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ABSTRACT

Looped Transformers offer advantages in parameter efficiency and Turing com-
pleteness. However, their expressive power for function approximation and ap-
proximation rate remains underexplored. In this paper, we establish approxima-
tion rates of Looped Transformers by defining the concept of the modulus of con-
tinuity for sequence-to-sequence functions. This reveals a limitation specific to
the looped architecture. That is, the analysis prompts us to incorporate scaling
parameters for each loop, conditioned on timestep encoding. Experimental results
demonstrate that increasing the number of loops enhances performance, with fur-
ther gains achieved through the timestep encoding architecture.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the standard neural network architecture for a wide
range of machine learning tasks, such as natural language processing and computer vision. Looped
Transformers have an architecture composed of fixed-size Transformer layers, where the output is
fed back into the input. This structure offers advantages over standard Transformers, such as in-
ductive bias, parameter efficiency, and Turing completeness. Dehghani et al. (2019) first introduced
the idea of incorporating recursive inductive bias into Transformers, aiming to address tasks that
RNNs handle more easily. Looped Transformers are also related to weight-tying Transformers (Lan
et al., 2020), demonstrating comparable performance to standard Transformers with fewer param-
eters. More recently, Giannou et al. (2023) theoretically demonstrated that the recursive structure
of Looped Transformers allows them to function as Turing machines. In summary, Looped Trans-
formers are more parameter-efficient and potentially more expressive than standard Transformers,
enhancing their generalization capabilities.

The expressive power of standard Transformers has been extensively explored, showing that they can
approximate continuous permutation-equivariant functions on compact domains (Yun et al., 2020;
Kim et al., 2023; Takakura & Suzuki, 2023; Jiang & Li, 2024; Kajitsuka & Sato, 2024). In addition,
their approximation rate has been studied: Takakura & Suzuki (2023); Jiang & Li (2024) established
it by identifying the properties of the target functions, revealing the types of functions that Trans-
formers can approximate effectively. In contrast, the expressive power of Looped Transformers in
function approximation remains unexplored. Due to the structural constraints imposed by weight-
tying, which limit their flexibility, existing universal approximation theories for Transformers cannot
be directly applied. Moreover, the approximation rate and the appropriate properties of the target
functions for Looped Transformers have yet to be investigated. Recently, Zhang et al. (2023) first
explored the expressive power of looped models. They established an approximation rate for ReLU
networks for continuous functions in terms of loop counts and modulus of continuity. Still, this
remains unclear in the case of Looped Transformers.

In this paper, we derive the approximation rate of Looped Transformers for continuous sequence-to-
sequence functions by defining the concept of sequence continuity, contextual continuity, and token
continuity. This reveals a limitation specific to the looped architecture. That is, the analysis prompts
us to incorporate scaling parameters for each loop, conditioned on timestep encoding.
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2 BACKGROUND

We define the Transformer architecture in Section 2.1 and Looped Transformers in Section 2.2. We
then introduce related work of theoretical analysis on function approximation power of Transformers
in Section 2.3.

2.1 TRANSFORMER ARCHITECTURE

Given an input sequence X ∈ Rd×N , composed of N token embedding of dimension size d, the
self-attention layers with h heads and head size s, and the feed-forward layer with width size q, are
defined as follows:

Attn(X) =

h∑
i=1

W
(O)
i

(
W

(V )
i (X)

)
σS

[(
W

(K)
i (X)

)⊤ (
W

(Q)
i (X)

)]
∈ Rd×N , (1)

FF(X:,i) = W 2 · σR(W
(1) ·X:,i + b(1)) + b(2) ∈ Rd, (2)

where W
(V )
i , W

(K)
i , W

(Q)
i ∈ Rs×d,W

(O)
i ∈ Rd×s,W (1) ∈ Rq×d,W (2) ∈ Rd×q, b(1) ∈

Rq, b(2) ∈ Rd are parameters, σR denotes ReLU function, and σS denotes a softmax operator
applied to the columns of the input matrix.

The Transformer block TF(X) : Rd×N → Rd×N is defined by:

X ′ = X +Attn(X), (3)

TF(X) = X ′ + FF(X ′). (4)

where FF represent token-wise FF. In other words

TF = (id + FF) ◦ (id + Attn), (5)

where id denote the identity mapping. For simplicity, we omit the domain of definition.

For the analysis of expressive power in Section 3, we use the hardmax operator σH instead of σS

and exclude Layer Normalizations as in previous studies (Yun et al., 2020; Kim et al., 2023).

2.2 LOOPED TRANSFORMER

Looped Transformers feed output back into input, defined as

L2 ◦ TF ◦ · · · ◦ TF ◦L1, (6)

where L2 and L1 denote token-wise linear layers. Let TF◦r denote the r-times composition of TF.
We refer to L2 ◦ TF◦r ◦L1 as a Looped Transformer with r-loops.

Looped Transformers have been studied in recent years, regarding their parameter efficiency (Lan
et al., 2020; Takase & Kiyono, 2021; Bae et al., 2024) and generalization capabilities (Dehghani
et al., 2019; Fan et al., 2024). Other recent works (Giannou et al., 2023; Gatmiry et al., 2024;
Back De Luca & Fountoulakis, 2024; Gao et al., 2024; Giannou et al., 2024) have investigated
their performance on iterative algorithms, including in-context learning and graph algorithm. In
particular, Yang et al. (2024) empirically demonstrated that increasing the number of loop iterations
enhances performance on complex tasks. However, to the best of our knowledge, there are no studies
on the expressive power or approximation rate of Looped Transformers in function approximation.

2.3 THEORETICAL ANALYSIS ON FUNCTION APPROXIMATION

The universal approximation theorem for fully connected neural networks, as demonstrated by Cy-
benko (1989); Hornik et al. (1989), shows that networks of sufficient size can approximate cer-
tain classes of functions with arbitrarily low error. Transformers are universal approximators of
sequence-to-sequence functions (Yun et al., 2020; Takakura & Suzuki, 2023; Jiang & Li, 2024; Ka-
jitsuka & Sato, 2024), and their memorization capacity has also been studied (Kim et al., 2023).
Recently, Zhang et al. (2023) revealed that even single fixed-size networks can be universal approxi-
mators. They explored the surprising potential of composition (loop) and derived the approximation
rate in terms of the number of loop counts and modulus of continuity of the target function.
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3 APPROXIMATION RATE OF LOOPED TRANSFORMERS

We establish the approximation rate of Looped Transformers by defining the modulus of continu-
ity for continuous sequence-to-sequence functions. We begin with preliminaries of Transformers
in Section 3.1. Then, we present and explain three types of continuity for sequence-to-sequence
functions, which determine the approximation rate. In Section 3.3, we present our main results on
approximation rate, along with some implications. In Section 3.4, we provide a proof sketch with a
detailed explanation, outlining three steps for approximation and deriving the approximation rate.

3.1 PRELIMINARY

Transformers are permutation-equivariant, so we define the target function class as follows.

Definition 3.1 (Yun et al. (2020); Kim et al. (2023)). A function f : Rd×N → Rd×N is said to
be permutation equivariant if for any permutation matrix P , we have f(XP ) = f(X)P . Let
FPE([0, 1]

d×N ) denote the set of permutation equivariant and continuous functions.

To approximate sequence-to-sequence functions, networks need to map each token within the con-
text of sequences, formulated as contextual mapping.

Definition 3.2 (Yun et al. (2020); Kim et al. (2023)). Consider a finite set L ⊂ Rd×N . A map
CM : L→ R1×N defines a contextual mapping if the map satisfies the following:

1. For any L ∈ L, the N entries in CM(L) are all distinct.

2. For any L,L′ ∈ L, with L ̸= L′, all entries of CM(L) and CM(L′) are distinct.

Let ∥·∥p denote the entry-wise Lp-norm for a vector for any p ∈ [1,∞).

Definition 3.3 (Norm of function). We define the Lp-norm for a function f on [0, 1]d×N by:

Lp([0, 1]d×N ) :=
(∫
∥f(X)∥pp dX

)1/p
.

3.2 DEFINITION OF CONTINUITY FOR SEQUENCE-TO-SEQUENCE FUNCTIONS

The modulus of continuity of a continuous function g : [0, 1]d → R can be defined as

sup
{
|g(x)− g(x′)| : ∥x− x′∥2 ≤ t, x,x′ ∈ [0, 1]d

}
.

It can be extended for sequence-to-sequence functions f : [0, 1]d×N → Rd×N as follows.

Definition 3.4 (Modulus of Sentence Continuity). Given a sequence-to-sequence continuous func-
tion f : [0, 1]d×N → Rd×N , the modulus of sentence continuity is defined by:

ωf (t) := sup
{
∥f(X)− f(X ′)∥p : ∥X −X ′∥2 ≤ t, X,X ′ ∈ [0, 1]d×N

}
.

We illustrate what this continuity represents and why it is referred to as sequence continuity. If
we consider the following two sentences: (1) I read books, and (2) He writes music, the sequence
continuity measures how much the overall meaning of a sequence changes:

‘I read books’ ∆←→ ‘He writes music’,
in proportion to the differences between the input sequences, measured by comparing each token:

‘I’ ∆←→ ‘he’, ‘read’ ∆←→ ‘write’, and ‘book’ ∆←→ ‘music’.
We found that this concept is insufficient to derive the approximation rate of Looped Transformers,
primarily because one key characteristic of the Transformer architecture is the sharing of parame-
ters across all tokens: specifically, the feed-forward layers are applied token-wise. In other words,
Transformers output token embeddings in the context of sequences for each token.

This observation leads us to define two additional forms of continuity: contextual continuity and
token continuity, which we found to determine the approximation rate of Looped Transformers.
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Definition 3.5 (Modulus of Contextual Continuity). Given a sequence-to-sequence continuous func-
tion f : [0, 1]d×N → Rd×N , the modulus of contextual continuity is defined by:

ωcont
f (t) := sup

n,X,X′

{
∥f(X):,n−f(X ′):,n∥p : ∥X−X ′∥2 ≤ t, X:,n = X ′

:,n, X,X ′ ∈ [0, 1]d×N
}
,

Definition 3.6 (Modulus of Token Continuity). Given a sequence-to-sequence continuous function
f : [0, 1]d×N → Rd×N , the modulus of token continuity is defined by:

ωtok
f (t) := sup

n,X,X′

{
∥f(X):,n − f(X ′):,n∥p : ∥X:,n −X ′

:,n∥2 ≤ t,

X:,m = X ′
:,m for any m ̸= n, X,X ′ ∈ [0, 1]d×N

}
,

The modulus of contextual continuity measures the variation in the output of token embeddings
induced by a perturbation of context. For example, we consider the following three sentences:

(1) I write papers, (2) You write books, and (3) Mozart writes music.

The output embedding of the second token, ‘write’, should be similar in sentences (1) and (2) due
to their similar context. In contrast, a larger variation in context, as seen in sentence (3), can induce
a significant variation in the output of token embedding.

On the other hand, the modulus of token continuity measures the variation in the output embedding
caused by perturbations to the token itself within the same context. For instance, we consider the
sentences:

(1) I write papers, and (2) I draft papers.

In this example, both sentences have the same context, but the verb (‘write’ vs. ‘draft’) variation
reflects a perturbation in the token itself. The modulus of token continuity quantifies how this change
influences the output embeddings. A small modulus of token continuity means that the output em-
beddings of ‘write’ and ‘draft’ are expected to be similar.

3.3 MAIN RESULT

The following main theorem demonstrates the approximation rate of Looped Transformers in terms
of the modulus of continuity and the number of loops.
Theorem 3.7. Given a function f ∈ FPE([0, 1]

d×N ), for any r ∈ N, there exists a Looped
Transformer TF : R(24d+1)×N → R(24d+1)×N of single head, head size s = 1, and width size
q = 99d+ 8, and two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd such that∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp([0,1]d×N )

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd),

for δ =
(
(r −N)/2

)−1/((N+1)d+1)
, where L1 and L2 represent the token-wise applications of L1

and L2, respectively.

Thus, Looped Transformers are universal approximators.
Corollary 3.8. The hypothesis space of Looped TransformersH, defined by

H :=
{
L2 ◦ TF◦r ◦L1 : r ∈ N, L2 and L1are token-wise affine linear maps

}
,

are dense in FPE([0, 1]
d×N ) in terms of the Lp([0, 1]d×N ) norm.

These results provide us with some insights:

• A function with a small modulus of continuities, e.g., robust to contextual perturbations, is suited
for approximation by Looped Transformers.

• The total parameter count is O(d), independent of both δ and N , highlighting the parameter
efficiency of Looped Transformers.

• The optimal approximation rate of ReLU networks of size n isO(ωf (O(n−2/d))) for continuous
functions on [0, 1]d (Yarotsky, 2018); the exponential rate is unavoidable.
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3.4 PROOF SKETCH

We provide a proof sketch highlighting differences from prior studies and associated difficulties.
The formal proof is provided in Appendix A.

Approximation with Piecewise Constant Function. We approximate f ∈ FPE with piece-wise
constant function f̄ : [0, 1]d×N → Rd×N . Specifically, for δ−1 ∈ N, we divide the input space
[0, 1]d×N into δ-discretized cubes, denoted by {QB}B∈{0,1,...,δ−1−1}d×N . Each cube is associated
with a representative X̂B ∈ QB. Define a piecewise constant function f̄ for X ∈ [0, 1]d×N as

f̄(X) = f(X̂B) where B satisfies X ∈ QB.

We can bound the approximation error within each cube as ∥f̄(X) − f(X)∥p ≤
ωf (
√
δ2 + · · ·+ δ2) ≤ ωf (δ ·

√
Nd) for any X ∈ [0, 1]d×N . We involve three steps to construct

f̄ . The first and second steps map the input X to the coordinates of the discretized input space,
involving B. The third step approximately maps these coordinates to the target embeddings.

Step 1. Token-wise Quantization. The network, with δ−1 − 1 loops, token-wise maps the input
space into indices (the proof is provided in Appendix A.4). Then it maps them to an integer, referred
to as a token ID:

X:,n ∈ [0, 1]d → β ∈ {0, 1, . . . , δ−1 − 1}d → z ∈ {0, 1, . . . , δ−d − 1}. (7)

The key idea behind our proof follows Zhang et al. (2023); however, we cannot directly apply it here
due to the need to account for skip connections. Additionally, it is necessary to consider a bijective
mapping of β to a token ID in the δ−1-base system for the next step.

Step 2. Contextual Mapping. The network performs contextual mapping, which maps N token
IDs to a sequence ID in the set of {0, 1, . . . , δ−Nd − 1}. Previous studies (Yun et al., 2020; Kim
et al., 2023) use multiple layers for constructions; however, these results do not extend to Looped
Transformers for two reasons.

(1) Yun et al. (2020) used both sparse and uniform attention, whereas Looped Transformers
are limited to a single fixed attention layer.

(2) Kim et al. (2023) used N -layers to store N parameters, whereas fixed-size O(d) Looped
Transformers cannot store N weight components.

While these considerations indicate some limitations of Looped Transformers, we found that
Looped Transformers with N -loops can perform contextual mapping. The proof strategy fol-
lows Kim et al. (2023); however, it is necessary to update for a single Transformer block. Let
z ∈ {0, 1, . . . , δ−d − 1}N represent a sequence of N ordered and distinct token IDs, where
z1 > z2 > · · · > zN . The networks map the set of token IDs into sequence ID via inner product
with u := (δ−d(N−1), . . . , δ−d, 1) ∈ RN i.e.

CM(z) := u⊤z,

which satisfy ∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′.

Thus CM is a contextual mapping. The key point is that the network only needs to store δ to
represent u, allowing it to be implemented with Looped Transformers. Details are provided in Ap-
pendix A.5

Step 3. Token-wise Mapping. The network token-wise maps the coordinates of discretized re-
gions approximately to the target token embedding. From Steps 1 and 2, each token in the input
sequence is assigned a token ID with a sequence ID, where the sequence ID is consistent across all
tokens. The combination of the token ID and sequence ID determines the coordinates, referred to as
contextual token ID.

Notably, we found that the design of the contextual token ID plays a crucial role in Looped Trans-
formers. This comes from the constraint of looped architecture. Let K denote the set of contextual

5
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Figure 1: Approximation error and modulus of continuity. The linear interpolation technique re-
duces the error by a factor of 1/δ−1.

token IDs, where each index is associated with a distinct cube B ∈ {0, 1, . . . , δ−1 − 1}d×N in the
discretized space. For each k ∈ K, let Xk denote the cube associated with B, i.e., XB. Looped
Transformer f̃ : Rd×N → Rd×N can token-wise approximate piecewise constant function f̄ with
the error of

∥f̃(Xk):,n − f̄(Xk):,n∥ ≤ max
n,k′∈K

∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p for any k ∈ K, (8)

for n = 0, 1, . . . , N (details are provided in Lemma 4.1). This requires us to design K so that
∥f̄(Xk′):,n− f̄(Xk′−1):,n∥p is small, i.e., the outputs of neighboring contextual token IDs are sim-
ilar. The core idea of this design is explained with illustrations, comparing the output embeddings
of the underlined tokens.

(1) I write papers. ; I write papers. (different token ID with same sequence ID)
(2) I write papers. ; You write books. (same token ID with different sequence ID)

The contextual continuity ωcont
f of Definition 3.2 ensures that the outputs embeddings of ‘write’

in (2) are similar. However, none of the continuity properties provide guarantees that the output
embeddings of ‘write’ and ‘papers’ in (1) are similar. Thus, we design the contextual token ID so
that the same token with different sequence IDs comes next to each other except for unavailable
corner cases (details in Appendix A.4).

Consolidation into Single Looped Transformer. At the end of the construction, we demonstrate
that the composition of the three sub-networks from Steps 1, 2, and 3 can be realized with a single
Transformer block. The proof strategy follows Zhang et al. (2023); however, it cannot be directly
applied because their approach requires an additional layer. In contrast, we found that a single
Transformer block is sufficient (details are provided in Appendix A).

Deriving Approximation Rate. Lastly, we estimate the approximation error of our construction
and establish the approximation rate. In Step 2, we consider only the case where all N input tokens
are distinct, disregarding other cases. These cases can be treated as negligible when δ is small. The
number of subsets where one of the N tokens is duplicated is

(δ−d)
N − δ−d · (δ−d − 1) · · · (δ−d −N − 1) < Cδ−(N−1)d,

where C is a constant. The volume of these subsets is Cδ−(N−1)d/δ−Nd = Cδd, thus the error with
respect to the Lp norm is O(δd).
In Step 3, we can bound the approximation error as follows:

∥f̃(Xk)− f̄(Xk)∥p ≤ max
n
∥f̃(Xk):,n − f̄(Xk):,n∥p ≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p.

There are two types of error for the right-hand side term: the variation induced by contextual per-
turbation and the variation induced by token perturbation. We illustrate this with examples of each
pattern, as shown in Fig. 1. Specifically, we consider the following three cases:

6
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(1) I write papers. ; I write books. (small perturbation of context)

(2) You write books. ; Mozart write music. (large perturbation of context)

(3) Beethoven writes music. ; I draft papers. (perturbation of both token and context)

The error in each case can be bounded with the corresponding modulus of continuity:

1. ωcont
f (δ

√
d)

2. ωcont
f (

√
Nd)→ δωcont

f (
√
Nd)

3. ωtok
f (
√
d) + ωcont

f (
√
Nd)→ δ

(
ωtok
f (
√
d)) + ωcont

f (
√
Nd)

)
where→ represents the use of linear interpolation techniques to reduce the error with extra δ-loops
(explained in Appendix A). Since that ωcont,tok

f (n·t) ≤ n·ωcont,tok
f (t) for any n ∈ N and t ∈ [0,∞)

with δ < 1, we can then derive the upper bound for the three terms:

max
n,k′∈K

∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p

≤ max
{
ωcont
f (δ

√
d), δωcont

f (
√
Nd), δ

(
ωtok
f (
√
d) + ωcont

f (
√
Nd)

)}
≤ max

{
ωcont
f (δ

√
d), ωcont

f (δ
√
Nd), ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd)

}
≤ ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd),

With the triangle inequality, we have an approximation error as

∥f̃ − f∥Lp([0,1]d×N ) ≤ ∥f̃(X)− f(X)∥p · 1

≤ ∥f̃(X)− f̄(X)∥p + ∥f̄(X)− f(X)∥p
≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p + ∥f̄(X)− f(X)∥p +O(δd)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd). (9)

Then, δ is expressed in terms of the number of loops r to determine the approximation rate. We
use δ−1 − 1 loops for Step 1, N loops for Step 2, and 2δ−(N+1)d − 1 loops for Step 3, with 1 loop
required to connect each step. Thus we have

r = (δ−1 − 1) + 1 + (N) + 1 +
(
2δ−(N+1)d − 1

)
⇔ δ−1 + 2δ−(N+1)d = r −N

⇔ δ−1 · 2δ−(N+1)d ≥ r −N

⇔ 2δ−(N+1)d−1 ≥ r −N

⇔ δ ≤
(r −N

2

)−1/((N+1)d+1)

. (10)

From Eq. 9 and Eq. 10, we can derive Theorem 3.7.

Summary. Our contribution is to establish an approximation rate for Looped Transformers by
identifying the continuity of sequence-to-sequence functions. Additionally, as a technical contribu-
tion, we demonstrate that a single Looped Transformer block is sufficient for contextual mapping.
While Zhang et al. (2023) requires three feed-forward layers of looped ReLU networks for universal
approximation, we achieve this with just one layer.

4 FROM THEORY TO PRACTICE: INTRODUCING TIMESTEP ENCODING

The theoretical result in Section 3 identifies a limitation of the looped architecture in its reliance
on contextual and token continuity. This analysis suggests incorporating time-dependent scaling
parameters for each loop, which we implemented as a function of the timestep encoding.

7
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4.1 MOTIVATION

Limitation Specific to Looped Architecture. Theorem 3.7 shows that the approximation rate of
Looped Transformers depends on the modulus of three types of continuity. Sequence continuity
relates to approximating continuous functions with piecewise constants, while contextual and token
continuity dependencies are unique to the looped architecture. Previous studies (Yun et al., 2020;
Kim et al., 2023) show that standard Transformers lack these dependencies. This additional depen-
dency increases approximation errors, limiting the approximation power of Looped Transformers.

We identify the cause of dependency in Step 3: Token-wise Mapping of the following Lemma.
Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,m− 1 with

|(yk − yk−1)i| ≤ εi for k = 1, 2, . . . ,m− 1,

there exist feed-forward layer FF : R14d → R14d of width size 20d and two affine linear maps
L1 : Rd → R14d and L2 : R14d → Rd such that

|
(
L2 ◦ (id + FF)(m−1) ◦ L1(k)− yk

)
i
| ≤ εi for k = 0, 1, . . . ,m− 1,

for any i = 1, 2, . . . , d.

Lemma 4.1 implies that large variations in the target function, represented by discretized points yk,
lead to increased approximation error in Looped Transformers. Specifically, when outputs at nearby
points vary greatly, a small approximation error cannot be guaranteed.

How Can We Improve the Approximation Rate of Looped Transformers? To address the de-
pendency on contextual and token continuity, we introduce time-dependent parameters for each loop.
Specifically, we modify the feed-forward layers by adding a scaling vector parameter that varies with
the loop index (timestep), defined as follows:

FF(X)→ η(t)⊙ FF(X) for the t-th loops,

where ⊙ is an element-wise product, t ∈ N denotes the loop index (timestep), and η(t) ∈ Rd

represents a time-dependent scaling parameter. This kind of dynamic scaling vector parameters is
also used by HyperNetworks (Ha et al., 2016) for RNN to enhance expressive power.

We show that the time-dependent Looped Transformer overcomes approximation errors from con-
textual and token continuity. Specifically, we can replace Lemma 4.1 with the following The-
orem 4.2, which demonstrates that time-dependent models can precisely approximate any target
function. The proof is provided in Appendix B.
Theorem 4.2. Given yk ∈ Rd for k = 0, . . . ,m−1, there exist feed-forward layer FF : R4d → R4d

of width size 6d and η(t) ∈ R4d and two affine linear maps L1 : Rd → R4d and L2 : R4d → Rd s.t.

L2 ◦ (id + η(m− 1)⊙ FF) ◦ · · · ◦ (id + η(1)⊙ FF) ◦ L1(k) = yk.

For implementation, while adding parameters for each loop is effective, the number of parameters
increases with the number of loops. Therefore, we introduce timestep encoding to address this issue.

4.2 TIMESTEP ENCODING

We use timestep encodings to represent loop counts and to condition scaling parameters, follow-
ing Peebles & Xie (2023), where time-dependent Transformers are applied in diffusion models by
regressing layer normalization parameters from timestep encodings.

To condition on timesteps, frequency embeddings are processed through a two-layer MLP with
hidden size matching the Transformer block and SiLU activation, as shown in Fig. 2. Let TE(t) ∈
Rd denote timestep embeddings, defined as:

TE(t) = W
(TE)
1 · SiLU(W

(TE)
2 · PE(t) + b

(TE)
1 ) + b

(TE)
2 ,

where W
(TE)
1 ,W

(TE)
2 ∈ Rd×d and b

(TE)
1 , b

(TE)
2 ∈ Rd are parameters, and PE(t) ∈ Rd is the

timestep encoding function that maps the timestep (loop index) into a d-dimensional embedding, s.t.

PE(t)2i = sin(t/100002i/d), PE(t)2i+1 = cos(t/100002i/d).

8
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Figure 2: Timestep en-
coding architecture.

The root mean square layer normalization (RMSNorm) (Zhang & Sen-
nrich, 2019) has been employed in several recent large language models
(LLMs), such as LLaMA (et al., 2023) and Gemma (Team, 2024). RM-
SNorm, denoted by RMSLN, is defined as

RMSLN(x) = α⊙ x

RMS(x)
, where RMS(x) =

√√√√1

d

d∑
i=1

x2
i .

where α ∈ Rd is a gain parameter for rescaling.

Extending standard RMSNorm, we define time-dependent RMSNorm
as:

RMSLN(x, t) = α(t)⊙ x

RMS(x)
where α(t) ∈ Rd is a time-dependent parameter generated by a hyper-
netowrk.Additionally, we incorporate parameters for output scaling, defining the time-dependent
Transformer block as follows:

X ′ = X + γ1(t)⊙Attn(RMSLN1(X, t)),

TF(X, t) = X ′ + γ2(t)⊙ FF(RMSLN2(X
′, t)),

where γ1(t),γ2(t) ∈ Rd are time-dependent parameters applied token-wise, and RMSLN1 and
RMSLN2 represent token-wise applications of RMSLN1 and RMSLN2, respectively.

To generate time-dependent vector parameters, we use the SiLU function and weight parameters:

α1(t),α2(t),γ1(t),γ2(t) = W (H) · SiLU(TE(t)) + b(H),

where W (H) ∈ R4d×d, b(H) ∈ Rd are parameters.

5 EXPERIMENTS

Our experimental results support our theoretical findings. First, we show that increasing loop counts
enhances the expressive power of Looped Transformers by evaluating dynamic programming (DP)
tasks in Section 5.1. Second, we observe performance gains from timestep encodings in certain DP,
in-context learning, and language modeling tasks Section 5.2.

5.1 VARYING LOOPS WITH DYNAMIC PROGRAMMING

DP problems were chosen for their recursive structure and their difficulty for standard Transformers
without chain-of-thought (Feng et al., 2023). We categorize specific types of DP problems and select
representative tasks from each category (details are provided in Appendix C.1).

Experimental setups. We generate 106 samples for training and 103 samples for testing. All
tasks are trained as classification tasks using cross-entropy loss and are evaluated by best accuracy
on the test sets. While our theoretical results focus on approximation power (fitting to the training
set), we observe a strong correlation between training and test accuracy, suggesting that lower test
accuracy reflects the approximation capacity rather than a generalization issue (see the results of ED
in Appendix C.2).

We trained Looped Transformers with 5, 10, 50, and 100 loops, both with and without time de-
pendency (the configuration is provided in Appendix C.2. We incrementally increased the number
of loops, stopping when performance exceeded 90% or saturated due to limited computational re-
sources. In addition, to validate the research significance of Looped Transformers, we compared
them to a 12-layer Transformer. The Transformer’s limitations stem not from approximation but
from generalization capabilities, which fall outside the scope of our theoretical results.

Results. Certain tasks require a large number of loops, while others benefit from fewer iterations
(see Table. 1). We observe accuracy improvements for both LCS and ED tasks by increasing the
number of loops. In particular, for ED tasks, models with timestep encoding exhibit consistent
accuracy gains without saturation as the loop count grows. Moreover, Looped Transformers solve
tasks that standard Transformers cannot.

9
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Table 1: Test accuracy for dynamic programming (DP) tasks, with parameters (e.g., sequence length)
indicated in parentheses. We limit training and evaluation to lower loop counts if tasks are effectively
solved with fewer loops. Some tasks require high loop counts, while others are solvable with few.

Task TF Looped TF w/ Timestep Encoding

d=12 r=5 r=10 r=50 r=100 r=5 r=10 r=50 r=100

Subset Sum (10) 83.4 84.1 83.0 - - 83.8 83.9 - -
Knapsack (20) 92.8 92.2 94.0 - - 88.7 90.9 - -

LCS (60) 70.0 66.0 81.8 98.6 - 68.5 80.5 99.3 -
LCS (100) 39.8 39.6 45.1 93.5 - 36.7 45.6 98.1 -
ED (60) 41.4 23.8 32.6 47.3 47.7 26.6 38.9 57.3 88.3

5.2 ENHANCEMENT VIA TIMESTEP ENCODING

In-Context Learning. Transformers can learn in-
context (Brown, 2020), with recent studies examining
their ability to learn function classes (Garg et al., 2022;
Akyürek et al., 2023; Von Oswald et al., 2023). Yang
et al. (2024) investigated with Looped Transformers. We
evaluate timestep encodings with 12-loops on decision
tree functions, as described in Appendix C.3. We observe
enhancement via timestep encodings (Table 2), surpassing
even standard Transformers with 12 layers.

Table 2: MSE (↓) on in-context
learning results with enhancement
via timestep encoding.

TF Looped Timestep
d=12 r=12 r=12

8.64e-03 1.43e-02 1.70e-03

Table 3: Enhancement via timestep encoding on perplexity performance for WikiText-103.

Metric TF Looped TF w/ Timestep Encoding

d=12 r=1 r=3 r=6 r=1 r=3 r=6

Train Perplexity (↓) 5.11 6.65 5.64 5.61 6.29 5.31 5.05
Test Perplexity (↓) 19.6 33.11 27.93 28.16 31.18 23.45 22.42

Language Modeling. We use the WikiText-103 (Merity et al., 2017) dataset, containing over
100 million tokens from Wikipedia articles, to compare wide-block Looped Transformers, approxi-
mately matched in parameters to 12-layer standard Transformers, with and without timestep encod-
ings across 1, 3, and 6 loops, evaluated by perplexity. Details are in Appendix C.4. We observe that
timestep encoding enhances training approximation and improves test perplexity (Table 3). We also
found that test perplexity falls short compared to standard Transformer.

6 CONCLUSION

We have established approximation rates for Looped Transformers by introducing the modulus of
continuity for sequence-to-sequence functions. Our analysis reveals a limitation inherent to the
looped architecture, prompting the incorporation of a time-dependent scaling parameter. This re-
search is the first to investigate the function approximation capabilities of Looped Transformers.
Additionally, our experiments demonstrate that Looped Transformers can solve certain dynamic
programming (DP) tasks that traditional Transformers struggle with, though the underlying mech-
anism remains unclear. While we have derived upper bounds, the tightness of these approximation
rates is still undetermined. Future work will explore more complex and practical tasks, such as
mathematical problem-solving.
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A PROOFS OF FUNCTION APPROXIMATION

Figure 3: Overview of proof sketch.

We present the formal proof of Theorem 3.7. In Appendix A.2, we provide the whole proof re-
lying on lemmas, introduced in the following subsections. In Appendix A.4, Appendix A.5, and
Appendix A.6, we provide the key lemmas. The overview of proof outline is shown in Fig 3.

A.1 NOTATIONS

• The bold notation for functions indicates that they are applied in a token-wise manner.
• We define the nearest functions as follows:

near+(a,S) := argmin
b∈S,b>a

|a− b|

near-(a,S) := argmin
b∈S,b<a

|a− b|

The function near(a,S) identifies the element in the set S that is closest to a. The function
near+(a,S) finds the closest element greater than a, while near-(a,S) identifies the closest ele-
ment less than a.
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• Given two values a and b, and the number of divisions n, we can define the linear interpolation
output at an index t (where t ranges from 0 to n) as follows:

lin interp(a, b, t, n) := a+
t

n
(b− a)

A.2 PROOF OF THEOREM 3.7

Theorem 3.7. Given a function f ∈ FPE([0, 1]
d×N ), for any r ∈ N, there exists a Looped

Transformer TF : R(24d+1)×N → R(24d+1)×N of single head, head size s = 1, and width size
q = 99d+ 8, and two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd such that∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp([0,1]d×N )

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd),

for δ =
(
(r −N)/2

)−1/((N+1)d+1)
, where L1 and L2 represent the token-wise applications of L1

and L2, respectively.

Proof. Since any continuous function can be approximated by a piecewise constant function with
arbitrarily small errors, we approximate f ∈ FPE with piece-wise constant function f̄ : [0, 1]d×N →
Rd×N . We choose δ−1 ∈ N, which determines how finely the input is divided; then, we divide the
input space [0, 1]d×N into δ-discretized cubes, denoted by {QB} for B ∈ {0, 1, . . . , δ−1 − 1}d×N

defined by

QB :=
{
X ∈ [0, 1]d×N : Xi,n ∈

[
Bi,nδ,Bi,nδ + 1

)
, i = 1, 2, . . . , Nd

}
.

Note that we do not consider the trifling regions in Zhang et al. (2023) as we use the Lp norm rather
than the uniform norm.

Each cube is associated with representative X̂B ∈ QB. We can define piecewise constant function
f̄ for X ∈ [0, 1]d×N as

f̄(X) := f(X̂B) where B satisfies X ∈ QB.

We can bound the error within each cube as: ∥f̄(X) − f(X)∥p ≤ ωf (δ
√
Nd) for any X ∈

[0, 1]d×N .

Our construction consists of three steps to approximate f̄ . The first and second steps map the
input X to the coordinates of the discretized input space. The third step approximately maps these
coordinates to the target embeddings. The outline of three step is:

1. The network, with (δ−1 − 1)-loops, maps the input space [0, 1]d token-wise to the coordinates
β ∈ {0, 1, . . . , δ−1 − 1}d of divided cubes, and then bijectively maps these coordinates to an
integer, representing token IDs in the set {0, 1, . . . , δ−d}, using a δ−1-base system.

2. The network, with N loops, performs a contextual mapping from the set of distinct N token IDs
into the set of extended sequence ID. Specifically, the network using Step1 and Step2 maps the
discretized coordinates B ∈ {0, 1, . . . , δ−1 − 1}d×N , for each dimension d and each token N ,
representing it in a δ−1 system with Nd digits (N tokens are ordered). Furthermore, dummy
indices are needed to reduce the approximation error in the next step.

3. The network, with δ2(N+1)d − 1 loops, approximately maps contextual token IDs to the output
embeddings of each token in a token-wise manner. Contextual token IDs refer to token IDs
assigned to each token within the context of a sequence ID. To achieve a small approximation
error, the network has to be designed so that neighboring IDs correspond to similar output token
embeddings.

The details for each steps are provided below.
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Step 1. Token-wise Quantization. The input space for each token x ∈ [0, 1]d are divided into
δ-discretized cubes, denoted by {Qβ} for β ∈ {0, 1, . . . , δ−1 − 1}d, defined as

Qβ :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, βiδ + 1

)
, i = 1, 2, . . . , d

}
.

By Lemma A.4, there exist a feed-forward layer FF(1) : R5d → R5d of width size q = 7d, and two
affine linear maps L(1)

1 : Rd → R5d and L′(1)
2 : R5d → Rd such that

L′(1)
2 ◦

(
id + FF(1)

)◦(δ−1−1) ◦ L(1)
1 (x) = β s.t. xi ∈

[
βiδ, βiδ + 1

)
for any i = 1, 2, . . . , d. Let B denote the output of the token-wise application to the input x ∈
[0, 1]d×N .

In addition, we need to bijectively map the d-dimensional vector β to an integer token ID, denoted
by z. We use a δ−1-base system; define the vector u(δ−1) ∈ Rd as

u(δ−1) := (δ−(d−1), δ−(d−2), . . . , δ−1, 1)⊤,

and define z as
z := u⊤

(δ−1)β ∈ {0, 1, . . . , δ
−d − 1}.

To implement this, we define L(1)
2 : R5d → Rd with L′(1)

2 : R5d → R via

L(1)
2 (x) = u⊤

(δ−1)L
′(1)
2 (x).

Thus, we have(
L(1)

2 ◦ (FF
(1)
1 )◦(δ

−1−1) ◦L(1)
1 (x)

)
n
= u⊤

(δ−1)β = z s.t. x:,n ∈ Qβ,

for n = 1, 2, . . . , N .

We define the input cubes for each token assigned to z as follows:

Qz :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, βiδ + 1

)
for i = 1, 2, . . . , d s.t. z = u⊤

(δ−1)β
}
.

We can confirm that

∥xz − xz−1∥2 ≤ δ
√
d ∀xz ∈ Qz,∀xz−1 ∈ Qz−1 s.t. βd = 1, 2, . . . , δ−1 − 1.

While, we have

∥xz − xz−1∥2 ≤
√
d ∀xz ∈ Qz,∀xz−1 ∈ Qz−1 s.t. βd = 0. (11)

Informally, in this δ−1-base representation, the least significant digit corresponds to the index of the
d-th dimension, βd. When incrementing the token ID one by one, the index in the d-th dimension
increases sequentially 0, 1, 2, . . . , δ−1 − 1, without changing the other digits; thus, consecutive IDs
imply that the tokens are “similar” to each other in d-dimensional space, with a distance of at most
δ
√
d. However, when a carry occurs, the higher-order digits may change significantly, causing

tokens that were not originally adjacent to appear next to each other in terms of their indices, as
we are essentially projecting a d-dimensional space onto a 1-dimensional space. In this case, the
distance is only bounded by

√
d.

Step 2. Contextual Mapping. The networks, with N -loops, map the list of N token IDs, denoted
by z ∈ {0, 1, . . . , δ−d − 1}N , to sequence IDs bijectively. Furthermore, this mapping is not only
bijective; it also requires the inclusion of additional dummy indices.

Note: We consider only the case where all N input tokens are distinct, disregarding other cases,
which can be treated as negligible when δ is small. The number of subsets where one of the N
tokens is duplicated is

(δ−d)
N − δ−d · (δ−d − 1) . . . (δ−d −N − 1) < Cδ−(N−1)d,

where C is a constant. The volume of these subsets is Cδ−(N−1)d/δ−Nd = Cδd, so the error with
respect to the Lp norm is O(δd).
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Let Lδ denote the set, composed of distinct N tokens, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}.

Due to permutation equivalence, we can assume without loss of generality that elements of z ∈ Lδ

is ordered, i.e., z1 > z2 > · · · > zN . Define u(δ−d) := (δ−(N−1)d, . . . , δ−d, 1)⊤, which satisfy∥∥∥u⊤
(δ−d)z − u⊤

(δ−d)z
′
∥∥∥ > 1, if z ̸= z′ for any z, z′ ∈ Lδ.

This mapping, u⊤
(δ−d)z, represents z in a δ−d-base system. Then, we define sequence ID of z ∈ Lδ

as:

s(z) := u⊤
(δ−d)z =

N∑
n=1

znδ
−(N−n)d. (12)

By Lemma A.5, there exist a Transformer block TF′(2) : R3×N → R3×N with single head, head
size s = 1, and width size q = 3, and two affine linear maps L′(2)

1 : R → R3 and L′(2)
2 : R3 → R

such that
L′(2)

2 ◦ TF′(2)◦N ◦L′(2)
1 (z⊤) = s(z) · 1⊤

N ,

where z⊤ → u⊤
(δ−d)z is a contextual mapping.

Furthermore, we have to add dummy indices to alleviate the approximation error caused by the
looped architecture in Step 3. Recall that B ∈ {0, 1, . . . , δ−1 − 1

d×N} represents the coordinates
of the inputs. Let Z ∈ {0, 1, . . . , δ−1− 1}d×N denote the coordinates where the tokens are ordered
by their token IDs, i.e., u⊤

(δ−1)Z1
> u⊤

(δ−1)Z2
> · · · > u⊤

(δ−1)ZN
, i.e., z = u⊤

(δ−1)Z. Thus, by
redefining the sequence ID of Eq. 12 for Z instead of z, sequence IDs in δ−d-base can be rewritten
in the δ−1-base system as follows:

s(Z) = u⊤
(δ−d)(u

⊤
(δ−1)Z)

=

d∑
i=1

N∑
n=1

Zi,nδ
−
(
(N−n)d+(d−i)

)
.

We also define the sequence IDs for each B as:

s(B) =

d∑
i=1

N∑
n=1

Bi,nδ
−
(
(N−n)d+(d−i)

)
.

Then, we define extended sequence IDs as:

sextend(Z) := 2s(Z)−Zd,N

= Zd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Zi,nδ
−
(
(N−n)d+(d−i)

)
,

sextend(B) := Bd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
.

Recall that Bd,N ∈ {0, 1, . . . , δ−1 − 1}. We define the dummy indices as:

sbdummy(B) := b+

d∑
i=1

(i,n) ̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
, for b = δ−1, δ−1 + 1, . . . , 2δ−1 − 1.

We define each set as follows:

Sdistinct := {sextend(Z)} , Sdistinct+duplicate := {sextend(B)} ,
Sdummy :=

{
sbdummy(B) | b = δ−1, δ−1 + 1, . . . , 2δ−1 − 1

}
.
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Then, we can see that

Sdistinct ⊂ Sdistinct+duplicate, Sdistinct+duplicate ∩ Sdummy = ∅,
Sdistinct+duplicate ∪ Sdummy = {0, 1, . . . , 2δ−Nd − 1}. (13)

We define the input cubes for each token assigned to extended sequence ID s as follows:

Qs :=
{
X ∈ [0, 1]d×N : Xi,n ∈

[
Bi,nδ,Bi,nδ+1

)
for i = 1, 2, . . . , Nd s.t. s = sextend(B)

}
.

We can confirm for that

∥Xs −Xs−1∥2 ≤ δ
√
Nd ∀Xs ∈ Qs,∀Xs−1 ∈ Qs−1 s.t. Bd,N = 1, 2, . . . , δ−1 − 1. (14)

While, we have

∥Xs −Xs−1∥2 ≤
√
Nd ∀Xs ∈ Qs,∀Xs−1 ∈ Qs−1 s.t. Bd,N = 0. (15)

Informally, this set represents a collection of consecutive sequence IDs, where the first N −1 tokens
are identical, and the N -th token is “similar”. For example: (1) I write ‘a paper’, and (2) I write
‘papers’. As explained in token IDs, if only the d-th dimension of the N -th token differs, then
the tokens remain adjacent in the d-dimensional space. As a result, the total variation in the input
sequence within the set is bounded by δ

√
d.

To implement this, we slightly modified TF′
2. By Corollary A.6, there exist a Transformer block

TF(2) : R5×N → R5×N with single head, head size s = 1, and width size q = 4, and two affine
linear maps L(2)

1 : R2 → R5 and L(2)
2 : R5 → R such that

L(2)
2 ◦ TF

(2)◦N ◦L(2)
1 (

([
z⊤

Zd,:

])
) = sextend(z) · 1⊤

N for any z ∈ Lδ .

Step 3. Token-wise Mapping. From Step 1 and Step 2, the network takes a token ID and se-
quence ID as input for each token, which together form a contextual token ID. The network with
δ−2(N+1)d−1 loops approximately maps these contextual token IDs to the output token embeddings
of the target function.

To construct contextual token IDs, we define a bijective mapping L(3)
0 : N2 → N as follows:

L(3)
0 (z, s) := 2δ−Ndz + s,

where z represents a token ID and s represents a extended sequence ID. Note that sequence IDs are
less than 2δ−Nd, so informally, it’s as if we are adding another digit, zn, as the most significant digit
in a δ−d-based system. Define the set of contextual token IDs for distinct N token IDs as:

Kdistinct :=

{
L3

(
zn, sextend(Z)

)
: n = 1, 2, . . . , N

}
.

We also define the set for all inputs, including cases where some token IDs are duplicated, as

Kdistinct+duplicate :=

{
L3

(
βn, sextend(B)

)
: n = 1, 2, . . . , N

}
=

{
s+ 2δ−Ndz : s ∈ Sdistinct+duplicate, z = 0, 1, · · · , δ−d

}
=

{
Bd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
+ 2δ−Ndz

}
,

and dummy contextual token ID as

Kdummy :=

{
s+ 2δ−Ndz : s ∈ Sdummy, z = 0, 1, · · · , δ−d

}
.
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We can confirm, from Eq. 13,

Kdistinct ⊂ Kdistinct+duplicate, Kdistinct+duplicate ∩ Kdummy = ∅,
Kdistinct+duplicate ∪ Kdummy = {0, 1, . . . , 2δ−(N+1)d − 1}.

We now define the target output token embedding for each extended contextual mapping ID. Define
g : K → Rd, the mapping from extended contextual IDs to their token embeddings, as follows:

g(k) =

{
f̄(X):,n s.t. L3

(
βn, sextend(B)

)
= k for k ∈ Kdistinct+duplicate,

lin interp
(
g(near-(k)), g(near+(k)), k − near-(k), δ−1

)
for k ∈ Kdummy.

When Bd,n ̸= 0, from Eq. 14, we have

g(k)− g(k − 1) ≤ ωcont
f (δ

√
d),

since the token zn remains the same for both k and k − 1. While Bd,n = 0, a carryover occurs, and
we only bound the input sequences as in Eq.15, with the possibility that the token ID differs, the
variation is bounded as Eq.11. Since we have dummy token IDs, there are redundant indices before
the carryover occurs. As a result, the variation in the next index is bounded by a factor of δ, i.e.,

∥g(k)− g(k − 1)∥p ≤ δ
(
ωcont
f (

√
Nd) + ωtok

f (
√
d)
)
.

Since that ωcont,tok
f (n · t) ≤ n · ωcont,tok

f (t) for any n ∈ N and t ∈ [0,∞) with δ < 1, we have

∥g(k)− g(k − 1)∥p ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd).

Thus, we have

|(g(k)i − g(k − 1)i| ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) for i = 1, 2, . . . , d.

By Lemma 4.1, there exist feed-forward layer FF(3) : R14d → R14d of width size 20d and two
affine linear maps L(3)

1 : Rd → R14d and L(3)
2 : R14d → Rd such that

|
(
L(3)
2 ◦ (id + FF(3))

(2δ−(N+1)d−1)
◦ L(3)

1 (k)− g(k)
)
i
| ≤ ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd),

for any i = 1, 2, . . . , d and k = 0, 1, . . . , 2δ−(N+1)d − 1.

Consolidation into Single Looped Transformer. Lastly, we demonstrate f̃ can be represented in
Looped Transformers. Let

X(0) ∈ R1×N , X(1) ∈ R5d×N , X(2) ∈ R5d×N , X(3) ∈ R14d×N

denote the divided input space. Define single head Attn : R(24d+1)×N → R(24d+1)×N with head
size 1 as:

Attn




X(0)

X(1)

X(2)

X(3)


 =

 05d+1×N

Attn(2)(X(2))
014d×N

 ,

where Attn(2) denote the self-attention layer of TF(2). Let

x0 ∈ R, x1 ∈ R5d, x2 ∈ R5d, x3 ∈ R14d

denote the token-wise input space. Define FF : R24d+1 → R24d+1, with impulse function defined
in Proposition A.3, as:

FF


 x0

x1

x2

x3


 =




x0 + 1

FF(1)(x1)

FF(2)(x2) + impulse(δ−1−1)

(
L(2)
1 ◦ L

(1)
2 (x1, (x1)d)

)
FF(3)(x3) + impulse(δ−1+N)

(
L(3)
1 ◦ L

(3)
0 (x1,x2)

)
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where FF(2) denotes the feed-forward layer of TF(2), and impulse refers to the dimension-wise
application of impulse. Note that x0 serves the role of a counter. As shown in Proposition A.3, the
impulse requires 4 ReLU functions per dimension. With 19d dimensions, this results in an additional
width of 72d+4. The total width consists of 7d for FF(1), 4 for TF(2), and 20d for FF(3), resulting
in a total width of 99d+8. Define two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd

such that
L1(x) = (0,L(1)

1 (x),019d)
⊤
, L2

(
(x0,x1,x2,x3)

⊤)
= L(3)

2 (x3).

Thus, we have

f̃(X) = L2 ◦ TF◦(δ−1+N+2δ−(N+1)d) ◦L1(X)

s.t. ∥f̃(X)− f̄(X)∥p ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) +O(δd).

Deriving Approximation Error. Generally, the following inequality holds.

n∑
i=1

xp
i ≤

(
n∑

i=1

xi

)p

for xi ≥ 0 and p ≥ 1.

Substituting xi = ∥f̄(X)− f(X)∥p into the above inequality results in

∥f̄ − f∥Lp([0,1]d×N ) =
(∫ ∥∥f̄(X)− f(X)

∥∥p
p
dX
)1/p

≤
∫
∥f̄(X)− f(X)∥pdX. (16)

Also we can bound the entire norm with the token-wise norm as:

∥f̃(Xk)− f̄(Xk)∥p ≤ max
n
∥f̃(Xk):,n − f̄(Xk):,n∥p ≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p.

With the triangle inequality, we have approximation error as

∥f̃ − f∥Lp([0,1]d×N ) ≤ ∥f̃(X)− f(X)∥p · 1

≤ ∥f̃(X)− f̄(X)∥p + ∥f̄(X)− f(X)∥p
≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p + ∥f̄(X)− f(X)∥p +O(δd)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd).

Then, δ must be expressed in terms of the number of loops r to determine the approximation rate.

r = δ−1 +N + 2δ−(N+1)d ⇔ δ−1 + 2δ−(N+1)d = r −N

⇔ δ−1 · 2δ−(N+1)d ≥ r −N

⇔ 2δ−(N+1)d−1 ≥ r −N

⇔ δ ≤
(r −N

2

)−1/
(
(N+1)d+1

)
. (17)

Thus, we can derive Theorem 3.7.

A.3 PIECEWISE LINEAR FUNCTIONS

Here, we define three functions implemented with ReLU functions.
Proposition A.1 (Rectangular function). Given t ∈ R, define rectt : R→ R as:

rectt(x) =

{
1 if x ∈ [t, t+ 1),

0 otherwise.

Four ReLU functions can approximate rectt with arbitrarily small error via

ϕt(x) := σR

(
x−t+ϵ

ϵ

)
− σR

(
x−t
ϵ

)
+ σR

(−x+t+1
ϵ

)
− σR

(−x+t+1−ϵ
ϵ

)
− 1,

where limϵ→0 ϕt(x) = rectt(x).
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Proposition A.2 (Step function). Define step : R→ R as:

step(x) =

{
0 if x < 0,

1 if x ≥ 0.

Two ReLU functions can approximate step with arbitrarily small error via

ϕ(x) := σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
,

where limϵ→0 ϕ(x) = step(x).
Proposition A.3 (Impulse function). Given θ ∈ N, define impulseθ : R → R for x ∈ [−M,M ]
and t ∈ N as:

impulseθ(x, t) =

{
x if t = θ,

0 otherwise.
Four ReLU functions can approximate impulseθ with arbitrarily small error via

impulseθ(x, t) :=σR

(
x+ 2M(t− θ + 1/2)

)
− 2MσR(t− θ + 1/2)

− σR

(
x+ 2M(t− θ − 1/2)

)
+ 2MσR(t− θ − 1/2).

A.4 STEP 1. TOKEN-WISE QUANTIZATION

Figure 4: An illustration of hk(x).

We aim to construct quantization function g : [0, 1]d → {0, 1, . . . , δ−1}d for each dimension as

g(x) = (g(x1), g(x2), . . . , g(xd))
⊤
,

where g(x) =

{
k if x ∈ [kδ, (k + 1)δ),

0 otherwise.

This function g : R→ R can be expressed as

g(x) =

n−1∑
i=0

i · recti(x)

for any n ∈ N and x ∈ R. The illustration of hk(x) := k · rectk(x) is shown in Fig 4. The
key idea is that hk(x) can be represented with a single function h in the form of h

(
kx, k2, k

)
.

Lemma A.4 implement h
(
kx, k2, k

)
with a feed-forward layer and perform the summation through

a skip connection.
Lemma A.4. Given any δ−1 ∈ N and x ∈ Rd, there exist a feed-forward layer FF : R5d → R5d of
width size q = 7d, and two affine linear maps L1 : Rd → R5d and L2 : R5d → Rd such that(
L2 ◦

(
id + FF

)◦(δ−1−1) ◦ L1(x)
)
i
=

{
k if xi ∈ [kδ, (k + 1)δ), k = 0, . . . , δ−1 − 1,

0 otherwise,

for any i = 1, 2, . . . , d.

Proof. On the basis of proposition A.1, define function hk(x) = k · rectk(x) via

hk(x) := σR

(
k
ϵ (x−

k
δ + ϵ)

)
− σR

(
k
ϵ (x−

k
δ )
)
+ σR

(
k
ϵ (−x+ k

δ + 1)
)

− σR

(
k
ϵ (−x+ k

δ + 1− ϵ)
)
− k,
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which satisfies

hk(x) =

{
k if x ∈ [kδ, kδ + 1),

0 otherwise.

For any x ∈ [kδ, kδ + 1) where k = 0, 1, . . . , δ−1 − 1, we have

δ−1−1∑
i=0

hi(x) = hk(x) = k.

Define function h : R3 → R to represent hk via

h(kx, k2, k) := σR

(
kx
ϵ −

k2

ϵ + k
)
− σR

(
kx
ϵ −

k2

ϵ

)
+ σR

(
− kx

ϵ + k2

ϵ + k
ϵ

)
− σR

(
− kx

ϵ + k2

ϵ + k 1−ϵ
ϵ )− σR(k) = hk(x).

Define ξk as

ξk =
(
kx, k2, k, x,

k−1∑
i=0

hi(x)
)⊤

.

Then, construct a feed-forward layer FF : R5 → R5 with a skip connection such that

(
id + FF

)
(ξk) =

(
id + FF

)(
(kx, k2, k, x,

k−1∑
i=0

hi(x))
⊤
)

=
(
(k + 1)x, (k + 1)2, k + 1, x,

k∑
i=0

hi(x)
)⊤

= ξk+1.

via

(
id + FF

)



kx
k2

k
x∑k−1

i=0 hi(x)


 =


kx
k2

k
x∑k−1

i=0 hi(x)

+


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 −1 1 −1 −1

σR





0 0 0 1 0
0 0 2 0 0
1
ϵ − 1

ϵ 1 0 0
1
ϵ − 1

ϵ 0 0 0
− 1

ϵ
1
ϵ

1
ϵ 0 0

− 1
ϵ

1
ϵ

1−ϵ
ϵ 0 0

0 0 1 0 0




kx
k2

k
x∑k−1

i=0 hi(x)




+


0
1
1
0
0



=


kx
k2

k
x∑k−1

i=0 hi(x)

+


x

2k + 1
1
0

hk(x)



=


kx+ x

k2 + 2k + 1
k + 1
x∑k−1

i=0 hi(x) + hk(x)



=


(k + 1)x
(k + 1)2

k + 1
x∑k

i=0 hi(x)

 .
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Then, define two affine linear maps L1 : R1 → R5 and L2 : R5 → R1 by

L1(x) := (0, 0, 0, x, 0), L2(x1, x2, x3, x4, x5) := x5.

Thus, we have

L2 ◦
(
id + FF

)◦(δ−1−1) ◦ L1(x) = L2 ◦
(
id + FF

)◦(δ−1−1)
(ξ1)

= L2(ξδ−1)

=

δ−1−1∑
i=0

hi(x).

For d-dimensional inputs, we need d-times parameters.

A.5 STEP 2. CONTEXTUAL MAPPING

The network takes token IDs as inputs, denoted by z ∈ {0, 1, . . . , δ−d − 1}N . We consider only
the case where all token IDs are distinct, since this accounts for the majority when δ is small. The
network maps token IDs into a sequence ID using inner product with the vector u ∈ RN defined as
u := (δ−(N−1)d, δ−(N−2)d, . . . , δ−d, 1)⊤ i.e.

CM(z) := u⊤z.

Due to permutation equivalence, we can assume without loss of generality that elements of z ∈ Lδ

is ordered, i.e., z1 > z2 > · · · > zN . Then the map CM satisfies∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′.

In other words, CM represent z in δ−d-base system. The network computes u⊤z in the form of∑N
i=1 δ

−(N−i)dzi. The network computes s(k) :=
∑k

i=1 δ
−(k−i)dzi in each loop, and after N -

loops, it outputs s(N) = u⊤z. To implement this, the self-attention layer select zk in the k-th loop
iteration. We design the key and value weights to select the maximum token ID. The feed-forward
layer post-processes the token ID as if selected, then replaces it with negative value to prevent
selection in subsequent iterations, i.e., the post-processed token IDs for the k-th loop is

z
(k)
i = z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise.

Lemma A.5. Consider the set, composed of distinct indices for d-dimension δ-discretized regions
of N tokens, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}.

There exists a function CM : RN → R composed of Transformer block TF : R3×N → R3×N with
single head, head size s = 1, and width size q = 3, and two affine linear maps L1 : R → R3 and
L2 : R3 → R, such that

L2 ◦ TF◦N ◦L1(z
⊤) = CM(z⊤) · 1⊤

N ,

for any z ∈ Lδ , where L1 and L2 denote the token-wise applications of L1 and L2, respectively,
and CM is a contextual mapping, which satisfies the following properties:

1. For any z ∈ Lδ , the N entries in CM(z⊤) are all distinct.
2. For any z, z′ ∈ Lδ , if z is not a permutation of z′, all entries of CM(z⊤) and CM(z′⊤) are

distinct.

Proof. Due to permutation equivalence, we can assume without loss of generality that elements of
z ∈ Lδ is ordered, i.e., z1 > z2 > · · · > zN . Define u ∈ RN as u := (δ−(N−1)d, . . . , δ−d, 1)⊤,
which satisfy ∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′ for any z, z′ ∈ Lδ.
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Then z → u⊤z is a contextual mapping. We show how to construct Transformer block TF :
R3×N → R3×N with single head and head size s = 1 such that, for any z ∈ Lδ ,

TF◦N

 z⊤

0⊤
N

0⊤
N

 =

 0⊤
N

0⊤
N

u⊤z · 1⊤
N

 .

where 0N ∈ RN denote a zero vector. For z ∈ Lδ , we define two series z(k) and s(k) by

z
(k)
i = z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise,
for i = 1, . . . , d.

s(k) =

k∑
i=0

δ−idzi.

While z(k) is not uniquely determined, any vectors that satisfies the conditions is accepted as z(k).
We can confirm that s(k) satisfies

s(k) =

k∑
i=1

δ−(k−i)dzi

=
( k−1∑

i=1

δ−(k−i)dzi
)
+ zk

=
( k−1∑

i=0

δ−d · δ−(k−1−i)dzi
)
+ zk

= δ−d · s(k−1) + zk.

(18)

Recall that s(N) = u⊤z. Define a single-head self-attention Attn : R3×N → R3×N such that

Attn

 z⊤

y⊤

s⊤

 =

 0
maxj zj · 1⊤

N
0

 ,

via the weight parameters

WO =

[
0
1
0

]
, WV = WK = WQ = [ 1 0 0 ]

Define FF : R3 → R3 of width size q = 3 via:

FF

([
x1

x2

x3

])
=

−M 0 0
0 −1 0
0 1 δ−d − 1

σR

([
1 −1 0
0 1 0
0 0 1

][
x1

x2

x3

]
+

[
ϵ
0
0

])

=

 −MσR(x1 − x2 + ϵ)
−σR(x2)

(δ−1 − 1)σR(x3) + σR(x2)

 ,

where 0 < ϵ < δ−1 and M > ϵδ−1. For x1 ∈ {0, 1, . . . , δ−d}, we have

x1 −MσR(x1 − x2 + ϵ) = z, s.t.
{
z = x1 if x1 < x2,

z < 0 otherwise.

This post-processes the token ID as if selected, then replaces it with negative value. We have

z
(k)
i −MσR(z

(k)
i − zk + ϵ) =

{
z < 0 if i ≤ k + 1,

z = zi otherwise,

= z
(k+1)
i for i = 1, . . . , d.

(19)
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We can confirm that Transformer block TF : R3×N → R3×N composed of Attn and FF satisfies

TF

 (z(k))⊤

0⊤
n

(s(k))⊤

 = (id + FF) ◦ (id + Attn)

 (z(k))⊤

0⊤
n

(s(k))⊤


= (id + FF)

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤


= (id + FF)

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤


=

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤

+

 −MσR

(
(z(k))⊤ − zk · 1⊤

N + ϵ1⊤
N

)
−zk · 1⊤

N

(δ−1 − 1)(s(k))⊤ + σR(x2)


=

 (z(k+1))⊤

0⊤
n

δ−1(z(k))⊤ + zk1
⊤
N

 because Eq. 19

=

 (z(k+1))⊤

0⊤
n

(s(k+1))⊤

 because Eq. 18.

We define two affine linear maps L1 : R → R3 and L2 : R3 → R as L1(x) := (x, 0, 0) and
L2(x1, x2, x3) := x3. Thus, we have

L2 ◦ TF◦N ◦L1(x
⊤) = L2 ◦ TF◦N

 z⊤

0⊤
N

0⊤
N

 = L2

 0⊤
N

0⊤
N

sN · 1⊤
N

 = (u⊤z) · 1⊤
N .

Recall that z → u⊤z is a contextual mapping.

Corollary A.6. There exist a Transformer block TF2 : R5×N → R5×N with single head, head size
s = 1, and width size q = 4, and two affine linear maps L1 : R2 → R5 and L2 : R5 → R such that

L2 ◦ TF2
◦N ◦L1

([
z⊤

Zd,:

])
=
(
2u⊤z −Zd,N

)
· 1⊤

N for any z ∈ Lδ .

where u := (δ−(N−1)d, . . . , δ−d, 1)⊤.

Proof. Define a single-head self-attention Attn : R5×N → R5×N such that

Attn




z⊤

Zd,:

y⊤

s⊤

q⊤


 =


0
0

maxj zj · 1⊤
N

0
Zd,argmaxj zj

· 1⊤
N

 ,

via the weight parameters

WO =


0
0
1
0
1

 , WV = WK = WQ = [ 1 0 0 0 0 ]
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Define FF : R4 → R4 of width size q = 4 via:

FF




x1

x2

x3

x4

x5


 =

−M 0 0 0
0 −1 0 0
0 1 δ−d − 1 0
0 1 0 −1

σR


1 0 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




x1

x2

x3

x4

x5

+


ϵ
0
0
0
0




=


−MσR(x1 − x2 + ϵ)

0
−σR(x2)

(δ−1 − 1)σR(x3) + σR(x2)
−σR(x4) + σR(x2)

 ,

where 0 < ϵ < δ−1 and M > ϵδ−1. Note that the fourth columns after t loops are zt, so at the
end, we obtain zN . Then, we define two affine linear maps L1 : R2 → R5 and L2 : R5 → R as
L1(x1, x2) := (x1, x2, 0, 0, 0) and L2(x1, x2, x3, x4, x5) := 2x4 − x5.

A.6 STEP 3. FUNCTION VALUE MAPPING WITH BIT EXTRACTION

We use a bit extraction technique (Bartlett et al., 1998) to approximately memorize the piecewise
linear function.Consider n ∈ N input indices k = 0, 1, . . . , n − 1 ∈ N with associated values
y0, y1, . . . , yn−1 ∈ R. The network approximately memorize the difference yi − yi−1 with base-2
representation. Since binary representation limited to {0, 1}, yi − yi−1 has to be re-scaled with
ϵ := |yi − yi−1| as

ai =
⌊yi
ϵ

⌋
,

where ⌊x⌋ = max{n : n ≤ x, n ∈ Z}. Then, the difference bi = ai−ai−1 satisfies bi ∈ {−1, 0, 1},
bi, and it can be represented using two binary values ci, di ∈ {0, 1} as follows:

bi = ci − di,

and we have

ak = a0 +

k∑
i=0

bi = a0 +

k∑
i=0

di +

k∑
i=0

di for k = 0, 1, 2.

Lemma A.8 and Lemma 4.1 show that
∑k

i=0 ci and
∑k

i=0 di can be realized by composition of
single feed-forward layer. Thus the networks can approximate yi with ϵai denoted by ỹi with the
following accuracy

|ỹi − yi| = |ϵ
⌊yi
ϵ

⌋
− ϵ

yi
ϵ
| = ϵ|

⌊yi
ϵ

⌋
− yi

ϵ
| ≤ ϵ.

For d-dimensional inputs-outputs pair, we construct the networks for each dimension i.e.

ỹ = (ỹ1, ỹ2, . . . , ỹd)

The key idea of our lemma and proof follows Lemma D.1 from Zhang et al. (2023) as shown in
below; however, we cannot directly apply their result here, as it requires depth-2 networks.
Proposition A.7 (Lemma D.1 in Zhang et al. (2023)). Given any r ∈ N+, there exist FF : R3d →
R3d of width size 8 and depth 2 with two affine linear maps L1 : R2 → R5 and L2 : R5 → R such
that: For any θ1, θ2, . . . , θr ∈ {0, 1}, it holds that

L2 ◦ FF◦r ◦ L1

(
k, bin0.θ1θ2 · · · θr

)
=

k∑
ℓ=1

θℓ for k = 0, 1, . . . , r,

where bin 0.θ1θ2 · · · θr denote the binary representation of θ =
∑n

i=1 θi2
−i.

We found that loop unrolling allows us to reduce the number of layers from 2 to 1, replacing xk+1 =
ReLU(ReLU(x′k)) with (xk+1, x′k) = ReLU(x′k, xk). Although our method makes the weights
dependent on θ1, θ2, . . . , θr ∈ 0, 1, this does not present an issue for our construction in function
approximation. Specifically, θ1, θ2, . . . , θr is fixed for each target function, and the role of the
network is to learn the weights tailored to that single function.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma A.8. Given θ1, θ2, . . . , θr ∈ {0, 1} for r ∈ N+, there exist a feed-forward layer FF : R7 →
R7 of width size 10 and two affine linear maps L1 : R→ R7 and L2 : R7 → R s.t.

L2 ◦ (id + FF)
◦r ◦ L1

(
k) =

k∑
i=1

θi for k = 0, 1, . . . , r.

Proof. From proposition A.2, we have a function step(x) defined by

step(x) := σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
,

satisfies

step(x) =

{
1 if x ≥ 0,

0 if x < 0.

Define βi for i = 0, 2, . . . , r as

βi = bin 0.θi · · · θr,

where bin 0.θ1θ2 · · · θr denote the binary representation of θ =
∑n

i=1 θi2
−i and θ0 := 0. We have

θi = step(bin 0.θi · · · θr − 1
2 ) = step(βi − 1

2 ),

implying, for i = 1, 2, . . . , r − 1,

βi+1 = 2βi − θi = 2βi − step
(
βi − 1

2

)
.

For given k ∈ 0, 1, . . . , r, we have

k∑
i=1

θi =

k∑
i=1

θi +

r∑
i=k+1

0 =

r∑
i=1

θi · step(k − i) =

r∑
i=1

σR

(
θi + step(k − i)− 1

)
=

r∑
i=1

σR

(
step(βi − 1

2 ) + step(k − i)− 1
)
.

(20)

To compute the right-hand side, we need two nested ReLU functions. By using loop unrolling, we
precompute step(βi− 1

2 ) and step(k− i) in the previous loops, allowing us to require only a single
layer. Define ξl for l = 0, 1, . . . , r as

ξl =
(
k − l, βl, βl+1, step(βl −

1

2
), step(k − l), sum(l)

)⊤
,

where sum(l) :=
∑l

i=1 σR

(
step(βi − 1

2 ) + step(k − i) − 1
)

. Note that we have βl+1 in the l-th

loop to precompute step(βl+1 − 1
2 ) and step

(
(k − (l + 1)

)
for the l + 1-th loop.
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Define FF : R7 → R7 such that

(
id + FF

)
(ξl) =

(
id + FF

)



k − l
βl

βl+1

step(βl − 1
2 )

step(k − l)
sum(l)





=


k − l
βl

βl+1

step(βl − 1
2 )

step(k − l)
sum(l)

+


0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0
0 0 0 0 −1 1 −1 0 0
0 0 0 0 0 0 0 0 1



σR





0 1 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 1/ϵ 0 0 0
0 0 1/ϵ 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
1/ϵ 0 0 0 0 0
1/ϵ 0 0 0 0 0
0 0 0 1 1 0




k − l
βl

βl+1

step(βl − 1
2 )

step(k − l)
sum(l)

+



0
0
0

−1/(2ϵ) + 1
−1/(2ϵ)

0
0

−1/ϵ+ 1
−1/ϵ
−1




+



−1
0
0
0
0
0
0



=


k − l
βl

βl+1

step(βl − 1
2 )

step(k − l)
sum(l)

+



−1
σR(βl)− σR

(
step(βl − 1

2 )
)

σR(βl+1)−
(
σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ )

)
−σR

(
step(βl − 1

2 )
)
+ σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ )

−σR

(
step(k − l)

)
+ σR(

k−(l+1)
ϵ + 1)− σR(

k−(l+1)
ϵ )

σR

(
step(k − l) + step(βl − 1

2 )− 1
)



=


k − (l + 1)

2βl − step(βl − 1
2 )

2βl+1 − step(βl+1 − 1
2 )

step(βl+1 − 1
2 )

step
(
(k − (l + 1)

)
sum(l + 1)

 =


k − (l + 1)

βl+1

βl+2

step(βl+1 − 1
2 )

step
(
(k − (l + 1)

)
sum(l + 1)

 = ξl+1,

Define L1 : R2 → R3 and L2 : R3 → R via

L1(k) := (k, β0, β1, 0, 0, 0)
⊤
= ξ0, L2(x1, x2, x3, x4, x5, x6, x7) := x7,

respectively. Note β1 is defined by given θ1, θ2, . . . , θr

We prove Lemma 4.1 with Lemma A.8.

Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,m− 1 with

|(yk − yk−1)i| ≤ εi for k = 1, 2, . . . ,m− 1,

there exist feed-forward layer FF : R14d → R14d of width size 20d and two affine linear maps
L1 : Rd → R14d and L2 : R14d → Rd such that

|
(
L2 ◦ (id + FF)(m−1) ◦ L1(k)− yk

)
i
| ≤ εi for k = 0, 1, . . . ,m− 1,

for any i = 1, 2, . . . , d.

Proof. We prove this for the case where d = 1, considering yk ∈ R for k = 0, . . . ,m. Define

ai =
⌊
yi

ε

⌋
for i = 0, 1, . . . ,m− 1,
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where ⌊x⌋ = max{n : n ≤ x, n ∈ Z} and set

bi = ai − ai−1 for i = 1, 2, . . . ,m− 1.

Since bi ∈ {−1, 0, 1}, there exist ci ∈ {0, 1} and di ∈ {0, 1} such that

bi = ci − di for i = 1, 2, . . . ,m− 1.

Thus, we have

ak = a0 +

k∑
i=1

ci −
k∑

i=1

di for k = 0, 1, . . . ,m− 1.

From Lemma A.8, there exist FF(c),FF(d) : R7 → R7 and affine linear maps L′
2 : R7 → R and

L(c)
1 ,L(d)

1 : R→ R7 such that

L′
2 ◦ (id + FF(c))

◦(m−1)
◦ L(c)

1

(
k) =

k∑
i=1

ci, L′
2 ◦ (id + FF(d))

◦(m−1)
◦ L(d)

1

(
k) =

k∑
i=1

di,

for k = 0, 1, . . . ,m− 1. Then, define FF : R14 → R14, for x,y ∈ R7,

FF(x,y) := (FF(c)(x),FF(d)(y)).

Define L1 : R→ R14 and L2 : R14 → R as

L1(x) :=
(
L(c)
1 (x),L(d)

1 (x)
)
, L2(x,y)

⊤ := ϵ
(
a0 + L′

2(x)− L′
2(y)

)
.

We can confirm that

L2 ◦ (id + FF)◦(m−1) ◦ L1(k)

= L2 ◦ (id + FF)◦(m−1) ◦
(
L(c)
1 (k), L(d)

1 (k)
)

= L2 ◦
(
(id + FF(c))◦(m−1) ◦ L(c)

1 (k), (id + FF(d))◦(m−1) ◦ L(d)
1 (k)

)
= ϵ
(
a0 + L′

2 ◦ (id + FF(c))◦(m−1) ◦ L(c)
1 (k)− L′

2 ◦ (id + FF(d))◦(m−1) ◦ L(d)
1 (k)

)
= ϵ
(
a0 +

k∑
i=1

ci −
k∑

i=1

di
)
= ϵak.

Thus we have
|
(
L2 ◦ (id + FF)◦(m−1) ◦ L1(k)− yk

)
i
| = |ϵak − yk| ≤ ε.

We can extend this for d-dimensional input.
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B ROLE OF TIME DEPENDENT SCALING PARAMETERS

We demonstrate that time-dependent scaling parameters overcome the limitations inherent to the
looped architecture and eliminate the dependence of the approximation rate on the modulus of con-
tinuity. We use the architecture defined in Section 4 as:

FF(x)→ η(t)⊙ FF(x) for the t-th loops,

Following lemma demonstrate that time dependent scaling parameters can exactly map indices to
output vectors.

Theorem 4.2. Given yk ∈ Rd for k = 0, . . . ,m−1, there exist feed-forward layer FF : R4d → R4d

of width size 6d and η(t) ∈ R4d and two affine linear maps L1 : Rd → R4d and L2 : R4d → Rd s.t.

L2 ◦ (id + η(m− 1)⊙ FF) ◦ · · · ◦ (id + η(1)⊙ FF) ◦ L1(k) = yk.

The key idea of the proof is that we use the impulse function defined as

impulse0((yl)i, k − l) =

{
(yl)i if k = l,

0 otherwise,

for i = 1, 2, . . . , d and l = 0, 2, . . . ,m − 1, which extracts the corresponding (yl)i in the l-th loop
if the index matches k.

Proof. We consider the case when d = 1, where yk ∈ R for k = 0, . . . ,m − 1. We update yk as
follows:

yk → yk + ϵ,

where ϵ is chosen such that none of the yl values are zero.

Next, we define η(l) as:

η(l) = (0, 1,
yl

yl−1
− 1, 1)⊤ for l = 1, 2, . . . ,m− 1.

By Proposition A.3, we have

impulse0(x, t) := σR

(
x+ 2M(t+ 1/2)

)
− 2MσR(t+ 1/2)

− σR

(
x+ 2M(t− 1/2)

)
+ 2MσR(t− 1/2)

=

{
x if t = 0,

0 otherwise,

where M > max yk. Define

s(l) :=

l∑
i=0

impulse0
(
y(i−1), k − (i− 1)

)
,

for l = 1, 2, . . . ,m− 1. This satisfies

s(m− 1) =

m−1∑
i=0

impulse0
(
y(i−1), k − (i− 1)

)
= yk.

Define ξl as

ξl =
(
k, k − l, yl, s(l))

)⊤
.

for l = 0, 1, 2, . . . ,m− 1.
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Then, define FF : R4 → R4 of width size q = 6 via:

(id + η(l)⊙ FF)(ξl−1) = ξl−1+

η(l)⊙


0 0 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 −2M 2M

σR




0 0 1 0
0 0 −1 0
0 2M 1 0
0 2M 1 0
0 1 0 0
0 1 0 0

 ξl−1 +


0
−1
M
−M
1/2
−1/2



+

 0
−1
0
0




= ξl−1 +


0
1

yl

yl−1
− 1

1

⊙



0
−1

σR(yl−1)− σR(−yl−1)(
σR

(
yl−1 + 2M((k − (l − 1)) + 1/2)

)
−2MσR((k − (l − 1)) + 1/2)

−σR

(
yl−1 + 2M(k − (l − 1)− 1/2)

)
+ 2MσR(k − (l − 1)− 1/2)

)



=

 k
k − (l − 1)

yl−1

s(l − 1)

+


0
1

yl

yl−1
− 1

1

⊙
 0

−1
yl−1

impulse0
(
y(l−1), k − (l − 1)

)


=

 k
k − l
yl
s(l)

 = ξl.

for l = 1, 2, . . . ,m− 1. Thus we have

(id + η(m− 1) · FF) ◦ · · · ◦ (id + η(1) · FF)(ξ0) = ξm−1

Then, define two affine linear maps L1 : R1 → R4 and L2 : R4 → R1 by

L1(x) := (k, k, y0, 0), L2(x1, x2, x3, x4) := x4 − ϵ.

We can extend this to d-dimensional input by using d time parameters, by applying above to each
dimension.
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C DETAILS OF EXPERIMENTS

This appendix section provides additional details on the experiments for each task, including prob-
lem descriptions, training configuration, and supplement of results.

C.1 DYNAMIC PROGRAMMING PROBLEMS

We categorize certain DP problems and employ the following tasks.

• Knapsack Problems: Subset Sum and Knapsack
• Two-Sequence Problems: Edit Distance (ED) and Longest Common Subsequence (LCS)

C.1.1 KNAPSACK PROBLEM

We use the knapsack problem and its special case, the subset sum problem. These tasks are solvable
in time O(nW ), where n is the length of the input sequence and W represents the weight capacity.

Subset sum task is to determine whether there exists a subset of these integers whose sum equals a
specified number T . It is a subset of the Knapsack problem We randomly sample n = 10 integers
from the range 1 to 100 and select T randomly from 1 to the sum of these n integers. For example,
a sample in the dataset of input sequence length 10 looks like

67 93 81 29 2 19 77 74 50 98 | 195 <sep> 1.

Knapsack problem is defined as follows: given a set of items, each with a weight and a value, select
a subset of items that maximizes the total value while ensuring that the total weight does not exceed
a specified limit. We concatenated the values, weights, and maximum capacity with a separator. For
example, a sample in the dataset of input sequence length 20 looks like

9 10 13 1 17 5 12 3 12 2 4 8 11 8 2 10 8 17 10 16 | 8 3 8 7 9 6 7
2 8 2 3 5 4 2 5 7 10 8 6 7 | 48 <sep> 52.

C.1.2 TWO SEQUENCES

We use tasks that compute metrics between two given sequences. These tasks can be solved using
dynamic programming with a time O(n2), where n denotes the length of each input sequence. In
the dataset, the two sequences are concatenated with a separator.

Longest Common Subsequence (LCS) is the longest common to a given set of sequences. We
use problems with input lengths of 60 and 100. Two sequences are sampled uniformly from the
alphabet. For example, a sample in the dataset of length 60 looks like

g q p b b g q b p h b v i b q m r w c v c v b v w b v g r v q h g
m b r w c r c h i h c c q p m w r w b p g h p w g p w | i i a p i
i i p r i p x i c r b f p b x p i x c c p f r x y i a p c v b p r

c r v v i c y p x f a c f p p b i i a r a c <sep> 18.

Edit Distance (ED) problem, also known as Levenshtein distance, is to find the minimum cost
required to change one sequence into the other. We adopted the problem setting and data generation
approach from Feng et al. (2023), but applied larger input lengths. The costs for insertion, deletion,
and replacement were set to 2, 2, and 3, respectively. They generate instances of the edit distance
problem as shown in Algorithm 1. The first string is randomly selected, while the second is generated
in two ways: (1) a random string yielding a large edit distance, and (2) a corrupted copy of the first
string, resulting in a small edit distance. For example, a sample in the dataset of length 60 looks like

k y s i s x x x y s s l o o o k o s k o o s l y x k x s y s y x s
o s l y k o o l s k x x y l y i y o s y o y x i i k s | k l l l o
y l y s l k l x i i o k k y o i x s y o s i k x l l x i y k o l y

o o y x o l s x x l i y l i o s i i i l l y <sep> 105.
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Algorithm 1: ED Data Generation from Feng et al. (2023)
Input : Length of the First String n
Input : Alphabet V = {a, b...z}
Output: Sequence s1, s2
Sample t uniformly from {3, 4...10} ;
T ← Sample t letters from V ;
s1← Sample n letters uniformly from T ;
Sample p uniformly from [0, 1] ;
if p < 0.4 then

Sample l uniformly from {n− 3, n− 2, ..., n+ 2};
s2← Sample l letters uniformly from T ;

else
do

s2 ← s1 ;
for i← 1 to n do

Sample p uniformly from {0, 1...len(s2)− 1};
Sample l uniformly from T ;
Randomly conduct one of the followings: pop s2[p], substitute s2[p] with l, insert l

into s2[p];
end

while len(s2) not in [n− 3, n+ 2];
end

C.2 SUPPLEMENTARY INFORMATION ON DP TRAINING AND RESULTS

This section provides supplementary information on the training process and results.

Training Configuration for DP We used Looped Transformers of 4 attention heads and a 256-
dimensional. We used the AdamW optimizer (Loshchilov & Hutter, 2018) with β1 = 0.9, β2 =
0.999, weight decay = 0.01, and linear decay scheduler initial lr = 10−4 and end lr = 0 with 5
warm up, training for 50 epoch with batch size 64. For time-dependent models, we initialize γ(t) as
zero vectors and α(t) as one vectors, following Peebles & Xie (2023); Bachlechner et al. (2021).

Training and Test Accuracy for ED Figure 5 demonstrates a positive correlation between train-
ing and test accuracy, allowing us to assess approximation power through test accuracy.
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Figure 5: Training and test accuracy for the edit distance task with a sequence length of 60.

C.3 IN-CONTEXT LEARNING

We followed the setting of Garg et al. (2022); Yang et al. (2024). The problem is to learn the function
class from a given sequence composed of the pairs of input xi and output values f(xi). The input
for model is (x1, f(x1), . . . ,xk, f(xk),xtest), and model learns to predict f(xtest). The model is
trained on f(xk) and its performance is evaluated on f(xtest) using the squared error.
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Decision Tree. We use depth-4 decision trees with 20-dimensional inputs. Each function in this
class is represented by a full binary tree with 16 leaf nodes. Non-leaf nodes are associated with
specific input coordinates, while leaf nodes are assigned target values. To evaluate f(x), the tree
is traversed from the root, moving to the right if the coordinate value is positive and to the left
otherwise. Inputs and leaf node values are sampled from N(0,I), and the coordinates for non-leaf
nodes are drawn uniformly at random.

Training Configuration. Our training setup follows the approach of Yang et al. (2024). We use
Looped Transformers with 8 attention heads and a dimensionality of 256, considering both 12-loop
and 70-loop configurations. For time-dependent models, we initialize γ(t) as zero vectors and α(t)
as one vector. Following the curriculum training approach of Garg et al. (2022); Yang et al. (2024),
we progressively increase the task dimensionality from 5 to 20 in steps of 1 every 5000 steps, while
the sequence length increases from 26 to 101 in increments of 5 over the same interval. Training is
conducted over 200, 000 steps with a learning rate of 1× 10−4.

C.4 LANGUAGE MODELING

Tokenization is performed using byte-pair encoding, following GPT-2 Radford et al. (2019). The
Looped Transformer model is based on the GPT-2 decoder architecture (Radford et al., 2019), with
16 attention heads and a dimensionality of 2048. For time-dependent models, we initialize γ(t)
as zero vectors and α(t) as one vector. We employed the AdamW optimizer (Loshchilov & Hut-
ter, 2018) with parameters β1 = 0.9, β2 = 0.95, learning rate lr = 10−4, and weight decay
weight decay = 0.1. The training was conducted for 100000 iterations with a batch size of 64, a
block size of 1024, and 20 gradient accumulation steps. The best perplexity was evaluated on both
the training and test sets.
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