0.3 10−4 2 epochs

CIFAR-100 ResNet-18 SGD 256 0.3 10−4 2 epochs

ImageNet-100 ResNet-18 SGD 128 0.5 2.5× 10−5 2 epochs

ImageNet
ResNet-50 ✓ SGD

256 0.5 10−5 2 epochs

1024 0.5 10−5 10 epochs

ViT-S/16 ✓ AdamW 1024 5× 10−4 0.1 40 epochs

Details in training ViTs. Vision Transformer (ViT) pre-training involves numerous intricate settings, such as initialization
methods and optimization parameters, which have a significant impact on training outcomes. Notably, representative SSL
methods on ViTs, such as DINO and MoCoV3, adopt totally distinct designs in both architecture and training strategies.
DINO (Caron et al., 2021) leverages a range of training tricks, including weight decay scheduling, gradient clipping,
and stochastic depth, among others. To stabilize training, it avoids mixed-precision training, which substantially reduces
computational efficiency and increases memory requirements. MoCoV3 (Chen et al., 2021), on the other hand, proposes
freezing the patch embedding layer to enhance training stability while enabling mixed-precision training. However, it
still incorporates batch normalization (BN) in the projector and predictor MLPs, which reduces training efficiency and
complicates its application in multi-view scenarios (Morningstar et al., 2024). Taking these considerations into account,
we adopt the ViT design and initialization approach of MoCoV3 for ReSA, but remove the BN layers from the MLPs.
This ensures that ReSA functions as a BN-free system during ViT training, eliminating the need for BN synchronization
and improving overall training efficiency. In this paper, we set the optimizer-related parameters as shown in Table 8. We
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believe that further exploration of more suitable initialization methods and related parameters for ReSA could enhance its
performance, as evidenced by its outstanding results on ConvNets.

B.3. Implementation Details of ReSA Evaluating

Details in evaluating CIFAR-10/100. When evaluating on CIFAR-10/100, we adopt the same linear evaluation protocol
as in W-MSE (Ermolov et al., 2021) and INTL (Weng et al., 2024): training a linear classifier for 500 epochs on each labeled
dataset using the Adam optimizer, without data augmentation. The learning rate is exponentially decayed from 10−2 to 10−6

and the weight decay is 5× 10−6. Under these settings, a single-GPU evaluation takes under one minute—substantially
faster than the protocol in solo-learn (da Costa et al., 2022), which can take tens of minutes. We also apply this evaluation
protocol to models provided by solo-learn; however, their performance degrades noticeably, so we report the official results
in Table 1. In addition, following W-MSE and INTL, we evaluate a simple 5-nn classifier (k = 5) on these datasets for
completeness. We track both linear and k-nn classifier accuracies for ReSA throughout training and observe that at certain
checkpoints, ReSA achieves even higher performance than the final values reported in Table 1 (e.g., linear accuracies of
93.89% on CIFAR-10 and 72.5% on CIFAR-100). Nevertheless, we report only the final checkpoint’s results for consistency.

Table 9. Optimal learning rate (lr) for training linear classifiers.

Method
pretrained settings linear eval.

dataset encoder batch size lr

ReSA

ImageNet-100 ResNet-18 128 5

ImageNet
ResNet-50

256 10

1024 40

ViT-S/16 1024 0.03

Details in evaluating ImageNet-100/1K. For linear evaluation, we train the linear classifier for 100 epochs with SGD
optimizer and using MultiStepLR scheduler with γ = 0.1 dropping at the last 40 and 20 epochs. In all our linear classifier
training, we fix the batch size at 256 and set the weight decay to 0. However, when using different pretraining datasets,
encoders, or batch sizes, the optimal learning rate for evaluation varies accordingly. The specific optimal values for each
setting are provided in Table 9. In addition, when training the linear classifier with ViT-S/16, we follow BERT (Devlin,
2018) and DINO (Caron et al., 2021) by concatenating the [CLS] tokens from the last four layers.

Table 10. Low-shot evaluation. All models are pretrained on ImageNet with ResNet-50, and then fine-tuned with a linear classifer on 1%
or 10% subset of ImageNet for 20 epochs. † indicates employing the multi-crop trick during pretraining.

Method top-1 top-5
1% 10% 1% 10%

SimCLR 48.3 65.6 75.5 87.8
BYOL 53.2 68.8 78.4 89.0
SwAV† 53.9 70.2 78.5 89.9

Barlow Twins 55.0 69.7 79.2 89.3
VICReg 54.8 69.5 79.4 89.5

INTL 55.0 69.4 80.8 89.8

ReSA (ours) 56.4 70.4 81.0 90.1

We further evaluate the low-shot learning capability of ReSA in semi-supervised classification. Specifically, we fine-tune the
pre-trained ReSA encoder and train a linear classifier for 20 epochs, using 1% and 10% subsets of ImageNet, following the
same splits as SimCLR (Chen et al., 2020b). The optimization is conducted using the SGD optimizer with a learning rate of
0.0002 for the encoder and 40 for the classifier, under a batch size of 256, along with a cosine decay schedule. The results,
presented in Table 10, demonstrate that ReSA also performs effectively in low-shot learning scenarios.
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Figure 9. Comparison of evaluation accuracies and clustering metrics among various SSL methods during the training process. The
experiments are conducted using SimCLR, SwAV, VICReg, and ReSA. The settings and notations are consistent with ones in Figure 4.

Details in evaluating fine-grained datasets. In the evaluation experiments on fine-grained datasets presented in Table 6,
we apply a weighted k-nearest neighbors classifier following (Wu et al., 2018). We freeze the pretrained model to compute
and store the features of the training data and use these features to select the nearest neighbors for the data in the test set.
Based on the top k-nearest neighbors (Nk), predictions are made using a weighted voting mechanism. Specifically, the class
c receives a total weight of

∑
i∈Nk

αi1ci=c, where αi represents the contribution weight. We compute αi = exp
(
Ti·x
τ

)
,

with τ set to 0.07 as described in (Wu et al., 2018) and used by DINO, without tuning this value.

C. Additional analyses on ReSA
C.1. Ablation Studies

As presented in Table 11, we conduct ablation studies to investigate the impact of network architecture design and
temperature hyperparameter selection on ReSA performance. Our analysis reveals that employing a momentum network
yields an accuracy improvement of approximately 2%, albeit at the cost of increased computational overhead. In contrast,
the integration of an additional predictor demonstrates a comparable accuracy gain of around 1% while maintaining
near-identical computational efficiency, exhibiting negligible impact on runtime performance.

Meanwhile, in contrast to contrastive learning methods and other approaches such as SwAV and DINO, which typically
require a small temperature value (e.g. τ = 0.1), ReSA achieves favorable performance with a higher temperature value
(τ = 0.4). This indicates that the optimization process of ReSA can effectively incorporate a broader range of samples with
better tolerance, rather than focusing exclusively on hard samples (Wang & Liu, 2021), as is the case with other methods.

Additionally, we conduct experiments to test the extraction of clustering information from embedding to obtain the self
assignment AH . The results shown in Figure 10 indicate that, under this condition, the loss struggles to converge, and the
model’s accuracy significantly declines compared to ReSA. This finding is consistent with the analyses in Section 3, where
we note that the clustering properties of embedding are less stable and inferior to those of encoding, making it challenging
for the model to effectively learn high-quality clustering information.
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Table 11. Ablation studies on the network architecture and temperature hyperparameter of ReSA on ImageNet using ResNet-50 as the
encoder. When evaluating the impact of different network architectures on ReSA, we set the batch size to 256 and perform pretraining
using a single GPU.

Method momentum predictor linear acc. memory (GB) time (h/epoch)

ReSA

✓ ✓ 71.9 25.2 0.78

✓ 70.8 25.2 0.78

✓ 69.7 24.3 0.58

68.7 24.3 0.58

Method batch size
temperature τ

0.2 0.3 0.4 0.5

ReSA
256 71.2 71.4 71.9 71.7

1024 70.9 71.1 71.3 71.2
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Figure 10. Ablation on extraction of clustering information from encoding vs. embedding to obtain the self-assignment AH . Both are
pretrained for 1000 epochs on CIFAR-100 using ResNet-18 under totally the same experimental settings provided in Appendix B.
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Figure 11. Visualization of the self-assignment matrix AH during the early stages of training.

C.2. How ReSA Avoids Feature Collapse and Early Clustering Error?

Although ReSA has demonstrated good performance in various experiments, it remains unclear how the model avoids
feature collapse and clustering error in the early stages of training when it has not yet learned any clustering information.

To answer these questions, we first consider the loss formula of ReSA: ℓReSA(zi) = −
∑m

j=1 AH
(i,j) log

(
exp(si,j/τ)∑m

k=1 exp(si,k/τ)

)
.
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Here, AH
(i,j) denotes the (i, j)-th element of AH, where AH = Sinkhorn(H⊤H). Given that the Sinkhorn-Knopp

algorithm exhibits strict monotonicity, we have the property that if hi
⊤hj > hi

⊤hk, then AH
(i,j) > AH

(i,k). Since
the vectors in H are L2-normalized, the diagonal elements of H⊤H are all maximized to 1. This implies that for any
i and j, we have AH

(i,i) ≥ AH
(i,j). Furthermore, due to the sharp distribution employed in Sinkhorn, the diagonal

elements are significantly larger than the off-diagonal elements. This ensures that the optimization focus of ReSA remains
on the alignment of augmented views from the same image, substantially reducing the impact of early assignment errors
(off-diagonal elements) on the training process. Throughout training, the continual alignment enables the model to learn
meaningful representations, which in turn facilitates correct cluster assignments in the later stages, further promoting
learning. In contrast, other clustering-based methods such as SwAV and DINO require an initialized prototype for cluster
assignment, making it more challenging to avoid early clustering errors. We speculate that this is one of the key reasons why
ReSA outperforms these methods in terms of overall effectiveness.

We then visualize the self-assignment matrix AH during the early stages of training. As shown in Figure 11, at model
initialization, the assignment already exhibits a dominance of diagonal elements, reflecting an optimization trend that pulls
augmented views from the same image closer together. As training progresses, we observe that the dominance of diagonal
elements gradually strengthens, effectively preventing feature collapse in the model.

C.3. Pretraining on Long-tailed Dataset

To further evaluate the training performance of ReSA on imbalanced datasets, we conduct experiments using four self-
supervised learning methods—ReSA, MoCoV3, INTL, and VICReg—pretrained and evaluated on the long-tailed CIFAR100-
LT dataset. We follow the setup on https://huggingface.co/datasets/tomas-gajarsky/cifar100-lt,
setting an imbalance factor of 1/20, resulting in the CIFAR100-LT dataset containing 15,907 images. We train these four
SSL models for 1000 epochs with ResNet-18 as the encoder and evaluate it on the full CIFAR100 test set. As observed
in Figure 12, the loss values of these four methods converge well, but the final evaluation accuracy is significantly lower
compared to training on the full CIFAR100 dataset in Table 1. Interestingly, we notice that ReSA’s loss decreases more
slowly in the early stages, and its accuracy improves more gradually than other methods. We hypothesize that this may
be due to noisy initial clusters in the early stages of training, causing clustering errors. However, we find that as training
progresses, ReSA’s accuracy continues to rise in the mid-phase, surpassing all other methods. This suggests that ReSA is
able to gradually resolve these issues and learn the correct clustering patterns as training advances, rather than amplifying
errors. Overall, this experiment demonstrates that ReSA can also learn effective representations on long-tailed datasets.
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Figure 12. Pretraining on the long-tailed dataset. Here We report the training losses of four self-supervised learning methods on the
CIFAR100-LT dataset, along with their evalutaion performance on the full CIFAR-100 test set as measured by a linear probe and a k-NN
classifier.
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C.4. The impact of weak augmentation on other methods

Since the design of weak augmentation (identical to that in ReSSL (Zheng et al., 2021)) provides a certain degree of
performance improvement for ReSA, we also examine its impact on other self-supervised learning methods. Specifically,
we select SwAV, VICReg, and MoCoV3, strictly following the experimental configurations in solo-learn (da Costa et al.,
2022), with the only modification being the replacement of the image augmentation settings. As shown in Table 12, weak
augmentation do not enhance the performance of these methods. This is likely because the standard augmentation settings
have been extensively tuned through numerous experiments, ensuring optimal training conditions for these approaches.

Table 12. Investigate the impact of weak augmentation on other methods.

Method weak aug.
CIFAR-10 CIFAR-100

linear k-nn linear k-nn

SwAV
89.17 84.18 64.88 53.32

✓ 88.79 84.01 64.21 53.07

VICReg
92.07 87.38 68.54 56.32

✓ 91.35 86.75 67.27 55.79

MoCoV3
93.10 89.06 68.83 58.09

✓ 93.05 89.09 68.72 58.02

C.5. Discussion and Future Work

The relationship between image augmentation and SSL via joint embedding architectures has grown increasingly intricate.
Over the past few years, many studies (Chen et al., 2020b; Grill et al., 2020; Wagner et al., 2022; Morningstar et al.,
2024) have emphasized the critical role of image augmentation in JEA, demonstrating that making subtle modifications to
image augmentations, such as merely adjusting the parameters of ResizedCrop and ColorJitter, can significantly impact
the performance of SSL models. However, recent works (Assran et al., 2023; Moutakanni et al., 2024) have begun to
challenge this paradigm by exploring new self-supervised learning frameworks that eliminate the reliance on hand-crafted
data augmentations. These efforts argue that specific augmentations may introduce strong biases that could be detrimental to
certain downstream tasks (Assran et al., 2022a) and that the most effective augmentations are often task-specific, depending
on the domain, rather than adhering to universally hand-crafted settings (Bendidi et al., 2023; Asano et al., 2019; Geiping
et al., 2022; Purushwalkam & Gupta, 2020).

Interestingly, Moutakanni et al. (2024) successfully demonstrate that hand-crafted or domain-specific data augmentations are
not essential for training state-of-the-art joint embedding architectures when scaling self-supervised learning. Their findings
reveal that, with sufficiently large datasets, simple crop of images alone can achieve remarkable results. Notably, this
observation aligns perfectly with the characteristics of ReSA. As we show in Section 4.3, removing any single transformation
enhances the clustering properties of the representations learned during training, enabling ReSA to better capture the
inherent clustering information within the data. When the dataset size is sufficiently large, eliminating all hand-crafted
data augmentations perfectly unleashes the innate potential of ReSA. We look forward to future research validating this
hypothesis and applying ReSA to large-scale pretraining scenarios.
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