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ABSTRACT

The goal of multi-task learning is to learn diverse tasks within a single unified net-
work. As each task has its own unique objective function, conflicts emerge dur-
ing training, resulting in negative transfer among them. Earlier research identified
these conflicting gradients in shared parameters between tasks and attempted to re-
align them in the same direction. However, we prove that such optimization strate-
gies lead to sub-optimal Pareto solutions due to their inability to accurately deter-
mine the individual contributions of each parameter across various tasks. In this
paper, we propose the concept of task priority to evaluate parameter contributions
across different tasks. We identify two types of connections to learn and maintain
task priority: implicit and explicit connections. Implicit connections relate to the
links between parameters influenced by task-specific loss during backpropagation,
whereas explicit connections are gauged by the magnitude of parameters. Based
on these, we present a new method named connection strength-based optimization
for multi-task learning. Our optimization process consists of two phases. The first
phase learns the task priority within the network, while the second phase modi-
fies the gradients while upholding this priority. This ultimately leads to finding
new Pareto optimal solutions for multiple tasks. Through extensive experiments
with different loss scaling techniques, we show that our approach greatly enhances
multi-task performance in comparison to earlier gradient manipulation methods.

1 INTRODUCTION

Multi-task learning (MTL) is a learning paradigm that learns multiple different tasks in a single
model (Caruana, 1997). Compared to learning tasks individually, MTL can effectively reduce the
number of parameters, leading to less memory usage and computation with a higher convergence
rate. Furthermore, it leverages multiple tasks as an inductive bias, enabling the learning of gener-
alized features while reducing overfitting. Complex systems such as robot vision and autonomous
driving require the ability to perform multiple tasks within a single system. Thus, MTL can be a
first step in finding general architecture for various domains including computer vision.

A primary goal of MTL is minimizing negative transfer (Crawshaw, 2020) and finding Pareto-
optimal solutions (Sener & Koltun, 2018) for multiple tasks. Negative transfer is a phenomenon
where the learning of one task adversely affects the performance of other tasks. Since each task
has its own objective, this can potentially result in a trade-off among tasks. A condition in which
enhancing one task is not possible without detriment to another is called Pareto optimality. A com-
monly understood cause of this trade-off is conflicting gradients (Yu et al., 2020) that arise during
the optimization process. When the gradients of two tasks move in opposing directions, the task
with larger magnitudes dominates the other, disrupting the search for new Pareto-optimal solutions.
What makes more complicating the situation is unbalanced loss scales across tasks. The way we
weigh task losses is crucial for multi-task performance. When there is a significant disparity in the
magnitudes of losses, the task with a larger loss would dominate the entire network. Hence, the
optimal strategy for MTL should efficiently handle conflicting gradients across different loss scales.

Previous studies address negative transfer by manipulating gradients or balancing tasks’ losses. So-
lutions for handling conflicting gradients are explored in (Sener & Koltun, 2018; Yu et al., 2020;
Liu et al., 2021). These approaches aim to align conflicting gradients towards a cohesive direction
within a shared network space. However, these techniques are not effective at preventing negative
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transfer, as they don’t pinpoint which shared parameters are crucial for the tasks. This results in sub-
optimal Pareto solutions for MTL, leading to pool multi-task performance. Balancing task losses is
a strategy that can be applied independently from gradient manipulation methods. It includes scaling
the loss according to homoscedastic uncertainty (Kendall et al., 2018), or dynamically finding loss
weights by considering the rate at which the loss decreases (Liu et al., 2019).

In this paper, we propose the concept of task priority to address negative transfer in MTL and sug-
gest connection strength as a quantifiable measure for this purpose. The task priority is defined over
shared parameters by comparing the influence of each task’s gradient on the overall multi-task loss.
This reveals the relative importance of shared parameters to various tasks. To learn and conserve the
task priority throughout the optimization process, we propose two different connections. Implicit
connections denotes the link between shared and task-specific parameters during the backpropa-
gation of each task-specific loss. Whereas, explicit connections refers to connections that can be
quantified by measuring the scale of parameters. Based on the types of connection, we apply two
different optimization phases. The goal of the first phase is to find a new Pareto-optimal solution for
multiple tasks by learning task priority with implicit connections. The second phase is to conserve
task priority learned from varying loss scales by using explicit connections. Our method outperforms
previous optimization techniques that relied on gradient manipulation, consistently discovering new
Pareto optimal solutions for various tasks, thereby improving multi-task performance.

2 RELATED WORK

Optimization for MTL aims to mitigate negative transfer between tasks. Some of them directly
modify gradients to address task conflicts. MGDA (Désidéri, 2012; Sener & Koltun, 2018) views
MTL as a multi-objective problem and minimizes the norm point in the convex hull to find a Pareto
optimal set. PCGrad (Yu et al., 2020) introduces the concept of conflicting gradients and employs
gradient projection to handle them. CAGrad (Liu et al., 2021) minimizes the multiple loss functions
and regularizes the trajectory by leveraging the worst local improvement of individual tasks. Recon
(Guangyuan et al., 2022) uses an approach similar to Neural Architecture Search (NAS) to address
conflicting gradients. Some approaches use normalized gradients (Chen et al., 2018) to prevent
spillover of tasks or assign stochasticity on the network’s parameter based on the level of consis-
tency in the sign of gradients (Chen et al., 2020). RotoGrad (Javaloy & Valera, 2021) rotates the
feature space of the network to narrow the gap between tasks. Unlike earlier methods which guided
gradients to converge towards an intermediate direction (as illustrated in Fig. 1a), our approach iden-
tifies task priority among shared parameters to update gradients, leading to Pareto-optimal solutions.

Scaling task-specific loss largely influences multi-task performance since the task with a significant
loss would dominate the whole training process and cause severe task interference. To address the
task unbalancing problem in the training, some approaches re-weight the multi-task loss by mea-
suring homoscedastic uncertainty (Kendall et al., 2018), prioritizing tasks based on task difficulty
(Guo et al., 2018), or balancing multi-task loss dynamically by considering the descending rate of
loss (Liu et al., 2019). We perform extensive experiments involving different loss-scaling methods
to demonstrate the robustness of our approach across various loss-weighting scenarios.

MTL architectures can be classified depending on the extent of network sharing across tasks. The
shared trunk consists of a shared encoder followed by an individual decoder for each task (Dai et al.,
2016; Ma et al., 2018; Simonyan & Zisserman, 2014; Zhang et al., 2014). Multi-modal distillation
methods (Eigen & Fergus, 2015a; Xu et al., 2018; Vandenhende et al., 2020; Zhang et al., 2019)
have been proposed, which can be used at the end of the shared trunk for distillation to propagate
task information effectively. On the other hand, cross-talk architecture uses separate networks for
each task and allows parallel information flow between layers (Gao et al., 2019). Our optimization
approach can be applied to any model to mitigate task conflicts and enhance multi-task performance.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION FOR MULTI-TASK LEARNING

In multi-task learning (MTL), the network learns a set of tasks T = {τ1, τ2, ..., τK} jointly. Each
task τi has its own loss function Li(Θ) where Θ is the parameter of the network. The network
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parameter Θ can be classified into Θ = {Θs,Θ1,Θ2, ...,ΘK} where Θs is shared parameter across
all tasks and Θi is task-specific parameters devoted to task τi. Then, the objective function of multi-
task learning is to minimize the weighted sum of all tasks’ losses:

Θ∗ = argmin
Θ

K∑
i=1

wiLi(Θs,Θi) (1)

The performance in multi-task scenarios is affected by the weighting wi of the task-specific loss Li.

3.2 PRIOR APPROACH FOR MULTI-TASK OPTIMIZATION

From an optimization perspective, MTL seeks Pareto optimal solutions for multiple tasks.
Definition 1 (Pareto optimality). For a given network parameter Θ, if we get Θnew which satisfies
Li(Θ) ≥ Li(Θnew) for all tasks i = 1, 2, ...,K, the situation is termed a Pareto improvement. In
this context, Θnew is said to dominate Θ. A parameter Θ∗ is Pareto-optimal if no further Pareto
improvements are possible. A set of Pareto optimal solutions is called a Pareto set or Pareto frontier.

Earlier research (Sener & Koltun, 2018) interprets multi-task learning in the context of multi-
objective optimization, aiming for Pareto optimality. We can empirically validate this through an
analyzing the training loss and multi-task performance (Liu et al., 2021). To find Pareto optimality,
some emphasize the conflicting gradients problem (Yu et al., 2020) during the optimization process.

Definition 2 (Conflicting gradients). Conflicting gradients are defined in the shared space of the
network. Denote the gradient of task τi with respect to the shared parameters Θs as gi =
∇ΘsLi(Θs,Θi). And gi and gj are gradients of a pair of tasks τi and τj where i ̸= j. If gi · gj ≤ 0,
then the two gradients are called conflicting gradients.

Previous approaches (Sener & Koltun, 2018; Yu et al., 2020; Liu et al., 2021) address the issue of
conflicting gradients in shared parameters Θs by aligning the gradients in a consistent direction as
shown in Fig. 1a. Nonetheless, they face challenges in minimizing negative transfer, as they cannot
discern which parameters in Θs are most important to tasks. We refer to the relative importance
of a task in the shared parameter as task priority. Previous studies aligned gradients without taking
into account task priority, inadvertently resulting in negative transfer and reduced multi-task perfor-
mance. In contrast, we introduce the notion of connection strength to determine task priority in the
shared space and propose new gradient update rules based on this priority.

4 METHOD

In this section, we introduce the concept of task priority to minimize negative transfer between tasks.
We utilize two distinct forms of connection to use the task priority. Following that, we propose a
novel optimization method for MTL termed connection strength-based optimization. Our approach
breaks down the optimization process into two phases as shown in Fig. 1b. In Phase 1, we focus
on instructing the network to catch task-specific details by learning task priority. In Phase 2, task
priority within the shared parameters is determined and project gradients to preserve the priority.

4.1 MOTIVATION: TASK PRIORITY

Using the notation given in Section 3, we propose a straightforward and intuitive analysis of our
approach. Before diving deeper, we first introduce the definition of task priority.
Definition 3 (Task priority). Assume that the task losses Li for i = 1, 2, ...,K are differentiable.
Consider X t as the input data at time t. We initiate with shared parameters Θt

s and task-specific
parameters Θt

i with sufficiently small learning rate η > 0. A subset of shared parameters at time t
is denoted as θt, such that θt ⊂ Θt

s. For any task τi ∈ T , the task’s gradient for θt is as follows:

gi = ∇θtLi(X t, Θ̃t
s, θ

t,Θt
i) (2)

where Θ̃t
s represents the parameters that are part of Θt

s but not in θt. For two distinct tasks τm, τn ∈
T , if τm holds priority over τn in θt, then the following inequality holds:

K∑
i=1

wiLi(Θ̃
t
s, θ

t − η · gm,Θt
i) ≤

K∑
i=1

wiLi(Θ̃
t
s, θ

t − η · gn,Θt
i) (3)
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Figure 1: Overview of our connection strength-based optimization. (a) Previous methods modify
gradients in shared parameters to converge toward an intermediate direction without considering the
task priority, which leads to sub-optimal Pareto solutions. (b) Our method divides the optimization
process into two distinct phases. In Phase 1, task priority is learned through implicit connections,
leading to the identification of a new Pareto optimal solution. In Phase 2, task priority is gauged
using explicit connections between shared and task-specific parameters. Subsequently, gradients are
aligned with the direction of the highest-priority task’s gradients. This phase ensures that priorities
established in Phase 1 are maintained, thus reducing potential negative transfer.

Our motivation is to divide shared parameters Θs into subsets {θs,1, θs,2, ..., θs,K} based on task
priority. Specifically, θs,i represents a set of parameters that have a greater influence on task τi com-
pared to other tasks. From the existence of the task priority, we can derive the following theorem.
Theorem 1. Updating gradients based on task priority for shared parameters Θs (update gi for each
θs,i) results in a smaller multi-task loss

∑K
i=1 wiLi compared to updating the weighted summation

of task-specific gradients
∑K

i=1∇wiLi which does not take task priority into account.

The theorem suggests that by identifying the task priority within the shared parameter Θs, we can
further expand the known Pareto frontier compared to neglecting that priority. A detailed proof
is provided in Appendix A. However, identifying task priority in real-world scenarios is highly
computationally demanding. This is because it requires evaluating priorities for each subset of the
parameter Θs through pairwise comparisons among multiple tasks. Instead, we prioritize tasks based
on connection strength for practical purposes.

4.2 CONNECTION STRENGTH

The idea of connection strength initially emerged in the field of network compression by pruning
nodes in expansive convolutional neural networks (Saxena & Verbeek, 2016). This notion stems
from the intuition that larger parameters have a greater influence on the model’s output. Numerous
studies (Han et al., 2015; Guo et al., 2016; Li et al., 2016; He et al., 2018; Yu et al., 2018; He et al.,
2019; Lin et al., 2021) have reinforced this hypothesis. In our study, we re-interpret this intuition for
MTL to determine task priority in shared parameters of the network.

Before we dive in, we divide network connections into two types: implicit and explicit, depending
on whether their strength can be quantified or not. Conventionally, connection strength in a network
refers to the connectivity between nodes, quantified by the magnitude of parameters. However, we
introduce a distinct type of connection that is influenced by task-specific loss. In the context of MTL,
where each task has its own distinct objective function, diverse connections are formed during the
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backpropagation. Such connections are implicitly determined by the specific loss associated with
each task, leading us to term them implicit connections. In MTL, each connection is defined for
each task. A set of shared and task-specific parameters, Θs and Θi establishes a unique connection.

Conversely, explicit connections can be measured by the scale of parameters, mirroring the conven-
tional notion. In this instance, we employ task-specific batch normalization to determine the task
priority of the output channel of the shared convolutional layer. To establish an explicit connection,
we initiate with a convolutional layer where the input is represented as x ∈ RNI×H×W and the
weight is denoted by W ∈ RNO×NI×K×K . Here, NI stands for the number of input channels, NO

for the number of output channels, and K indicates the kernel size. Suppose we have output channel
set Cout = {coutp }

NO
p=1 and input channel set Cin = {cinq }

NI
q=1. For any given pair of output and input

channels coutp ∈ Cout, cinq ∈ Cin, the connection strength sp,q is defined as:

sp,q =
1

K2

K−1∑
m=0

K−1∑
n=0

W (coutp , cinq ,m, n)
2

(4)

The variables m and n correspond to the indices of the convolutional kernel. We explore the convo-
lutional layer followed by task-specific batch normalization, which plays a key role in determining
task priority for each output channel. We revisit the equation for batch normalization with input y
and output z of batch normalization (Ioffe & Szegedy, 2015):

z =
γ√

V ar[y] + ϵ
· y + (β − γE[y]√

V ar[y] + ϵ
) (5)

The coefficient of y has a direct correlation with the kernel’s relevance to the task since it directly
modulates the output y. Therefore, for task τi, we re-conceptualize the connection strength at the
intersection of the convolutional layer and task-specific batch normalization in the following way:

Sτi
p =

γ2
τi,p

V ar[y]p + ϵ
·

NI∑
q=1

sp,q (6)

where γτi,p is a scale factor of the task-specific batch normalization. Sτi
p measures the contribution

of each output channel coutp to the output of task τi. However, it is not possible to directly compare
Sτi
p across tasks because the tasks exhibit different output scales. Hence, we employ a normalized

version of connection strength that takes into account the relative scale differences among tasks:

Ŝτi
p =

Sτi
p∑NO

p=1 S
τi
p

(7)

In the following optimization, we employ two connections to learn task priority and conserve it.

4.3 PHASE 1: OPTIMIZATION FOR LEARNING THE TASK PRIORITY

Our first approach is very simple and intuitive. Here, the notation follows Section 3.1 and Sec-
tion 4.1. For simplicity, we assume all tasks’ losses are equally weighted w1 = w2 = ... = wK =
1/K. According to conventional gradient descent (GD), we have

Θt+1
s = Θt

s − η

K∑
i=1

wi∇Θt
s
Li(X t,Θt

s,Θ
t
i), Θt+1

i = Θt
i − η∇Θt

i
Li(X t,Θt

s,Θ
t
i), i = 1, ...,K

(8)

In standard GD, the network struggles to prioritize tasks since all tasks’ gradients are updated si-
multaneously at each step. Instead, we sequentially update each task’s gradients, as outlined below:{

Θt+i/K
s = Θt+(i−1)/K

s − η∇
Θ

t+(i−1)/K
s

Li(X t,Θt+(i−1)/K
s ,Θt

i)

Θt+1
i = Θt

i − η∇Θt
i
Li(X t,Θt+(i−1)/K

s ,Θt
i)

}
i = 1, ...,K (9)

The intuition behind this optimization is to let the network divide shared parameters based on task
priority, represented as Θs = {θs,1, θs,2, ..., θs,K}. After the initial gradient descent step modifies
both Θs and Θ1, θs,1 start to better align with τ1. In the second step, the network can determine
whether θs,1 would be beneficial for τ2 based on the implicit connection mentioned in Section 4.2.
Throughout this process, task priorities are learned by updating the task’s loss in turn. Recognizing
task priority in this manner effectively enables the tasks to parse out task-specific information.
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Algorithm 1: Connection Strength-based Optimization for Multi-task Learning

Data: output channel set {coutp }
NO
p=1, task set {τi}Ki=1, loss function set {Li}Ki=1,

channel group {CGi}Ki=1, number of epochs E, current epoch e

1 Randomly choose p ∼ U(0, 1)
// Phase 1: Optimization for learning the task priority

2 if p ≥ e/E then
3 for i← 1 to K do
4 update: gi ← ∇θLi // Update task’s gradients one-by-one

// Phase 2: Optimization for conserving the task priority
5 else
6 Initialize all CGi as empty set { } in the shared convolutional layer
7 for p← 1 to NO do
8 ν = argmaxi Ŝ

τi
p // Determine the task priority

9 CGν = CGν + {coutp } // Classify channel with top priority task

10 for i← 1 to K do
11 Let {Gi,1, Gi,2, ..., Gi,K} are gradients of CGi

12 for j ← 1 to K and i ̸= j do
13 if Gi,i ·Gi,j < 0 then
14 Gi,j = Gi,j - Gi,i·Gi,j

||Gi,i||2 ·Gi,i // Project gradients with priorities

15 update: gfinal =
∑K

i=1 gi // Update modified gradients

4.4 PHASE 2: OPTIMIZATION FOR CONSERVING THE TASK PRIORITY

Due to negative transfer between tasks, task losses fluctuate during training, resulting in variations in
multi-task performance. Therefore, we introduce a secondary optimization phase to update gradients
preserving task priority. For this phase, we employ the explicit connection defined in Eq. (7). Owing
to its invariant nature regarding loss scale, tasks can be prioritized regardless of their loss scale. The
task priority for the channel coutp is determined by evaluating the connection strength as follows:

ν = argmax
i

Ŝτi
p (10)

After determining the priority of tasks in each output channel, the gradient vector of each task
is aligned with the gradient of the highest-priority task. In detail, we categorize output chan-
nel {coutp }

NO
p=1 into channel groups {CGi}Ki=1 based on their primary task, denoted as τν . The

parameter of each channel group CGi corresponds to θs,i in Θs = {θs,1, θs,2, ..., θs,K}. Let
{Gi,1, Gi,2, ..., Gi,K} are task-specific gradients of CGi. Then Gi,i acts as the reference vector
for identifying conflicting gradients. When another gradient vector Gi,j , where i ̸= j, clashes with
Gi,i, we adjust Gi,j to lie on the perpendicular plane of the reference vector Gi,i to minimize nega-
tive transfer. After projecting gradients based on task priority, the sum of them is finally updated.

In the final step, we blend two optimization stages by picking a number p from a uniform distribution
spanning from 0 to 1. We define E as the total number of epochs and e as the current epoch. The
choice of optimization for that epoch hinges on whether p exceeds e/E. As we approach the end
of the training, the probability of selecting Phase 2 increases. This is to preserve the task priority
learned in Phase 1 while updating the gradient in Phase 2. A detailed view of the optimization pro-
cess is provided in Algorithm 1. The reason for mixing two phases instead of completely separating
them is that the speed of learning task priority varies depending on the position within the network.

Previous studies (Sener & Koltun, 2018; Liu et al., 2021; Yu et al., 2020) deal with conflicting gra-
dients by adjusting them to align in the same direction. These studies attempt to find an intermediate
point among gradient vectors, which often leads to negative transfer due to the influence of the dom-
inant task. In comparison, our approach facilitates the network’s understanding of which shared
parameter holds greater significance for a given task, thereby minimizing negative transfer more
efficiently. The key distinction between earlier methods and ours is the inclusion of task priority.
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Table 1: The experimental results of different multi-task learning optimization methods on NYUD-
v2 with HRNet-18. The weights of tasks are manually tuned. Experiments are repeated over 3
random seeds and average values are presented.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.594 0.150 38.67 69.16 51.12 20.52 13.46 42.63 69.00 78.42 + 9.53
MGDA 0.603 0.159 38.89 69.39 51.53 20.58 13.56 42.28 68.79 78.33 + 9.21
PCGrad 0.596 0.149 38.61 69.30 51.51 20.50 13.54 42.56 69.14 78.55 + 9.40
CAGrad 0.595 0.153 38.80 68.95 50.78 20.38 13.53 42.89 69.33 78.71 + 9.84
Ours 0.565 0.148 41.10 70.37 53.74 19.54 12.45 46.11 71.54 80.12 + 15.00

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Our method is evaluated on three multi-task datasets: NYUD-v2 (Silberman et al., 2012),
PASCAL-Context (Mottaghi et al., 2014), and Cityscapes (Cordts et al., 2016). These datasets
contain different kinds of vision tasks. NYUD-v2 contains 4 vision tasks: Our evaluation is based on
depth estimation, semantic segmentation, and surface normal prediction, with edge detection as an
auxiliary task. PASCAL-Context contains 5 tasks: We evaluate semantic segmentation, human parts
estimation, saliency estimation, and surface normal prediction, with edge detection as an auxiliary
task. Cityscapes contains 2 tasks: We use semantic segmentation and depth estimation.

Baselines. We conduct extensive experiments with the following baselines: 1) single-task learning:
training each task separately; 2) GD: simply updating all tasks’ gradients jointly without any manip-
ulation; 3) multi-task optimization methods with gradient manipulation: MGDA (Sener & Koltun,
2018), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021); 3) loss scaling methods: We consider 4
types of loss weighting where two of them are fixed during training and the other two use dynam-
ically varying weights. Static setting includes equal loss: all tasks are weighted equally; manually
tuned loss: all tasks are weighted manually following works in (Xu et al., 2018; Vandenhende et al.,
2020). Dynamic setting includes uncertainty-based approach (Kendall et al., 2018): tasks’ weights
are determined dynamically based on homoscedastic uncertainty; DWA (Liu et al., 2019): tasks’
losses are determined considering the descending rate of loss to determine tasks’ weight dynami-
cally. 4) Architecture design methods including NAS-like approaches: Cross-Stitch (Misra et al.,
2016) architecture based on SegNet (Badrinarayanan et al., 2017); Recon (Guangyuan et al., 2022):
turn shared layers into task-specific layers when conflicting gradients are detected. All experiments
are conducted 3 times with different random seeds for a fair comparison.

Evaluation Metrics. To evaluate the multi-task performance (MTP), we utilized the metric pro-
posed in (Maninis et al., 2019). It measures the per-task performance by averaging it with respect to
the single-task baseline b, as shown in△m = (1/T )

∑T
i=1(−1)li(Mm,i−Mb,i)/Mb,i where li = 1

if a lower value of measure Mi means better performance for task i, and 0 otherwise. We measured
the single-task performance of each task i with the same backbone as baseline b. To evaluate the
performance of tasks, we employed widely used metrics. More details are provided in Appendix C.

5.2 EXPERIMENTAL RESULTS

Our method achieves the largest improvements in multi-task performance. The main results
on NYUD-v2, PASCAL-Context are presented in Table 1 and Table 2 respectively. For a fair com-
parison, we compare various optimization methods on exactly the same architecture with identical
task-specific layers. Tasks’ losses are tuned manually following the setting in (Xu et al., 2018; Van-
denhende et al., 2020). Compared to previous methods, our approach shows better performance on
most tasks and datasets. It proves our method tends to induce less task interference.

7



Under review as a conference paper at ICLR 2024

Table 2: The experimental results of different multi-task learning optimization methods on
PASCAL-Context with HRNet-18. The weights of tasks are manually tuned. Experiments are re-
peated over 3 random seeds and average values are presented.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 62.17 90.27 61.15 67.99 79.60 14.70 11.81 47.55 80.97 90.56 + 1.47
MGDA 61.75 89.98 61.69 67.32 78.98 14.77 12.22 47.02 80.91 90.14 + 1.15
PCGrad 62.47 90.57 61.46 67.86 79.38 14.59 11.77 47.72 81.28 90.81 + 1.86
CAGrad 62.22 90.01 61.89 67.46 79.12 14.97 12.10 47.23 80.54 90.30 + 1.14
Ours 63.86 90.65 63.05 68.30 79.26 14.33 11.45 49.08 81.86 91.05 + 3.70

Proposed optimization works robustly on various loss scaling methods. To prove the generality
of our optimization method, we conduct extensive experiments on NYUD-v2 as shown in Tables 1
and 5 to 7 and PASCAL-Context as shown in Tables 2 and 12 to 14. In almost all types of loss
scaling, our method shows the best multi-task performance. Unlike conventional approaches where
the effectiveness of optimization varies depending on the loss scaling method, ours can be applied
to various types of loss weighting and shows robust results.

Our method can be applied to various types of network architecture. We use MTI-Net (Vanden-
hende et al., 2020) with HRNet-18 (Wang et al., 2020) and ResNet-18 (He et al., 2016) on NYUD-v2
and PASCAL-Context. HRNet-18 and ResNet-18 are pre-trained on ImageNet (Krizhevsky et al.,
2017). On the other hand, we use SegNet (Badrinarayanan et al., 2017) for Cityscapes from scratch
following the experiments setting in (Liu et al., 2021; Guangyuan et al., 2022). Our optimization
shows robustly better performance with different neural network architectures. The results with
ResNet-18 are also experimented with various loss scaling as shown in Tables 8 to 11.

Results are compatible with various architectures with fewer parameters. In Table 3, we eval-
uate our methods in different aspects by considering the various types of architecture. In the table,
we include the results of Recon (Guangyuan et al., 2022) to show our method can mitigate negative
transfer between tasks more parameter efficiently. Compared to Cross-Stitch (Misra et al., 2016)
and RotoGrad (Javaloy & Valera, 2021), ours show better multi-task performance with fewer pa-
rameters. Compared to Recon, our method is more parameter efficient as it increases the number
of parameters by about 0.05% with the use of task-specific batch normalization. Our method shows
comparable performance on Cityscapes with fewer parameters.

Our method finds new Pareto optimal solutions for multiple tasks. The final task-specific loss
and their average are shown in Fig. 2 for NYUD-v2 and PASCAL-Context. We compare our method
with previous gradient manipulation techniques and repeat the experiments over 3 random seeds. For
both NYUD-v2 and PASCAL-Context, ours show the lowest average training loss. When comparing
each task individually, ours still shows the lowest final loss on every task. This provides concrete
proof that our method leads to the expansion of the known Pareto frontier of previous approaches.

5.3 ABLATION STUDY

Phase 1 learns task priority to find Pareto-optimal solutions. We perform ablation studies on
each stage of optimization as shown in Table 4. When solely utilizing phase 2, its performance
has no big difference from the previous optimization techniques. However, when the first phase was
used, the lowest averaged multi-task loss was achieved. Additionally, we show the correlation of loss
trends in Fig. 3. The closer the value is to 1, the more it means that the loss of the task pair decreases
together. In the initial stages of optimization, phase 1 appears to align the loss more effectively than
solely relying on phase 2. This shows that phase 1 aids the network in differentiating task-specific
details, leading to the identification of optimal Pareto solutions.

During Phase 2, the task’s priority is likely to be maintained. We visualized the percentage of top
priority tasks in Fig. 4 by measuring connection strength Eq. (7). The figure illustrates how much of
the output channels in the shared convolutional layer each task has priority over. We compared when
we used only Phase 1 and when we used both Phase 1 and Phase 2. We found Phase 2 at the latter
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Table 3: The comparison of multi-task performance on
Cityscapes. Ours demonstrate competitive results without
any significant addition to the network’s parameters.

Segmentation Depth
Method (Higher Better) (Lower Better) △m ↑(%) #P.

mIoU Pix Acc Abs Err Rel Err

Single-task 74.36 93.22 0.0128 29.98 190.59
Cross-Stitch 74.05 93.17 0.0162 116.66 - 79.04 190.59
RotoGrad 73.38 92.97 0.0147 82.31 - 47.81 103.43

GD 74.13 93.13 0.0166 116.00 - 79.32 95.43
w/ Recon 71.17 93.21 0.0136 43.18 - 12.63 108.44

MGDA 70.74 92.19 0.0130 47.09 - 16.22 95.43
w/ Recon 71.01 92.17 0.0129 33.41 - 4.46 108.44

Graddrop 74.08 93.08 0.0173 115.79 - 80.48 95.43
w/ Recon 74.17 93.11 0.0134 41.37 - 10.69 108.44

PCGrad 73.98 93.08 0.02 114.50 - 78.39 95.43
w/ Recon 74.18 93.14 0.0136 46.02 - 14.92 108.44

CAGrad 73.81 93.02 0.0153 88.29 - 53.81 95.43
w/ Recon 74.22 93.10 0.0130 38.27 - 7.38 108.44

Ours 74.75 93.39 0.0125 41.60 - 10.08 95.48

(a) NYUD-v2

(b) PASCAL-Context

Figure 2: The comparison of training
losses on the NYUDv2 and PASCAL-
Context. Ours find a new Pareto optimal
solution for multiple tasks.

Table 4: Comparison of multi-task performance
using each phase individually, sequentially, and
by the proposed mixing method on NYUD-v2.

Phase Depth Seg Norm MTP Averaged

1 2 rmse mIoU mean △m ↑ Loss

✓ 0.581 40.36 19.55 + 13.44 0.5396
✓ 0.597 39.23 20.39 + 10.32 0.6519

✓seq ✓seq 0.574 40.38 19.56 + 13.79 0.5788
✓mix ✓mix 0.565 41.10 19.54 + 15.50 0.5942

Figure 3: Correlation of loss trends across tasks
during the epochs. a) Phase 1, b) Phase 2.

Figure 4: Visualization of the percentage of top-
priority tasks over training epoch. a) Phase 1, b)
Mixing Phase 1 and Phase 2

half of the optimization has an effect on conserving learned task priority. This method of priority
allocation prevents a specific task from exerting a dominant influence over the entire network.

Mixing two phases shows higher performance than using each phase separately. In Table 4,
using only Phase 1 results in a lower multi-task loss than when mixing the two phases. Nonetheless,
combining both phases enhances multi-task performance. This improvement can be attributed to the
normalized connection strength (refer to Eq. (7)), which ensures that no single task dominates the
entire network during Phase 2. When the two phases are applied sequentially, performance declines
compared to our mixing strategy. The reason for this performance degradation seems to be the
application of Phase 1 at the later stages of Optimization. This continuously alters the established
task priority, which in turn disrupts the gradient’s proper updating based on the learned priority.

6 CONCLUSION

In this paper, we present a novel optimization technique for multi-task learning named connection
strength-based optimization. By recognizing task priority within shared network parameters and
measuring it using connection strength, we pinpoint which portions of these parameters are crucial
for distinct tasks. By learning and preserving this task priority during optimization, we are able to
identify new Pareto optimal solutions, boosting multi-task performance. We validate the efficacy of
our strategy through comprehensive experimentation and analysis.
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A PROOF OF THEOREM 1

Theorem 1. Updating gradients based on task priority for shared parameters Θs (update gi for each
θs,i) results in a smaller multi-task loss

∑K
i=1 wiLi compared to updating the weighted summation

of task-specific gradients
∑K

i=1∇wiLi which does not take task priority into account.

Proof. We start from shared parameters Θs and we can divide them with task priority.

Θs = {θs,1, θs,2, ..., θs,K} (11)

For the sake of simplicity in our proof, we begin by focusing on a subset of shared parameters,
specifically θs,i, to demonstrate that accounting for task priority leads to a reduced multi-task loss
compared to neglecting it. Subsequently, we will apply the same process to the remaining shared
parameters to complete the proof. Let ĝk be the gradient of θts,i for task τk as follows:

ĝk = ∇θt
s,i
Lk(X t, Θ̃t

s, θ
t
s,i,Θ

t
i) (12)

Previous optimization methods involving gradient manipulation update the weighted summation of
task-specific gradients. Therefore, we can update θts,i to θt+1

s,i as follows:

g =

K∑
j=1

∇θt
s,i
wjLj(X t, Θ̃t

s, θ
t
s,i,Θ

t
i) =

K∑
j=1

wj ĝj , θt+1
s,i = θts,i − ηg (13)

where wi is loss weights of τi and
∑K

i=1 wi = 1.

From the first order Taylor approximation of Li for θs,i, we have

Li(X t, Θ̃t
s, θ

t+1
s,i ,Θt

i) = Li(X t, Θ̃t
s, θ

t
s,i,Θ

t
i) + (θt+1

s,i − θts,i)
⊤ĝi +O(η2) (14)

On the other hand, when considering task priority, we can update θts,i to θ̂t+1
s,i using ĝi as follows:

θ̂t+1
s,i = θts,i − ηĝi (15)

From the first order Taylor approximation of Li from θts,i to θ̂t+1
s,i , we have

Li(X t, Θ̃t
s, θ̂

t+1
s,i ,Θt

i) = Li(X t, Θ̃t
s, θ

t
s,i,Θ

t
i) + (θ̂t+1

s,i − θts,i)
⊤ĝi +O(η2) (16)

The difference between Eq. (14) and Eq. (16) is

Li(X t,Θ̃t
s, θ

t+1
s,i ,Θt

i)− Li(X t, Θ̃t
s, θ̂

t+1
s,i ,Θt

i) = (θt+1
s,i − θts,i)

⊤ĝi − (θ̂t+1
s,i − θts,i)

⊤ĝi (17)

= −η(g − ĝi)
⊤ĝi (18)

Similarly, for the last of losses Lj where i ̸= j, we have

Lj(X t, Θ̃t
s, θ

t+1
s,i ,Θt

i) = Lj(X t, Θ̃t
s, θ

t
s,i,Θ

t
i) + (θt+1

s,i − θts,i)
⊤ĝj +O(η2) (19)

Lj(X t, Θ̃t
s, θ̂

t+1
s,i ,Θt

i) = Lj(X t, Θ̃t
s, θ

t
s,i,Θ

t
i) + (θ̂t+1

s,i − θts,i)
⊤ĝj +O(η2) (20)

The difference between Eq. (19) and Eq. (20) is

Lj(X t,Θ̃t
s, θ

t+1
s,i ,Θt

i)− Lj(X t, Θ̃t
s, θ̂

t+1
s,i ,Θt

i) = (θt+1
s,i − θts,i)

⊤ĝj − (θ̂t+1
s,i − θts,i)

⊤ĝj (21)

= −η(g − ĝi)
⊤ĝj (22)
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If we sum Eq. (22) over all task-specific losses L1,L2, ...,LK, then we have
K∑

k=1

Lk(X t, Θ̃t
s, θ

t+1
s,i ,Θt

i)−
K∑

k=1

Lk(X t, Θ̃t
s, θ̂

t+1
s,i ,Θt

i) (23)

= −
K∑

k=1

η(g − ĝi)
⊤ĝk (24)

= −
K∑

k=1

η(

K∑
j=1

∇θt
s,i
wjLj(X t, Θ̃t

s, θ
t
s,i,Θ

t
i)−∇θt

s,i
Li(X t, Θ̃t

s, θ
t
s,i,Θ

t
i))

⊤ĝk (25)

= −
K∑

k=1

η

 K∑
j=1

wj

(
∇θt

s,i
Lj(X t, Θ̃t

s, θ
t
s,i,Θ

t
i)−∇θt

s,i
Li(X t, Θ̃t

s, θ
t
s,i,Θ

t
i)
)⊤

ĝk (26)

≥ 0 (27)

The elements within the brackets of Eq. (26) represent a pairwise comparison of the changes in
loss resulting from updating the gradients of each task. Thus, the inequality of Eq. (27) holds from
Definition 3 of task priority. The results indicate that taking task priority into account yields a lower
multi-task loss compared to neglecting it.

Following a similar process for all shared parameters Θs = {θs,1, θs,2, ..., θs,K}, we can conclude
considering task priority leads to the expansion of the known Pareto frontier.

B LOSS SCALING METHODS

In this paper, we used 4 different loss scaling methods to weigh multiple tasks’ losses.

1. All tasks’ losses are weighted equally.
2. The weights of tasks are tuned manually following the previous works (Xu et al., 2018;

Vandenhende et al., 2020). For NYUD-v2, the weight of losses is as follows:
Depth : SemSeg : Surface Normal : Edge = 1.0 : 1.0 : 10.0 : 50.0

For PASCAL-Context, the weight of losses is as follows:
Semseg : PartSeg : Saliency : Surface Normal : Edge = 1.0 : 2.0 : 5.0 : 10.0 : 50.0

3. The losses are dynamically weighted by homoscedastic uncertainty (Kendall et al., 2018).
An uncertainty that cannot be reduced with increasing data is called Aleatoric uncertainty. Ho-
moscedastic uncertainty is a kind of Aleatoric uncertainty that stays constant for all input data
and varies between different tasks. So it is also called task-dependent uncertainty. Homoscedastic
uncertainty is formulated differently depending on whether the task is a regression task or a clas-
sification task as each of them uses different output functions: A regression task uses Gaussian
Likelihood, in contrast, a classification task uses softmax function. The objectives of uncertainty
weighting are as follows:

LTotal =

K∑
i=1

L̂i where L̂i =


1

2σ2
1

Li + log σi for regression task

1

σ2
2

Li + log σi for classification task

 (28)

4. The losses are dynamically weighted by descending rate of loss (Liu et al., 2019) which is called
Dynamic Weight Average (DWA). The weight of task wi is defined as follows with DWA:

wi(t) =
K exp(wi(t− 1)/T )∑K
i=1 exp(wi(t− 1)/T )

where wi(t− 1) =
Lk(t− 1)

Lk(t− 2)
(29)

where t is an iteration index andK is the number of tasks. T represents the temperature parameter
governing the softness of task weighting. As T increases, the tasks become likely to be weighted
equally. We used T = 2 for our experiments following the works in (Liu et al., 2019).
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C EXPERIMENTAL DETAILS

Implementation details. To train MTI-Net (Vandenhende et al., 2020) on both NYUD-v2 and
PASCAL-Context, we adopted the loss schema and augmentation strategy from PAD-Net(Xu et al.,
2018) and MTI-Net(Vandenhende et al., 2020). For depth estimation, we utilized L1 loss, while the
cross-entropy loss was used for semantic segmentation. To train for saliency estimation and edge
detection, we employed the well-known balanced cross-entropy loss. Surface normal prediction
used L1 loss. We augmented input images by randomly scaling them with a ratio from 1, 1.2, 1.5
and horizontally flipping them with a 50% probability. The network was trained for 200 epochs for
NYUD-v2 and 50 epochs for PASCAL-Context using the Adam optimizer. We employed a learning
rate of 10−4 with a poly learning rate decay policy. We used a weight decay of 10−4 and batch size
of 8.

In contrast, for Cityscapes with SegNet (Badrinarayanan et al., 2017), we followed the experimental
setting in (Liu et al., 2021; Guangyuan et al., 2022). We used L1 loss and cross-entropy loss for
depth estimation and semantic segmentation, respectively. The network was trained for 200 epochs
using the Adam optimizer. We employed a learning rate of 5 × 10−5 with multi-step learning rate
scheduling. We used a batch size of 8.

Evaluation metric. To evaluate the performance of tasks, we employed widely used metrics. For
semantic segmentation, we utilized mean Intersection over Union (mIoU), Pixel Accuracy (PAcc),
and mean Accuracy (mAcc). Surface normal prediction’s performance was measured by calculating
the mean and median angle distances between the predicted output and ground truth. We also used
the proportion of pixels within the angles of 11.25◦, 22.5◦, 30◦ to the ground truth, as suggested
by (Eigen & Fergus, 2015b). To evaluate the depth estimation task, we followed the methods pro-
posed in (Eigen et al., 2014; Liu et al., 2015; Xu et al., 2017). We used Root Mean Squared Error
(RMSE), and Mean Relative Error (abs rel). For saliency estimation and human part segmentation,
we employed mean Intersection over Union (mIoU).

D ADDITIONAL EXPERIMENTAL RESULTS

We compare GD, MGDA (Sener & Koltun, 2018), PCGrad (Yu et al., 2020), CAGrad (Liu et al.,
2021), and connection strength based optimization on 4 different multi-task loss scaling methods
mentioned in Appendix B. We have summarized the experimental overview as follows.

1. NYUD-v2 with HRNet-18 on various loss scaling is evaluated in Tables 5 to 7.

2. NYUD-v2 with ResNet-18 on various loss scaling is evaluated in Tables 8 to 11.

3. PASCAL-Context with HRNet-18 on various loss scaling is evaluated in Tables 12 to 14.

D.1 NYUD-V2 WITH HRNET-18

Table 5: The experimental results of different multi-task optimization methods on NYUD-v2 with
HRNet-18. The losses of all tasks are evenly weighted. Experiments are repeated over 3 random
seeds and average values are presented. △m ↑(%) is used to indicate the percentage improvement
in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.595 0.150 40.67 70.11 53.41 21.45 15.02 39.06 66.42 76.87 + 10.00
MGDA 0.587 0.148 40.69 70.40 53.15 21.30 14.73 39.59 66.85 77.12 + 10.66
PCGrad 0.581 0.155 40.33 70.44 52.83 21.23 14.59 40.01 67.17 77.31 + 10.71
CAGrad 0.576 0.149 40.00 70.45 51.75 21.09 14.50 40.18 67.40 77.47 + 10.85
Ours 0.576 0.143 41.20 71.03 53.76 20.42 13.75 42.20 69.22 78.88 + 13.13
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Table 6: The experimental results of different multi-task optimization methods on NYUD-v2 with
HRNet-18. The losses are weighted using Dynamic Weight Average (DWA). Experiments are re-
peated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold
numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.592 0.146 40.86 70.19 53.01 21.15 14.52 40.20 67.36 77.48 + 10.82
MGDA 0.593 0.147 40.46 70.10 52.83 21.30 14.68 39.73 66.90 77.16 + 10.13
PCGrad 0.593 0.147 40.34 70.00 52.37 21.36 14.77 39.57 66.78 77.07 + 9.91
CAGrad 0.576 0.146 40.52 70.23 52.73 21.09 14.59 40.18 67.40 77.49 + 11.38
Ours 0.565 0.141 41.64 70.97 54.49 20.35 13.48 43.04 69.60 78.95 + 14.24

Table 7: The experimental results of different multi-task optimization methods on NYUD-v2 with
HRNet-18. The losses are weighted by homoscedastic uncertainty. Experiments are repeated over
3 random seeds and average values are presented. △m ↑(%) is used to indicate the percentage
improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

GD 0.589 0.148 39.93 70.15 51.99 21.13 14.46 40.47 67.28 77.38 + 9.87
MGDA 0.590 0.148 39.78 69.77 51.80 21.24 14.69 39.78 66.94 77.22 + 9.69
PCGrad 0.587 0.147 40.56 69.97 53.07 21.19 14.40 40.51 67.46 77.41 + 10.71
CAGrad 0.583 0.147 40.23 70.06 52.74 21.09 14.47 40.23 67.48 77.50 + 10.73
Ours 0.569 0.140 41.16 70.83 53.65 20.19 13.39 43.33 70.07 79.30 + 13.81

D.2 NYUD-V2 WITH RESNET-18

Table 8: The experimental results of different multi-task optimization methods on NYUD-v2 with
ResNet-18. The losses of all tasks are evenly weighted. Experiments are repeated over 3 random
seeds and average values are presented. △m ↑(%) is used to indicate the percentage improvement
in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.613 0.160 38.54 68.89 51.04 22.09 15.35 38.29 65.12 75.61 + 8.09
MGDA 0.616 0.165 39.49 69.30 52.30 22.52 15.61 37.92 64.25 74.77 + 8.24
PCGrad 0.618 0.164 38.76 69.01 51.12 22.05 15.28 38.55 65.36 75.77 + 8.10
CAGrad 0.610 0.160 39.20 69.38 51.58 22.18 15.61 37.65 64.70 75.42 + 8.75
Ours 0.601 0.162 38.30 68.78 51.01 21.09 14.31 40.95 67.57 77.50 + 9.89

16



Under review as a conference paper at ICLR 2024

Table 9: The experimental results of different multi-task optimization methods on NYUD-v2 with
ResNet-18. The weights of tasks are manually tuned. Experiments are repeated over 3 random
seeds and average values are presented. △m ↑(%) is used to indicate the percentage improvement
in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.622 0.163 38.07 68.31 50.84 21.49 14.63 40.04 66.87 76.87 + 8.03
MGDA 0.635 0.166 38.18 68.22 49.70 22.07 15.01 39.11 65.81 75.90 + 6.65
PCGrad 0.617 0.165 37.80 67.94 50.00 21.52 14.53 40.27 66.91 76.71 + 7.98
CAGrad 0.620 0.163 37.02 67.96 49.71 21.67 14.80 39.55 66.46 76.56 + 6.86
Ours 0.600 0.157 39.00 69.02 51.11 20.65 13.77 42.78 68.97 78.30 + 11.24

Table 10: The experimental results of different multi-task optimization methods on NYUD-v2 with
ResNet-18. The losses are weighted using Dynamic Weight Average (DWA). Experiments are re-
peated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold
numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.607 0.159 38.65 68.99 51.72 22.17 15.52 38.51 65.11 75.47 + 8.38
MGDA 0.616 0.165 39.38 69.18 51.78 22.53 15.69 37.68 64.12 74.67 + 8.12
PCGrad 0.612 0.162 38.56 68.97 51.16 22.11 15.40 38.20 65.07 75.58 + 8.13
CAGrad 0.609 0.157 39.40 69.30 51.84 22.28 15.68 37.62 64.46 75.24 + 8.85
Ours 0.592 0.148 38.41 68.82 51.15 20.96 14.25 40.97 67.59 77.10 + 10.63

Table 11: The experimental results of different multi-task optimization methods on NYUD-v2 with
ResNet-18. The losses are weighted by homoscedastic uncertainty. Experiments are repeated over
3 random seeds and average values are presented. △m ↑(%) is used to indicate the percentage
improvement in multi-task performance (MTP). The best results are expressed in bold numbers.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.659 0.183 34.46 65.51 46.50 23.36 16.67 34.89 62.19 73.33 + 0.00

GD 0.608 0.158 39.02 69.29 51.48 22.06 15.47 37.98 65.01 75.68 + 8.85
MGDA 0.623 0.162 39.43 69.30 51.79 22.65 15.77 37.39 64.03 74.66 + 7.64
PCGrad 0.606 0.158 39.40 69.25 51.68 22.25 15.43 38.05 64.81 75.35 + 9.04
CAGrad 0.600 0.156 38.62 68.74 51.03 22.27 15.43 38.11 64.85 75.32 + 8.56
Ours 0.595 0.153 38.67 69.01 51.01 21.05 14.11 41.43 67.91 77.59 + 10.61
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D.3 PASCAL-CONTEXT WITH HRNET-18

Table 12: The experimental results of different multi-task optimization methods on PASCAL-
Context dataset with HRNet-18. The losses of all tasks are evenly weighted. Experiments are
repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indicate the
percentage improvement in multi-task performance (MTP). The best results are expressed in bold
numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 61.65 90.14 58.35 65.80 78.07 16.71 13.82 39.70 75.18 87.17 - 4.12
MGDA 63.52 90.68 60.38 64.99 77.57 17.00 14.13 38.58 74.47 86.77 - 3.30
PCGrad 63.21 90.33 60.42 64.77 77.48 16.65 13.71 39.64 75.10 87.07 - 2.90
CAGrad 63.44 90.53 60.11 64.83 77.52 16.92 13.98 39.03 75.01 86.92 - 3.37
Ours 62.64 90.39 61.42 67.10 78.91 15.58 12.68 43.93 78.69 89.26 - 0.05

Table 13: The experimental results of different multi-task optimization methods on PASCAL-
Context dataset with HRNet-18. The losses are weighted using Dynamic Weight Average (DWA).
Experiments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used
to indicate the percentage improvement in multi-task performance (MTP). The best results are ex-
pressed in bold numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 64.70 91.18 60.60 66.54 78.18 15.13 12.23 45.77 79.91 89.96 + 1.02
MGDA 64.56 90.72 60.69 65.93 77.37 16.87 13.95 39.35 74.69 86.82 - 2.17
PCGrad 64.35 90.98 60.99 66.12 77.65 15.92 13.11 41.98 76.21 88.03 - 0.45
CAGrad 64.03 90.77 60.62 66.01 77.42 16.63 13.86 40.02 75.22 87.41 - 1,98
Ours 63.89 90.73 61.89 67.39 79.08 14.94 12.10 46.27 80.57 90.41 + 1.86

Table 14: The experimental results of different multi-task optimization methods on PASCAL-
Context dataset with HRNet-18. The losses are weighted by homoscedastic uncertainty. Experi-
ments are repeated over 3 random seeds and average values are presented. △m ↑(%) is used to indi-
cate the percentage improvement in multi-task performance (MTP). The best results are expressed
in bold numbers.

Tasks SemSeg PartSeg Saliency Surface Normal

Method
(Higher Better) (Higher Better) (Higher Better)

Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

mIoU PAcc mIoU mIoU maxF mean median 11.25 22.5 30 △m ↑(%)

Independent 60.30 89.88 60.56 67.05 78.98 14.76 11.92 47.61 81.02 90.65 + 0.00

GD 64.40 91.05 62.28 68.13 79.64. 14.95 12.14 46.19 80.36 90.34 + 2.49
MGDA 64.04 90.88 61.18 67.65 79.23 15.02 12.20 45.93 80.02 90.11 + 1.59
PCGrad 64.75 91.11 62.41 68.16 79.65 14.86 11.93 47.03 80.60 90.31 + 2.85
CAGrad 64.01 90.77 61.32 67.55 79.01 15.08 12.31 45.87 79.98 90.05 + 1.50
Ours 64.01 90.70 61.78 68.32 81.50 14.53 11.52 48.21 81.88 90.74 + 2.90
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E ADDITIONAL ABLATION STUDIES

The order of updating tasks in Phase 1 has little impact on multi-task performance. To learn
task priority in shared parameters, Phase 1 updates each task-specific gradient one by one sequen-
tially. To determine the influence of the order of tasks on optimization, we randomly chose 5 se-
quences of tasks and showed their performance in Table 15. From the results, we can see that the
order of updating tasks in Phase 1 does not have a significant impact on multi-task performance.

Table 15: The experimental results for NYUD-v2 with HRNet-18 involved exploring different task
sequence orders in Phase 1. We conducted ablation experiments with five randomly selected task
sequences. Each task was represented by a single alphabet letter, as follows: S for semantic seg-
mentation, D for depth estimation, E for edge detection, and N for surface normal estimation.

Tasks Depth SemSeg Surface Normal

Method
Distance

(Lower Better)
(%)

(Higher Better)
Angle Distance
(Lower Better)

Within t degree (%)
(Higher Better)

MTP

rmse abs rel mIoU PAcc mAcc mean median 11.25 22.5 30 △m ↑(%)

Independent 0.667 0.186 33.18 65.04 45.07 20.75 14.04 41.32 68.26 78.04 + 0.00

N-D-S-E 0.574 0.157 41.12 70.44 53.77 19.60 12.52 46.01 71.33 80.02 + 14.47
D-S-N-E 0.568 0.153 40.92 70.23 53.56 19.55 12.47 46.09 71.50 80.12 + 14.65
E-D-S-N 0.568 0.150 40.97 70.22 53.59 19.58 12.50 46.08 71.44 80.07 + 14.65
D-N-E-S 0.571 0.153 41.03 70.31 53.68 19.49 12.44 46.17 71.58 80.17 + 14.71
S-D-E-N 0.565 0.148 41.10 70.37 53.74 19.54 12.45 46.11 71.54 80.12 + 15.00

the speed of learning the task priority differs based on the convolutional layer’s position. Phase
1 establishes the task priority during the initial stages of the network’s optimization. Meanwhile,
Phase 2 maintains this learned task priority, ensuring robust learning even when the loss for each
task fluctuates. However, The timing at which task priority stabilizes varies based on the position of
the convolutional layer within the network, as illustrated in Fig. 5. This may suggest that optimizing
by wholly separating each phase could be inefficient.
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(a) layer0-0-1 (b) layer0-0-2

(c) layer1-0-0-0 (d) layer1-0-0-1

(e) layer1-0-1-0 (f) layer1-0-1-1

(g) layer2-0-0-0 (h) layer2-0-0-1

(i) layer2-2-1-0 (j) layer2-2-1-1

(k) layer2-2-2-0 (l) layer2-2-2-1

Figure 5: Visualization of the percentage of top-priority tasks over training epoch depending on the
position in the network. We randomly selected several convolutional layers from the Network. The
timing at which task priority stabilizes varies depending on the position of the convolutional layer.
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(m) layer3-0-0-0 (n) layer3-0-0-1

(o) layer3-0-2-0 (p) layer3-0-2-1

(q) layer3-1-0-0 (r) layer3-1-0-1

(s) layer3-1-1-0 (t) layer3-1-1-1

(u) layer3-1-2-0 (v) layer3-1-2-1

(w) layer3-1-3-0 (x) layer3-1-3-1

Figure 5: Visualization of the percentage of top-priority tasks over training epoch depending on the
position in the network. We randomly selected several convolutional layers from the Network. The
timing at which task priority stabilizes varies depending on the position of the convolutional layer.
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