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ABSTRACT

We introduce Mem2Mem, a memory-to-memory mechanism for hierarchical re-
current neural network based encoder decoder architectures and we explore its
use for abstractive document summarization. Mem2Mem transfers “memories”
via readable/writable external memory modules that augment both the encoder
and decoder. Our memory regularization compresses an encoded input article
into a more compact set of sentence representations. Most importantly, the mem-
ory compression step performs implicit extraction without labels, sidestepping
issues with suboptimal ground-truth data and exposure bias of hybrid extractive-
abstractive summarization techniques. By allowing the decoder to read/write over
the encoded input memory, the model learns to read salient information about the
input article while keeping track of what has been generated. Our Mem2Mem
approach yields results that are competitive with state of the art transformer based
summarization methods, but with 16 times fewer parameters.

1 INTRODUCTION

Automatic summarization is the automated process of reducing the size of an input text while pre-
serving its most relevant information content and its core semantics. Techniques for summarization
are often characterized as being either: Extractive or Abstractive. Extractive methods construct
summaries by combining the most salient passages (usually whole sentences) of a source text; a
process similar to human’s way of identifying the right information. One way to achieve extrac-
tive summarization is to define the problem as a sentence classification task, using some form of
representation of the sentences in a document (Nallapati et al., 2016b; Cheng & Lapata, 2016). To
avoid content overlap issues, previous work has used sentence reranking (Narayan et al., 2018) or
sentence ordering by extracting sentences recurrently (Chen & Bansal, 2018). Abstractive methods
generate summaries by generating new sentence constructs “from scratch”, or from representation
of document content, a process that is conceptually more similar to the notion of paraphrasing. Ab-
stractive text summarization has attracted interest since it is capable of generating novel formulations
of summaries using language generation models conditioned on the source text. Several attention-
based Recurrent Neural Network (RNN) encoder-decoders have been introduced to tackle varying
text generation issues of standalone abstractive sequence-to-sequence (seq2seq) models. Copy and
pointer mechanisms (Gu et al., 2016; Tu et al., 2016; Vinyals et al., 2015; See et al., 2017), for ex-
ample, have enabled decoders to better generate unseen words, out-of-vocabulary words and named
entities.

Most recently, hybrid extractive and abstractive architectures have been proposed and have shown
promising results in both quantitative performance measures and human evaluations. In such set-
ups, the extractive model first selects salient sentences from a source article, and the abstractive
model paraphrases the extracted sentences into a final summary. The majority of current state-of-
the-art abstractive summarization models1 are based on the hybrid approach (Chen & Bansal, 2018;
Gehrmann et al., 2018; Hsu et al., 2018; Bae et al., 2019; Subramanian et al., 2019). Nonetheless,
hybrid models can be limited by three disadvantages. First, since ground-truth labels for extractive
summarization are usually not provided, extractive labels must be generated by a potentially sub-
optimal algorithm (Hsu et al., 2018; Subramanian et al., 2019). The performance of models trained

1Excluding summarization models using large scale pre-trained language models such as BERT (Devlin
et al., 2019)
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with such labels is therefore bounded by the quality of the performance of the extractive heuristics.
Second, since ground-truth binary labels for recurrently extracted sentences are typically teacher
forced as in Chen & Bansal (2018), “exposure bias” (Ranzato et al., 2016) may negatively affect
content selection performance at inference. Finally, given that the hard extraction step is not differ-
entiable, existing hybrid models typically require multi-step training (not end-to-end) (Gehrmann
et al., 2018; Subramanian et al., 2019) or reinforcement learning (Chen & Bansal, 2018; Bae et al.,
2019) to train the whole model.

In this paper, we introduce a novel abstractive summarization model that incorporates an interme-
diate extractive step but does not require labels for this type of extractive content selection, and
it is fully end-to-end trainable. To achieve this, we propose a new memory augmented encoder-
decoder (MAED) architecture (Wang et al., 2016; Yogatama et al., 2018; Ma & Principe, 2019; Le
et al., 2018) called Mem2Mem. Mem2Mem has 2 memorization modes: (1) absorb key informa-
tion of the encoded source sequence via a compression mechanism, and (2) sequentially update the
external memory during target summary generation. Without using extractive ground-truth labels,
we find in our analysis that Mem2Mem’s compression mechanism behaves as an implicit sentence
extractor that stores sentence representations of the salient content. The choice of sentence represen-
tations is only guided by the memory regularization and conditional language modeling loss of the
decoder, thus avoiding exposure bias from maximizing the likelihood of sequential binary extrac-
tion labels. Finally, the encoded memory is transferred to the decoder memory, which is iteratively
refined during the decoding process. To our knowledge, Mem2MeM is the first abstractive summa-
rization model that uses memory compression for sentence extraction and that directly employs the
memorized representations during summary generation. We empirically demonstrate the merits of
this approach by setting a new state-of-the-art on long text abstractive summarization tasks on the
Pubmed, arXiv and Newsroom datasets (Cohan et al., 2018; Grusky et al., 2018). Our contributions
are three fold:

1. We introduce the Mem2Mem approach that (i) stores salient sentence-level representations
via memory compression, (ii) transfers memory from encoder to decoder and (iii) updates
the memory as the summary generation proceeds.

2. Unlike previous works, our model combines the best of extractive and abstractive summa-
rization in a fully end-to-end trainable manner without supervision on the extraction step.

3. Our method yields results that are competitive with state of the art transformer (Vaswani
et al., 2017) language model based techniques, but with substantially fewer parameters
(only 6% of the parameters used by a recent state of the art transformer based method).

2 BACKGROUND

For our baseline, we use a hierarchical recurrent encoder-decoder structure (HRED) based seq2seq
model from Nallapati et al. (2016a) and Cohan et al. (2018). The HRED has two encoder GRUs:
a sentence encoder and a document encoder. Given an input sentence of length N , the sentence
encoder takes a sequence of token embeddings x and transforms it into a sequence of hidden states.

h
(w)
1 , . . . ,h

(w)
N = GRUsen(x1,x2, . . . ,xN ) (1)

The last hidden state of the sentence encoder is used as a corresponding sentence embedding s. The
sequence of sentence embeddings s are then processed by the document encoder.

h
(s)
1 , . . . ,h

(s)
L = GRUdoc(s1, s2, . . . , sL) (2)

where sj is the j th sentence embedding, h
(s)
j is the associated document encoder hidden state and

L is the total number of sentences in the document.

The decoder GRU generates a target summary one token at a time. At each decoding step t, the
decoder creates a decoder hidden state h

(d)
t . The decoder then obtains a context vector ct via γti,

an alignment between h
(w)
i and h

(d)
t . γti is computed by combining token level attention α and

sentence level attention β, such that:

αti = Attn(h(d)
t ,h

(w)
i ), βtj = Attn(h(d)

t ,h
(s)
j ), γti =

βtm(i)αti∑Nd

l=1 βtm(l)αtl

(3)
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Figure 1: Mem2Mem architecture: Sentence-level representations from the document encoder are reduced
to a fix sized encoder memory ME . The encoder memory is transferred to the decoder memory MD and is
read using a RAM like mechanism. The resulting memory readout vector is used to condition sentence and
word-level attention. The decoder hidden states and the memory readout vector are then used to update the
memory state MD via a gated write operation (zi).

where m(l) denotes the index of the sentence corresponding to the l th word, and Nd is the total
number of tokens in the input document. Attn in equation (3) is defined as in Luong et al. (2015).

The probability distribution of the next target word yt is estimated using the decoder hidden state
h
(d)
t and the context vector ct. The training objective L is the average negative log likelihood of the

target word yt over the whole ground truth summary of length T . Finally, the pointer generator and
decoder coverage method in See et al. (2017) are used for the baseline HRED. More details of the
baseline architecture can be found in Appendix 1.

3 MEMORY-TO-MEMORY MECHANISM (MEM2MEM)

Mem2Mem has three main features. (1) An encoder memory bank that compresses a large set
of encoder hidden representations into a smaller subset of salient representations. (2) Read/write
operations that allow the decoder to read and update the encoder memory bank with new information
during summary generation. (3) Token generation that is conditioned on the extracted sentence
representations accessed from the dynamic memory. The Mem2Mem components can be seamlessly
integrated with existing HRED architectures. In essence, the whole process can be seen as extraction
followed by generation. The architecture is depicted in Figure 1.

3.1 MEMORY COMPRESSION ON ENCODER

The aim of having an external memory on the encoder is to create a fixed size representation that
reduces the set of L hidden representations from GRUdoc to a subset of r representations. From a se-
quence of sentence-level document encoder hidden representations h

(s)
1 ,h

(s)
1 , . . .h

(s)
L , we construct

an intermediate 2-D matrix H ∈ RL×d, where d is the document encoder hidden size,

H =
[
h
(s)
1 h

(s)
2 . . . h

(s)
L

]T
. (4)

A smaller sized memory bank is generated by taking a linear combination of each row in H. The
weight vector for the linear combination a is computed with self-attention mechanism.

a = softmax(wT
a1tanh(Wa2H

>)) (5)

where wa1 ∈ Rda , Wa2 ∈ Rda×d, and da is the size of the hidden layer which is a hyperparameter.
To capture various aspects of the input document, a is extended to a multi-head memory write
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attention matrix A with r heads, A = softmax(Wa1tanh(Wa2H
>)) where Wa1 ∈ Rr×da and r

is a hyperparameter. This results in r different convex combinations of H, which gives us the final
multi-head encoder memory matrix ME ∈ Rr×d, ME = AH. To ensure the attention weights in
various heads focus on a diverse set of salient input sentences, we propose a novel regularization loss
for memory compression. The following regularization term encourages the diversity of compressed
encoded states.

L(comp) = ||(AA> − I)||F
2

(6)

where || • ||F is the Frobenius norm. The regularization loss L(comp) achieves two goals simulta-
neously: (1) It promotes diversity over the r sentence representations stored in the memory, thereby
reducing the risk of redundant information. (2) It hardens the attention probabilities of each head,
assuring that each memory slot is approximately associated to a single sentence representation. As
a result, the encoder memory ME essentially performs implicit extraction over the encoder hidden
states in a fully differentiable manner. Figure 3 in Appendix shows the effect of regularization on the
encoder memory compression. Note that no supervision exists on this extractive step and the mem-
ory compression is only guided by the memory regularization and back-propagated error signals
from the target summary generation.

3.2 READ/WRITE OPERATIONS ON DECODER

Once the encoder memory is constructed, the context read from the memory is used to augment both
attention mechanism and the target token generation. As a first step, the encoder memory ME is
transferred to the decoder and used as an initial state of the decoder memory MD. At every time
step t, the decoder reads from the memory and generates a memory read vector mt. Specifically,
the decoder takes the weighted sum over r memory slots via a RAM like attention mechanism:

ψtk = Attn(h(d)
t ,MD(k)), mt =

r∑
k=1

ψtkMD(k), (7)

where MD(k) is the vector representation of the k th head or slot of MD. h
(d)
t is then combined

with mt and generate a memory augmented decoder hidden state h
(m)
t = Wm[h

(d)
t ;mt] and the

next token estimation of the baseline system is replaced with h
(m)
t . As a consequence, the attention

over the source text and the prediction of the target token are conditioned on the memory read mt.
Thus, there is a direct link between the contents of the memory and the text generation.

During the summary generation process, the semantics of the source sequence that is kept in the
decoder memory needs to be modified. The memory write operation of Mem2Mem enables the
memory to log the history of what has been attended and generated. The decoder memory write
operation outlined below removes and adds information using a gated mechanism to forget used
memories and update each memory slot. The gating mechanism is conditioned on the the memory
content MD, the memory read vector mt, and the decoder hidden state h

(d)
t+1:

zkt = σ(Wz1h
(d)
t+1 + Wz2mt + Wz3MD(k)) (8)

uk
t = tanh

(
Wu1

h
(d)
t+1 + Wu2

mt + Wu3
MD(k)

)
(9)

MD(k) := zkt �MD(k) + (1− zkt )� uk
t (10)

Although text generation is directly conditioned on the memory context mt, the benefit of hav-
ing memory was limited in our preliminary experiments. We observed only a few memory slots
were repetitively attended during decoding. To ensure that the Mem2Mem decoder fully utilizes its
memory to improve generation, we propose another regularization term L(read).

c
(m)
t =

r∑
k=1

ψtkME(k), c
(s)
t =

Ls∑
j=1

βtjh
(s)
j , L(read) =

1

T

T∑
t=1

||c(m)
t − c

(s)
t ||2 (11)

where ME(k) is the vector representation of the kth memory head of ME and c
(s)
t is a sentence

level context vector. The regularization assumes that if the memory context mt, which is a sentence-
level representation, is combined properly within the decoding, the sentence level context vector c

(s)
t
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Table 1: Results on the PubMed, arXiv and Newsroom dataset. Each type corresponds to purely
abstractive (A), extractive (E), or extractive-abstractive hybrid (H) approaches. TLM uses the GPT-
2 model (Radford et al., 2019) that has 16 times larger parameters than Mem2Mem. The highest
ROUGE scores for abstractive methods are boldfaced. All ROUGE scores have a 95% confidence
interval of at most ±0.25 as reported by the official ROUGE. Results taken from: 1Subramanian
et al. (2019) and 2Cohan et al. (2018). * Newsroom abstractive summarization test set results.

Model Type # of ROUGE-1/2/L
params. PubMed arXiv Newsroom*

Lead-10 / 3 (Newsroom)1 E - 37.45/14.19/34.07 35.52/10.33/31.44 13.7/2.4/11.2
Sent-CLF1 E - 45.01/19.91/41.16 34.01/8.71/30.31 15.4/2.7/12.8
Sent-PTR1 E - 43.30/17.92/39.47 42.32/15.63/38.06 15.9/2.8/13.0

Attn-Seq2Seq1,2 A - 31.55/8.52/27.38 29.3/6.00/25.56 6.21/1.07/5.68
Ptr-Gen-Seq2Seq1,2 A - 35.86/10.22/29.69 32.06/9.04/25.16 14.66/2.26/11.44
Discourse-aware2 A 14.3M 38.93/15.37/35.21 35.80/11.05/31.80 -/-/-

TLM1 A 234M 37.06/11.69/34.27 39.65/12.15/35.76 20.40/6.90/17.10
TLM1 H 234M 42.13/16.27/39.21 41.62/14.69/38.03 20.10/6.50/16.60

Mem2Mem (ours) A 14.7M 42.06/16.56/38.11 41.81/14.99/37.24 20.00/6.60/16.80

would correlate with it. The initial state of the decoder memory ME is used to compute c
(m)
t since

the representation of MD deviates from the original representation space of h
(s)
j due to the write

operation. The final training objective of Mem2Mem becomes as follows.

L+ λ1L(comp) + λ2L(read) (12)

where the weights for regularization λ1 and λ2 are hyperparameters.

4 RELATED WORK

Recent works in abstractive summarization have leveraged intermediate content selection. In these
approaches, writing a summary is factorized into two steps: extraction and generation. An extractor
is used to prioritize and select the most important part of the input text. The extractor is normally
trained on a sequence of binary labels where each label indicates whether the corresponding text
unit should be selected or not. The level of extraction can be word-level (Gehrmann et al., 2018;
Cho et al., 2019) or sentence-level (Chen & Bansal, 2018; Hsu et al., 2018; Bae et al., 2019;
Subramanian et al., 2019). As the ground truth for extraction is typically missing, heuristics that
measure n-gram overlap with the target summary are used to build extractive oracles. Similar
to other approaches, Mem2Mem performs sentence-level extraction to deal with long source
articles2. Mem2Mem determines the alignment between source and target sentences in a latent
space without relying on possibly suboptimal extractive heuristics. In addition, sentence extraction
is not sequentially done in Mem2Mem, which addresses the exposure bias issue (Ranzato et al.,
2016).

Memory Augmented Encoder Decoder (MAED) architectures (Wang et al., 2016; Yogatama et al.,
2018; Ma & Principe, 2019; Le et al., 2018) have been proposed for conditional natural language
generation tasks, such as machine translation (Kaiser et al., 2017) and image captioning (Park et al.,
2017). Using differentiable read and write operations to an external module, MAED can represent
non-local context of RNNs with enhanced memory capacity. Such models are able to store tempo-
rally distant information of large input sequences, a feature that is particularly useful for long text
summarization. In the context of short text abstractive summarization, Kim et al. (2019) proposed a
memory architecture named multi-level memory networks (MMN). MMN can flexibly reduce rep-
resentations at different levels of document hierarchy into a fixed size external memory. Authors
used multi-layer dilated Convolutional Neural Networks (CNN) (Yu & Koltun, 2016; van den Oord
et al., 2016) to build a hierarchical representation of the document. Mem2Mem also constructs

2In preliminary experiments, we applied word-level selection on the PubMed and arXiv datasets, which led
to poor results
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Table 2: Model ablation study on the PubMed dataset.

Model ROUGE
1 2 L

Baseline HRED 40.02 15.82 36.28
+ Encoder Mem 40.62 15.89 36.85
+ Decoder Mem 40.51 15.9 36.64
+ Mem Transfer 41.27 16.24 37.38
+ Reg L(comp) 41.82 16.51 37.76
+ Reg L(read) 42.06 16.56 38.11

Table 3: ROUGE scores of unsupervised extractive methods on the PubMed and the arXiv dataset.
The result of baseline extractive methods is from Subramanian et al. (2019).

Data Model ROUGE
1 2 L

PubMed

Lead-10 37.45 14.19 34.07
LexRank 39.19 13.89 34.59

Mem2Mem 41.77 16.20 37.81
Gold Ext 47.76 20.36 39.19

arXiv

Lead-10 35.52 10.33 31.44
LexRank 33.85 10.73 28.99

Mem2Mem 41.76 14.95 37.22
Gold Ext 44.25 18.17 35.33

memory from the hierarchical representation of the document, but by compressing it into a sparse
set of sentence representations. Further, MMN’s memory representations remain static throughout
the decoding process while Mem2Mem dynamically updates its memory, which is more effective
in learning long term dependency. Lastly but not least, our work proposes novel regularization for
memory read and compression.

5 RESULTS AND DISCUSSION

5.1 EXPERIMENT SETUP

We evaluate Mem2Mem on the PubMed, arXiv (Cohan et al., 2018) and Newsroom abstractive
datasets (Grusky et al., 2018) which are large scale summarization datasets. The average lengths of
source articles and target summaries are 3016/203 (PubMed), 4938/220 (arXiv), and 751/30 (News-
room) respectively. They are up to 6 times longer than the widely used CNN/DailyMail dataset
(781/56) (Hermann et al., 2015; See et al., 2017). Our pre-processing and training setups are iden-
tical to Cohan et al. (2018) and Subramanian et al. (2019). More details on training and evaluation
can be found in Appendix 2. For quantitative evaluation, we use the ROUGE metric (Lin, 2004) and
report F-1 ROUGE scores.

5.2 RESULTS

Table 1 shows the ROUGE scores on three summarization datasets. The hybrid type (H) refers to
models that use two-step extractive-abstractive summarization. On the PubMed dataset, the TLM
model shows the highest scores in R-1 and R-L. Mem2Mem is close to those scores and shows higher
R-2 (+0.29) scores with 16 times less parameters (14.7M vs. 234M). It achieves such performance
over the TLM model without ground truth labels for sentence extraction. We also reiterate that
Mem2Mem is trained completely end-to-end whereas the hybrid TLM requires separate training for
the extractor and the conditional transformer language model. We find similar results on the arXiv
and Newsroom datasets. On the arXiv dataset, Mem2Mem even surpasses the transformer based
TLM model in R-1 (+0.19) and R-2 (+0.3) scores. Mem2Mem also shows competitive results on
the Newsroom abstractive dataset.
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Figure 2: Multi-head memory write attention matrix A and memory read attention matrix Ψ. In (a),
rows denote memory heads or slots and columns indicate input sentence indices. In (b), columns
indicate decoding time steps.

5.3 ABLATION STUDY

To assess the importance of Mem2Mem components, we conduct an ablation study on the PubMed
dataset. Table 2 shows the effects of adding different Mem2Mem add-ons on ROUGE scores. +En-
coder Mem is the baseline HRED augmented with the encoder memory described in section 3.1.
The result demonstrates that memory context indeed enhances the performance measures of the
generated summaries. +Decoder Mem adds the write operation to the memory but without memory
transfer. In this case, the decoder memory MD is initialized with zeros not with the encoder memory
ME . Compared to the Baseline HRED, the result shows that the write mechanism on the decoder
memory helps the generation even without the memory transfer. This indicates that the summary
writing process largely benefits from accessing long term contextual information of the output text.

Transferring memory (+Mem Transfer) brings substantial improvements in ROUGE scores. It seems
to be crucial to initiate the summary generation from the selected memory representations, showing
the importance of the memory compression and transfer steps. Furthermore, it can be observed that
discouraging redundancies over the encoder memory head via L(comp) leads to additional improve-
ments on all ROUGE scores. Finally, adding another regularization L(read) on the decoder memory
read operation completes the Mem2Mem architecture and achieves the best ROUGE scores.

5.4 IMPLICIT EXTRACTION VIA MEMORY COMPRESSION

Our initial hypothesis was that the encoder memory ME would pick a set of the most salient input
sentences for summarization. To confirm, we analyze the quality of the extractive summarization by
memory compression. Concretely, we concatenate the sentences with the highest attention weight
of each memory head to generate a summary. Table 3 shows the ROUGE scores of different unsu-
pervised extractive summarization methods on the PubMed and arXiv datasets. The extractive sum-
marization performed by the Mem2Mem’s memory compression outperforms existing unsupervised
extractive summarization baselines. The result indicates that Mem2Mem’s memory compression is
able to prioritize amongst a large set of input sentences without ground truth sentence labels.

5.5 DYNAMIC MEMORY READ BY DECODER

The benefit of implicit extraction is maximized when the extracted representations are properly con-
sumed in the text generation. To understand the link between the representations stored in the mem-
ory and the summary generation, we analyze the memory read attention weights ψtk in equation (7)
throughout the decoding. Figure 2 (b) shows that the Mem2Mem decoder fully utilizes all memory
representations. We also find a pattern that memory read attention weights are mostly concentrated
on the front part of the source text in the beginning of the decoding (mem slots 2,5,8), and gradually
moves to the latter part (mem slots 3,4,9). This demonstrates Mem2Mem’s ability to update the read
operation to dynamically capture relevant input contexts during the summary generation.
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Table 4: Percentage ratios of output summary n-grams found in the PubMed original input article.

Models n-grams
5 10 15 20

Reference 12.4 3.2 1.3 0.9
Baseline HRED 38.1 26.0 17.4 13.4

TLM-hybrid 24.7 10.8 7.0 4.1
Mem2Mem (ours) 28.3 19.2 17.6 10.7

Table 5: Results of human evaluation. Maximum score for each criterion is 5.

Models Human evaluation scores
COH INF REL FLU

Baseline HRED 3.02 2.98 2.85 3.08
TLM-hybrid 3.67 3.11 3.43 3.51

Mem2Mem (ours) 3.59 3.13 3.46 3.38

5.6 ABSTRACTIVENESS OF THE SUMMARY

To analyze the abstractiveness of generated summaries, we present the ratio of output summary n-
grams present in the original input article. Table 4 shows that Mem2Mem copies less n-grams than
the baseline HRED. Compared to the baseline HRED, Mem2Mem generates approximately 10%
more novel 5-grams and 7% more 10-grams respectively. The result along with higher ROUGE
scores highlights the Mem2Mem’s ability to generate novel words for abstractive summarization
while staying focused on important parts of the article. Although TLM (Subramanian et al., 2019) 3

shows the highest abstractiveness, Mem2Mem achieves its result with a significanly smaller model.

5.7 HUMAN EVALUATION

We also perform a human evaluation to assess the quality of generated summaries. For the human
evaluation, 20 random arXiv testset article-summary pairs are presented to three Amazon Mechani-
cal Turk workers. Workers judge generated summaries on four different aspects: Coherence (COH:
does the summary make sense), Informativeness (INF: are the most important points of the article
captured), Redundancy (RED: does the summary repeat itself), and Fluency (FLU: how fluent is the
summary). Table 5 shows that Mem2Mem obtains the highest scores in Informativeness and Re-
dundancy. Its Coherence score is also close to the best score by TLM. Fluency is an advantage for
the transformer-based TLM as expected but Mem2Mem is close and still greatly superior to vanilla
hierarchical encoder decoders. While the ROUGE difference between the baseline and Mem2Mem
are substantial in Table 2, the results of the human evaluation show more pronounced differences in
the quality of generated text. For output summary examples, please refer to Table 6 in Appendix 4.

6 CONCLUSION

This work proposes Mem2Mem, a novel MAED based mechanism for very long text abstractive
summarization. Mem2Mem involves two memory types: A static encoder memory for compressing
input texts and a dynamic decoder memory which refines the generation process. Memory trans-
fer between them links two memories and maximizes the benefit of content extraction aimed for
summarization. Different from existing hybrid extractive and abstractive approaches, Mem2Mem
incorporates an extraction step without ground truth sentence labels and multi-step training. We
demonstrate the effectiveness of Mem2Mem by showing promising results on the PubMed, arXiv,
and Newsroom summarization datasets with an order of magnitude less parameters than competing
transformer-based models. The Mem2Mem’s memory compression can be generalized to other do-
mains that require text generation guided by content selection. In future work, we will extend and
validate the strength of our approach on a variety of language learning tasks.

3The authors provided example summaries from their model.
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A APPENDIX

A.1 BASELINE ARCHITECTURE

In addition to the hierarchical recurrent encoder-decoder (HRED) architecture described in section 2,
the following features are used for both baseline and Mem2Mem architectures.

A.1.1 POINTER GENERATOR NETWORK

In order to handle out-of-vocabulary (OOV) token predictions, pointer generator in See et al. (2017)
is used to copy words directly from the input document. At each step t, the decoder decides whether
to predict the next target word from the input text or the generation mechanism. The pointer gener-
ator computes zt which denotes the probability of choosing Pg for sampling the next target token.

zt = softmax(wT
c ct + wT

d h
(d)
t + wT

x x
′

t) (13)

where x
′

t is the embedding of the previous target token. The probability zt is used as a variable for
soft switch between generating a word from the vocabulary (Pg) or directly copying from the source
document (Pc). The probability of copying a word w from the source text is calculated based on the
attention weights γ.

Pc(yt = w|y1:t−1) =
∑

i:xi=w

γti (14)

Note that Pc(yt = w|y1:t−1) = 0 if w does not exist in the source document. Likewise, Pg(yt =
w|y1:t−1) = 0 if w is an out of vocabulary word. Combining two probability distributions, the final
probability of the next word yt being w is as follows.

P (yt = w|y1:t−1) = ztPg(yt = w|y1:t−1) + (1− zt)Pc(yt = w|y1:t−1) (15)

A.1.2 DECODER COVERAGE

It is well known that RNN sequence-to-sequence models tend to suffer from repeated phrases when
generating long target sequences. See et al. (2017) tackled this issue by keeping track of the attention
coverage. More concretely, the coverage vector covt at the decoding step t is computed by taking
the summation of the token-level attention weights α until the last step t− 1.

covt =

t−1∑
t′=0

αt′ (16)

To inform the decoder of the history of attention weights, the coverage vector is fed into the token-
level attention mechanism, which modifies the equation (3) to the following equation.

αti = softmax
(
v> tanh

(
Weh

(w)
i +Wdh

(d)
t + wc covT

t

))
(17)

A.2 TRAINING DETAILS

We generally follow the pre-processing steps in Cohan et al. (2018) for the PubMed and arXiv
datasets. The maximum number of sections is set to 4 and the maximum number of tokens for each
section is 500. The length of the target summary is limited to 200 tokens.

Single-layer bidirectional GRUs (Cho et al., 2014) are used for the sentence and the document
encoders. The decoder is also a single layer GRU. All GRUs have the hidden size of 256. The di-
mensionality of token embeddings is 128 and embeddings are trained from scratch. The vocabulary
size is limited to 50,000. Batch size is 16 and Adam (Kingma & Ba, 2015) with learning rate 2e−4
is used for training. Maximum gradient norm is set to 2. We train all models for 15 epochs. At the
test time, beam search with the beam size 4 is used for decoding.

For Mem2Mem hyperparameters, the number of heads for the memory compression is 10 and the
self-attention hidden size is 128. The weights λ1 and λ2 for the regularization L(comp) and L(read)

are 0.0001 and 0.01 respectively.
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A.3 THE EFFECT OF REGULARIZATION

The following figures show the effect of regularization in Mem2Mem.
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Figure 3: The effect of regularization on memory compression. Examples of the multi-head encoder
memory write attention matrix A are illustrated. Rows denote memory heads or slots and columns
indicate input sentence indices. Note that the regularization loss L(comp) removes the redundancy
over different memory heads and guides each slot to focus on a single sentence.
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Figure 4: The effect of regularization on memory read. Examples of the decoder memory read
attention matrix Ψ are illustrated. Rows denote memory heads or slots and columns indicate decod-
ing time steps. Note that the regularization loss L(read) encourages the model to fully utilize the
compressed memory representations.

A.4 QUALITATIVE RESULTS

Reference and system generated summaries from the test set of the arXiv dataset are shown in the
following table. Compared to the baseline, Mem2Mem shows much less repetition and produces
more concise summaries. Even the TLM model repeats several phrases or sentences.
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Table 6: Reference and system generated summaries from the test set of the arXiv dataset.

Reference — we study the behavior of simple principal pivoting methods for the p-matrix linear comple-
mentarity problem ( p - lcp ) . we solve an open problem of morris by showing that murty s least index pivot
rule ( under any fixed index order ) leads to a quadratic number of iterations on morris s highly cyclic p -
lcp examples . we then show that on k - matrix lcp instances , all pivot rules require only a linear number
of iterations. as the main tool , we employ unique sink orientations of cubes , a useful combinatorial
abstraction of the p - lcp .
Baseline HRED — the third author of this paper still vividly recollects his visit to victor klee at the uni-
versity of washington (seattle) in august 2000 . the third author of this paper still vividly recollects his visit
to victor klee at the university of washington (seattle) in august 2000 . the third author of this paper still
vividly recollects his visit to victor klee at the university of washington (seattle) in august 2000 . in this
paper . , we introduce the digraph model behind p - lcps and show that the simplex method is polynomial -
time for which the number of iterations is exponential in the number of variables and constraints .
TLM-hybrid — we study linear complementarity problems with sufficient matrices and the criss - cross
method . we use a novel notion of linear complementarity to derive linear complementarity problems
with sufficient matrices and the “linear” version of the “quadratic” version of the “linear” version of the
“linear” version . this yields a new family of np-complete problems for which both linear complementarity
and the “quadratic” version of the “linear” version of the “quadratic” version are possible .
Mem2Mem — in this paper we introduce a digraph model behind p - lcps and show that the simplex
method can be used to solve a linear program ( lp ) for which the number of iterations is exponential

in the number of variables and constraints on the number of iterations . we show that the number of
arithmetic operations does not depend on the bit lengths of the input numbers . we also show that the
number of iterations required to solve the linear complementarity problem can be used to determine the
expected performance of the lp .
Reference — we have developed a procedure for the classification of eclipsing binaries from their light
- curve parameters and spectral type. the procedure was tested on more than 1000 systems with known
classification, and its efficiency was estimated for every evolutionary status we use. the procedure was
applied to about 4700 binaries with no classification, and the vast majority of them was classified success-
fully . systems of relatively rare evolutionary classes were detected in that process, as well as systems with
unusual and/or contradictory parameters. also, for 50 previously unclassified cluster binaries evolutionary
classes were identified. these stars can serve as tracers for age and distance estimation of their parent stellar
systems. the procedure proved itself as fast, flexible and effective enough to be applied to large ground
based and space born surveys, containing tens of thousands of eclipsing binaries.
Baseline HRED — in this paper we present a novel procedure for determination of the evolutionary status
of eclipsing binaries. the procedure is based on the most comprehensive set of rules for the classification
of eclipsing binaries, which is the world s principal database of eclipsing binary systems with available
classification. the main goal of this paper is to develop a fast and effective procedure for determination of
the binary s spectral type or color index. the procedure is based on the most comprehensive set of rules for
the classification of eclipsing binaries, which is the world s principal database of eclipsing binary systems
with available classification. the main goal of this paper is to develop a fast and effective procedure for
determination of the evolutionary status of eclipsing binaries. the method is based on a catalogue which
includes a number and the eclipsing variables, and a classification procedure. we find a good fit of all known
parameters, which can not have any value in a large range. we find a significant fraction (mp, depth) for
each of these systems, and that a given number is @xmath0 mag
TLM-hybrid — a fast and effective procedure for determination of the evolutionary status of eclipsing
binaries is presented. a complete set of rules is developed that utilizes all available data for a specific class
of eclipsing binaries , while requiring only light curve parameters and an estimate of the binary s spectral
type or color index. the procedure is tested with the catalogue of eclipsing binaries ( cev ), which is the
world s principal database of eclipsing binaries with available classification. the main goal of our work is to
develop a fast and effective procedure for determination of the evolutionary status of eclipsing binaries. we
apply it to cev binaries with already available classification. the main objective of this work is to develop
a fast and effective procedure for determination of the evolutionary status of eclipsing binaries. the main
objective of our work is to develop a fast and effective procedure for determination of the evolutionary status
of eclipsing binaries. we apply it to cev binaries with already available classification. the main objective of
this work is to demonstrate the usefulness of our method, and to propose a possible application of it to cev
binaries with already known classification.
Mem2Mem — in this paper we present a novel procedure for determination of the evolutionary status of
eclipsing binaries, while requiring only light curve parameters and an estimate of the binary s spectral type
or color index. the procedure is based on the most comprehensive set of rules for the classification of eclips-
ing binaries, which can be used to quickly characterize large numbers of eclipsing binaries. the procedure is
tested with the catalogue of eclipsing variables ( dr & sh ), which is the world s principal database of eclips-
ing binary systems with available classification. we find that the number of fully characterized eclipsing
binaries can be used to quickly characterize large numbers of eclipsing binaries.
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