Under review as a conference paper at ICLR 2025

ON EXPRESSIVE POWER OF LOOPED TRANSFORM-
ERS: THEORETICAL ANALYSIS AND ENHANCEMENT
VIA TIMESTEP ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Looped Transformers offer advantages in parameter efficiency and Turing com-
pleteness. However, their expressive power for function approximation and ap-
proximation rate remains underexplored. In this paper, we establish approxima-
tion rates of Looped Transformers by defining the concept of the modulus of con-
tinuity for sequence-to-sequence functions. This reveals a limitation specific to
the looped architecture. That is, the analysis prompts us to incorporate scaling
parameters for each loop, conditioned on timestep encoding. Experimental results
demonstrate that increasing the number of loops enhances performance, with fur-
ther gains achieved through the timestep encoding architecture.

1 INTRODUCTION

Transformers (Vaswani et al.,2017) have become the standard neural network architecture for a wide
range of machine learning tasks, such as natural language processing and computer vision. Looped
Transformers have an architecture composed of fixed-size Transformer layers, where the output is
fed back into the input. This structure offers advantages over standard Transformers, such as in-
ductive bias, parameter efficiency, and Turing completeness. [Dehghani et al.| (2019)) first introduced
the idea of incorporating recursive inductive bias into Transformers, aiming to address tasks that
RNNSs handle more easily. Looped Transformers are also related to weight-tying Transformers (Lan
et al., 2020), demonstrating comparable performance to standard Transformers with fewer param-
eters. More recently, |Giannou et al.[(2023)) theoretically demonstrated that the recursive structure
of Looped Transformers allows them to function as Turing machines. In summary, Looped Trans-
formers are more parameter-efficient and potentially more expressive than standard Transformers,
enhancing their generalization capabilities.

The expressive power of standard Transformers has been extensively explored, showing that they can
approximate continuous permutation-equivariant functions on compact domains (Yun et al., 2020;
Kim et al.; 2023 Takakura & Suzukil 2023} |Jiang & Li}2024; Kajitsuka & Sato, 2024). In addition,
their approximation rate has been studied: |Takakura & Suzukil (2023)); Jiang & Li/(2024)) established
it by identifying the properties of the target functions, revealing the types of functions that Trans-
formers can approximate effectively. In contrast, the expressive power of Looped Transformers in
function approximation remains unexplored. Due to the structural constraints imposed by weight-
tying, which limit their flexibility, existing universal approximation theories for Transformers cannot
be directly applied. Moreover, the approximation rate and the appropriate properties of the target
functions for Looped Transformers have yet to be investigated. Recently, Zhang et al.|(2023) first
explored the expressive power of looped models. They established an approximation rate for ReLU
networks for continuous functions in terms of loop counts and modulus of continuity. Still, this
remains unclear in the case of Looped Transformers.

In this paper, we derive the approximation rate of Looped Transformers for continuous sequence-to-
sequence functions by defining the concept of sequence continuity, contextual continuity, and token
continuity. This reveals a limitation specific to the looped architecture. That is, the analysis prompts
us to incorporate scaling parameters for each loop, conditioned on timestep encoding.

Under review as a conference paper at ICLR 2025

2 BACKGROUND

We define the Transformer architecture in Section [2.1)and Looped Transformers in Section[2.2] We
then introduce related work of theoretical analysis on function approximation power of Transformers
in Section 2.3

2.1 TRANSFORMER ARCHITECTURE

Given an input sequence X € RN composed of N token embedding of dimension size d, the
self-attention layers with i heads and head size s, and the feed-forward layer with width size g, are
defined as follows:

h

Artn() = 3w (WD) o5 | (WOx0) T (WO0)| erIY.)
=1
FF(X. ;) =W? op(WW . X ; + b)) + b3 e R,)

B

where m(v)7 Wi(K)v Wi(Q) c RSXd,Wi(O) c RdXS,W(l) c Rqu,W(Q) c Rdxq,b(l) c
RY, b@ e RY are parameters, o denotes ReLU function, and og denotes a softmax operator

applied to the columns of the input matrix.
The Transformer block TF(X) : RN — R4*N ig defined by:
X' =X + Attn(X), (3)
TF(X) = X'+ FF(X'). (G))
where F'F represent token-wise FF. In other words
TF = (id + FF) o (id 4+ Attn), (5)
where id denote the identity mapping. For simplicity, we omit the domain of definition.

For the analysis of expressive power in Section 3] we use the hardmax operator o7 instead of og
and exclude Layer Normalizations as in previous studies (Yun et al.,|2020; |Kim et al.| 2023)).

2.2 LOOPED TRANSFORMER

Looped Transformers feed output back into input, defined as
LyoTFo---0TFo Ly, (6)

where L2 and £ denote token-wise linear layers. Let TF°" denote the 7-times composition of TF.
We refer to Lo o TF" o £ as a Looped Transformer with r-loops.

Looped Transformers have been studied in recent years, regarding their parameter efficiency (Lan
et al., |2020; Takase & Kiyono, 2021} |[Bae et al.| |2024) and generalization capabilities (Dehghani
et al., |2019; [Fan et al., 2024). Other recent works (Giannou et al., |2023; |Gatmiry et al.| 2024;
Back De Luca & Fountoulakis| 2024} |Gao et al., |2024; |Giannou et al., 2024) have investigated
their performance on iterative algorithms, including in-context learning and graph algorithm. In
particular, |Yang et al.|(2024) empirically demonstrated that increasing the number of loop iterations
enhances performance on complex tasks. However, to the best of our knowledge, there are no studies
on the expressive power or approximation rate of Looped Transformers in function approximation.

2.3 THEORETICAL ANALYSIS ON FUNCTION APPROXIMATION

The universal approximation theorem for fully connected neural networks, as demonstrated by |Cy-
benko| (1989); [Hornik et al.| (1989), shows that networks of sufficient size can approximate cer-
tain classes of functions with arbitrarily low error. Transformers are universal approximators of
sequence-to-sequence functions (Yun et al.l 2020} Takakura & Suzukil, [2023; Jiang & Lil [2024; Ka-
jitsuka & Satol 2024), and their memorization capacity has also been studied (Kim et al., |2023).
Recently, Zhang et al.| (2023)) revealed that even single fixed-size networks can be universal approxi-
mators. They explored the surprising potential of composition (loop) and derived the approximation
rate in terms of the number of loop counts and modulus of continuity of the target function.

Under review as a conference paper at ICLR 2025

3 APPROXIMATION RATE OF LOOPED TRANSFORMERS

We establish the approximation rate of Looped Transformers by defining the modulus of continu-
ity for continuous sequence-to-sequence functions. We begin with preliminaries of Transformers
in Section [3.1] Then, we present and explain three types of continuity for sequence-to-sequence
functions, which determine the approximation rate. In Section we present our main results on
approximation rate, along with some implications. In Section[3.4] we provide a proof sketch with a
detailed explanation, outlining three steps for approximation and deriving the approximation rate.

3.1 PRELIMINARY

Transformers are permutation-equivariant, so we define the target function class as follows.

Definition 3.1 (Yun et al. (2020); Kim et al.|(2023)). A function f : RN — RN s said to
be permutation equivariant if for any permutation matrix P, we have f(XP) = f(X)P. Let
Fpr([0,1]9*N) denote the set of permutation equivariant and continuous functions.

To approximate sequence-to-sequence functions, networks need to map each token within the con-

text of sequences, formulated as contextual mapping.

Definition 3.2 (Yun et al.| (2020); [Kim et al.| (2023)). Consider a finite set L ¢ R¥N. A map
CM : L — RN defines a contextual mapping if the map satisfies the following:

1. Forany L € LL, the N entries in CM(L) are all distinct.
2. Forany L, L’ € L, with L # L/, all entries of CM(L) and CM(L’) are distinct.

Let [|-[|,, denote the entry-wise LP-norm for a vector for any p € [1, 00).
Definition 3.3 (Norm of function). We define the LP-norm for a function f on [0, 1]9*¥ by:

1/p

(o4 %) = [1r01; ax)

3.2 DEFINITION OF CONTINUITY FOR SEQUENCE-TO-SEQUENCE FUNCTIONS

The modulus of continuity of a continuous function g : [0, 1]¢ — R can be defined as
sup {[g(x) — g(a)| : lz — 2’2 < t, =2’ € [0,1]}.

It can be extended for sequence-to-sequence functions f : [0, 1]9*N — RIXN a5 follows.

Definition 3.4 (Modulus of Sentence Continuity). Given a sequence-to-sequence continuous func-
tion f : [0,1]9*N — RN the modulus of sentence continuity is defined by:

wi(t) = sup {|F(X) = F(X)lp: |1 X = X'l <t, X, X" € [0,1]N}.

We illustrate what this continuity represents and why it is referred to as sequence continuity. If
we consider the following two sentences: (1) I read books, and (2) He writes music, the sequence
continuity measures how much the overall meaning of a sequence changes:

3 i) A ¢ .)
Iread books’ «+— ‘He writes music’,
in proportion to the differences between the input sequences, measured by comparing each token:

A b 3 b A ‘ . b [3 9 ‘ b)
T +— ‘he’, read” +— ‘write’, and book” <=+ ‘music’.
We found that this concept is insufficient to derive the approximation rate of Looped Transformers,
primarily because one key characteristic of the Transformer architecture is the sharing of parame-
ters across all tokens: specifically, the feed-forward layers are applied token-wise. In other words,
Transformers output token embeddings in the context of sequences for each token.

This observation leads us to define two additional forms of continuity: contextual continuity and
token continuity, which we found to determine the approximation rate of Looped Transformers.

Under review as a conference paper at ICLR 2025

Definition 3.5 (Modulus of Contextual Continuity). Given a sequence-to-sequence continuous func-
tion f : [0, 1]4*N — RN the modulus of contextual continuity is defined by:

chcont(t) = i?g(, {”f(X)n_f(X/)an : ||X_X/H2 < t, X:,n = X/na XaXI € [07 ”dXN}»

Definition 3.6 (Modulus of Token Continuity). Given a sequence-to-sequence continuous function
f [0, 1]9XN — RI¥*N the modulus of token continuity is defined by:

W) = sup {IF(X) o~ FX el [Ko — XLl <1,
n, X, X'
X.m = X!, foranym #n, X, X' €0, l]de}7

The modulus of contextual continuity measures the variation in the output of token embeddings
induced by a perturbation of context. For example, we consider the following three sentences:

(1) I write papers, (2) You write books, and (3) Mozart writes music.

The output embedding of the second token, ‘write’, should be similar in sentences (1) and (2) due
to their similar context. In contrast, a larger variation in context, as seen in sentence (3), can induce
a significant variation in the output of token embedding.

On the other hand, the modulus of foken continuity measures the variation in the output embedding
caused by perturbations to the token itself within the same context. For instance, we consider the
sentences:

(1) T write papers, and (2) I draft papers.

In this example, both sentences have the same context, but the verb (‘write’ vs. ‘draft’) variation
reflects a perturbation in the token itself. The modulus of token continuity quantifies how this change
influences the output embeddings. A small modulus of foken continuity means that the output em-
beddings of ‘write’ and ‘draft’ are expected to be similar.

3.3 MAIN RESULT

The following main theorem demonstrates the approximation rate of Looped Transformers in terms
of the modulus of continuity and the number of loops.

Theorem 3.7. Given a function f € Fpg([0,1]N), for any r € N, there exists a Looped
Transformer TF : RGAHDXN _y REAADXN of ginele head, head size s = 1, and width size
q = 99d + 8, and two affine linear maps £, : R — R+ and £, : R?44+1 — R? such that

[1£20 TF*" 0 L1 = f|| 1y o ajaxn) < WiR(6Vd) + Wi (VN d) + wy (5VNd) + O(5%),

ford = ((T — N)/2) _1/((N+1)d+1), where L1 and L4 represent the token-wise applications of L1
and Lo, respectively.

Thus, Looped Transformers are universal approximators.

Corollary 3.8. The hypothesis space of Looped Transformers H, defined by

H = {[,2 oTF°" o Ly : r €N, L5 and L;are token-wise affine linear maps},
are dense in Fpr([0,1]%*N) in terms of the LP([0, 1]4*N) norm.
These results provide us with some insights:

¢ A function with a small modulus of continuities, e.g., robust to contextual perturbations, is suited
for approximation by Looped Transformers.

* The total parameter count is O(d), independent of both § and N, highlighting the parameter
efficiency of Looped Transformers.

* The optimal approximation rate of ReLU networks of size n is O(w(O(n~2/?))) for continuous
functions on [0, l]d (Yarotsky, |2018)); the exponential rate is unavoidable.

Under review as a conference paper at ICLR 2025

3.4 PROOF SKETCH

We provide a proof sketch highlighting differences from prior studies and associated difficulties.
The formal proof is provided in Appendix [A]

Approximation with Piecewise Constant Function. We approximate f € Fpg with piece-wise
constant function f : [0,1]9*N — RIXN_ Specifically, for 6~! € N, we divide the input space
[0, 1]4%Y into §-discretized cubes, denoted by {@B}Bc0,,....5-1—134x~. Each cube is associated
with a representative X € Q. Define a piecewise constant function f for X € [0, 1]4%N as

f(X) = f(Xg) where B satisfies X € Qp.

We can bound the approximation error within each cube as |[f(X) — f(X)|, <

wr(V02 4+ 62) < wy(d - VNd) for any X € [0,1]4*N. We involve three steps to construct

f. The first and second steps map the input X to the coordinates of the discretized input space,
involving B. The third step approximately maps these coordinates to the target embeddings.

Step 1. Token-wise Quantization. The network, with 61 — 1 loops, token-wise maps the input
space into indices (the proof is provided in Appendix[A.4). Then it maps them to an integer, referred
to as a token ID:

X.,c0,1*=pec{0,1,....6 ' —1}? = 2€{0,1,...,67¢ —1}. (7

The key idea behind our proof follows Zhang et al.|(2023)); however, we cannot directly apply it here
due to the need to account for skip connections. Additionally, it is necessary to consider a bijective
mapping of 3 to a token ID in the 5 ~!-base system for the next step.

Step 2. Contextual Mapping. The network performs contextual mapping, which maps N token
IDs to a sequence ID in the set of {0,1,..., §—Nd _ 1}. Previous studies (Yun et al., [2020; |[Kim
et al., [2023)) use multiple layers for constructions; however, these results do not extend to Looped
Transformers for two reasons.

(1) [Yun et al.| (2020) used both sparse and uniform attention, whereas Looped Transformers
are limited to a single fixed attention layer.

(2) [Kim et al.{(2023) used N-layers to store N parameters, whereas fixed-size O(d) Looped
Transformers cannot store /N weight components.

While these considerations indicate some limitations of Looped Transformers, we found that
Looped Transformers with N-loops can perform contextual mapping. The proof strategy fol-
lows [Kim et al.| (2023)); however, it is necessary to update for a single Transformer block. Let
z € {0,1,...,67¢ — 1}N represent a sequence of N ordered and distinct token IDs, where
z1 > zo > -+ > zn. The networks map the set of token IDs into sequence ID via inner product
with u == (§~¢WNV=-D_ 51 1) e RV ie.

CM(z) =u'z,

which satisfy

HuTz - uTz’H >1, ifz#2.
Thus CM is a contextual mapping. The key point is that the network only needs to store J to
represent u, allowing it to be implemented with Looped Transformers. Details are provided in Ap-

pendix

Step 3. Token-wise Mapping. The network token-wise maps the coordinates of discretized re-
gions approximately to the target token embedding. From Steps 1 and 2, each token in the input
sequence is assigned a token ID with a sequence ID, where the sequence ID is consistent across all
tokens. The combination of the token ID and sequence ID determines the coordinates, referred to as
contextual token ID.

Notably, we found that the design of the contextual token ID plays a crucial role in Looped Trans-
formers. This comes from the constraint of looped architecture. Let K denote the set of contextual

Under review as a conference paper at ICLR 2025

8: Mozart writes music. —e— Model
e Piecewise Constant Function

11: Beethoven writes music.

1
51

‘ Linear interpolation ‘

0: I write papers.
wcont(6 ld) wcont(/Nd)
3: You write books.

wcont(\/N—d)_i_wtok(\/d—)

'write'

1
5-1

1: T write books.

0 1 2 3 4 5 6 1 12 13 14 15 16 17

7 8 9 10
contextual token ID

Figure 1: Approximation error and modulus of continuity. The linear interpolation technique re-
duces the error by a factor of 1/571.

token IDs, where each index is associated with a distinct cube B € {0,1,...,5~! — 1}9%¥ in the
discretized space. For each k € K, let X, denote the cube associated with B, i.e., X5. Looped
Transformer f : RN — RN can token-wise approximate piecewise constant function f with
the error of

1F(Xe)n = FXi)onll € o [F(Xi)n = F(Xir1)ally foramyke ke, ()

forn = 0,1,..., N (details are provided in Lemma [£.T)). This requires us to design K so that
1f(Xk)i — f(Xkr—1): nllp is small, i.e., the outputs of neighboring contextual token IDs are sim-
ilar. The core idea of this design is explained with illustrations, comparing the output embeddings
of the underlined tokens.

(1) I write papers. ; I write papers. (different token ID with same sequence ID)

(2) I write papers. ; You write books. (same token ID with different sequence ID)

The contextual continuity chf’"t of Definition [3.2| ensures that the outputs embeddings of ‘write’
in (2) are similar. However, none of the continuity properties provide guarantees that the output
embeddings of ‘write’ and ‘papers’ in (1) are similar. Thus, we design the contextual token ID so
that the same token with different sequence IDs comes next to each other except for unavailable
corner cases (details in Appendix [A.4).

Consolidation into Single Looped Transformer. At the end of the construction, we demonstrate
that the composition of the three sub-networks from Steps 1, 2, and 3 can be realized with a single
Transformer block. The proof strategy follows [Zhang et al.[(2023)); however, it cannot be directly
applied because their approach requires an additional layer. In contrast, we found that a single
Transformer block is sufficient (details are provided in Appendix [A).

Deriving Approximation Rate. Lastly, we estimate the approximation error of our construction
and establish the approximation rate. In Step 2, we consider only the case where all NV input tokens
are distinct, disregarding other cases. These cases can be treated as negligible when 4 is small. The
number of subsets where one of the N tokens is duplicated is

(0 H" =67 (67 1) (57— N —1) < 6N,

where C'is a constant. The volume of these subsets is C6~ (V=14 /§=Nd — C§¢, thus the error with
respect to the LP norm is O(5%).

In Step 3, we can bound the approximation error as follows:

I1F(X0) =)y < max | X = FX-nlly < mae (X = F K1)l

There are two types of error for the right-hand side term: the variation induced by contextual per-
turbation and the variation induced by token perturbation. We illustrate this with examples of each
pattern, as shown in Fig.|l} Specifically, we consider the following three cases:

Under review as a conference paper at ICLR 2025

(1) I write papers. ; I write books. (small perturbation of context)
(2) You write books. ; Mozart write music. (large perturbation of context)

(3) Beethoven writes music. ; I draft papers. (perturbation of both token and context)

The error in each case can be bounded with the corresponding modulus of continuity:

1. wsent (6v/d)
2. ch""t (VNd) — 6ch""t (VNA)
3. w}"k(\/g) + w}om(\/JW) — 5(w}0k(\/3)) + w;‘mt(\/ﬂ))
where — represents the use of linear interpolation techniques to reduce the error with extra §-loops

(explained in Appendix. Since that w;""t’mk(n-t) < n-w;ont’wk(t) foranyn € Nandt € [0, 00)
with § < 1, we can then derive the upper bound for the three terms:

ax 1 (Xk)en — F(Xir—1):mllp

< max {w;‘mt(&/a), 6(&1;07”(\/@)7 (5(w§c"k(\/&) + w?ont(m)) }
< max {w;fmf(aﬂ), W (5VN), WPk (5Vd) + w;‘mt((s\/M)}
< WliF(0Vd) + Wi (3VNd),

With the triangle inequality, we have an approximation error as

I1f = Fllzoqogaxsy < 1F(X) = fF(X)p-1
<FX) = FX)p + 1F(X) = F(X)lp
< nax 17 (X5)ein = F(Xnr—1)snllp + [1F(X) = F(X)lp + O(87)
< Wl (6Vd) + W™ (0V/Nd) + wp (5VNd) + O(5%). 9)

Then, § is expressed in terms of the number of loops r to determine the approximation rate. We
use 6! — 1 loops for Step 1, N loops for Step 2, and 26~ (NV+1)4 _ 1 loops for Step 3, with 1 loop
required to connect each step. Thus we have
r=(" 1)+ 1+ (N)+1+ (207N 1) e 5t 426N = N
&6 t2g e > N

e 25~ (NHDd-1 5
—1/((N+1)d+1)

(10)

es< (T—N)

From Eq. [9]and Eq.[I0] we can derive Theorem[3.7]

Summary. Our contribution is to establish an approximation rate for Looped Transformers by
identifying the continuity of sequence-to-sequence functions. Additionally, as a technical contribu-
tion, we demonstrate that a single Looped Transformer block is sufficient for contextual mapping.
While|Zhang et al.|(2023) requires three feed-forward layers of looped ReLLU networks for universal
approximation, we achieve this with just one layer.

4 FROM THEORY TO PRACTICE: INTRODUCING TIMESTEP ENCODING

The theoretical result in Section [3] identifies a limitation of the looped architecture in its reliance
on contextual and token continuity. This analysis suggests incorporating time-dependent scaling
parameters for each loop, which we implemented as a function of the timestep encoding.

Under review as a conference paper at ICLR 2025

4.1 MOTIVATION

Limitation Specific to Looped Architecture. Theorem 3.7)shows that the approximation rate of
Looped Transformers depends on the modulus of three types of continuity. Sequence continuity
relates to approximating continuous functions with piecewise constants, while contextual and token
continuity dependencies are unique to the looped architecture. Previous studies (Yun et al., 2020;
Kim et al.| 2023)) show that standard Transformers lack these dependencies. This additional depen-
dency increases approximation errors, limiting the approximation power of Looped Transformers.

We identify the cause of dependency in Step 3: Token-wise Mapping of the following Lemma.
Lemma 4.1. Giveny;, € R? fork =0,1,...,m — 1 with
[(yp —yp—1)i| <& fork=1,2,....m—1,
there exist feed-forward layer FF : R — R4 of width size 20d and two affine linear maps
L1 : R 5 RYM gud Lo : RY4 — RE such that
[(L20 (id+FF)™ Do Ly(k) —yp),| <& fork=0,1,...,m—1,
foranyi=1,2,...,d.

Lemma [.T|implies that large variations in the target function, represented by discretized points yy,
lead to increased approximation error in Looped Transformers. Specifically, when outputs at nearby
points vary greatly, a small approximation error cannot be guaranteed.

How Can We Improve the Approximation Rate of Looped Transformers? To address the de-
pendency on contextual and token continuity, we introduce time-dependent parameters for each loop.
Specifically, we modify the feed-forward layers by adding a scaling vector parameter that varies with
the loop index (timestep), defined as follows:

FF(X) — n(t) © FF(X) for the ¢-th loops,

where © is an element-wise product, ¢ € N denotes the loop index (timestep), and n(t) € R?
represents a time-dependent scaling parameter. This kind of dynamic scaling vector parameters is
also used by HyperNetworks (Ha et al.,|2016) for RNN to enhance expressive power.

We show that the time-dependent Looped Transformer overcomes approximation errors from con-
textual and token continuity. Specifically, we can replace Lemma [.1] with the following The-
orem [{.2] which demonstrates that time-dependent models can precisely approximate any target
function. The proof is provided in Appendix [B]

Theorem 4.2. Giveny, € R fork = 0,...,m—1, there exist feed-forward layer FF : R4 — R4
of width size 6d and n(t) € R4 and two affine linear maps L, : R® — R4 and Ly : R — R s.1.

Loo(id+n(m—1)©FF)o---o(id + (1) ® FF) o £ (k) = yy.

For implementation, while adding parameters for each loop is effective, the number of parameters
increases with the number of loops. Therefore, we introduce timestep encoding to address this issue.

4.2 TIMESTEP ENCODING

We use timestep encodings to represent loop counts and to condition scaling parameters, follow-
ing [Peebles & Xie| (2023)), where time-dependent Transformers are applied in diffusion models by
regressing layer normalization parameters from timestep encodings.

To condition on timesteps, frequency embeddings are processed through a two-layer MLP with
hidden size matching the Transformer block and SiLU activation, as shown in Fig.[2l Let TE(t) €
R? denote timestep embeddings, defined as:

TE(t) = WP . situw! ™ . PE(t) + b{"P)) 4+ b

where Wl(TE), WQ(TE) € R?4 and b§TE), bgTE) € R? are parameters, and PE(t) € R? is the
timestep encoding function that maps the timestep (loop index) into a d-dimensional embedding, s.z.

PE(t)2; = sin(t/10000%7/%), PE(t)ai41 = cos(t/10000%/4).

Under review as a conference paper at ICLR 2025

The root mean square layer normalization (RMSNorm) (Zhang & Sen- Scale ——
nrich, 2019) has been employed in several recent large language models [
(LLMs), such as LLaMA (et al., 2023) and Gemma (Team, 2024). RM- Scale = —— |
SNorm, denoted by RMSLN, is defined as N°;fm
Scale —
x
RMSLN(z) = a ® , where RMS(x) = —
(@) RMS(x) =) ff;?:: MLP
i . . Timestep
where o € R is a gain parameter for rescaling. Embedding

Extending standard RMSNorm, we define time-dependent RMSNorm)
as: Figure 2: Timestep en-
x coding architecture.
RMSLN(z,t) = a(t) © =————
(@1) =D © gy
where a(t) € R? is a time-dependent parameter generated by a hyper-
netowrk.Additionally, we incorporate parameters for output scaling, defining the time-dependent

Transformer block as follows:
X=X +v(t) © Attn(RMSLN, (X, t)),
TF(X,t) = X'+ v2(t) © FF(RMSLN, (X', 1)),

where ~; (t),v2(t) € R? are time-dependent parameters applied token-wise, and RMSLN; and
RMSLN , represent token-wise applications of RMSLN; and RMSLNj, respectively.

To generate time-dependent vector parameters, we use the SiLU function and weight parameters:
au(t), az(t), m(t), y2(t) = W - SILU(TE(1)) + b7,
where W) ¢ R4dxd p(H) ¢ R are parameters.

5 EXPERIMENTS

Our experimental results support our theoretical findings. First, we show that increasing loop counts
enhances the expressive power of Looped Transformers by evaluating dynamic programming (DP)
tasks in Section[5.1] Second, we observe performance gains from timestep encodings in certain DP,
in-context learning, and language modeling tasks Section[5.2]

5.1 VARYING LOOPS WITH DYNAMIC PROGRAMMING

DP problems were chosen for their recursive structure and their difficulty for standard Transformers
without chain-of-thought (Feng et al.,[2023). We categorize specific types of DP problems and select
representative tasks from each category (details are provided in Appendix [C.T).

Experimental setups. We generate 10° samples for training and 10% samples for testing. All
tasks are trained as classification tasks using cross-entropy loss and are evaluated by best accuracy
on the test sets. While our theoretical results focus on approximation power (fitting to the training
set), we observe a strong correlation between training and test accuracy, suggesting that lower test
accuracy reflects the approximation capacity rather than a generalization issue (see the results of ED

in Appendix [C.2)).

We trained Looped Transformers with 5, 10, 50, and 100 loops, both with and without time de-
pendency (the configuration is provided in Appendix [C.2] We incrementally increased the number
of loops, stopping when performance exceeded 90% or saturated due to limited computational re-
sources. In addition, to validate the research significance of Looped Transformers, we compared
them to a 12-layer Transformer. The Transformer’s limitations stem not from approximation but
from generalization capabilities, which fall outside the scope of our theoretical results.

Results. Certain tasks require a large number of loops, while others benefit from fewer iterations
(see Table. [T). We observe accuracy improvements for both LCS and ED tasks by increasing the
number of loops. In particular, for ED tasks, models with timestep encoding exhibit consistent
accuracy gains without saturation as the loop count grows. Moreover, Looped Transformers solve
tasks that standard Transformers cannot.

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy for dynamic programming (DP) tasks, with parameters (e.g., sequence length)
indicated in parentheses. We limit training and evaluation to lower loop counts if tasks are effectively
solved with fewer loops. Some tasks require high loop counts, while others are solvable with few.

Task ‘ TF ‘ Looped TF w/ Timestep Encoding

| d=12 | r=5 r=10 r=50 r=100 r=5 r=10 r=50 r=100
Subset Sum (10) 834 | 841 830 - - 83.8 839 - -
Knapsack (20) 928 | 922 940 - - 88.7 909 - -
LCS (60) 70.0 66.0 81.8 98.6 - 68.5 80.5 99.3 -
LCS (100) 39.8 396 451 93.5 - 36.7 456 98.1 -
ED (60) 414 | 238 326 473 47.7 266 389 57.3 88.3

5.2 ENHANCEMENT VIA TIMESTEP ENCODING

In-Context Learning. Transformers can learn in- Table 2: MSE (]) on in-context
context (Brown, |2020), with recent studies examining learning results with enhancement
their ability to learn function classes (Garg et al.l 2022} via timestep encoding.

Akyitirek et al.l [2023; [Von Oswald et al.l [2023)). |Yang

et al.| (2024) investigated with Looped Transformers. We TF Looped Timestep

evaluate timestep encodings with 12-loops on decision
tree functions, as described in Appendix [C.3] We observe d=12 r=12 r=12

enhancement via timestep encodings (Table [J), surpassing 8.64e-03 1.43e-02 1.70e-03

even standard Transformers with 12 layers.

Table 3: Enhancement via timestep encoding on perplexity performance for WikiText-103.

Metric ‘ TF ‘ Looped TF w/ Timestep Encoding

\ d=12 \ r=1 r=3 r=6 r=1 r=3 r=6

Train Perplexity (]) 5.11 6.65 5.64 5.61 6.29 5.31 5.05
Test Perplexity ({) 19.6 33.11 27.93 28.16 31.18 23.45 22.42

Language Modeling. We use the WikiText-103 (Merity et al.l [2017) dataset, containing over
100 million tokens from Wikipedia articles, to compare wide-block Looped Transformers, approxi-
mately matched in parameters to 12-layer standard Transformers, with and without timestep encod-
ings across 1, 3, and 6 loops, evaluated by perplexity. Details are in Appendix [C.4] We observe that
timestep encoding enhances training approximation and improves test perplexity (Table[3). We also
found that test perplexity falls short compared to standard Transformer.

6 CONCLUSION

We have established approximation rates for Looped Transformers by introducing the modulus of
continuity for sequence-to-sequence functions. Our analysis reveals a limitation inherent to the
looped architecture, prompting the incorporation of a time-dependent scaling parameter. This re-
search is the first to investigate the function approximation capabilities of Looped Transformers.
Additionally, our experiments demonstrate that Looped Transformers can solve certain dynamic
programming (DP) tasks that traditional Transformers struggle with, though the underlying mech-
anism remains unclear. While we have derived upper bounds, the tightness of these approximation
rates is still undetermined. Future work will explore more complex and practical tasks, such as
mathematical problem-solving.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akytirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=0g0X4H8yN4TIl

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: fast convergence at large depth. In Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161, 2021. URL
https://proceedings.mlr.press/vlol/bachlechner2la.htmll

Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped
transformers. In Proceedings of the 41st International Conference on Machine Learn-
ing, pp- 2319-2363. PMLR, 2024. URL https://proceedings.mlr.press/v235/
back-de-lucaz4a.html.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Re-
laxed recursive transformers: Effective parameter sharing with layer-wise lora. arXiv preprint
arXiv:2410.20672, 2024.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for piecewise
polynomial networks. Advances in neural information processing systems, 11, 1998.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303-314, 1989.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9OY7.

Hugo Touvron et al. Llama: Open and efficient foundation language models, 2023. URL https:
//arxiv.org/abs/2302.13971.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization, 2024. URL https://arxiv.org/abs/2409.15647.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=gHrADgAdYu.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K. Ng, Zhenguo
Li, and Zhaogiang Liu. On the expressive power of a variant of the looped transformer. arXiv
preprint arXiv:2402.13572,2024. URL https://arxiv.org/abs/2402.13572|

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URLhttps://openreview.net/forum?id=f1NzJ2eOet!

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learn-
ing? In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=08AaRKbP 9K.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Proceedings of the 40th
International Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/giannou23a.html.

11

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.mlr.press/v161/bachlechner21a.html
https://proceedings.mlr.press/v235/back-de-luca24a.html
https://proceedings.mlr.press/v235/back-de-luca24a.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2409.15647
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2402.13572
https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=o8AaRKbP9K
https://openreview.net/forum?id=o8AaRKbP9K
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html

Under review as a conference paper at ICLR 2025

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.
URLhttps://arxiv.org/abs/2403.03183.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359-366, 1989.

Haotian Jiang and Qianxiao Li. Approximation rate of the transformer architecture for sequence
modeling. arXiv preprint arXiv:2305.18475,2024. URLhttps://arxiv.org/abs/2305.
18475,

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank weight
matrices universal approximators? In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=nJdnky5K944.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of trans-
formers. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8JCg5xJCTPR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=HleA7AEtvS.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2018. URL https:
//openreview.net/forum?id=rk6qdGgCZz.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxel

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195-4205, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for
sequence-to-sequence functions with infinite dimensional input. In Proceedings of the 40th In-
ternational Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/takakura23a.html!

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL https:
//arxiv.orqg/abs/2408.00118.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In Proceedings of the 40th International Conference on Machine Learning, 2023. URL
https://proceedings.mlr.press/v202/von-oswald23a.htmll

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HHbRxoDTXE.

12

https://arxiv.org/abs/2403.03183
https://arxiv.org/abs/2305.18475
https://arxiv.org/abs/2305.18475
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=8JCg5xJCTPR
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.mlr.press/v202/takakura23a.html
https://proceedings.mlr.press/v202/takakura23a.html
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=HHbRxoDTxE

Under review as a conference paper at ICLR 2025

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu net-
works. In Proceedings of the 31st Conference On Learning Theory, 2018. URL https:
//proceedings.mlr.press/v75/yarotskyl8a.htmll

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
1id=ByxRMONtvrl

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Shijun Zhang, Jianfeng Lu, and Hongkai Zhao. On enhancing expressive power via compositions of
single fixed-size ReLU network. In Proceedings of the 40th International Conference on Machine
Learning, 2023. URL https://proceedings.mlr.press/v202/zhang23ad.html.

A PROOFS OF FUNCTION APPROXIMATION

o-discretized cubes

1.00

O3 | Q7 | Qu | Qis
| 0: | Qs Qw | Qu I write paper
030 Step 1. Token-wise Quantization

Q1 QOs | Q| Qi3
02 Token ID Token ID Token ID

Qo | Q4 | Os | Q12
0'08.00 0.25 0.50 0.75 1.00 Step 2. ConteXtual Mapping

Seq ID
Contextual Contextual Contextual
Token ID Token ID Token ID

Step 3. Token-wise Mapping
-------- Target

—— Piecewise constant .

0.00 0.25 0.50 0.75 1.00
Figure 3: Overview of proof sketch.

We present the formal proof of Theorem In Appendix [A.2] we provide the whole proof re-
lying on lemmas, introduced in the following subsections. In Appendix Appendix and
Appendix [A.6] we provide the key lemmas. The overview of proof outline is shown in Fig

A.1 NOTATIONS

* The bold notation for functions indicates that they are applied in a token-wise manner.
* We define the nearest functions as follows:

neart (a,S) := arg min |a — b|
beS,b>a
near (a,S) = arg min |a — b
beS,b<a
The function near(a,S) identifies the element in the set S that is closest to a. The function
near™ (a, S) finds the closest element greater than a, while near™(a, S) identifies the closest ele-
ment less than a.

13

https://proceedings.mlr.press/v75/yarotsky18a.html
https://proceedings.mlr.press/v75/yarotsky18a.html
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://proceedings.mlr.press/v202/zhang23ad.html

Under review as a conference paper at ICLR 2025

* Given two values a and b, and the number of divisions n, we can define the linear interpolation
output at an index ¢ (where ¢ ranges from 0 to n) as follows:

t
lin_interp(a, b,t,n) = a + ﬁ(b —a)

A.2 PROOF OF THEOREM [3.7]

Theorem 3.7. Given a function f € Fpg([0,1]9*N), for any r € N, there exists a Looped
Transformer TF : RG4HDXN _y REAADXN of ginele head, head size s = 1, and width size
q = 99d + 8, and two affine linear maps L1 : R4 — R+ gnd £, : R?44+1 5 R? such that

[1£2 0 TF" 0 L1 = f|| 1y o ajaxn) < WiH(5Vd) + Wi (VN d) + wy (5VNd) + O(5%),

ford = ((r — N)/2) _1/((N+1)d+1), where L1 and L4 represent the token-wise applications of L4
and L, respectively.

Proof. Since any continuous function can be approximated by a piecewise constant function with
arbitrarily small errors, we approximate f € Fpg with piece-wise constant function f : [0, 1]4*N —
RN We choose § ! € N, which determines how finely the input is divided; then, we divide the
input space [0, 1]9*¥ into J-discretized cubes, denoted by {Qp} for B € {0,1,...,57 1 — 1}4xN
defined by

Qs = {X €07 : Xy € [Bind Bind +1), =12 Nd}.

Note that we do not consider the trifling regions in|Zhang et al.|(2023) as we use the L, norm rather
than the uniform norm.

Each cube is associated with representative Xp € 5. We can define piecewise constant function
f for X € [0, 1]V as

f(X) = f(Xp) where B satisfies X € Qg.

We can bound the error within each cube as: ||f(X) — f(X)|, < w;(6V/Nd) for any X €
[07 1]d><N.

Our construction consists of three steps to approximate f. The first and second steps map the
input X to the coordinates of the discretized input space. The third step approximately maps these
coordinates to the target embeddings. The outline of three step is:

1. The network, with (6=! — 1)-loops, maps the input space [0, 1] token-wise to the coordinates
B € {0,1,...,671 — 1}% of divided cubes, and then bijectively maps these coordinates to an
integer, representing token IDs in the set {0, 1,...,5~%}, using a 6 ~!-base system.

2. The network, with N loops, performs a contextual mapping from the set of distinct N token IDs
into the set of extended sequence ID. Specifically, the network using Stepl and Step2 maps the
discretized coordinates B € {0,1,...,0~ ! — 1}dXN, for each dimension d and each token IV,
representing it in a ! system with Nd digits (/N tokens are ordered). Furthermore, dummy
indices are needed to reduce the approximation error in the next step.

3. The network, with §2(N+1d _ 1 Joops, approximately maps contextual token IDs to the output
embeddings of each token in a token-wise manner. Contextual token IDs refer to token IDs
assigned to each token within the context of a sequence ID. To achieve a small approximation
error, the network has to be designed so that neighboring IDs correspond to similar output token
embeddings.

The details for each steps are provided below.

14

Under review as a conference paper at ICLR 2025

Step 1. Token-wise Quantization. The input space for each token « € [0, 1]¢ are divided into
S-discretized cubes, denoted by {Qg} for B € {0,1,...,671 — 1}9, defined as

Qp = {m e 0, 1)@ € [Bi0, Bid+1), i= 1,2,...,d}.
By Lemma there exist a feed-forward layer FF(: R34 — R34 of width size q = 7d, and two
affine linear maps £{") : R? — R5@ and £J") : R% — R? such that

o(671-1

YorW(z)=p st i€ [, Bio+1)

forany ¢ = 1,2,...,d. Let B denote the output of the token-wise application to the input x €
[0’ 1]d>< N

In addition, we need to bijectively map the d-dimensional vector 3 to an integer foken ID, denoted
by z. We use a 6~ !-base system; define the vector Us-1) € R? as

w1y = (670D @D st)T

£V o (id + FFD)

and define z as
z=ul B e{0,1,...,67—1}.

To implement this, we define £ : R% — R with £V : R3¢ — R via
1
£ (@) = uly L5 ().
Thus, we have
<£él) o (FFgl))O(‘rl_l) o Egl)(w)) = u&,l)ﬁ =z st T, €Qpg,

forn=1,2,...,N.
We define the input cubes for each token assigned to z as follows:
Q. = {33 c0, 1)@ € [Bid, Bid+1) fori=1,2,....d st z= u(}l)ﬁ}.
We can confirm that
|z, — 212 < SVd vz, € Q..Vx. 1 €Q._1 st Bg=1,2,...,671 1.
While, we have
|z, —@.qlls <Vd Va, € Q. Va._1€Q.q st Bg=0. (11

Informally, in this §~!-base representation, the least significant digit corresponds to the index of the
d-th dimension, 34. When incrementing the token ID one by one, the index in the d-th dimension
increases sequentially 0,1,2,...,6~1 — 1, without changing the other digits; thus, consecutive IDs
imply that the tokens are “similar” to each other in d-dimensional space, with a distance of at most
6v/d. However, when a carry occurs, the higher-order digits may change significantly, causing
tokens that were not originally adjacent to appear next to each other in terms of their indices, as
we are essentially projecting a d-dimensional space onto a 1-dimensional space. In this case, the
distance is only bounded by v/d.

Step 2. Contextual Mapping. The networks, with N-loops, map the list of IV token IDs, denoted
by z € {0,1,...,6% — 1}¥, to sequence IDs bijectively. Furthermore, this mapping is not only
bijective; it also requires the inclusion of additional dummy indices.

Note: We consider only the case where all IV input tokens are distinct, disregarding other cases,
which can be treated as negligible when ¢ is small. The number of subsets where one of the N
tokens is duplicated is

(67d)N - 57d . (6*(1 _ 1) o (67d _N_— 1) < Céf(Nfl)d’
where C is a constant. The volume of these subsets is Cd~ (V=14 /5=Nd = C§4, 50 the error with

respect to the LP norm is O(5%).

15

Under review as a conference paper at ICLR 2025

Let L denote the set, composed of distinct NV tokens, i.e.
Ls = {z€{0,1,...,6 ¢ — 1}V | 2; # z; forall i # j}.

Due to permutation equivalence, we can assume without loss of generality that elements of z € L;
is ordered, i.e., z1 > zo > -+ > zy. Define u(5-¢) == (5*(N’1)d, U 1)T, which satisfy

Hu(T(;_d)z - u&_d)z’H >1, ifz# 2 forany 2,2’ € Ls.

This mapping, u?:s,d)z, represents z in a 6 ~%-base system. Then, we define sequence ID of z € LLs
as:

N
s(z) = u(T(;,d)z = Z 2,0 N=m)d (12)
n=1

By Lemma[A.5] there exist a Transformer block TF'() : R3*N — R3*N with single head, head

size s = 1, and width size ¢ = 3, and two affine linear maps £/1(2) : R — R? and E;@) ‘R > R
such that

oN
£ o T o P (27) =5s(2) - 11,
where 2T — u(Té_ ay% is a contextual mapping.

Furthermore, we have to add dummy indices to alleviate the approximation error caused by the

looped architecture in Step 3. Recall that B € {0,1,...,67 % — ldXN} represents the coordinates
of the inputs. Let Z € {0,1,...,5~1 — 1}?*¥ denote the coordinates where the tokens are ordered
by their token IDs, i.e., u(Té,l)Z1 > u&,l)Z2 > > u(T(;,l)ZN, e,z = u(Té,l)Z. Thus, by

redefining the sequence ID of Eq. for Z instead of z, sequence IDs in 6 ~?-base can be rewritten
in the 5~ !-base system as follows:

s(Z) = u(T(S,d)(u(Té,l)Z)

d N
_ Z Z Zi’n(s—((N—n)d-l-(d—i)).

=1 n=1
We also define the sequence IDs for each B as:

d N

(B =33 Bi’né—((N—n)d-&-(d—i))_

i=1 n=1
Then, we define extended sequence IDs as:

Sexlend(Z) = 2S(Z) - Zd,N

d N
=Zyn+ Z Z 2Z; .6~ ((N=n)d+(d—i)) 7

=1 n=
(i,n)#(d,N)

d N
Sexend(B) = Ban+ > Y 23i7n57((N7n)d+(d7i)).
n=1

i—1
(i;0)2(d,N)
Recall that By y € {0,1,...,87 1 — 1}. We define the dummy indices as:

Shummy (B) = b+ zd: ZN: QBi,n(s—((N—md“d—”), forb=¢6"16"141,...,26°" — 1.
)"
We define each set as follows:
Sistinet = {Sextend(Z)}, Sdistinct+duplicate ‘= {Sextena(B)}
Sqummy = {Shummy(B) | 0=0"1,6""+1,...,267 1 —1}.

16

Under review as a conference paper at ICLR 2025

Then, we can see that

Sdistincl C Sdistinct+duplicatea Sdistinct+dup1icate N Sdummy = @,
—Nd
Sdistinct+duplicate U Sdummy = {0; 1, ceey 20 - 1}- (13)

We define the input cubes for each token assigned to extended sequence ID s as follows:
Q. — {X €0, 17N . X, € [Bind, Bip6+1) fori=1,2...,Nd st s= sextend(zs)}.
We can confirm for that
[Xs— Xo1lla <OVNd ¥X,€Qu VX 1 €Qs 1 st Ban=12...,671 —1. (14)
While, we have
|Xs — Xoalla <VNd VX, €Qo VX, 1 €Qs 1 st Byy=0. (15)

Informally, this set represents a collection of consecutive sequence IDs, where the first N — 1 tokens
are identical, and the N-th token is “similar”. For example: (1) I write ‘a paper’, and (2) I write
‘papers’. As explained in token IDs, if only the d-th dimension of the N-th token differs, then
the tokens remain adjacent in the d-dimensional space. As a result, the total variation in the input

sequence within the set is bounded by 6v/d.

To implement this, we slightly modified TF5. By Corollary there exist a Transformer block
TF® : R5*N 5 R5*N with single head, head size s = 1, and width size ¢ = 4, and two affine
linear maps £{% : R? — R® and £{¥ : R5 — R such that

o T
5(22) o TF® N o [,52)(([21])) = Sextend (Z) * 1; for any z € L.

Step 3. Token-wise Mapping. From Step 1 and Step 2, the network takes a token ID and se-
quence ID as input for each token, which together form a contextual token ID. The network with
§—2(N+1)d _1 Joops approximately maps these contextual token IDs to the output token embeddings
of the target function.

To construct contextual token IDs, we define a bijective mapping Eé?’) : N2 — N as follows:

£6(z,5) = 267Nz 4,
where z represents a token ID and s represents a extended sequence ID. Note that sequence IDs are

less than 26~V9, so informally, it’s as if we are adding another digit, z,,, as the most significant digit
in a 0 ~%-based system. Define the set of contextual token IDs for distinct N token IDs as:

Kaistinet = {E?) (zrusextend(Z)) n=12... >N}

We also define the set for all inputs, including cases where some token IDs are duplicated, as
,Cdislinct+duplicate = {£3 (ﬁna Sexlend(B)) n= 1a 27 ce 7N}

B {5 +267 N2 5 € Suistinctrduplicate, 7 = 0,1, -+ - ’6d}

d

= {Bd,N + Z

N
Z 2B, 5 ((V=n)d+(d—i)) n 25—Ndz},
i=1 n
(i,n)#(d,N)

and dummy contextual token ID as

Kaummy = {s +267 Nz 5 e Sqummy, 2 = 0,1, --- 75_d}.

17

Under review as a conference paper at ICLR 2025

We can confirm, from Eq.[I3]

’Cdistinct C ICdistinct+dup]icatey Kdistinct+dup]icate N ’Cdummy = (07
_ —(N+1)d
K:distinct+duplicate U ’Cdummy - {0, 1, R 26 () — 1}-

We now define the target output token embedding for each extended contextual mapping ID. Define
g : K — R9, the mapping from extended contextual IDs to their token embeddings, as follows:

(l{i) _ f_(X),n st L3 (/gna Sextend(B)) =k for k € Kdistinct+duplicalea
g lin_interp (g(near (k)), g(near™ (k)), k — near (k),6') for k € Kqummy-

When By, # 0, from Eq.[14] we have
g(k) — g(k — 1) <w§™(5Vd),

since the token z,, remains the same for both k and k — 1. While By ,, = 0, a carryover occurs, and
we only bound the input sequences as in Eq[I5] with the possibility that the token ID differs, the
variation is bounded as Eq[T1} Since we have dummy token IDs, there are redundant indices before
the carryover occurs. As a result, the variation in the next index is bounded by a factor of 6, i.e.,

lg(k) = g(k = Dl < 6(wF" (VNA) + Wit (Va)).

Since that w;‘mt Rty <n- w;;o"t’wk(t) forany n € Nand ¢ € [0, c0) with § < 1, we have

lg(k) = g(k = 1)||, < Wi (6Vd) + wF™ (6VNd).
Thus, we have

(g(k): — g(k — 1);] < WiR(0Vd) + W™ (5VNd) fori=1,2,...,d.

By Lemma l4.1] there exist feed-forward layer FF®) : R4 — R4 of width size 20d and two
affine linear maps £{¥ : R — R4 and £{* : R14¢ s R? such that

—(N+1)d_py

3 . (26 - 3 o con
(L5 o (id + FF®) o LY (k) — g(k)),| < wiF(§v/d) + i (§V/Nd),
foranyi=1,2,...,dand k =0,1,...,26-N+Dd _1
Consolidation into Single Looped Transformer. Lastly, we demonstrate f can be represented in
Looped Transformers. Let
X(O) c RlXN X(l) c deXN X(2) c dexN X(3) c R14d><N

denote the divided input space. Define single head Attn : RG4+DXN _ R(4d+1)XN with head
size 1 as:

x(0)
(1) Osd+1xN
Attn X(Z) - Attn(Q) (X(Q))
X(S) 014dx N

where Attn® denote the self-attention layer of TF®| Let
xo €ER, x € RSd, To € R5d, T3 € R4

denote the token-wise input space. Define FF : R?44+1 5 R244+1 with impulse function defined
in Proposition |A.3] as

xy+1
z
pe [| @ FF (@)
xo - FF(Q)(IL’Q)—FIHIPUISG((; : 1)(11 oL’ (wl,(xl)d))
T3 FF® (z3) + impulse ;-1 y) (E E((24, x3))

18

Under review as a conference paper at ICLR 2025

where FF(® denotes the feed-forward layer of TF(2), and impulse refers to the dimension-wise
application of impulse. Note that @ serves the role of a counter. As shown in Proposition[A.3] the
impulse requires 4 ReLU functions per dimension. With 19d dimensions, this results in an additional

width of 72d + 4. The total width consists of 7d for FF™) | 4 for TF® and 20d for FF®), resulting
in a total width of 99d+8. Define two affine linear maps £; : RY — R?44+1 and £, : R?44+1 — R4
such that

.
Li(x) = (0,59)((3),019(1) , 52(($07w1,$27w3)T) = £§3) (x3).
Thus, we have

f(X) Lo TRe(d +N+25- (VD) £1(X)
st |f(X) = F(X)|p < wiP*(6Vd) + wi (5VNd) + O(5%).

Deriving Approximation Error. Generally, the following inequality holds.

n n p
fo§<2x,> forz; > 0andp > 1.
i=1 i=1

Substituting z; = || f(X) — f(X)||,, into the above inequality results in
_ _ 1/ _
17 = Flesoaesy = ([1700 = 0l ax) ™" < [1700 - 10lax. a0

Also we can bound the entire norm with the token-wise norm as:

”f(Xk) - f(Xk)Hp < rnfLLX ||f(Xk):,7z - f(Xk):,n ‘p < nr,rkl’anIC Hf(Xk’):,n - f(Xk’—l):,an'

With the triangle inequality, we have approximation error as

1f = Fllzeo.gey < IFX) = F(X)]lp -1

< IF(X) = F(X)p + IF(X) = (X,

< max |F (X = F1).nlly + 150 = £ + O

< WiPR(0Vd) + Wi (VN d) + wy (0VNd) + O(57).

Then, § must be expressed in terms of the number of loops r to determine the approximation rate.
=014 N 426 VDD o 51 o5~ (NHDd — .y

o2 W >y N
& 20~ NHDd=1 > N

~1/((N+1)d+1)

A7)

©5§(T_N)

2
Thus, we can derive Theorem [3.7] O

A.3 PIECEWISE LINEAR FUNCTIONS

Here, we define three functions implemented with ReL U functions.
Proposition A.1 (Rectangular function). Givent € R, define rect; : R — R as:

I ifzeltt+1),
0 otherwise.

rect,(z) = {

Four ReLU functions can approximate rect, with arbitrarily small error via

1(0) = o (5E5) — orn(554) + (<L) — o (SEEEL) 1,

€

where lim,_,o ¢¢ () = recty(x).

19

Under review as a conference paper at ICLR 2025

Proposition A.2 (Step function). Define step : R — R as:

0 ifz <O,
step(x){l i§x>0.

Two ReLU functions can approximate step with arbitrarily small error via

¢(x) = or(t+1) —or(%),
where lim,_,o ¢(x) = step(z).
Proposition A.3 (Impulse function). Given 6 € N, define impulse, : R — R for x € [-M, M|
andt € N as:

impulsey(z,t) = z ift=0,

PUBCOLEE = 0 otherwise.

Four ReLU functions can approximate impulse, with arbitrarily small error via

impulsey(z,t) =0 (z +2M(t — 0 +1/2)) — 2Mog(t — 0 + 1/2)
—op(x+2M(t—0—1/2)) + 2Mog(t — 0 — 1/2).

A.4 STEP 1. TOKEN-WISE QUANTIZATION

k — h_k(x)
0
ko (k+1)6
Figure 4: An illustration of hg(x).
We aim to construct quantization function g : [0, 1] — {0,1,...,57 1} for each dimension as

g(@) = (g(z1),9(@2), ..., g(wa) ",
[k ifwe k6, (k+ 1)8),
where g(x) = {0 otherwise.

This function g : R — R can be expressed as

n—1
glx) = Zz - rect; (x)
=0

forany n € N and z € R. The illustration of hy(z) = k - recty(x) is shown in Fig 4| The
key idea is that hj(z) can be represented with a single function 4 in the form of h(kxz,k? k).

Lemma implement h (kx7 k2, k) with a feed-forward layer and perform the summation through
a skip connection.

Lemma A.4. Givenany 6~ € Nand x € RY, there exist a feed-forward layer FF : R> — R4 of
width size ¢ = 7d, and two affine linear maps £, : R — R and Ly : R%® — RY such that
k ife; € [ké, (k+1)), k=0,...,6 1 -1,
0 otherwise,

K2

o(67 =
(Eg o (id + FF) 070, £1(w)> =
foranyi=1,2,..., d.
Proof. On the basis of proposition[A.T} define function hy,(z) = k - rects(z) via

u(z) = on(S(a — £+) — on(t(@ - £)) + on(E(-z+ § +1)

€ €

—or(E(—z+E+1-¢) -k,

20

Under review as a conference paper at ICLR 2025

which satisfies
[k itz e [k6,kO+1),
() = {0 otherwise.

For any x € [k§,kd + 1) where k = 0,1,...,6~% — 1, we have

Define function h : R — R to represent hy, via

bk 2. 8) = (5 = £ 1) = on(52 —) 4 op(£ 4 £ 1 8)

€ €

—O’R(@—i—%z—kk%)—tm k) = hi(x).

€

Define &, as
k—1 T
gk = (kl'v k2a kv z, Zhl(w)) .
=0

Then, construct a feed-forward layer FF : R® — R® with a skip connection such that

k—1
(id + FF) (&) = (id + FF) <(kzx, k%, k, x, Zhi(x))T)

=0
k
- ((k: +)z, (k+1)2% k41,2,) hi(x))T
1=0
=&rt1-

via

(id + FF) k = k +

ol O = N O
]

™

0
0
OO'R
0

(e ev el an)

S oo o+
SO O —O
— oo oo
— oo oo

[

SO OO oo

—a

kx x

K2 2k +1

= k + 1
T 0

L > hulz) T

r kx +x

B +2k+1

= k+1

X

L 50 ha(@) + ()

r (k+1)z

(k+1)2

= k+1

xr

L Zf:o hi(x)

21

SO OO o o0
El
|

OO~ O

Under review as a conference paper at ICLR 2025

Then, define two affine linear maps £; : R! — R and £, : R® — R! by
Ly(r) = (0,0,0,2,0), Lo(x1,v2,23,74,T5) = T5.

Thus, we have

° —-1_ o —1_
Lyo (id+FF)*C Vo) = Ly0 (id+FF)°C Vi)
= L2(&-1)
s -1
= Y hi(x)
i=0
For d-dimensional inputs, we need d-times parameters. O

A.5 STEP 2. CONTEXTUAL MAPPING

The network takes token IDs as inputs, denoted by z € {0,1,...,6=¢ — 1}V, We consider only
the case where all token IDs are distinct, since this accounts for the majority when § is small. The
network maps token IDs into a sequence ID using inner product with the vector u € RY defined as
w = (6~ W-Dd §=(N=2)d " 5=d T je,

CM(z) =u'z.

Due to permutation equivalence, we can assume without loss of generality that elements of z € L;
is ordered, i.e., z; > zo > --- > zx. Then the map CM satisfies

HuTz - uTz’H >1, ifz#2z.

In other words, CM represent z in 6~ %-base system. The network computes u " z in the form of

SN 6-(N=dz, The network computes s*) = % §=(k=Ddz, in each loop, and after N-
loops, it outputs s(™) = T z. To implement this, the self-attention layer select z;, in the k-th loop
iteration. We design the key and value weights to select the maximum token ID. The feed-forward
layer post-processes the token ID as if selected, then replaces it with negative value to prevent
selection in subsequent iterations, i.e., the post-processed token IDs for the k-th loop is

(k) z<0 if <k,
z, ' =z st .
z = z; otherwise.

Lemma A.5. Consider the set, composed of distinct indices for d-dimension §-discretized regions
of N tokens, i.e.

Ls:={z€{0,1,...,6 % = 1}V | z; # 2, forall i # j}.

There exists a function CM : RN — R composed of Transformer block TF : R3*N — R3*N ypity
single head, head size s = 1, and width size ¢ = 3, and two affine linear maps L1 : R — R> and
Ly : R?® — R, such that

£2 o TFON o] Ll(ZT) = CM(ZT) . 1]TV,
for any z € s, where L1 and Lo denote the token-wise applications of L1 and Lo, respectively,
and CM is a contextual mapping, which satisfies the following properties:

1. Forany z € Ls, the N entries in CM(z ") are all distinct.

2. For any z,z' € Ly, if z is not a permutation of z', all entries of CM(z") and CM(2'") are
distinct.

Proof. Due to permutation equivalence, we can assume without loss of generality that elements of
z € Ls is ordered, i.e., zy > 2z > -+ > zn. Defineu € RN asu = (5’<N*1)d, 0Tl nT,
which satisfy

|lu'z—u'2'|| >1, ifz+#2 foranyz 2’ € Ls.

22

Under review as a conference paper at ICLR 2025

Then z — u !z is a contextual mapping. We show how to construct Transformer block TF :

R3*N 5 R3*N with single head and head size s = 1 such that, for any z € L,

2z 0\

oN T — T

TF 0y = Oy
0} u'z-1)

where 0y € RY denote a zero vector. For z € LLg, we define two series z(*) and s(¥) by

{z<0 it i<k,

P Cop—
i = .
z = z; otherwise,

fori=1,...,d.

k
s = Z 57,
i=0

While z(*) is not uniquely determined, any vectors that satisfies the conditions is accepted as z(*).
We can confirm that s(*) satisfies

k
s®) = 3 5l
=1

k—1
— (Z57(k7i)dzi) 4 2z
1=1

(18)
k—1
_ (ngd . 57(k7172)dzi) + 2z
i=0
=54 5D 4 2
Recall that s(™) = 4" z. Define a single-head self-attention Attn : R3*N — R3*N such that
2" 0
Attn y' = | max;z; -1} |,
ST
via the weight parameters
0
Wo=|1]|, Wy=Wg=Wg=[1 0 0]
0
Define FF : R — R? of width size ¢ = 3 via:
T [—M 0 0 1 -1 0 T €
FF o = 0 -1 0 OR 0 1 0 Zo + 0
3 0 1 ¢694-1 0 0 1fL a3 0
—Mogr(xy — 22 +¢€)
= _O'R(x2))
L (5_1 — 1)0’3(1‘3) + O'R(LL'Q)
where 0 < e < §~land M > e~ L. Forz; € {0,1,...,5~}, we have
z=x1 if x1 <o,
- M — = 1.
o ORI =T =7 s {z < 0 otherwise.
This post-processes the token ID as if selected, then replaces it with negative value. We have
2<0 if i<k+1,
sz) —MO’R(Z,Ek) —zp+e) = .
z = z; otherwise, (19)

= 2D fori=1,...,d.

i

23

Under review as a conference paper at ICLR 2025

We can confirm that Transformer block TF : R3*N — R3*¥ composed of Attn and FF satisfies

(z(k))T (z<k))T
0 = (id + o (id 4+ Attn 0
TF I id + FF id+ A I
(s(k))T (s(k))T
[(z(k))T 1
= (id + FF) zp - 1Y
| (s™)T
(zt) T
= (id + FF) zp 1%
(s*))T
[(20T —Mor((z")T — 2, - 1 +€1})
= ZL 1]1\" + —Zk].L
[(st T (01 =1)(s™)T + op(x2)
r (z(k+1))'l'
= 0] because Eq.[T9]
| 0T =) T 4 1)
B (z(k+1))T
= ((I?J:l:))T because Eq. [I§]
s

We define two affine linear maps £; : R — R3?
Lo(x1, 29, 73) = x3. Thus, we have

5T
0y
0y

LooTFN o Ly(z7) = Ly 0 TFN

Recall that z — u | z is a contextual mapping.

and Lo : R3 — Ras £(z) = (x,0,0) and

oy
0%
SN-IL

=Ly (u'z)-14.

O

Corollary A.6. There exist a Transformer block TFy : R®*N — R>*N vith single head, head size
s = 1, and width size ¢ = 4, and two affine linear maps £, : R? — R® and L, : R® — R such that

-
LQ 9 TFQON o L:l (|: §d7; :|> = (2u
where u = (6~ N-Dd 54)T,

Tz - Zd,N) . 11—'\—, for any z € L;.

Proof. Define a single-head self-attention Attn : R?* — R5*¥ guch that

T

Attn

Q »w < N
- o s

via the weight parameters

Wo =

—Oo R OO

24

0
0

. .. T
max; z; - 1y

T
Zd,arg max; z;j ']-N

L Wy =Wx=Wy=[10 0 0 0]

Under review as a conference paper at ICLR 2025

Define FF : R* — R* of width size ¢ = 4 via:

i; —M 0 0 0 10 -1 00 i; 8
0 -1 0 0 00 1 00
FF i3—015—d—10"R00010;3+8
4 Lo 1 0 —1 00 0 01 4
Ts5 x5 0
i —MUR($1—$2+E)
0
= 70R(I’2))
((5_1 — 1)0’R(CL‘3) + G‘R<LB2)
—or(x4) + or(x2)

where 0 < € < 1 and M > e5—!. Note that the fourth columns after ¢ loops are z;, so at the
end, we obtain zy. Then, we define two affine linear maps £; : R? — R® and £, : R®> = R as
L1(x1,22) == (x1,22,0,0,0) and Lo(x1, X2, X3, T4, T5) = 2x4 — T5. O

A.6 STEP 3. FUNCTION VALUE MAPPING WITH BIT EXTRACTION

We use a bit extraction technique (Bartlett et al.| [1998) to approximately memorize the piecewise
linear function.Consider n € N input indices £k = 0,1,...,n — 1 € N with associated values
Y0, Y1, ---,Yn—1 € R. The network approximately memorize the difference y; — y;—1 with base-2
representation. Since binary representation limited to {0, 1}, y; — y;—1 has to be re-scaled with
€=y — yi—1| as
ai= %],
€

where | 2| = max{n : n < x, n € Z}. Then, the difference b; = a;—a,;_1 satisfiesb; € {—1,0, 1},
b;, and it can be represented using two binary values ¢;, d; € {0, 1} as follows:
bi = ¢; — dj,

and we have
k k k
(Lk:ao-f—Zbi:ao-l-Zdi-’-Zdi for k:0,1,2
i=0 i=0 i=0

Lemma and Lemma show that Zf:o c¢; and E?:o d; can be realized by composition of
single feed-forward layer. Thus the networks can approximate y; with ea; denoted by y; with the
following accuracy

€ € €
For d-dimensional inputs-outputs pair, we construct the networks for each dimension i.e.

=i = e] = = ellE] - ¥ <

g=3"7. ... 7

The key idea of our lemma and proof follows Lemma D.1 from [Zhang et al.| (2023) as shown in
below; however, we cannot directly apply their result here, as it requires depth-2 networks.

Proposition A.7 (Lemma D.1 in|Zhang et al. (2023)). Given any r € N*, there exist FF : R3¢ —

R34 of width size 8 and depth 2 with two affine linear maps L, : R? — R® and Lo : R® — R such
that: For any 01,0, ...,0, € {0,1}, it holds that

E

Ly o FF 0 Ly (k, bin0.6102---0,) => 0 fork=0,1,...,r,
{=1

where bin 0.0105 - - - 0,. denote the binary representation of 6 = Z?:l 0,27".

We found that loop unrolling allows us to reduce the number of layers from 2 to 1, replacing 2**! =
ReLU(ReLU(z'%)) with (zF+1, 2'¥) = ReLU(2'%, 2¥). Although our method makes the weights
dependent on 61,6, ...,0, € 0,1, this does not present an issue for our construction in function
approximation. Specifically, 01,65, ...,0, is fixed for each target function, and the role of the
network is to learn the weights tailored to that single function.

25

Under review as a conference paper at ICLR 2025

Lemma A.8. Given 01,0y, ...,0, € {0,1} forr € N*, there exist a feed-forward layer FF : R” —
R of width size 10 and two affine linear maps L1 : R — R” and L4 : R” — R s.1.

k
Lyo(id+FF) o Ly(k)=Y 6 fork=0,1,...,r.

i=1

Proof. From proposition we have a function step(z) defined by

step(x) = UR(f + 1) — UR(f),
satisfies

1 ifz>0,
step(r) =10 irz <o,

Define 3; fori = 0,2,...,7 as

B; =bin0.6; - - - 6,,
where bin0.0105 - - - 6. denote the binary representation of § = 2?21 0,27 and 0y := 0. We have
0; = step(bin0.9; - - 0, — 3) = step(8; — 3),
implying, for: =1,2,...,r — 1,

Bit1 = 2pB; — 0; = 28; — step(B; — 3).

For given k € 0,1,...,r, we have

B

OR (07; + step(k — i) — 1)

k k T T
> 0:=>"0:+ > 0=> 0 step(k—i)
=1 1=1

i=k+1 i=1 i=1

[
]~

OR (step(ﬁi — 3) + step(k — i) — 1).

(20)

1

.
I

To compute the right-hand side, we need two nested ReL.U functions. By using loop unrolling, we
precompute step(; — %) and step(k — ©) in the previous loops, allowing us to require only a single
layer. Define &; for[=0,1,...,r as

T

&= (k—1, B Buir, step(Bi — 3), step(k —1), sum(D))

where sum(l) = Zizl OR (step(ﬁi — 1) +step(k — i) — 1). Note that we have ;11 in the [-th
loop to precompute step(S3;+1 — 3) and step((k — (I + 1)) for the I + 1-th loop.

26

Under review as a conference paper at ICLR 2025

Define FF : R” — R7 such that

k—1
Bi
: _ (s Bi+1
(1 + FE) (&) = (1 + FE) | |
step(k —lz)
sum(l)
i k—1 0 0 0 O 0 0 0 0 0
Bi 110 O 0 0 0 00
_ Biv1 I 0 01 -1 1 0 0 00
= | step(8 — 1) 000 1 -1 -1 0 00
step(k — [) 000 0 -1 1 -100
sum(l) 0o 00 o 0 0 0 01
o 1 0 0 0 0] [0 1
0O 0 0 -1 00 0 1
0 0 1 0 00 k—1 0 0
0 0 1/c 0 0 0 B ~1/(2¢) + 1 0
0 0 1/e 0 0 0 By ~1/(2€)
R0 0 0 -1 0 0 stepﬁl + 0 o
0 0 0 0 1 0| step(k f) 0 0
1/e 0 0 0 0 O sum(l) —1/e+1 0
/e 0 0 0 00 iy
L0 0 0 1 1 0 S
T k-l i !]
/6_1 or(Br) — URl(SZtep(ﬂz -3)) .
Bit1 or(Bi1) - (UR(% Jr112) B UR(w))l 2
~ | step(B — 3) T | —or(step(B —3)) + 03(76’“6_ 2 41)— UR(%)
step(k — 1) —og(step(k — 1)) + og((A= (H'l) +1)— 03(7’“_(?1))
sum(l) i oR (step(k 0+ step(ﬁl -3- 1) |
i E—({+1) k—(+1)
2 — step(Bi — 3) Bis1
_ | 26141 — Step(ﬁzﬂ -3 _ Bit2 . _¢
step(Br41 — 3) step(Bi+1 — 3) AN
step((k — (1 + 1)) step((k — (1 +1))
L sum(l + 1) sum(l + 1)

Define £; : R? - R3 and £ : R® — R via

»Cl(k) = (kv BO, 617 Oa 07 0)T = 507 £2(1'1, L2,X3,T4,T5,T6, 1’7) =Ty,
respectively. Note 7 is defined by given 61,65, ...,0, O

We prove Lemma .| with Lemma [A-8]
Lemma 4.1. Giveny;, € R% fork =0,1,...,m — 1 with

[(yr — Yr—1)i| <& fork=1,2,....m—1,

there exist feed-forward layer FF : R — R4 of width size 20d and two affine linear maps
L1 : R = R™ gnd Lo : R™ — RY such that

|(£2 o (1d+FF)(m_l) O»Cl(k) _yk)i| S &i for k = Ovla”'vm_]-7
foranyi=1,2,..., d.

Proof. We prove this for the case where d = 1, considering y,, € R for k = 0,..., m. Define
a; = %] fori=0,1,...,m—1,

27

Under review as a conference paper at ICLR 2025

where |z| = max{n :n <z, n € Z} and set
b;=a;, —a;_, fori=1,2,...,m—1.
Since b; € {—1,0, 1}, there exist ¢; € {0,1} and d; € {0, 1} such that
b =c¢;—d; fori=1,2,...,m—1.

Thus, we have

k k
ak:ao—i-Zci—Zdi fork=0,1,...,m — 1.
i=1 i=1

From Lemma there exist FF(¢) FF(Y : R7 — R7 and affine linear maps £} : R” — R and
£§c), ng) : R — R7 such that

£y o (id + FFO)™" ™ o £ (1) zk: e Lho(id+ FR@OY ™6 ol gy Zk: d;,
=1 i=1
fork =0,1,...,m — 1. Then, define FF : R'* — R, for z,y € R7,
FF(z,y) = (FF (), FF¥ (y)).
Define £1 : R — R and £5 : R'* — R as
Li(@) = (L9(@), £10(@)), La(@,y)" = e(ao + Ly(x) — Lh(y)).
We can confirm that
Ly o (id 4+ FF)°™Y o £ (k)
— L50 (id+ FF)°" Do (£9(k), £V (k)
— Ly 0 ((id+ FF©)°0n=D o £0)(1) (id 4+ FF@)°(m=1 o £ (1))
- e(ao + Lo (id + FF©)m=D 6 £ (k) _ 1 o (id + FF@®)e(m=1) o L@(k))

k k
= e(ao + Zci — Zdi) = eayg.
i=1 i=1
Thus we have
|(L2 0 (id + FF)°(™ Y o £y (k) — yr),| = lear —yi| <e.

We can extend this for d-dimensional input. O

28

Under review as a conference paper at ICLR 2025

B ROLE OF TIME DEPENDENT SCALING PARAMETERS

We demonstrate that time-dependent scaling parameters overcome the limitations inherent to the
looped architecture and eliminate the dependence of the approximation rate on the modulus of con-
tinuity. We use the architecture defined in Section 4] as:

FF(x) —» n(t) © FF(x) for the ¢-th loops,

Following lemma demonstrate that time dependent scaling parameters can exactly map indices to
output vectors.

Theorem 4.2. Giveny;, € R fork = 0,...,m—1, there exist feed-forward layer FF : R* — R4
of width size 6d and n(t) € R*? and two affine linear maps L1 : R? — R* and Lo : R* — R? s.1.

Loo(id+n(m—1)OFF)o---0o(id+n(1) ®FF) o L1(k) = y.
The key idea of the proof is that we use the impulse function defined as

. i lf k == l;
impulse, ((y1)i, k — 1) = {(()yl) otherwise

fori=1,2,...,dandl = 0,2,...,m — 1, which extracts the corresponding (y;); in the {-th loop
if the index matches k.

Proof. We consider the case when d = 1, where y, € R for k = 0,...,m — 1. We update y;, as
follows:

Ye = Yk T €
where ¢ is chosen such that none of the y; values are zero.

Next, we define n(l) as:

a0 = (0,1, Y~ “ 1,07 forl=1,2,...,m— 1.
Yi—1

By Proposition we have

impulsey(z,t) == op(z +2M(t +1/2)) — 2Mog(t +1/2)
—op(z+2M(t —1/2)) + 2Mog(t — 1/2)

_Jx ift=0,
" 10 otherwise,

where M > max yy. Define

!
s(l) = Zimpulseo (yi-1),k— (i—1)),

i=0
forl =1,2,...,m — 1. This satisfies

m—1

s(m—1) = Z impulse, (y(i_l), k—(i— 1)) = Yk.

i=0

Define &; as
-

El = (ka k - l7 Yi, S(l))) .

forl =0,1,2,...,m—1.

29

Under review as a conference paper at ICLR 2025

Then, define FF : R* — R* of width size ¢ = 6 via:
(id+n() ©FF)(&-1) = &1+

0 0 1 0 0

0 0 0 O 0 0 0o 0 -1 0 -1 0

0 0 0 O 0 0 0 2M 1 0 M -1
MOl “10 0 0o o |%|]oam 1 ofl&rt| v [[T o

0O 0 1 -1 —-2M 2M 0 1 0 0 1/2 0

0 1 0 0 ~1/2
_ 0 _
—1
0 or(Wi-1) — or(=yi-1)
gt | w0 oY1+ 2M((k — (1 - 1)) +1/2))
" “OMog((k—(1—1))+1/2)
—or(yi—1 +2M(k—(1—1) = 1/2)) + 2Mog(k — (1 - 1) — 1/2))
r k 0 0
—(l-1 1 -1
_ | kF=(-1) lwt e
Yi—1 Yi—1 Yi—1
s(l—1) 1 impulseq (y—1), k — (I — 1))
k
k—1
N Yi =&
s(l)

forl =1,2,...,m — 1. Thus we have

(id+n(m —1)-FF)o---o(id +n(1) - FF)(§) = &m—1

Then, define two affine linear maps £; : R! — R* and £, : R* — R! by

Ly(x) = (k,k,y0,0), Lo(x1,T2,23,24) = Tg — €.

We can extend this to d-dimensional input by using d time parameters, by applying above to each
dimension. O

30

Under review as a conference paper at ICLR 2025

C DETAILS OF EXPERIMENTS

This appendix section provides additional details on the experiments for each task, including prob-
lem descriptions, training configuration, and supplement of results.

C.1 DYNAMIC PROGRAMMING PROBLEMS
We categorize certain DP problems and employ the following tasks.

* Knapsack Problems: Subset Sum and Knapsack
* Two-Sequence Problems: Edit Distance (ED) and Longest Common Subsequence (LCS)

C.1.1 KNAPSACK PROBLEM

We use the knapsack problem and its special case, the subset sum problem. These tasks are solvable
in time O(nW), where n is the length of the input sequence and W represents the weight capacity.

Subset sum task is to determine whether there exists a subset of these integers whose sum equals a
specified number 7. It is a subset of the Knapsack problem We randomly sample n = 10 integers
from the range 1 to 100 and select T" randomly from 1 to the sum of these n integers. For example,
a sample in the dataset of input sequence length 10 looks like

67 93 81 29 2 19 77 74 50 98 | 195 <sep> 1.

Knapsack problem is defined as follows: given a set of items, each with a weight and a value, select
a subset of items that maximizes the total value while ensuring that the total weight does not exceed
a specified limit. We concatenated the values, weights, and maximum capacity with a separator. For
example, a sample in the dataset of input sequence length 20 looks like

910 13 117 512 312 2 4 8 11 8 2 10 8 17 10 16 | 8 3 8 7 9 6 7
282354257108 6 7 | 48 <sep> 52.

C.1.2 TWO SEQUENCES

We use tasks that compute metrics between two given sequences. These tasks can be solved using
dynamic programming with a time O(n?), where n denotes the length of each input sequence. In
the dataset, the two sequences are concatenated with a separator.

Longest Common Subsequence (LCS) is the longest common to a given set of sequences. We
use problems with input lengths of 60 and 100. Two sequences are sampled uniformly from the
alphabet. For example, a sample in the dataset of length 60 looks like

ggpbbggbphbvibgmrwcvecvbvwbvgrvaghg

mbrwcrchihccgpmwrwbpghpwgpw | i1ii1iapi

iipripxicrbfpbxpixccpfrxyiapcvbpr
crvvicypxfacfppbiiarac<sep> 18.

Edit Distance (ED) problem, also known as Levenshtein distance, is to find the minimum cost
required to change one sequence into the other. We adopted the problem setting and data generation
approach from |[Feng et al.| (2023)), but applied larger input lengths. The costs for insertion, deletion,
and replacement were set to 2, 2, and 3, respectively. They generate instances of the edit distance
problem as shown in Algorithm[I] The first string is randomly selected, while the second is generated
in two ways: (1) a random string yielding a large edit distance, and (2) a corrupted copy of the first
string, resulting in a small edit distance. For example, a sample in the dataset of length 60 looks like

< o0 W

0K
=)
O n~ -
O - =
Nowm o ox
X =0 X
O X X
e
[e)
X 0 X w
X oA X
i e
o< 0o
< ox o
o e s
Hx 0
O umwow
< on o~
0o 0
Hwn 0o o
B @

31

Under review as a conference paper at ICLR 2025

Algorithm 1: ED Data Generation from Feng et al.[(2023)

Input : Length of the First String n

Input : Alphabet V = {a,b...2}

Output: Sequence s1, So

Sample ¢ uniformly from {3,4...10} ;

T + Sample t letters from V' ;

s1 < Sample n letters uniformly from 7" ;

Sample p uniformly from [0, 1] ;

if p < 0.4 then

Sample [uniformly from {n — 3,n — 2, ...,n 4+ 2};
59 < Sample [letters uniformly from 7" ;

else
do
S9 < 81,
for i < 1tondo
Sample p uniformly from {0, 1...len(s2) — 1};
Sample ! uniformly from 77
Randomly conduct one of the followings: pop sz [p], substitute so[p] with [, insert
into s2[p];

end
while len(s2) not in [n — 3,n + 2J;

end

C.2 SUPPLEMENTARY INFORMATION ON DP TRAINING AND RESULTS

This section provides supplementary information on the training process and results.

Training Configuration for DP We used Looped Transformers of 4 attention heads and a 256-
dimensional. We used the AdamW optimizer (Loshchilov & Hutter| 2018) with 5; = 0.9, 8, =
0.999, weight decay = 0.01, and linear decay scheduler initial Ir = 10~* and end Ir = 0 with 5
warm up, training for 50 epoch with batch size 64. For time-dependent models, we initialize ~(¢) as
zero vectors and () as one vectors, following [Peebles & Xie| (2023)); Bachlechner et al.|(2021).

Training and Test Accuracy for ED Figure [5|demonstrates a positive correlation between train-
ing and test accuracy, allowing us to assess approximation power through test accuracy.

Train Accuracy vs. Number of Loops Test Accuracy vs. Number of Loops
0.9
—=— wj/o time depnedncy —— wj/o time depnedncy
>‘0.8 w/ timestep encoding 0.8 w/ timestep encoding
>
€07 e
3 3
Zos o6
< 7
g 0.5 Q
0.4 /”—/4 0.4 /
20 40 60 80 100 20 40 60 80 100
Number of Loops Number of Loops

Figure 5: Training and test accuracy for the edit distance task with a sequence length of 60.

C.3 IN-CONTEXT LEARNING

We followed the setting of|Garg et al.|(2022); Yang et al.|(2024)). The problem is to learn the function
class from a given sequence composed of the pairs of input x; and output values f(x;). The input
for model is (x1, f(21), ..., @k, f(®k), Tiest), and model learns to predict f(@es). The model is
trained on f () and its performance is evaluated on f () using the squared error.

32

Under review as a conference paper at ICLR 2025

Decision Tree. We use depth-4 decision trees with 20-dimensional inputs. Each function in this
class is represented by a full binary tree with 16 leaf nodes. Non-leaf nodes are associated with
specific input coordinates, while leaf nodes are assigned target values. To evaluate f(x), the tree
is traversed from the root, moving to the right if the coordinate value is positive and to the left
otherwise. Inputs and leaf node values are sampled from N(0,I), and the coordinates for non-leaf
nodes are drawn uniformly at random.

Training Configuration. Our training setup follows the approach of |Yang et al.| (2024). We use
Looped Transformers with 8 attention heads and a dimensionality of 256, considering both 12-loop
and 70-loop configurations. For time-dependent models, we initialize ~(¢) as zero vectors and c(t)
as one vector. Following the curriculum training approach of (Garg et al.| (2022); |Yang et al.| (2024),
we progressively increase the task dimensionality from 5 to 20 in steps of 1 every 5000 steps, while
the sequence length increases from 26 to 101 in increments of 5 over the same interval. Training is
conducted over 200, 000 steps with a learning rate of 1 x 10~%.

C.4 LANGUAGE MODELING

Tokenization is performed using byte-pair encoding, following GPT-2 Radford et al.| (2019). The
Looped Transformer model is based on the GPT-2 decoder architecture (Radford et al., 2019), with
16 attention heads and a dimensionality of 2048. For time-dependent models, we initialize ~(¢)
as zero vectors and «(t) as one vector. We employed the AdamW optimizer (Loshchilov & Hut-
ter, |2018) with parameters 5; = 0.9, f2 = 0.95, learning rate Ir = 10~%, and weight decay
weight decay = 0.1. The training was conducted for 100000 iterations with a batch size of 64, a
block size of 1024, and 20 gradient accumulation steps. The best perplexity was evaluated on both
the training and test sets.

33

	Introduction
	Background
	Transformer architecture
	Looped Transformer
	Theoretical analysis on function approximation

	Approximation Rate of Looped Transformers
	Preliminary
	Definition of continuity for sequence-to-sequence functions
	Main Result
	Proof Sketch

	From Theory to Practice: Introducing Timestep Encoding
	Motivation
	Timestep Encoding

	Experiments
	Varying Loops with Dynamic Programming
	Enhancement via Timestep Encoding

	Conclusion
	Proofs of Function approximation
	Notations
	Proof of Theorem 3.7
	Piecewise Linear functions
	Step 1. Token-wise Quantization
	Step 2. Contextual mapping
	Step 3. Function value mapping with bit extraction

	Role of Time dependent scaling parameters
	Details of Experiments
	Dynamic Programming Problems
	Knapsack Problem
	Two Sequences

	Supplementary Information on DP Training and Results
	In-Context Learning
	Language Modeling

