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ABSTRACT

Data augmentation (DA) has become a de facto solution to expand training data size
for deep learning. With the proliferation of deep models for time series analysis,
various time series DA techniques are proposed in the literature, e.g., cropping-,
warping-, flipping-, and mixup-based methods. However, these augmentation
methods are mainly applicable for time series classification and anomaly detection
tasks. In time series forecasting (TSF), we need to model the fine-grained tem-
poral relationship within time series segments so that we could generate faithful
forecasting results given data in a look-back window. Existing DA solutions in the
time domain would break such relationship, leading to poor forecasting accuracy.
To tackle this problem, this paper proposes simple yet effective frequency domain
augmentation techniques that ensure the semantic consistency of augmented data-
label pairs in forecasting, named FrAug. We conduct comprehensive experiments
on eight widely-used benchmarks with several state-of-the-art TSF deep models.
Our results show that FrAug can boost the forecasting accuracy of existing models
in most cases. Moreover, we show that, FrAug enables models trained with 1%
of the original training data to achieve similar performance to the ones trained on
full training data, which is particularly attractive for cold-start forecasting often
occurred in real-life applications.

1 INTRODUCTION

Deep learning is data hungry. Without abundant training data, deep models tend to suffer from poor
convergence or overfitting problems. As collecting and labeling real-world data can be costly and
time-consuming, data augmentation (DA) has become a de facto solution to expand the training
dataset size for performance improvement (Cubuk et al., 2019).

Time series related tasks (e.g., classification, forecasting, and anomaly detection (AD)) have a wide
range of applications. Depending on the application itself, the collected data could be quite scarce.
For example, one particular use case, known as cold start forecasting, performs time series forecasting
(TSF) with little or no historical data, e.g., sales prediction for new products. Consequently, with the
proliferation of deep models for time series analysis, various time series DA techniques are proposed
in the literature (Wen et al., 2020).

When using data augmentation for supervised learning, we create artificial data-label pairs from
existing labeled data. It is critical to ensure the semantic consistency of such modified data-label
pairs. Otherwise, augment ambiguity is introduced, thereby deteriorating the performance of the
model instead of improving it, as examined in several previous works in the computer vision (CV)
field (Gong et al., 2021; Wei et al., 2020). In fact, DA for image data is less ambiguous when
compared to that for time series data, because image data are relatively easy to interpret, enabling
us to create semantics-preserving augmentations (e.g., rotation and cropping/masking less relevant
regions).

In contrast, time series data are comprised of measurements or events generated from complicated
dynamic systems, and we are interested in the temporal relationship among continuous data points
in the series. As any perturbations would change such relationship, care must be taken to ensure
that the semantics of the data-label pair is preserved, i.e., they are likely to occur according to the
behavior of the underlying system. Note that, most existing DA methods for time series focus on the
classification and AD tasks, and the data-label pair semantics are preserved to a large extent. For
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example, we could perform window cropping (Cui et al., 2016; Le Guennec et al., 2016), window
warping (Wen et al., 2020), and noise injection (Wen & Keyes, 2019) on time series without changing
the classification labels as long as such manipulations do not yield class changes. Similarly, label
expansion (Gao et al., 2020) that manipulates the “blurry” start and end points of sequence anomalies
brings performance improvements for the anomaly detection task.

However, time series forecasting is a regression task. It requires modeling the fine-grained temporal
relationship within a timing window divided into two parts: the data points in the look-back window
and those in the forecasting horizon, serving as the data and the label when training TSF models,
respectively. Aggressive augmentation methods such as cropping or warping would cause missing
values or periodicity changes in the series and hence are not applicable for TSF models. In other
words, the augmented data-label pairs for TSF are much more stringent compared to those for other
time series analysis tasks, which has not been thoroughly investigated in the literature.

In this paper, we argue that augmentation methods for TSF should abandon perturbations in the
time domain because such augmented data-label pairs do not conform to the fine-grained temporal
relationship within a timing window. For a dynamic system that generates time series data, its
forecastable behavior is usually driven by some periodical events1. By identifying and manipulating
such events in the frequency domain, the generated data-label pairs would still be faithful to the
underlying dynamic system. This motivates us to propose two simple yet effective frequency domain
augmentation methods for TSF, named FrAug. Specifically, FrAug performs frequency masking and
frequency mixing, which randomly eliminate some frequency components of a timing window or
mix-up the same frequency components of different timing windows. Experimental results on eight
widely-used TSF benchmark datasets show that FrAug improves the forecasting accuracy of various
deep models, especially when the size of the training dataset is small.

Specifically, the main contributions of this work include:

• To the best of our knowledge, this is the first work that systematically investigates data
augmentation techniques for the TSF task.

• We propose a novel frequency domain augmentation technique named FrAug, including two
simple yet effective methods (i.e., frequency masking and frequency mixing) that preserve
the semantic consistency of augmented data-label pairs in forecasting.

• In our experiments, we show that, FrAug alleviates overfitting problems of state-of-the-art
(SOTA) TSF models, thereby improving their forecasting performance. Moreover, FrAug
enables models trained with 1% of the original training data to achieve similar performance
to the ones trained on full training data in some datasets, which is particularly attractive for
cold-start forecasting problems.

2 RELATED WORK AND MOTIVATION

Data augmentation methods are task-dependent. In this section, we first survey existing time series
DA techniques in Sec. 2.1. Next, in Sec. 2.2, we analyze why existing DA methods are not applicable
for the forecasting task. Finally, we discuss the motivation to perform frequency domain augmentation
for TSF in Sec. 2.3.

2.1 DATA AUGMENTATION METHODS FOR TIME SERIES ANALYSIS

For the time series classification task, many works regard the series as a waveform image and borrow
augmentation methods from the CV field, e.g., window cropping (Le Guennec et al., 2016), window
flipping (Wen et al., 2020), and Gaussian noise injection (Wen & Keyes, 2019). There are also DA
methods that take advantage of specific time series properties, e.g., window warping (Wen et al., 2020),
surrogate series (Keylock, 2006; Lee et al., 2019), and time-frequency feature augmentation (Keylock,
2006; Steven Eyobu & Han, 2018; Park et al., 2019; Gao et al., 2020). For the time series AD
task, window cropping and window flipping are also often used. In addition, label expansion and
amplitude/phase perturbations are introduced in (Gao et al., 2020).

1The measurements contributed by random events are not predictable.
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There are few DA works for the forecasting task in the literature. (Hu et al., 2020) proposes DATSING,
a transfer learning-based framework that leverages cross-domain time series latent representations to
augment target domain forecasting. (Bandara et al., 2021) introduces two DA methods for forecasting:
(i). Average selected with distance (ASD), which generates augmented time series using the weighted
sum of multiple time series (Forestier et al., 2017), and the weights are determined by the dynamic
time warping (DTW) distance; (ii). Moving block bootstrapping (MBB) generates augmented data
by manipulating the residual part of the time series after STL decomposition (Cleveland et al., 1990)
and recombining it with the other series.

2.2 TIME SERIES FORECASTING

Given the data points in a look-back window x = {xt
1, ..., x

t
C}Lt=1 of multivariate time series, where

L is the look-back window size, C is the number of variates, and xt
i is the value of the ith variate at

the tth time step. The TSF task is to predict the horizon x̂ = {x̂t
1, ..., x̂

t
C}

L+T
t=L+1, the values of all

variates at future T time steps. When the forecasting horizon T is large, it is referred to as long-term
forecasting problem, which has attracted lots of attention in recent research(Zhou et al., 2021; Zeng
et al., 2022).

During training, the data points in the look-back window and the data points in the forecasting horizon
serve as the data and the label, respectively. Obviously, the augmented data-label pairs for TSF need
to be semantically consistent with the behavior of the underlining system. Existing time series DA
techniques, however, cannot adhere to this principle since they only apply augmentation to the data.

Figure 1 visualizes the impact of a few existing DA methods that are originally used for classification
and AD tasks, which clearly break the fine-grained temporal relationship between look-back window
and forecasting horizon. When adopting them for the forecasting task, as expected, the results
are quite poor, as shown in Table 1. Note that, the DA methods dedicated to the forecasting task
in (Bandara et al., 2021) have similar problems, and we show their results in Sec. 4.
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Figure 1: Augmentation result of some previous augmentation on the 1000∼1192 frames of ’OT’
channel of ETTh1 dataset. The first row shows the waveform of the augmented time series. The
second row shows the amplitude spectrum (AS.) of input and output, where these methods break the
consistency of input and target output. The third row shows the amplitude spectrum of augmented
time series and original time series, in which we find that these augmentation methods introduce
random noise on the entire frequency bands. For better scale, we removed the 0 frequency components
from the graphs.

Table 1: Results of different models trained on ETTh1 dataset augmented by existing augmentation
methods. We can observe that these methods will degrade performance on all models. The forecasting
length is 96. The metric is MSE, the lower the better.

Method Origin Noise Mask-Rand. Mask-Seg. Flipping Warping

DLinear 0.381 0.444 0.803 0.448 0.544 0.401
FEDformer 0.374 0.380 0.448 0.433 0.420 0.385
Autoformer 0.449 0.460 0.608 0.568 0.446 0.465

Informer 0.931 0.936 0.846 1.013 0.955 1.265
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2.3 WHY FREQUENCY DOMAIN AUGMENTATION?

Time series data are comprised of measurements or events generated from complicated dynamic
systems, whose forecastable behavior is usually driven by some periodical events. For example, the
hourly sampled power consumption of a house is closely related to the periodical behavior of the
house owner. His/her daily routine (e.g., out for work during the day and activities at night) would
introduce a daily periodicity, his/her routines between weekdays and weekends would introduce
a weekly periodicity, while the yearly atmosphere temperature change would introduce an annual
periodicity (e.g., cooling in summer and heating in winter). Such periodical events are decoupled in
the frequency domain and can be manipulated independently.

Motivated by the above, we propose to perform frequency domain augmentation for TSF task. By
identifying and manipulating events in the frequency domain for data points in both look-back
window and forecasting horizon, the resulting augmented data-label pair would largely conform to
the behavior of the underlining system.

3 METHODS

In this section, we detail the proposed frequency domain data augmentation methods for time series
forecasting, named FrAug.

3.1 THE PIPELINE OF FRAUG

To ensure the semantic consistency of augmented data-label pairs in forecasting, we add frequency
domain perturbations on the concatenated time series of look-back window and target horizon, with
the help of Fast Fourier transform (FFT) as introduced in Appendix A. We only apply FrAug during
the training stage and use original test samples for testing.

As shown in Fig. 2, in the training stage, given a training sample (data points in the look-back window
and the forecasting horizon), FrAug (i) concatenates the two parts, (ii) performs frequency domain
augmentations, and (iii) splits the concatenated sequence back into lookback window and target
horizon in the time domain. The augmentation result of an example time series training sample is
shown in Fig. 3.

Model

Input Output

Loss

Back Propagate

Target

FrAug

Figure 2: Training with FrAug.

3.2 FREQUENCY MASKING AND FREQUENCY MIXING

We propose two simple yet effective augmentation methods under FrAug framework, namely Fre-
quency Masking and Frequency Mixing. Specifically, frequency masking randomly masks some
frequency components, while frequency mixing exchanges some frequency components of two
training samples in the dataset.

Frequency masking: The pipeline of frequency masking is shown in Fig. 4(a). For a training sample
comprised of data points in the look-back window xt−b:t and the forecasting horizon xt+1:t+h, we
first concatenate them in the time domain as s = xt−b:t+h and apply real FFT to calculate the
frequency domain representation S, which is a tensor composed of complex number. Next, we
randomly mask a portion of this complex tensor S as zero and get S̃. Finally, we apply inverse real
FFT to project the augmented frequency domain representation back to the time domain s̃ = x̃t−b:t+h.
The detailed procedure is shown in Algorithm 1.
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Figure 3: Visualization results of FrAug on 1000∼1192 frames of ’OT’ channel of ETTh1 dataset.
As shown in the figures of amplitude spectrum (AS.) of look-back window and target horizon (second
row), thanks to the unique augmentation pipeline, FrAug largely preserves the semantic consistency
between the look-back window and target horizon. Compared with previous DA methods, FrAug
also avoids introducing unexpected noise by only performing masking or mixing in the frequency
domain, according to the comparison of original and augmented sample amplitude spectrum (third
row). For better scale, we removed the 0 frequency components from the graphs.
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Figure 4: Illustration of the proposed augmentation methods.

Frequency Masking corresponds to removing some events in the underlining system. For example,
considering the household power consumption time series, removing the weekly frequency compo-
nents would create an augmented time series that belongs to a house owner that has similar activities
on the weekdays and weekends.

Algorithm 1 Frequency Masking
Input: Look-back window x, target horizon y, mask rate µ
Output: Augmented Look-back window x̃, augmented target horizon ỹ

1: s = x||y; {Concatenate x and y}
2: S = rFFT (s); {Calculate the frequency representation S. S is composed of complex numbers

and have length of (b+ h)//2 + 1}
3: m = CreateRandomMask(len(S), µ) {Create random mask for frequency representation

with mask rate µ}
4: S̃ = Masking(S,m);
5: s̃ = irFFT (S̃);
6: x̃, ỹ = s[0 : b], s[b : b+ t]; {Split the augmented training sample}
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Frequency mixing: The pipeline of frequency mixing is shown in Fig. 4, wherein we randomly
replace the frequency components in one training sample with the same frequency components of
another training sample in the dataset. The details of this procedure is presented in Algorithm 2.

Algorithm 2 Frequency Mixing
Input: Look-back window x1, target horizon y1, another training sample pair x2, y2, mix rate µ
Output: Augmented look-back window x̃, augmented target horizon ỹ

1: s1 = x1||y1, s2 = x2||y2; {Concatenate x and y}
2: S1 = rFFT (s1), S2 = rFFT (s2); {Calculate the frequency representation S. S is composed

of complex numbers and have length of (b+ h)//2 + 1}
3: m1 = CreateRandomMask(len(S), µ) {Create random mask for frequency representation

with mix rate µ no more than 0.5}
4: m2 = BitwiseNOT (m1) {Create inverted mask for training sample 2}
5: S̃ = Masking(S1,m1) +Masking(S2,m2);
6: s̃ = irFFT (S̃);
7: x̃, ỹ = s[0 : b], s[b : b+ t]; {Split the augmented training sample}

Similarly, frequency mixing can be viewed as exchanging events between two samples. For the earlier
example on household power consumption, the augmented time series could be one owner’s weekly
routine replaced by another’s, and hence the augmented data-label pair largely preserves semantical
consistency for forecasting.

Note that, frequency masking and frequency mixing only utilize information from the original
dataset, thereby avoiding the introduction of unexpected noises compared to those dataset expansion
techniques based on synthetic generation (Esteban et al., 2017; Yoon et al., 2019). Moreover, as
the number of combinations of training samples and their frequencies components in a dataset is
extremely large, FrAug can generate nearly infinite reasonable samples.

4 EXPERIMENTS

In this section, we first compare the results of different augmentation methods for the long-term
time series forecasting task2. To further demonstrate the effectiveness of our methods, we conduct
experiments on cold-start forecasting.

4.1 EXPERIMENTAL SETUP

Table 2: The statistics of the eight datasets.

Datasets Exchange-Rate Traffic Electricity Weather ETTh1&ETTh2 ETTm1 &ETTm2
Variates 8 862 321 21 7 7

Frequency 1day 1hour 1hour 10min 1hour 5min
Total Timesteps 7,588 17,544 26,304 52,696 17,420 69,680

Dataset. All dataset used in our experiments are widely-used and publicly available real-world
datasets, including Exchange-Rate Lai et al. (2017), Traffic, Electricity, Weather, ETT Zhou et al.
(2021). We summarize the characteristics of these datasets in Table 2.

Baselines. We compare FrAug, including Frequency Masking (FreqMask) and Frequency Mixing
(FreqMix), with existing time-series augmentation techniques for forecasting, including ASD Forestier
et al. (2017); Bandara et al. (2021) and MBB Bandara et al. (2021); Bergmeir et al. (2016).

Deep Models. We include four state-of-the-art models for long-term forecasting, including In-
former Zhou et al. (2021), Autoformer Wu et al. (2021), FEDformer Zhou et al. (2022) and DLin-
ear Zeng et al. (2022). The effectiveness of augmentations methods are evaluated by comparing the
performance of the same model trained with different augmentations methods.

Evaluation metrics. Following previous works Zhou et al. (2021); Wu et al. (2021); Zhou et al.
(2022); Zeng et al. (2022), we use Mean Squared Error (MSE) as the core metrics to compare
performance.

2FrAug is also effective for short-term forecasting task. We present the results in Appendix C.
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Table 3: Comparison of different augmentation methods on ETT benchmarks under four forecasting
lengths. Performances are measured by MSE. The best results are highlighted in bold.

Model Method ETTh1 ETTh2 ETTm1 ETTm2
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

DLinear

Origin 0.381 0.405 0.439 0.514 0.295 0.378 0.421 0.696 0.300 0.335 0.368 0.425 0.171 0.235 0.305 0.412
FreqMask 0.379 0.403 0.435 0.472 0.277 0.338 0.432 0.588 0.295 0.331 0.368 0.426 0.166 0.227 0.281 0.399
FreqMix 0.380 0.409 0.438 0.478 0.277 0.342 0.449 0.636 0.296 0.331 0.372 0.428 0.168 0.227 0.286 0.398

ASD 0.387 0.554 0.445 0.467 0.302 0.363 0.411 0.677 0.311 0.343 0.377 0.430 0.188 0.237 0.297 0.400
MBB 0.389 0.423 0.508 0.521 0.313 0.391 0.433 0.651 0.307 0.339 0.373 0.428 0.177 0.242 0.323 0.430

FEDformer

Origin 0.374 0.425 0.456 0.485 0.339 0.430 0.519 0.474 0.364 0.406 0.446 0.533 0.189 0.253 0.327 0.438
FreqMask 0.372 0.417 0.457 0.474 0.323 0.409 0.462 0.440 0.352 0.400 0.450 0.507 0.183 0.249 0.315 0.423
FreqMix 0.371 0.416 0.459 0.478 0.327 0.421 0.502 0.456 0.360 0.399 0.447 0.515 0.184 0.250 0.317 0.432

ASD 0.429 0.455 0.561 0.582 0.339 0.429 0.501 0.454 0.390 0.430 0.514 0.585 0.200 0.264 0.345 0.460
MBB 0.412 0.460 0.501 0.514 0.356 0.455 0.526 0.484 0.385 0.427 0.477 0.548 0.211 0.270 0.340 0.439

Autoformer

Origin 0.449 0.463 0.495 0.535 0.432 0.430 0.482 0.471 0.552 0.559 0.605 0.755 0.288 0.274 0.335 0.437
FreqMask 0.419 0.426 0.476 0.501 0.346 0.422 0.447 0.462 0.419 0.513 0.472 0.595 0.213 0.264 0.325 0.421
FreqMix 0.401 0.454 0.471 0.517 0.351 0.423 0.455 0.449 0.410 0.542 0.497 0.529 0.211 0.265 0.325 0.433

ASD 0.486 0.497 0.530 0.499 0.362 0.442 0.477 0.523 0.561 0.532 0.518 0.616 0.233 0.276 0.331 0.444
MBB 0.479 0.526 0.592 0.602 0.363 0.431 0.472 0.547 0.535 0.652 0.704 0.522 0.239 0.283 0.334 0.454

Informer

Origin 0.931 1.010 1.036 1.159 2.843 6.236 5.418 3.962 0.626 0.730 1.037 0.972 0.389 0.813 1.429 3.863
FreqMask 0.621 0.788 0.851 1.009 2.295 3.983 3.724 2.561 0.425 0.512 0.761 0.778 0.368 0.463 0.984 3.173
FreqMix 0.675 0.905 1.044 1.095 2.774 5.917 3.700 3.385 0.587 0.636 0.867 0.906 0.341 0.557 1.111 2.939

ASD 0.853 1.020 1.124 1.226 2.280 5.830 4.345 3.886 0.726 0.775 0.921 0.968 0.405 0.874 1.317 2.585
MBB 0.958 1.031 1.049 1.227 3.112 6.398 5.668 4.007 0.630 0.731 0.988 0.961 0.399 0.783 1.476 4.012

Table 4: Comparison of different augmentation methods on four datasets under four forecasting
lengths. Performances are measured by MSE. The best results are highlighted in bold.

Model Method Exchange Rate Electricity Traffic Weather
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

DLinear

Origin 0.079 0.205 0.309 1.029 0.140 0.154 0.169 0.204 0.410 0.423 0.436 0.466 0.175 0.217 0.265 0.324
FreqMask 0.095 0.177 0.263 0.842 0.140 0.154 0.169 0.204 0.411 0.423 0.435 0.466 0.174 0.217 0.263 0.323
FreqMix 0.079 0.180 0.274 0.796 0.140 0.154 0.169 0.204 0.412 0.423 0.435 0.467 0.174 0.216 0.264 0.324

ASD 0.102 0.273 0.294 0.787 0.163 0.175 0.189 0.222 0.437 0.450 0.463 0.493 0.195 0.230 0.275 0.329
MBB 0.080 0.204 0.308 1.021 0.145 0.157 0.172 0.206 0.420 0.430 0.441 0.467 0.176 0.217 0.262 0.324

FEDformer

Origin 0.135 0.271 0.454 1.140 0.188 0.196 0.212 0.250 0.574 0.611 0.623 0.631 0.250 0.266 0.368 0.397
FreqMask 0.122 0.232 0.422 1.058 0.176 0.188 0.201 0.220 0.569 0.586 0.607 0.630 0.180 0.240 0.308 0.371
FreqMix 0.129 0.240 0.444 1.129 0.176 0.187 0.204 0.225 0.564 0.586 0.604 0.629 0.200 0.245 0.317 0.377

ASD 0.149 0.265 0.441 1.128 0.192 0.205 0.214 0.243 0.573 0.601 0.608 0.613 0.700 0.513 0.623 0.649
MBB 0.145 0.257 0.456 1.142 0.202 0.223 0.240 0.297 0.601 0.613 0.630 0.647 0.309 0.280 0.352 0.392

Autoformer

Origin 0.145 0.385 0.453 1.087 0.203 0.231 0.247 0.276 0.624 0.619 0.604 0.703 0.271 0.315 0.345 0.452
FreqMask 0.139 0.279 0.485 0.806 0.170 0.193 0.208 0.234 0.564 0.578 0.595 0.654 0.210 0.257 0.315 0.388
FreqMix 0.139 0.281 0.497 1.050 0.162 0.189 0.204 0.242 0.559 0.603 0.581 0.640 0.252 0.288 0.334 0.388

ASD 0.147 0.312 1.344 1.152 0.248 0.223 0.268 0.254 0.608 0.616 0.603 0.694 1.015 0.574 0.584 0.874
MBB 0.152 0.273 0.472 1.641 0.231 0.317 0.269 0.272 0.628 0.650 0.658 0.664 0.237 0.349 0.376 0.451

Informer

Origin 0.879 1.147 1.562 2.919 0.305 0.349 0.349 0.391 0.736 0.770 0.861 0.995 0.452 0.466 0.499 1.260
FreqMask 0.534 0.764 1.074 1.102 0.262 0.281 0.284 0.299 0.673 0.679 0.715 0.797 0.199 0.293 0.356 0.487
FreqMix 0.962 1.156 1.498 2.689 0.266 0.276 0.287 0.300 0.674 0.677 0.720 0.805 0.216 0.402 0.459 0.666

ASD 0.994 1.132 1.669 1.924 0.317 0.331 0.334 0.348 0.812 0.747 0.805 0.900 0.342 0.452 0.529 0.644
MBB 0.859 1.136 1.549 2.874 0.354 0.389 0.397 0.451 0.752 0.768 0.892 1.057 0.544 0.425 0.601 1.221

Implementation. FreqMask and FreqMix only have one hyper-parameter, which is the mask-
rate/mix-rate, respectively. In all the experiments, the rate is selected from {0.1, 0.2, 0.3, 0.4, 0.5}. In
most cases, a large mask/mix rate, i.e, 0.5, is better than smaller rates. More implementation details
are presented in the Appendix B.

4.2 MAIN RESULTS

Table 3 and Table 4 show the comparisons of different augmentation methods that double the size of
the training dataset. As can be observed, FreqMask and FreqMix improve the performance of the
original model in most cases. However, the performances of ASD and MBB are often inferior to the
original model.

Notably, FreqMask improves DLinear’s performance by 16% in ETTh2 when the predict length is
192, and it improves FEDformer’s performance by 28% and Informer’s performance by 56% for
the Weather dataset when the predict length is 96. Similarly, FreqMix improves the performance of
Autoformer by 27% for ETTm2 with a predict length of 96 and the performance of Informer by 35%
for ETT2 with predict length of 720. These results indicate that FrAug is an effective DA solution for
long-term forecasting, significantly boosting SOTA performance in many cases.
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Figure 5: The over-fitting problem of recent SOTA models. We plot the training and testing curve
of Autoformer and Informer in ETTh1 dataset, predict length 96. The testing curve are much more
flatten after applying FreqMask and FreqMix.

We attribute the performance improvements brought by FrAug to the fact that it alleviates the over-
fitting issues of the original model. Generally speaking, a large gap between the training loss and the
test loss, the so-called generalization gap, is an indicator of over-fitting. Fig 5 demonstrates training
loss and test error curves from deep models Autoformer and Informer. Without FrAug, the training
loss of Autoformer and Informer decease with more training epochs, but the test errors increase. In
contrast, when FrAug is applied to include more training samples, the test loss can decrease steadily
until it is stable. This result clearly shows the benefits of FrAug.

In Fig 6, we visualize some prediction results with/without FrAug. Without FrAug, the model can
hardly capture the scale of data, and the predictions show little correlation to the look-back window,
i.e, there is a large gap between the last value of the look-back window and the first value of predicted
horizon. This indicates that the models are over-fitting. In contrast, with FrAug, the prediction is
much more reasonable. More visualization results are presented in Appendix D.

0 96 192

Input Origin FreqMix True

(a) Autoformer, ETTh2 289-6
0 96 192

Input Origin FreqMix True

(b) Informer, Weather 2790-6

Figure 6: Visualization of models’ predictions. (a) shows the predictions of Autoformer trained on
original dataset and dataset augmented by FreqMask. (b) shows the predictions of Informer trained
on original dataset and dataset augmented by FreqMix. With our augmentations, models are less
likely to overfit.

4.3 COLD-START FORECASTING

Apart from improving SOTA performances, another important application of FrAug is its capability
for cold-start forecasting, where only very few training samples are available.

To simulate this scenario, we reduce the number of training samples of each dataset to the last 1%
of the original size. For example, we only use the 8366th-8449th training samples (83 in total) of
ETTh2 dataset for training. Then, we use FrAug to generate augmented data to enrich the dataset. In
this experiment, we only consider two extreme cases: enlarging the dataset size to 2x or 50x, and
a better result is presented. Models are evaluated on the same test dataset as the original long-term
forecasting tasks.

Table 5 shows the results of two forecasting models: DLinear and Autoformer on 4 datasets. The
other results are shown in Appendix E. We also include the results of models trained with the full
dataset for comparison. As can be observed, FrAug maintains the overall performances of the models

8
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Table 5: Performance of models trained with the last 1% training samples compared with that trained
with full training set. Performances are measured by MSE. The best results are highlighted in bold
(row full data is not included).

Model Method ETTh2 Exchange Rate Electricity Traffic
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

DLinear

Full Data 0.295 0.378 0.421 0.696 0.079 0.205 0.309 1.029 0.140 0.154 0.169 0.204 0.410 0.423 0.436 0.466
1% Data 0.572 0.704 0.628 0.662 0.280 0.549 1.711 0.897 0.196 0.205 0.218 0.280 0.764 0.658 0.825 0.908

FreqMask 0.351 0.467 0.541 0.640 0.174 0.258 0.777 0.820 0.172 0.183 0.197 0.257 0.466 0.484 0.509 0.539
FreqMix 0.464 0.531 0.590 1.005 0.139 0.252 1.205 0.897 0.176 0.185 0.200 0.257 0.486 0.510 0.515 0.578

Autoformer

Full Data 0.432 0.430 0.482 0.471 0.145 0.385 0.453 1.087 0.203 0.231 0.247 0.276 0.624 0.619 0.604 0.703
1% Data 0.490 0.546 0.498 0.479 0.247 0.487 0.579 1.114 0.462 0.488 0.518 0.541 1.238 1.366 1.299 1.325

FreqMask 0.409 0.496 0.476 0.471 0.166 0.304 0.791 1.085 0.326 0.331 0.410 0.483 0.761 0.832 0.706 0.786
FreqMix 0.414 0.502 0.484 0.471 0.208 0.369 0.832 1.091 0.347 0.326 0.381 0.479 0.746 0.844 0.715 0.795

to a large extent. For Traffic dataset, compared with the one trained on full training data, the overall
performance drop of DLinear is 13% with FrAug, while the drop is 45% without FrAug. Surprisingly,
sometimes the model performance is even better than those trained with the full dataset. For example,
the performance of Autoformer is 5.4% better than the one trained with the full dataset for ETTh2
when the predict length is 96. The performance of DLinear is 20% better than the one trained with
full dataset for Exchange Rate when the predict length is 720. We attribute it to the distribution shift
in the full training dataset, which could deteriorate the model performance.

4.4 DISCUSSIONS

Combining FreqMask and FreqMix: FreqMask and FreqMix do not conflict with each other.
Therefore, it is possible to combine them for data augmentation. Table 6 shows the results of
such combinations. However, we cannot observe much improvements. We hypothesize that either
FreqMask or FreqMix has already alleviated the overfitting issue of the original model with the
augmented samples.

Table 6: Performance of combination of FreqMask and FreqMix in ETTh2. Performances are
measured by MSE. The best results are highlighted in bold.

Model DLinear Autoformer
Method Origin FreqMask FreqMix Combine Origin FreqMask FreqMix Combine

96 0.295 0.277 0.277 0.277 0.432 0.346 0.351 0.349
192 0.378 0.338 0.342 0.334 0.430 0.422 0.423 0.419
336 0.421 0.432 0.449 0.428 0.482 0.447 0.455 0.458
720 0.696 0.588 0.636 0.546 0.471 0.462 0.449 0.455

Selection of mask/mix rate: In our experiment, a large mask/mix rate, i.e, 0.5, is usually better than
smaller rates. On the other hand, we also observe that small rate sometimes achieve better results for
datasets whose sizes are relatively large (e.g., ETTm1 and ETTm2) or datasets with clean patterns
(e.g., electricity). In Appendix F, we present the mask/mix rate used in Sec. 4.2.

5 CONCLUSION

This work explores effective data augmentation techniques for the time series forecasting task. By
systematically analyzing existing augmentation methods for time series, we first show they are
not applicable for TSF as the augmented data-label pairs cannot meet the semantical consistency
requirements in forecasting. Then, we propose FrAug, a novel frequency domain augmentation
technique. The proposed frequency masking and frequency mixing strategies not only effectively
expand training data size, but also are easy to implement. Comprehensive experiments on widely-used
datasets validate that FrAug alleviates the overfitting problems of state-of-the-art (SOTA) TSF models,
thereby improving their forecasting performance. In particular, FrAug significantly improves the
model performance under cold-start forecasting, which occurs frequently in practical applications.
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Appendix:
FrAug: Frequency Domain Augmentation for Time Series

Forecasting
In this appendix, we provide i). a brief introduction to the FFT in Sec. A, ii). more implementation
details in Sec. B, iii). an extra study of FrAug in short-term forecasting tasks in Sec. C, iv). more
visualizations about how FrAug alleviate over-fitting in Sec. D, v). more experiment results of FrAug
in cold-start forecasting problem in Sec. E, vi). hyper-parameters for FrAug in Sec. F.

A DISCRETE FOURIER TRANSFORM AND FAST FOURIER TRANSFORM (FFT)

Specifically, DFT converts a finite sequence of equally-spaced samples of a function into a same-
length sequence of equally-spaced samples of a complex-valued function of frequency. Given a
sequence x = {xn} with n ∈ [0, N − 1], the DFT is defined by:

Xk =

N−1∑
n=0

xne
− 2πi

N nk, 0 ≤ k ≤ N − 1

The most commonly-used DFT calculating method is Fast Fourier Transform (FFT). However, when
dealing with real number input, the positive and negative frequency parts are conjugate with each other.
Thus, we can get a more compact one-sided representation where only the positive frequencies are
preserved, which have length of (N + 1)//2. We use pyTorch function torch.fft.rfft and torch.fft.irfft
to perform real FFT and inverse real FFT. In the following sections, we refer spectrum as the positive
frequency spectrum calculated by real FFT.

B IMPLEMENTATION DETAILS

FrAug. In application, FrAug can be implemented by a few lines of code. In our experiment, when
we double the size of the dataset, we apply FrAug in a batch-wise style. For example, when the
experiments’ default batch size is 32, we reduce it to 16. In the training process, we use FrAug to
create an augmented version for each sample in the batch, so that the batch size is back to 32 again.
Such procedure can reduce memory costs since we don’t need to generate and store all augmented
samples at once. Also, such a design enhances the diversity of samples, since the mask/mix rate in
FrAug introduces randomness to the augmentation.

Other baselines. In the experiments of the main paper, we compare Frequency Masking and
Frequency Mixing with ASD (Forestier et al., 2017; Bandara et al., 2021) and MBB (Bandara et al.,
2021; Bergmeir et al., 2016). These two methods are reproduced by us based on the descriptions
in their original paper. Specifically, for ASD, we first calculate the pair-wise DTW distances of all
training samples. Then, to generate a new sample, we applied an exponentially weighted sum to
each sample’s top5 closest neighbors. This weighted sum is on both look-back window and horizon.
Finally, we combine all new samples with the original dataset and train the model with them. For
MBB, we apply a similar batch-wise augmentation procedure as FrAug. For each sample, we use
the STL decompose from package statsmodels to extract the residual component of each training
sample. Then we use the MovingBlockBootstrap from package arch to add perturbations on the
residual component. Finally, we recombine the residual part with the other components.

C SHORT-TERM FORECASTING TASKS

We present the results of FrAug on the short-term forecasting tasks in table7. For FEDformer,
Autoformer and Informer, FrAug consistently improves their performances. Notably, FrAug improves
the performances of Autoformer by 28% in ETTm1 with a predict length of 3. In exchange rate
with a predict length of 3, it improves the performance of Autoformer by 50% and improves the
performance of Informer by 79%. However, no significant performance boost is observed in DLinear.
We find that the model capacity of DLinear is extremely low in short-term forecasting tasks. For
example, when the horizon is 3, the number of parameters in DLinear is 6x look-back window size,
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Table 7: Performance of models in short-term forecasting tasks. Performances are measured by MSE.
The best results are highlighted in bold.

Dataset PredLen DLinear FEDformer Autoformer Informer
Origin FreqMask FreqMix Origin FreqMask FreqMix Origin FreqMask FreqMix Origin FreqMask FreqMix

ETTh1

3 0.168 0.170 0.177 0.200 0.192 0.198 0.260 0.241 0.209 0.264 0.191 0.219
6 0.241 0.233 0.233 0.250 0.244 0.242 0.339 0.329 0.305 0.482 0.311 0.322

12 0.307 0.286 0.286 0.293 0.289 0.288 0.380 0.371 0.331 0.649 0.375 0.377
24 0.319 0.317 0.318 0.312 0.305 0.305 0.374 0.377 0.406 0.690 0.406 0.443

ETTh2

3 0.083 0.084 0.085 0.151 0.139 0.136 0.171 0.146 0.140 0.288 0.163 0.141
6 0.104 0.103 0.103 0.166 0.155 0.152 0.231 0.203 0.177 0.577 0.266 0.292

12 0.131 0.130 0.130 0.187 0.176 0.177 0.247 0.222 0.202 1.078 0.370 0.497
24 0.168 0.166 0.167 0.216 0.205 0.204 0.298 0.249 0.246 1.218 0.512 1.127

ETTm1

3 0.062 0.063 0.064 0.093 0.089 0.090 0.255 0.194 0.184 0.091 0.074 0.072
6 0.088 0.088 0.090 0.120 0.114 0.114 0.270 0.188 0.186 0.130 0.108 0.114

12 0.138 0.136 0.137 0.171 0.168 0.168 0.291 0.253 0.262 0.251 0.175 0.192
24 0.211 0.209 0.209 0.279 0.279 0.281 0.418 0.335 0.346 0.320 0.277 0.362

ETTm2

3 0.044 0.044 0.044 0.068 0.060 0.061 0.095 0.087 0.076 0.071 0.055 0.055
6 0.056 0.056 0.056 0.080 0.074 0.074 0.124 0.108 0.110 0.100 0.077 0.086

12 0.074 0.074 0.074 0.096 0.092 0.091 0.124 0.113 0.113 0.142 0.104 0.124
24 0.098 0.098 0.100 0.115 0.112 0.112 0.152 0.131 0.138 0.235 0.163 0.202

Exchange

3 0.005 0.005 0.005 0.031 0.026 0.028 0.039 0.024 0.018 0.422 0.088 0.297
6 0.008 0.009 0.008 0.035 0.030 0.030 0.031 0.021 0.023 0.575 0.125 0.442

12 0.014 0.014 0.014 0.044 0.039 0.040 0.054 0.028 0.030 0.581 0.132 0.470
24 0.024 0.024 0.024 0.054 0.050 0.049 0.061 0.043 0.049 0.583 0.255 0.562

Electricity

3 0.070 0.081 0.087 0.142 0.129 0.130 0.147 0.128 0.129 0.233 0.182 0.187
6 0.085 0.090 0.092 0.149 0.137 0.137 0.152 0.135 0.136 0.271 0.211 0.210

12 0.099 0.106 0.110 0.157 0.146 0.145 0.158 0.140 0.141 0.286 0.217 0.222
24 0.110 0.110 0.111 0.164 0.153 0.153 0.176 0.139 0.141 0.292 0.229 0.231

Traffic

3 0.308 0.326 0.341 0.537 0.506 0.510 0.563 0.515 0.519 0.597 0.580 0.586
6 0.342 0.347 0.352 0.548 0.519 0.519 0.564 0.526 0.527 0.619 0.609 0.607

12 0.360 0.372 0.380 0.547 0.525 0.521 0.565 0.530 0.532 0.634 0.608 0.625
24 0.371 0.371 0.372 0.548 0.532 0.528 0.560 0.534 0.527 0.672 0.632 0.622

Weather

3 0.049 0.047 0.047 0.086 0.080 0.081 0.156 0.115 0.131 0.068 0.058 0.056
6 0.061 0.061 0.061 0.099 0.093 0.090 0.158 0.123 0.128 0.074 0.066 0.067

12 0.079 0.079 0.079 0.138 0.116 0.122 0.172 0.139 0.142 0.111 0.086 0.094
24 0.104 0.105 0.105 0.153 0.151 0.140 0.182 0.147 0.158 0.189 0.126 0.161

while other models have more than millions of parameters. Such low model capacity makes DLinear
hard to benefit from augmented data.

D MORE VISUALIZATIONS ABOUT OVER-FITTING PROBLEM

Long-term forecasting. We present more visualization of prediction results in Fig. 7. With FrAug,
models are less likely to overfit, therefore they can better capture the information in the look-back
window and make reasonable predictions.

Short-term forecasting. We also presents some visualizations of training and testing curve in Fig. 8.
FrAug can effectively reduce the generalization gap.

0 96 192

Input Origin FreqMix True

(a) Autoformer, ETTh2 967-4
0 96 192

Input Origin FreqMix True

(b) Informer, Weather 2927-17

Figure 7: Visualization of models’ predictions in long-term forecasting tasks. (a) shows the predic-
tions of Autoformer trained on original dataset and dataset augmented by FreqMix. (b) shows the
predictions of Informer trained on original dataset and dataset augmented by FreqMask. With our
augmentations, models are less likely to overfit.
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Figure 8: The over-fitting problem of recent SOTA models in short-term forecasting tasks. We plot
the training and testing curve of Autoformer in ETTh2 dataset with predict length 24, and of Informer
in ETTh1 with predict length 12. The testing curve are much more flatten after applying FreqMask
and FreqMix.

Table 8: Performance of models trained with the last 1% training samples compared with those
trained with full training set. Performances are measured by MSE. The best results are highlighted
in bold (row full data is not included).

Dataset PredLen DLinear FEDformer Autoformer Informer
1% Data FreqMask FreqMix Full Data 1% Data FreqMask FreqMix Full Data 1% Data FreqMask FreqMix Full Data 1% Data FreqMask FreqMix Full Data

ETTh1

96 0.468 0.467 0.484 0.381 0.636 0.457 0.469 0.374 0.693 0.485 0.512 0.449 1.542 0.767 1.518 0.931
192 0.666 0.546 0.549 0.405 0.659 0.549 0.617 0.425 0.753 0.608 0.594 0.463 1.508 1.131 1.518 1.010
336 0.901 0.594 0.617 0.439 0.665 0.589 0.662 0.456 0.661 0.583 0.580 0.495 1.509 1.042 1.579 1.036
720 0.761 0.731 0.742 0.514 0.648 0.605 0.605 0.485 0.709 0.589 0.587 0.535 1.432 1.200 1.514 1.159

ETTh2

96 0.572 0.351 0.464 0.295 0.398 0.391 0.394 0.339 0.490 0.409 0.414 0.432 3.115 2.276 3.002 2.843
192 0.704 0.467 0.531 0.378 0.453 0.466 0.470 0.430 0.546 0.496 0.502 0.430 2.882 1.969 2.775 6.236
336 0.628 0.541 0.590 0.421 0.472 0.479 0.483 0.519 0.498 0.476 0.484 0.482 3.082 1.815 2.709 5.418
720 0.662 0.640 1.005 0.696 0.457 0.455 0.456 0.474 0.479 0.471 0.471 0.471 3.017 1.814 2.953 3.962

ETTm1

96 0.392 0.371 0.374 0.300 0.743 0.546 0.616 0.364 0.692 0.630 0.656 0.552 1.652 0.692 1.943 0.626
192 0.407 0.388 0.389 0.335 0.745 0.533 0.541 0.406 0.665 0.649 0.652 0.559 1.653 0.755 1.904 0.730
336 0.432 0.416 0.418 0.368 0.750 0.616 0.709 0.446 0.625 0.632 0.626 0.605 1.720 0.801 1.812 1.037
720 0.490 0.471 0.472 0.425 0.743 0.660 0.710 0.533 0.713 0.697 0.699 0.755 1.914 0.919 1.979 0.972

ETTm2

96 0.396 0.202 0.317 0.171 0.293 0.255 0.275 0.189 0.294 0.258 0.289 0.288 2.548 2.206 2.640 0.389
192 0.795 0.254 0.650 0.235 0.342 0.330 0.333 0.253 0.395 0.355 0.426 0.274 2.703 2.287 2.675 0.813
336 0.412 0.381 0.420 0.305 0.400 0.389 0.393 0.327 0.397 0.399 0.407 0.335 3.633 2.382 3.055 1.429
720 0.837 0.721 0.929 0.412 0.477 0.474 0.481 0.438 0.481 0.529 0.562 0.437 2.812 2.074 2.529 3.863

Exchange

96 0.280 0.174 0.139 0.079 0.160 0.166 0.166 0.135 0.247 0.166 0.208 0.145 1.674 0.384 1.220 0.879
192 0.549 0.258 0.252 0.205 0.266 0.278 0.288 0.271 0.487 0.304 0.369 0.385 1.651 0.420 1.313 1.147
336 1.711 0.777 1.205 0.309 0.430 0.520 0.523 0.454 0.579 0.791 0.832 0.453 1.849 0.798 1.330 1.562
720 0.897 0.820 0.897 1.029 0.927 0.942 0.942 1.140 1.114 1.085 1.091 1.087 1.827 1.027 1.597 2.919

Electricity

96 0.196 0.172 0.176 0.140 0.537 0.314 0.302 0.188 0.462 0.326 0.347 0.203 1.238 0.744 1.118 0.305
192 0.205 0.183 0.185 0.154 0.530 0.321 0.310 0.196 0.488 0.331 0.326 0.231 1.230 0.681 0.989 0.349
336 0.218 0.197 0.200 0.169 0.533 0.337 0.335 0.212 0.518 0.410 0.381 0.247 1.216 0.767 1.025 0.349
720 0.280 0.257 0.257 0.204 0.563 0.500 0.500 0.250 0.541 0.483 0.479 0.276 1.219 0.832 1.070 0.391

Traffic

96 0.764 0.466 0.486 0.410 1.360 0.791 0.787 0.574 1.238 0.761 0.746 0.624 1.613 1.066 1.262 0.736
192 0.658 0.484 0.510 0.423 1.365 0.788 0.742 0.611 1.366 0.832 0.844 0.619 1.615 1.028 1.136 0.770
336 0.825 0.509 0.515 0.436 1.376 0.794 0.740 0.623 1.299 0.706 0.715 0.604 1.624 1.306 1.389 0.861
720 0.908 0.539 0.578 0.466 1.400 0.904 0.761 0.631 1.325 0.786 0.795 0.703 1.638 1.475 1.541 0.995

Weather

96 0.245 0.212 0.214 0.175 0.295 0.273 0.280 0.250 0.293 0.299 0.318 0.271 1.735 0.671 1.601 0.452
192 0.264 0.241 0.240 0.217 0.318 0.307 0.319 0.266 0.361 0.310 0.341 0.315 1.950 0.517 1.874 0.466
336 0.294 0.284 0.283 0.265 0.367 0.372 0.390 0.368 0.384 0.400 0.431 0.345 1.608 0.536 1.546 0.499
720 0.374 0.366 0.372 0.324 0.428 0.419 0.426 0.397 0.458 0.472 0.485 0.452 1.234 0.642 1.256 1.260

E ALL RESULTS OF COLD-START FORECASTING

We simulate the cold-start forecasting tasks by reducing the training samples of each dataset to the
last 1%. For example, when the look-back window and horizon are both 96, the 8640 data points
in the training set of ETTh1 can form 8448(8640 - 96 - 96) training samples. We use the last 1%
of training samples (the 8364th-8448th) for model training. In total, we only use 279(84 + 96 + 96)
continuous data points. This is similar to the situation where we train a model to predict the sale
curve of a new product based on just a few days’ sale data.

In the main paper, we only present part of the results of FrAug in cold-start forecasting. Here we
present all the results in the table 8. We can observe that FrAug consistently improves the perfor-
mances of the model in cold-start forecasting by a large margin. In some datasets, i.e, exchange rate,
models trained with FrAug can achieve comparable to those trained on the full dataset. Surprisingly,
the performances of the models are sometimes better than those trained on the full dataset, i.e,
Informer in Exchange rate and ETTh2. This indicates that FrAug is an effective tool to enlarge the
dataset in cold-start forecasting.
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Table 9: Best hyper-parameters for FrAug on all the datasets.
Model PredLen 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Dlinear Mask Rate 0.5 0.4 0.5 0.4 0.5 0.5 0.3 0.5 0.3 0.2 0.1 0.4 0.5 0.4 0.5 0.5
Mix Rate 0.5 0.3 0.5 0.4 0.5 0.4 0.1 0.4 0.2 0.2 0.1 0.1 0.3 0.5 0.5 0.2

FEDformer Mask Rate 0.4 0.2 0.2 0.5 0.5 0.5 0.4 0.5 0.5 0.1 0.5 0.3 0.5 0.5 0.5 0.5
Mix Rate 0.5 0.5 0.1 0.5 0.5 0.5 0.4 0.5 0.5 0.1 0.5 0.5 0.5 0.4 0.5 0.4

Dataset exchange electricity traffic weather

Dlinear Mask Rate 0.1 0.1 0.5 0.5 0.1 0.1 0.2 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.4 0.5
Mix Rate 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.2 0.1 0.2 0.1

FEDformer Mask Rate 0.4 0.5 0.5 0.5 0.1 0.2 0.2 0.2 0.4 0.5 0.5 0.5 0.3 0.5 0.4 0.5
Mix Rate 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.5 0.3 0.5 0.2 0.1 0.3 0.5 0.4 0.5

F HYPER-PARAMETERS FOR FRAUG

FreqMask and FreqMix only have one hyper-parameter, which is the mask-rate/mix-rate, respectively.
In all the experiments, the rate is selected from {0.1, 0.2, 0.3, 0.4, 0.5}. The best parameters for two
models are shown in Table 9.
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