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ABSTRACT

Representational analysis explores the encoding of input data in high-dimensional
spaces within distributed neural activations and facilitates the comparison of dif-
ferent systems, such as artificial neural networks and brains. Although existing
methods offer relevant information, they typically do not account for local in-
trinsic geometrical properties within high-dimensional representation spaces. To
overcome these limitations, we explore Ollivier Ricci curvature and Ricci flow
as tools to study the similarity and alignment of representations between humans
and artificial neural systems on a geometric basis. We used both simulations and a
proof-of-principle study, in which we compared the representations of face stimuli
between VGG-Face, a human-aligned version of VGG-Face, and the correspond-
ing human similarity judgments from a large online study. Using this discrete
geometric framework, we were able to identify global and local structural similar-
ities and differences by examining distributions of node and edge curvature and
higher-level properties by detecting and comparing community structure in the
representational graphs.

1 INTRODUCTION

Artificial neural networks (ANN) can match human performance in image recognition and classifi-
cation tasks, among others (Mohsenzadeh et al., 2020). This led to the investigation of how ANNs
encode, transform, and generalize information, and if and how these processes can be related to the
brain (representational alignment) (Richards et al., 2019). One key direction is to study how the
geometry of internal representations reflects item similarity, categorical divisions, or latent variation
within the input data (Chung & Abbott, 2021). The similarity between vectors in the representational
space is commonly measured using a kernel or a Representational Dissimilarity Matrix (RDM);
RDMs are then usually compared by applying Representational Similarity Analysis (RSA) by com-
puting the correlations between RDMs (Kriegeskorte et al., 2008). Despite its popularity, RSA has
notable limitations, e.g., Dujmović et al. (2022) showed that the correspondence between activation
patterns in different systems can depend on the dataset, and that seemingly similar representational
geometries actually encode different features. To improve this, it is crucial to capture the intrinsic
geometric properties of high-dimensional data, assuming that these data lie on a lower-dimensional
manifold within the ambient space, where the relationships between points reflect meaningful vari-
ations and similarities in the data (Lin & Zha, 2008). However, RSA imposes an ambient space
geometry (Euclidean) that can distort these intrinsic geometrical relationships.

To respect the manifold’s geometry and to overcome the limitations of classic RSA, we utilize a
graph representation of the data (as a discrete counterpart of a manifold) and employ the Ollivier
Ricci curvature (ORC) method, a discrete, graph-based analogue of Ricci curvature in Riemannian
geometry (Ollivier, 2007). ORC reflects the geometry of the graph by considering local neighbor-
hoods and computing the optimal transport between probability measures at each node of the graph.
At the same time, ORC avoids imposing a metric on the data manifold from the ambient space.
ORC measures the deviation of a neighborhood structure from being flat (in the discrete case, this
is a grid-like topology). This notion of non-flatness relates to patterns of local connectivity in the
graph. The positive curvature of an edge means that there are more connections, and the negative
curvature indicates fewer connections compared to the grid. Eventually, the Ricci flow process al-
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lows us to reveal the communities of a graph, which resemble regions in Riemannian manifolds of
large positive curvature.

We applied ORC to synthetic data and to data from a human online experiment (Anonymous), in
which 1,397 participants were asked to judge similarities between 100 generated faces in a triplet-
odd-one-out task (161,700 triplet combinations). Subsequently, human behavior was modeled using
a custom adaptation of VGG-Face (Parkhi et al., 2015) that was trained to predict human choices
given sets of three face images (Aligned VGG-Face), see Methods and Anonymous.
The tools from discrete geometry enabled us to compare similarity spaces from human responses
and activation patterns from both the VGG-Face and the Aligned VGG-Face model. For the for-
mer, we used activations in the FC7 layer. For the latter, we took activations in the VGG-bridge,
a dense layer connecting a frozen, pre-trained part of the original VGG-Face with a new decision
block specific to the similarity judgment task (see Figure 2 and section 2.7). Then, we constructed
graph representations based on human responses (Human Judgment graph), Aligned VGG-Face, and
VGG-Face. We applied ORC to analyze local neighborhood structures in the graphs and to measure
how the additional information introduced by the alignment process remodels the structural prop-
erties of representations in the original VGG-Face. We first compared the global structure between
representations based on the adapted heat diffusion distance for our graph representations, computed
between curvature-weighted graphs Hammond et al. (2013). To compare structural properties at an
intermediate scale, we used edge properties derived from edge curvature values and applied Ricci
flow to detect communities within graph representations. Finally, to identify which image features
serve as indicators for the detected communities in each representation, we conducted an analysis
comparing significant features within and between representations.

1.1 RELATED WORK

Representational alignment Sucholutsky et al. (2023) examine representational alignment—the
correspondence between internal representations in biological and artificial systems. The authors
propose a framework to measure and enhance this alignment, drawing from cognitive science, neu-
roscience, and machine learning and they address three key challenges: (1) measuring alignment,
(2) mapping representations into a shared space, and (3) improving alignment across systems. Using
RSA Kriegeskorte et al. (2008), various studies aim to compare the representations of artificial and
biological systems, e.g., Khaligh-Razavi & Kriegeskorte (2014) compare supervised and unsuper-
vised learning models to determine which model explains inferior temporal (IT) neural representa-
tions better and explore how well computational models replicate the representational geometry of
the IT cortex. In addition to the RSA method, other techniques have been developed to explore neu-
ral network representations. Kornblith et al. (2019) compares neural network representations using
Canonical Correlation Analysis (CCA), showing that CCA and similar statistics fail when repre-
sentations exceed the number of data points. They introduce Centered Kernel Alignment, which
replaces invariance to invertible linear transformations with orthogonal invariance.

Curvature of graphs and networks The concept of curvature, a geometric measure of how space
deviates from flatness, has been utilized in various studies to modify underlying systems or to com-
pare different representations derived from these systems, uncovering structural (dis)similarities.
The study by Gosztolai & Arnaudon (2021) introduces an extension of ORC by incorporating
the similarity of dynamical processes, like diffusion, at neighboring nodes, captures process evo-
lution, revealing network geometry. They show that curvature distribution evolves with gaps at key
timescales, marking bottleneck edges that restrict information flow and it effectively detects com-
munity structures in synthetic and real-world networks. In another work, ORC has been employed to
assess the robustness of connections in brain structural networks Farooq et al. (2019). By applying
curvature-based measures, the authors identify robust and fragile brain regions in healthy individ-
uals and demonstrate that curvature effectively tracks age-related changes and alterations in brain
connectivity associated with autism spectrum disorder. Sandhu et al. (2015) apply a discrete Ricci
curvature, adapted for weighted graphs, to assess the ”shape” or ”bending” of the network at each
edge. This approach provides insights into local connectivity and structural robustness, distinguish-
ing cancerous from normal biological networks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

2 METHODS

2.1 GRAPH CONSTRUCTION

To construct the graph from vector embeddings, we employ an adaptive nearest-neighbor method.
First, we calculate the density as the inverse of the distance using a k-nearest neighbors (KNN) den-
sity kernel, incorporating the parameters kmin and kmax, which specify the minimum and maximum
number of neighbors, respectively. Next, we normalize the local density by scaling it between the
minimum and maximum density values, thereby defining the density at each data point. Based on
this normalized density, we determine the number of neighbors for each data point and proceed to
construct the graph.
The same approach is applied to the similarity matrix derived from human similarity judgments.
First, a distance matrix is constructed from the similarity matrix provided. Using this distance ma-
trix, the method estimates an appropriate k-value for each data point (image) based on the distance
distribution from that point. This results in an adaptive KNN structure for the dataset, which in turn
forms the foundation for an adaptive graph construction.

2.2 OLLIVIER RICCI CURVATURE

In Riemannian geometry, curvature describes how a manifold deviates from being locally similar
to Euclidean space, with Ricci curvature specifically measuring this deviation in various tangent
directions Samal et al. (2018). Geometrically, Ricci curvature influences the rate at which the volume
of a ball expands as its radius increases, as well as the volume of the overlap between two balls,
depending on their radii and the distance between their centers. In addition, the overlap volume
between two balls is directly connected to the transport cost needed to move one ball to the other:
a greater overlap volume implies a lower transport cost. This relationship highlights a connection
between Ricci curvature and optimal transport. Using this concept, Ollivier introduced a generalized
form of the Ricci curvature in metric measure spaces based on optimal transport Ollivier (2007). For
a metric space (X, d) equipped with a probability measure mx for each x ∈ X , the Ollivier Ricci
curvature (ORC) κxy along a path xy is defined as follows:

κxy = 1− W1(mx,my)

d(x, y)
(1)

where W1(mx,my) is the Wasserstein distance.

2.3 RICCI FLOW

The Ricci flow method, based on the geometric concept of curvature introduced by F. Gauss and
B. Riemann, describes how the space bends at each point Perelman (2002); Gauss (1828); Jost
(2016). Areas with high positive curvature are denser, while regions with negative curvature are less
so. Hamilton developed the Ricci flow, a curvature-driven diffusion process, which deforms space
similarly to heat diffusion; regions with large positive curvature contract, while those with strong
negative curvature expand Hamilton (1982). Ni et al. (2019) adapted Ricci flow from Riemannian
geometry to discrete networks, using it to detect community structures within graphs. The discrete
Ricci flow algorithm on a network is an evolving process. In each iteration, all edge weights update
simultaneously by the following flow process:

wi+1
xy = di(x, y)− κi(x, y) · di(x, y) (2)

where wi
xy is the weight of the edge xy in the i-th iteration, and κi

xy is the Ricci curvature at the edge
xy in the i-th iteration, and di(x,y) is the shortest path distance in the graph induced by the weights
wi

xy . Initially, we set w0
xy = wxy and d0xy = dxy

3
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2.4 HEAT DIFFUSION DISTANCE

To compare graphs based on the curvature of their edges, we employ the graph diffusion distance
(Hammond et al., 2013). This metric quantifies the average similarity of heat diffusion across each
graph and is rooted in the framework of diffusion maps, enabling comparisons between weighted
graphs. The edge weights represent the conductivity between the vertices, capturing how changes
in the structure of the graph influence the transmission of heat, information, or other quantities
across the graph. The process involves generating a diffusion pattern centered around a vertex i
by initializing it with a localized delta impulse at that vertex and allowing the diffusion to evolve
over a specified time t. Different adjacency matrices yield distinct diffusion patterns. The graph
diffusion distance is calculated as the average norm of the differences between such patterns for
any two adjacency matrices. The distance between two graphs G1 and G2 and for time t could be
calculated with:

d(G1, G2; t) = ∥exp(−tL1)− exp(−tL2)∥2F (3)

where ∥.∥F is the Frobenius norm and L1 and L2 are Laplacian matrices of G1 and G2, respectively.

In this study, we model our graphs as weighted graphs, with curvature values assigned as edge
weights. This approach allows us to analyze and compare variations between different graph rep-
resentations. Our study assessed representations based on the heat diffusion distance between these
weighted graphs. The edge weights in the graphs were determined using curvature values.

2.5 GRAPH COMMUNITY MEASURES

We computed a number of quantities to measure the community structure in our representational
graphs. Modularity measures the strength of clustering by comparing the density of edges within
communities to the density of edges on a random graph with the same degree distribution. Average-
Embeddedness: measures the number of shared neighbors for pairs of nodes within a community. It
captures the cohesiveness (i.e., interconnectedness) of a community. Internal Edge Density: mea-
sures the density of edges within the community compared to the maximum possible number of
edges in that community.

Figure 1: Pairwise heat diffusion distances
between the different synthetic datasets.
From top to bottom (left to right): 2D torus,
transformed 2D torus, 2D swiss roll, trans-
formed 2D swiss roll. Colors indicate heat
diffusion distance.

Figure 2: Human-aligned VGG-Face. The
network is trained to predict human judg-
ments in a face similarity task. The figure
adopted from Anonymous
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2.6 SYNTHETIC DATA

To evaluate whether our representational alignment approach, based on a graph framework, can cap-
ture local geometric properties while comparing different representations with varying underlying
geometries, we generated several synthetic datasets. Specifically, we created a 2D torus dataset and
a dataset resembling a 2D version of a swiss roll, as illustrated in Figure1. To examine the extent
to which variation in the underlying geometry can be captured by the heat diffusion distance, we
transformed the original data using the sigmoid function S(x) = 1

1+e−x . The data sets are shown
in Figure 1. We then constructed a graph representation of each data set as outlined above and
computed the pairwise heat diffusion distance. Figure 1 shows the discrepancy captured by the heat
diffusion distance, indicating the underlying structural differences between the datasets and their
sigmoid compressions. Comparing the distance values within and across data sets shows that the
heat diffusion distance could distinguish underlying structures that are more similar within a dataset
and its transformation than between datasets or their transforms.

2.7 HUMAN EXPERIMENT DATA

Face stimuli and human similarity judgments Stimulus images were computed using the 3D
reconstruction model DECA (Feng et al., 2021) applied to 2D portraits of the Chicago Face Dataset
(Ma et al., 2015). Human face similarity judgments (n = 194,261) were acquired in the form of a
triplet-odd-one-out task from 1,397 participants (age range 18 - 65, mean age = 31.9 ± 11.2 years)
in an online experiment. For more details on the stimulus set and experimental design, we refer to
Anonymous.

Human-aligned VGG-Face The pre-trained VGG-Face architecture (Parkhi et al., 2015) was
adopted to predict human face similarity judgments in the experiment (Figure 2). First, all lay-
ers up to the fully connected layer FC7 were frozen, making their weights non-trainable (VGG
core). Second, subsequent layers were replaced with one FC layer (VGG bridge), which converts
a 4,096-dimensional input to a 300-dimensional vector. A decision block was added consisting of
convolutional layers. This block receives stacked activation maps from the bridge for each input
image in a triplet (xi, xj , xk), resulting in a 6x300 matrix [ai, aj , ai, ak, aj , ak]. The first convolu-
tional layer in the decision block has 2 filters of size (2, 50) and stride (2, 1), producing an output of
size (batch size, 2, 3, 251). After applying a ReLU activation, another convolutional layer with one
filter of size (3, 100) and stride (1, 1) is applied, followed by another ReLU. This results in a (batch
size, 2, 1, 152) output. Then, the signal was down-sampled to (batch size, 1, 1, 3) using two more
convolutional layers (one filter each, kernel sizes: (1, 100) and (1, 51)) with an intermediate ReLU.
The resulting 3-length output vector indicates the model’s choice, where the highest value identifies
the odd-one-out. The architecture was trained using cross-entropy loss with the Adam optimizer, a
learning rate of 5e-4, and a batch size of 16. The data (X: triplet images, Y: human choices) was
split into training (70%; ntrain = 135, 982), validation (15%; nval = 29, 139), and test sets (15%;
ntest = 29, 140). For more details see Anonymous.

3 RESULTS

3.1 GRAPH-BASED REPRESENTATIONAL SIMILARITY ANALYSIS

To understand the extent to which geometry-informed distance metrics differ from a standard Eu-
clidean distance, we conducted a representational similarity analysis using pairwise distances be-
tween data points (faces). We computed similarity matrices using three different metrics for each
pair of face representations: Euclidean distance between the representational vectors in the em-
bedding vector space, the geodesic (shortest path) distance on the graphs constructed from the
given representations (or similarity judgments), and a curvature-weighted geodesic distance in these
graphs. The latter incorporates curvature values assigned to edges as weights, allowing us to evaluate
whether the incorporation of local geometric information influences the representational similarity
analysis. Figure 3 shows the resulting similarity matrices for the Euclidean case (a), the geodesic
distance (b) and the weighted geodesic (c). First, the overall structure is consistent between the
Euclidean and geodesic distances. Overall, the geodesic distance seems to capture more struc-
tural nuances in the representations. Interestingly, the geodesic distances in the graph constructed
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Table 1: Correlation of pairwise distance matrices from different representations with the matrix of
human similarity judgments.

Distance Metric Aligned VGG-Face VGG-Face

Euclidean 0.63 0.45
Geodesic 0.60 0.24
Weighted Geodesic 0.54 0.25

from human similarity judgments shows a clearer clustering compared to raw human similarity
judgments. This highlights a potential benefit of computing representational similarities from local
information.

Figure 3: Pairwise distance matrices for Hu-
man Judgment, Aligned VGG-Face and orig-
inal VGG-Face (range [-1, 1]). In a), Eu-
clidean metric and in b) geodesic distances
and in c) weighted geodesic distances be-
tween points have been computed.

Figure 4: Comparison of heat diffusion
distances between pairs of representational
graphs across a range of kmin parameters for
the adaptive graph construction. Each line
represent a pairwise comparison (Blue: Hu-
man Judgments vs. Aligned VGG-Face, or-
ange: Human Judgment vs. VGG-Face, and
green: Aligned VGG-Face vs. VGG-Face).

We also computed the correlation of each representational similarity matrix to the human similarity
judgment matrix within the same framework. Table 1 shows that the graph-based results are con-
sistent with the standard Euclidean approach. It also describes adding more information from local
geometry decreases the correlation indicating structural difference captured by graph-based distance
methods. Further, the graph-based distances indicate a more pronounced difference between the rep-
resentational geometry of the aligned VGG-Face and the original VGG-Face.

3.2 HEAT DIFFUSION DISTANCE BETWEEN REPRESENTATIONAL GRAPHS ACROSS DIFFERENT
VALUES FOR kmin

To investigate how the mutual distances between representations change by adjusting the parame-
ters of our adaptive graph construction, we conducted a comparative analysis of the heat diffusion
distance. Figure 4 shows how the distances between the representations vary as kmin range from 5
to 15 and kmax range from 15 to 25. Although the absolute magnitude of the distances decreases,
the plot reveals that their relative differences remain consistent for most of the range of parameters
we tested. Specifically, the smallest distance is observed between Human Judgment and Aligned
VGG, followed by Aligned VGG vs Original VGG, and finally Human Judgment vs Original VGG.
The comparison across kmax values follow the same pattern.
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Figure 5: Detected communities (different symbols) by Ricci flow in the three experiments and the
corresponding edge curvature value distribution. For each community, we show a random sample
of faces drawn from it. The edge colors in graphs indicate curvature values, with red shades repre-
senting negative curvature and blue shades indicating positive values. Modularity measurement as a
community metric is attributed to each graph representation.

Table 2: Comparison of graph structure based on KL-divergence (KLD) between edge curvature
distributions and community metrics derived from Ricc flow: Conductance, Internal edge density
(IED), Modularity, and Average embeddedness (AE).

Graph KLD Communities Conductance IED Modularity AE

Human judgment graph 0.000 5 0.297 0.563 30.093 0.767
Aligned VGG-Face 0.183 5 0.173 0.550 40.126 0.827
VGG-Face 0.697 4 0.417 0.386 9.459 0.604

3.3 A COMPARATIVE ANALYSIS OF NODE AND EDGE CURVATURES ACROSS MODELS

In our graphs, nodes represented faces, and an edge between two nodes indicated that the corre-
sponding images were considered similar by human participants or in terms of the vector represen-
tation within the two ANNs. We first computed ORC on the graphs’ edge level and then derived the
node curvature by averaging the curvature values across all edges connected to each node.
We observed a notable difference in ORC between models, with the Aligned VGG-Face matching
the curvature structure in the Human Judgment graph more closely than the original VGG-Face as
shown in Figure 7 in the Appendix. The distribution of edge curvature values for both the Human
Judgment graph and Aligned VGG-Face showed similar value ranges with a mean shifted towards
positive curvatures and a left-skewed shape, indicating a higher proportion of positive curvature with
a sub-population of edges with strongly negative curvature. In contrast, the original VGG-Face dis-
plays a more symmetrical pattern distributed around zero. This implies that the data in the aligned
network and the human similarity judgments both form local clusters connected by fewer (negatively
curved) edges, indicating distinct structural characteristics compared to the original VGG-Face. To
quantify the similarity between the distributions, we computed the Kullback-Leibler (KL) diver-
gence between each VGG-Face version and the Human Judgment graph. Indeed, we found a low
KL-divergence between the Human Judgment graph and the Aligned VGG-Face, but a higher diver-
gence with the Original VGG-Face (Table 2).
This structural distinction between the VGG-Face and Aligned VGG-Face was also reflected in the
node curvature level. VGG-Face qualitatively shows no strong correlation with human judgments
(Figure 7b), which is consistent with the differences in edge curvature distribution (Figure 7c, e).
Interestingly, while the edge curvatures between the Human Judgment graph and the Aligned VGG-
Face were similar on the distribution level, their agreement fluctuated at individual nodes. That is,
the node curvature shows a similar tendency (negative vs. positive) for most nodes; however, the
node curvature values diverge for some nodes, indicating that these nodes belong to different local
neighborhoods, and therefore, their interpretation in terms of cluster membership seemed to differ
between humans and ANNs (sample images are shown in Figure 7a and b in the Appendix).
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3.4 RICCI FLOW ANALYSIS PROVIDES INSIGHTS INTO STRUCTURAL PROPERTIES OF
REPRESENTATIONAL GEOMETRIES

To detect and compare community structures based on our curvature measurements, we computed
the discrete Ricci flow (Ni et al., 2019) in each representational graph. The Ricci flow defines the
community structure of a graph by deforming space similarly to heat diffusion: regions with a large
positive curvature contract, while those with strong negative curvature expand (see Methods for
details). We then analyzed the structural properties of the processed graphs, as summarized in Ta-
ble 2. In particular, we calculated conductance (community separation by the between-and-within
edge ratio), internal edge density (edges within the community vs. maximum possible), modularity
(community strength by comparing edge densities with a random graph), and average embeddedness
(number of shared neighbors for pairs of nodes within a community). These results (Table 2) clearly
show that the Human Judgment graph and the graph representation of the Aligned VGG-Face have
very similar properties in terms of community structure. In contrast, the Original VGG-Face, despite
being trained on face images, does not show a similarly high degree of structure.
Next, we wanted to visually assess the community structure and its relationship to the edge cur-
vatures. As shown in Figure 5, the Human Judgment graph and the Aligned VGG-Face exhibited
similar community patterns overall and both show similar tendencies to cluster, e.g., male and fe-
male face images (as indicated by the three randomly chosen samples per community). However,
the cluster structure in the Aligned VGG-Face is less clearly defined compared to the Human Judg-
ment graph. In line with our other findings, the VGG-Face graph does not show a clear and coherent
structure that we could relate to the Human Judgment graph.

3.5 SHARED IMAGE FEATURES ACROSS REPRESENTATIONAL GEOMETRIES

Finally, to better understand the identified clusters in the representational geometries of human judg-
ments, aligned VGG-Face and VGG-Face, we compared facial features that are specific to each clus-
ter. To do this, we performed an ANOVA on the communities detected within each representational
space. Each data point (image) was assigned a feature vector representing various facial characteris-
tics, such as eye size, face width, and nose length. This analysis identifies which characteristics con-
tribute to the formation of communities within each representation. Features with a p-value less than
0.05 were selected and the top ten most significant characteristics were identified. Subsequently, the
selected features were compared with respect to their overlap between the different representations.
Figure 6 shows the overlapping features between the representational geometries. Overall, all three
representations share a set of common features, probably reflecting universal characteristics that are
essential for clustering faces (e.g., nose shape). Aligned VGG-Face and Human Judgment share
the highest number of intersecting features. Interestingly, there is a clear pattern in the significant
features that are shared only between the human reference and the Aligned VGG-Face: all three
features describe the distances between the cheeks and the chin. This gives us a more detailed view
of how facial feature representations might systematically differ between representations in artificial
neural network and human perception.

4 DISCUSSION

Our study explored how Ollivier Ricci curvature and Ricci flow reveal the geometric structure of
neural representations beyond conventional distance-based approaches like Representational Simi-
larity Analysis. By analyzing curvature at edge level, we captured fine-grained local geometry, while
Ricci flow allowed us to uncover higher-level structural patterns, including community structures in
representation graphs. Our results demonstrate that aligning an artificial neural network with human
behavior reshapes its representational structure in measurable ways. The human-aligned VGG-Face
model exhibited curvature properties that more closely mirrored those found in human similarity
judgments, particularly in local clustering and connectivity patterns. However, key differences re-
mained, suggesting that behavioral alignment does not fully bridge the gap between cognitive and
artificial representations. These findings highlight the potential of discrete geometric tools for study-
ing neural representations and raise important questions about their broader applicability. By moving
beyond traditional similarity metrics, we provide a new perspective on how internal representations
evolve and align across different systems. We hope this approach sparks further research into the
underlying geometry of representations in both artificial and biological neural networks.
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Figure 6: Comparison between the significant features across representations. Feature coding: P056:
’eye size’,P014: ’face width’, P003: ’nose length’, P028: ’distance left cheek and chin’, P029:
’average distance left and right cheek to chin’, P027: ’distance right cheek to chin’, P026: ’distance
bottom lip to chin’, P065: ’face width-to-height ratio’, P017: ’upper face length’, P059: ’chin length
divided by face length’, P053: ’nose shape’, P022: ’distance left pupil to lip’, P021: ’distance right
pupil to lip’, P023: ’average distance left and right pupil to lip’.
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A APPENDIX

Figure 7: Node curvature distribution (a, b) and edge curvature distribution (c, d, e) across different
graphs. (a) and (b) compare node curvatures of the Human Judgment graph (yellow) with Aligned
VGG-Face (red) and Original VGG-Face (blue), highlighting divergences. The x-axis represents
nodes (images), and the y-axis shows curvature values. Edge curvature distributions are shown for
Human Judgment (c), Aligned VGG-Face (d), and Original VGG-Face (e).
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