
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON EXPRESSIVE POWER OF LOOPED TRANSFORM-
ERS: THEORETICAL ANALYSIS AND ENHANCEMENT
VIA TIMESTEP ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Looped Transformers offer advantages in parameter efficiency and Turing com-
pleteness. However, their expressive power for function approximation and ap-
proximation rate remains underexplored. In this paper, we establish approxima-
tion rates of Looped Transformers by defining the concept of the modulus of con-
tinuity for sequence-to-sequence functions. This reveals a limitation specific to
the looped architecture. That is, the analysis prompts us to incorporate scaling
parameters for each loop, conditioned on timestep encoding. Experimental results
demonstrate that increasing the number of loops enhances performance, with fur-
ther gains achieved through the timestep encoding architecture.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become the standard neural network architecture for a wide
range of machine learning tasks, such as natural language processing and computer vision. Looped
Transformers have an architecture composed of fixed-size Transformer layers, where the output is
fed back into the input. This structure offers advantages over standard Transformers, such as in-
ductive bias, parameter efficiency, and Turing completeness. Dehghani et al. (2019) first introduced
the idea of incorporating recursive inductive bias into Transformers, aiming to address tasks that
RNNs handle more easily. Looped Transformers are also related to weight-tying Transformers (Lan
et al., 2020), demonstrating comparable performance to standard Transformers with fewer param-
eters. More recently, Giannou et al. (2023) theoretically demonstrated that the recursive structure
of Looped Transformers allows them to function as Turing machines. In summary, Looped Trans-
formers are more parameter-efficient and potentially more expressive than standard Transformers,
enhancing their generalization capabilities.

The expressive power of standard Transformers has been extensively explored, showing that they can
approximate continuous permutation-equivariant functions on compact domains (Yun et al., 2020;
Kim et al., 2023; Takakura & Suzuki, 2023; Jiang & Li, 2024; Kajitsuka & Sato, 2024). In addition,
their approximation rate has been studied: Takakura & Suzuki (2023); Jiang & Li (2024) established
it by identifying the properties of the target functions, revealing the types of functions that Trans-
formers can approximate effectively. In contrast, the expressive power of Looped Transformers in
function approximation remains unexplored. Due to the structural constraints imposed by weight-
tying, which limit their flexibility, existing universal approximation theories for Transformers cannot
be directly applied. Moreover, the approximation rate and the appropriate properties of the target
functions for Looped Transformers have yet to be investigated. Recently, Zhang et al. (2023) first
explored the expressive power of looped models. They established an approximation rate for ReLU
networks for continuous functions in terms of loop counts and modulus of continuity. Still, this
remains unclear in the case of Looped Transformers.

In this paper, we derive the approximation rate of Looped Transformers for continuous sequence-to-
sequence functions by defining the concept of sequence continuity, contextual continuity, and token
continuity. This reveals a limitation specific to the looped architecture. That is, the analysis prompts
us to incorporate scaling parameters for each loop, conditioned on timestep encoding.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND

We define the Transformer architecture in Section 2.1 and Looped Transformers in Section 2.2. We
then introduce related work of theoretical analysis on function approximation power of Transformers
in Section 2.3.

2.1 TRANSFORMER ARCHITECTURE

Given an input sequence X ∈ Rd×N , composed of N token embedding of dimension size d, the
self-attention layers with h heads and head size s, and the feed-forward layer with width size q, are
defined as follows:

Attn(X) =

h∑
i=1

W
(O)
i

(
W

(V)
i (X)

)
σS

[(
W

(K)
i (X)

)⊤ (
W

(Q)
i (X)

)]
∈ Rd×N , (1)

FF(X:,i) = W 2 · σR(W
(1) ·X:,i + b(1)) + b(2) ∈ Rd, (2)

where W
(V)
i , W

(K)
i , W

(Q)
i ∈ Rs×d,W

(O)
i ∈ Rd×s,W (1) ∈ Rq×d,W (2) ∈ Rd×q, b(1) ∈

Rq, b(2) ∈ Rd are parameters, σR denotes ReLU function, and σS denotes a softmax operator
applied to the columns of the input matrix.

The Transformer block TF(X) : Rd×N → Rd×N is defined by:

X ′ = X +Attn(X), (3)

TF(X) = X ′ + FF(X ′). (4)

where FF represent token-wise FF. In other words

TF = (id + FF) ◦ (id + Attn), (5)

where id denote the identity mapping. For simplicity, we omit the domain of definition.

For the analysis of expressive power in Section 3, we use the hardmax operator σH instead of σS

and exclude Layer Normalizations as in previous studies (Yun et al., 2020; Kim et al., 2023).

2.2 LOOPED TRANSFORMER

Looped Transformers feed output back into input, defined as

L2 ◦ TF ◦ · · · ◦ TF ◦L1, (6)

where L2 and L1 denote token-wise linear layers. Let TF◦r denote the r-times composition of TF.
We refer to L2 ◦ TF◦r ◦L1 as a Looped Transformer with r-loops.

Looped Transformers have been studied in recent years, regarding their parameter efficiency (Lan
et al., 2020; Takase & Kiyono, 2021; Bae et al., 2024) and generalization capabilities (Dehghani
et al., 2019; Fan et al., 2024). Other recent works (Giannou et al., 2023; Gatmiry et al., 2024;
Back De Luca & Fountoulakis, 2024; Gao et al., 2024; Giannou et al., 2024) have investigated
their performance on iterative algorithms, including in-context learning and graph algorithm. In
particular, Yang et al. (2024) empirically demonstrated that increasing the number of loop iterations
enhances performance on complex tasks. However, to the best of our knowledge, there are no studies
on the expressive power or approximation rate of Looped Transformers in function approximation.

2.3 THEORETICAL ANALYSIS ON FUNCTION APPROXIMATION

The universal approximation theorem for fully connected neural networks, as demonstrated by Cy-
benko (1989); Hornik et al. (1989), shows that networks of sufficient size can approximate cer-
tain classes of functions with arbitrarily low error. Transformers are universal approximators of
sequence-to-sequence functions (Yun et al., 2020; Takakura & Suzuki, 2023; Jiang & Li, 2024; Ka-
jitsuka & Sato, 2024), and their memorization capacity has also been studied (Kim et al., 2023).
Recently, Zhang et al. (2023) revealed that even single fixed-size networks can be universal approxi-
mators. They explored the surprising potential of composition (loop) and derived the approximation
rate in terms of the number of loop counts and modulus of continuity of the target function.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 APPROXIMATION RATE OF LOOPED TRANSFORMERS

We establish the approximation rate of Looped Transformers by defining the modulus of continu-
ity for continuous sequence-to-sequence functions. We begin with preliminaries of Transformers
in Section 3.1. Then, we present and explain three types of continuity for sequence-to-sequence
functions, which determine the approximation rate. In Section 3.3, we present our main results on
approximation rate, along with some implications. In Section 3.4, we provide a proof sketch with a
detailed explanation, outlining three steps for approximation and deriving the approximation rate.

3.1 PRELIMINARY

Transformers are permutation-equivariant, so we define the target function class as follows.

Definition 3.1 (Yun et al. (2020); Kim et al. (2023)). A function f : Rd×N → Rd×N is said to
be permutation equivariant if for any permutation matrix P , we have f(XP) = f(X)P . Let
FPE([0, 1]

d×N) denote the set of permutation equivariant and continuous functions.

To approximate sequence-to-sequence functions, networks need to map each token within the con-
text of sequences, formulated as contextual mapping.

Definition 3.2 (Yun et al. (2020); Kim et al. (2023)). Consider a finite set L ⊂ Rd×N . A map
CM : L→ R1×N defines a contextual mapping if the map satisfies the following:

1. For any L ∈ L, the N entries in CM(L) are all distinct.

2. For any L,L′ ∈ L, with L ̸= L′, all entries of CM(L) and CM(L′) are distinct.

Let ∥·∥p denote the entry-wise Lp-norm for a vector for any p ∈ [1,∞).

Definition 3.3 (Norm of function). We define the Lp-norm for a function f on [0, 1]d×N by:

Lp([0, 1]d×N) :=
(∫
∥f(X)∥pp dX

)1/p
.

3.2 DEFINITION OF CONTINUITY FOR SEQUENCE-TO-SEQUENCE FUNCTIONS

The modulus of continuity of a continuous function g : [0, 1]d → R can be defined as

sup
{
|g(x)− g(x′)| : ∥x− x′∥2 ≤ t, x,x′ ∈ [0, 1]d

}
.

It can be extended for sequence-to-sequence functions f : [0, 1]d×N → Rd×N as follows.

Definition 3.4 (Modulus of Sentence Continuity). Given a sequence-to-sequence continuous func-
tion f : [0, 1]d×N → Rd×N , the modulus of sentence continuity is defined by:

ωf (t) := sup
{
∥f(X)− f(X ′)∥p : ∥X −X ′∥2 ≤ t, X,X ′ ∈ [0, 1]d×N

}
.

We illustrate what this continuity represents and why it is referred to as sequence continuity. If
we consider the following two sentences: (1) I read books, and (2) He writes music, the sequence
continuity measures how much the overall meaning of a sequence changes:

‘I read books’ ∆←→ ‘He writes music’,
in proportion to the differences between the input sequences, measured by comparing each token:

‘I’ ∆←→ ‘he’, ‘read’ ∆←→ ‘write’, and ‘book’ ∆←→ ‘music’.
We found that this concept is insufficient to derive the approximation rate of Looped Transformers,
primarily because one key characteristic of the Transformer architecture is the sharing of parame-
ters across all tokens: specifically, the feed-forward layers are applied token-wise. In other words,
Transformers output token embeddings in the context of sequences for each token.

This observation leads us to define two additional forms of continuity: contextual continuity and
token continuity, which we found to determine the approximation rate of Looped Transformers.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.5 (Modulus of Contextual Continuity). Given a sequence-to-sequence continuous func-
tion f : [0, 1]d×N → Rd×N , the modulus of contextual continuity is defined by:

ωcont
f (t) := sup

n,X,X′

{
∥f(X):,n−f(X ′):,n∥p : ∥X−X ′∥2 ≤ t, X:,n = X ′

:,n, X,X ′ ∈ [0, 1]d×N
}
,

Definition 3.6 (Modulus of Token Continuity). Given a sequence-to-sequence continuous function
f : [0, 1]d×N → Rd×N , the modulus of token continuity is defined by:

ωtok
f (t) := sup

n,X,X′

{
∥f(X):,n − f(X ′):,n∥p : ∥X:,n −X ′

:,n∥2 ≤ t,

X:,m = X ′
:,m for any m ̸= n, X,X ′ ∈ [0, 1]d×N

}
,

The modulus of contextual continuity measures the variation in the output of token embeddings
induced by a perturbation of context. For example, we consider the following three sentences:

(1) I write papers, (2) You write books, and (3) Mozart writes music.

The output embedding of the second token, ‘write’, should be similar in sentences (1) and (2) due
to their similar context. In contrast, a larger variation in context, as seen in sentence (3), can induce
a significant variation in the output of token embedding.

On the other hand, the modulus of token continuity measures the variation in the output embedding
caused by perturbations to the token itself within the same context. For instance, we consider the
sentences:

(1) I write papers, and (2) I draft papers.

In this example, both sentences have the same context, but the verb (‘write’ vs. ‘draft’) variation
reflects a perturbation in the token itself. The modulus of token continuity quantifies how this change
influences the output embeddings. A small modulus of token continuity means that the output em-
beddings of ‘write’ and ‘draft’ are expected to be similar.

3.3 MAIN RESULT

The following main theorem demonstrates the approximation rate of Looped Transformers in terms
of the modulus of continuity and the number of loops.
Theorem 3.7. Given a function f ∈ FPE([0, 1]

d×N), for any r ∈ N, there exists a Looped
Transformer TF : R(24d+1)×N → R(24d+1)×N of single head, head size s = 1, and width size
q = 99d+ 8, and two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd such that∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp([0,1]d×N)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd),

for δ =
(
(r −N)/2

)−1/((N+1)d+1)
, where L1 and L2 represent the token-wise applications of L1

and L2, respectively.

Thus, Looped Transformers are universal approximators.
Corollary 3.8. The hypothesis space of Looped TransformersH, defined by

H :=
{
L2 ◦ TF◦r ◦L1 : r ∈ N, L2 and L1are token-wise affine linear maps

}
,

are dense in FPE([0, 1]
d×N) in terms of the Lp([0, 1]d×N) norm.

These results provide us with some insights:

• A function with a small modulus of continuities, e.g., robust to contextual perturbations, is suited
for approximation by Looped Transformers.

• The total parameter count is O(d), independent of both δ and N , highlighting the parameter
efficiency of Looped Transformers.

• The optimal approximation rate of ReLU networks of size n isO(ωf (O(n−2/d))) for continuous
functions on [0, 1]d (Yarotsky, 2018); the exponential rate is unavoidable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.4 PROOF SKETCH

We provide a proof sketch highlighting differences from prior studies and associated difficulties.
The formal proof is provided in Appendix A.

Approximation with Piecewise Constant Function. We approximate f ∈ FPE with piece-wise
constant function f̄ : [0, 1]d×N → Rd×N . Specifically, for δ−1 ∈ N, we divide the input space
[0, 1]d×N into δ-discretized cubes, denoted by {QB}B∈{0,1,...,δ−1−1}d×N . Each cube is associated
with a representative X̂B ∈ QB. Define a piecewise constant function f̄ for X ∈ [0, 1]d×N as

f̄(X) = f(X̂B) where B satisfies X ∈ QB.

We can bound the approximation error within each cube as ∥f̄(X) − f(X)∥p ≤
ωf (
√
δ2 + · · ·+ δ2) ≤ ωf (δ ·

√
Nd) for any X ∈ [0, 1]d×N . We involve three steps to construct

f̄ . The first and second steps map the input X to the coordinates of the discretized input space,
involving B. The third step approximately maps these coordinates to the target embeddings.

Step 1. Token-wise Quantization. The network, with δ−1 − 1 loops, token-wise maps the input
space into indices (the proof is provided in Appendix A.4). Then it maps them to an integer, referred
to as a token ID:

X:,n ∈ [0, 1]d → β ∈ {0, 1, . . . , δ−1 − 1}d → z ∈ {0, 1, . . . , δ−d − 1}. (7)

The key idea behind our proof follows Zhang et al. (2023); however, we cannot directly apply it here
due to the need to account for skip connections. Additionally, it is necessary to consider a bijective
mapping of β to a token ID in the δ−1-base system for the next step.

Step 2. Contextual Mapping. The network performs contextual mapping, which maps N token
IDs to a sequence ID in the set of {0, 1, . . . , δ−Nd − 1}. Previous studies (Yun et al., 2020; Kim
et al., 2023) use multiple layers for constructions; however, these results do not extend to Looped
Transformers for two reasons.

(1) Yun et al. (2020) used both sparse and uniform attention, whereas Looped Transformers
are limited to a single fixed attention layer.

(2) Kim et al. (2023) used N -layers to store N parameters, whereas fixed-size O(d) Looped
Transformers cannot store N weight components.

While these considerations indicate some limitations of Looped Transformers, we found that
Looped Transformers with N -loops can perform contextual mapping. The proof strategy fol-
lows Kim et al. (2023); however, it is necessary to update for a single Transformer block. Let
z ∈ {0, 1, . . . , δ−d − 1}N represent a sequence of N ordered and distinct token IDs, where
z1 > z2 > · · · > zN . The networks map the set of token IDs into sequence ID via inner product
with u := (δ−d(N−1), . . . , δ−d, 1) ∈ RN i.e.

CM(z) := u⊤z,

which satisfy ∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′.

Thus CM is a contextual mapping. The key point is that the network only needs to store δ to
represent u, allowing it to be implemented with Looped Transformers. Details are provided in Ap-
pendix A.5

Step 3. Token-wise Mapping. The network token-wise maps the coordinates of discretized re-
gions approximately to the target token embedding. From Steps 1 and 2, each token in the input
sequence is assigned a token ID with a sequence ID, where the sequence ID is consistent across all
tokens. The combination of the token ID and sequence ID determines the coordinates, referred to as
contextual token ID.

Notably, we found that the design of the contextual token ID plays a crucial role in Looped Trans-
formers. This comes from the constraint of looped architecture. Let K denote the set of contextual

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Approximation error and modulus of continuity. The linear interpolation technique re-
duces the error by a factor of 1/δ−1.

token IDs, where each index is associated with a distinct cube B ∈ {0, 1, . . . , δ−1 − 1}d×N in the
discretized space. For each k ∈ K, let Xk denote the cube associated with B, i.e., XB. Looped
Transformer f̃ : Rd×N → Rd×N can token-wise approximate piecewise constant function f̄ with
the error of

∥f̃(Xk):,n − f̄(Xk):,n∥ ≤ max
n,k′∈K

∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p for any k ∈ K, (8)

for n = 0, 1, . . . , N (details are provided in Lemma 4.1). This requires us to design K so that
∥f̄(Xk′):,n− f̄(Xk′−1):,n∥p is small, i.e., the outputs of neighboring contextual token IDs are sim-
ilar. The core idea of this design is explained with illustrations, comparing the output embeddings
of the underlined tokens.

(1) I write papers. ; I write papers. (different token ID with same sequence ID)
(2) I write papers. ; You write books. (same token ID with different sequence ID)

The contextual continuity ωcont
f of Definition 3.2 ensures that the outputs embeddings of ‘write’

in (2) are similar. However, none of the continuity properties provide guarantees that the output
embeddings of ‘write’ and ‘papers’ in (1) are similar. Thus, we design the contextual token ID so
that the same token with different sequence IDs comes next to each other except for unavailable
corner cases (details in Appendix A.4).

Consolidation into Single Looped Transformer. At the end of the construction, we demonstrate
that the composition of the three sub-networks from Steps 1, 2, and 3 can be realized with a single
Transformer block. The proof strategy follows Zhang et al. (2023); however, it cannot be directly
applied because their approach requires an additional layer. In contrast, we found that a single
Transformer block is sufficient (details are provided in Appendix A).

Deriving Approximation Rate. Lastly, we estimate the approximation error of our construction
and establish the approximation rate. In Step 2, we consider only the case where all N input tokens
are distinct, disregarding other cases. These cases can be treated as negligible when δ is small. The
number of subsets where one of the N tokens is duplicated is

(δ−d)
N − δ−d · (δ−d − 1) · · · (δ−d −N − 1) < Cδ−(N−1)d,

where C is a constant. The volume of these subsets is Cδ−(N−1)d/δ−Nd = Cδd, thus the error with
respect to the Lp norm is O(δd).
In Step 3, we can bound the approximation error as follows:

∥f̃(Xk)− f̄(Xk)∥p ≤ max
n
∥f̃(Xk):,n − f̄(Xk):,n∥p ≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p.

There are two types of error for the right-hand side term: the variation induced by contextual per-
turbation and the variation induced by token perturbation. We illustrate this with examples of each
pattern, as shown in Fig. 1. Specifically, we consider the following three cases:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(1) I write papers. ; I write books. (small perturbation of context)

(2) You write books. ; Mozart write music. (large perturbation of context)

(3) Beethoven writes music. ; I draft papers. (perturbation of both token and context)

The error in each case can be bounded with the corresponding modulus of continuity:

1. ωcont
f (δ

√
d)

2. ωcont
f (

√
Nd)→ δωcont

f (
√
Nd)

3. ωtok
f (
√
d) + ωcont

f (
√
Nd)→ δ

(
ωtok
f (
√
d)) + ωcont

f (
√
Nd)

)
where→ represents the use of linear interpolation techniques to reduce the error with extra δ-loops
(explained in Appendix A). Since that ωcont,tok

f (n·t) ≤ n·ωcont,tok
f (t) for any n ∈ N and t ∈ [0,∞)

with δ < 1, we can then derive the upper bound for the three terms:

max
n,k′∈K

∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p

≤ max
{
ωcont
f (δ

√
d), δωcont

f (
√
Nd), δ

(
ωtok
f (
√
d) + ωcont

f (
√
Nd)

)}
≤ max

{
ωcont
f (δ

√
d), ωcont

f (δ
√
Nd), ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd)

}
≤ ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd),

With the triangle inequality, we have an approximation error as

∥f̃ − f∥Lp([0,1]d×N) ≤ ∥f̃(X)− f(X)∥p · 1

≤ ∥f̃(X)− f̄(X)∥p + ∥f̄(X)− f(X)∥p
≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p + ∥f̄(X)− f(X)∥p +O(δd)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd). (9)

Then, δ is expressed in terms of the number of loops r to determine the approximation rate. We
use δ−1 − 1 loops for Step 1, N loops for Step 2, and 2δ−(N+1)d − 1 loops for Step 3, with 1 loop
required to connect each step. Thus we have

r = (δ−1 − 1) + 1 + (N) + 1 +
(
2δ−(N+1)d − 1

)
⇔ δ−1 + 2δ−(N+1)d = r −N

⇔ δ−1 · 2δ−(N+1)d ≥ r −N

⇔ 2δ−(N+1)d−1 ≥ r −N

⇔ δ ≤
(r −N

2

)−1/((N+1)d+1)

. (10)

From Eq. 9 and Eq. 10, we can derive Theorem 3.7.

Summary. Our contribution is to establish an approximation rate for Looped Transformers by
identifying the continuity of sequence-to-sequence functions. Additionally, as a technical contribu-
tion, we demonstrate that a single Looped Transformer block is sufficient for contextual mapping.
While Zhang et al. (2023) requires three feed-forward layers of looped ReLU networks for universal
approximation, we achieve this with just one layer.

4 FROM THEORY TO PRACTICE: INTRODUCING TIMESTEP ENCODING

The theoretical result in Section 3 identifies a limitation of the looped architecture in its reliance
on contextual and token continuity. This analysis suggests incorporating time-dependent scaling
parameters for each loop, which we implemented as a function of the timestep encoding.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 MOTIVATION

Limitation Specific to Looped Architecture. Theorem 3.7 shows that the approximation rate of
Looped Transformers depends on the modulus of three types of continuity. Sequence continuity
relates to approximating continuous functions with piecewise constants, while contextual and token
continuity dependencies are unique to the looped architecture. Previous studies (Yun et al., 2020;
Kim et al., 2023) show that standard Transformers lack these dependencies. This additional depen-
dency increases approximation errors, limiting the approximation power of Looped Transformers.

We identify the cause of dependency in Step 3: Token-wise Mapping of the following Lemma.
Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,m− 1 with

|(yk − yk−1)i| ≤ εi for k = 1, 2, . . . ,m− 1,

there exist feed-forward layer FF : R14d → R14d of width size 20d and two affine linear maps
L1 : Rd → R14d and L2 : R14d → Rd such that

|
(
L2 ◦ (id + FF)(m−1) ◦ L1(k)− yk

)
i
| ≤ εi for k = 0, 1, . . . ,m− 1,

for any i = 1, 2, . . . , d.

Lemma 4.1 implies that large variations in the target function, represented by discretized points yk,
lead to increased approximation error in Looped Transformers. Specifically, when outputs at nearby
points vary greatly, a small approximation error cannot be guaranteed.

How Can We Improve the Approximation Rate of Looped Transformers? To address the de-
pendency on contextual and token continuity, we introduce time-dependent parameters for each loop.
Specifically, we modify the feed-forward layers by adding a scaling vector parameter that varies with
the loop index (timestep), defined as follows:

FF(X)→ η(t)⊙ FF(X) for the t-th loops,

where ⊙ is an element-wise product, t ∈ N denotes the loop index (timestep), and η(t) ∈ Rd

represents a time-dependent scaling parameter. This kind of dynamic scaling vector parameters is
also used by HyperNetworks (Ha et al., 2016) for RNN to enhance expressive power.

We show that the time-dependent Looped Transformer overcomes approximation errors from con-
textual and token continuity. Specifically, we can replace Lemma 4.1 with the following The-
orem 4.2, which demonstrates that time-dependent models can precisely approximate any target
function. The proof is provided in Appendix B.
Theorem 4.2. Given yk ∈ Rd for k = 0, . . . ,m−1, there exist feed-forward layer FF : R4d → R4d

of width size 6d and η(t) ∈ R4d and two affine linear maps L1 : Rd → R4d and L2 : R4d → Rd s.t.

L2 ◦ (id + η(m− 1)⊙ FF) ◦ · · · ◦ (id + η(1)⊙ FF) ◦ L1(k) = yk.

For implementation, while adding parameters for each loop is effective, the number of parameters
increases with the number of loops. Therefore, we introduce timestep encoding to address this issue.

4.2 TIMESTEP ENCODING

We use timestep encodings to represent loop counts and to condition scaling parameters, follow-
ing Peebles & Xie (2023), where time-dependent Transformers are applied in diffusion models by
regressing layer normalization parameters from timestep encodings.

To condition on timesteps, frequency embeddings are processed through a two-layer MLP with
hidden size matching the Transformer block and SiLU activation, as shown in Fig. 2. Let TE(t) ∈
Rd denote timestep embeddings, defined as:

TE(t) = W
(TE)
1 · SiLU(W

(TE)
2 · PE(t) + b

(TE)
1) + b

(TE)
2 ,

where W
(TE)
1 ,W

(TE)
2 ∈ Rd×d and b

(TE)
1 , b

(TE)
2 ∈ Rd are parameters, and PE(t) ∈ Rd is the

timestep encoding function that maps the timestep (loop index) into a d-dimensional embedding, s.t.

PE(t)2i = sin(t/100002i/d), PE(t)2i+1 = cos(t/100002i/d).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Timestep en-
coding architecture.

The root mean square layer normalization (RMSNorm) (Zhang & Sen-
nrich, 2019) has been employed in several recent large language models
(LLMs), such as LLaMA (et al., 2023) and Gemma (Team, 2024). RM-
SNorm, denoted by RMSLN, is defined as

RMSLN(x) = α⊙ x

RMS(x)
, where RMS(x) =

√√√√1

d

d∑
i=1

x2
i .

where α ∈ Rd is a gain parameter for rescaling.

Extending standard RMSNorm, we define time-dependent RMSNorm
as:

RMSLN(x, t) = α(t)⊙ x

RMS(x)
where α(t) ∈ Rd is a time-dependent parameter generated by a hyper-
netowrk.Additionally, we incorporate parameters for output scaling, defining the time-dependent
Transformer block as follows:

X ′ = X + γ1(t)⊙Attn(RMSLN1(X, t)),

TF(X, t) = X ′ + γ2(t)⊙ FF(RMSLN2(X
′, t)),

where γ1(t),γ2(t) ∈ Rd are time-dependent parameters applied token-wise, and RMSLN1 and
RMSLN2 represent token-wise applications of RMSLN1 and RMSLN2, respectively.

To generate time-dependent vector parameters, we use the SiLU function and weight parameters:

α1(t),α2(t),γ1(t),γ2(t) = W (H) · SiLU(TE(t)) + b(H),

where W (H) ∈ R4d×d, b(H) ∈ Rd are parameters.

5 EXPERIMENTS

Our experimental results support our theoretical findings. First, we show that increasing loop counts
enhances the expressive power of Looped Transformers by evaluating dynamic programming (DP)
tasks in Section 5.1. Second, we observe performance gains from timestep encodings in certain DP,
in-context learning, and language modeling tasks Section 5.2.

5.1 VARYING LOOPS WITH DYNAMIC PROGRAMMING

DP problems were chosen for their recursive structure and their difficulty for standard Transformers
without chain-of-thought (Feng et al., 2023). We categorize specific types of DP problems and select
representative tasks from each category (details are provided in Appendix C.1).

Experimental setups. We generate 106 samples for training and 103 samples for testing. All
tasks are trained as classification tasks using cross-entropy loss and are evaluated by best accuracy
on the test sets. While our theoretical results focus on approximation power (fitting to the training
set), we observe a strong correlation between training and test accuracy, suggesting that lower test
accuracy reflects the approximation capacity rather than a generalization issue (see the results of ED
in Appendix C.2).

We trained Looped Transformers with 5, 10, 50, and 100 loops, both with and without time de-
pendency (the configuration is provided in Appendix C.2. We incrementally increased the number
of loops, stopping when performance exceeded 90% or saturated due to limited computational re-
sources. In addition, to validate the research significance of Looped Transformers, we compared
them to a 12-layer Transformer. The Transformer’s limitations stem not from approximation but
from generalization capabilities, which fall outside the scope of our theoretical results.

Results. Certain tasks require a large number of loops, while others benefit from fewer iterations
(see Table. 1). We observe accuracy improvements for both LCS and ED tasks by increasing the
number of loops. In particular, for ED tasks, models with timestep encoding exhibit consistent
accuracy gains without saturation as the loop count grows. Moreover, Looped Transformers solve
tasks that standard Transformers cannot.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy for dynamic programming (DP) tasks, with parameters (e.g., sequence length)
indicated in parentheses. We limit training and evaluation to lower loop counts if tasks are effectively
solved with fewer loops. Some tasks require high loop counts, while others are solvable with few.

Task TF Looped TF w/ Timestep Encoding

d=12 r=5 r=10 r=50 r=100 r=5 r=10 r=50 r=100

Subset Sum (10) 83.4 84.1 83.0 - - 83.8 83.9 - -
Knapsack (20) 92.8 92.2 94.0 - - 88.7 90.9 - -

LCS (60) 70.0 66.0 81.8 98.6 - 68.5 80.5 99.3 -
LCS (100) 39.8 39.6 45.1 93.5 - 36.7 45.6 98.1 -
ED (60) 41.4 23.8 32.6 47.3 47.7 26.6 38.9 57.3 88.3

5.2 ENHANCEMENT VIA TIMESTEP ENCODING

In-Context Learning. Transformers can learn in-
context (Brown, 2020), with recent studies examining
their ability to learn function classes (Garg et al., 2022;
Akyürek et al., 2023; Von Oswald et al., 2023). Yang
et al. (2024) investigated with Looped Transformers. We
evaluate timestep encodings with 12-loops on decision
tree functions, as described in Appendix C.3. We observe
enhancement via timestep encodings (Table 2), surpassing
even standard Transformers with 12 layers.

Table 2: MSE (↓) on in-context
learning results with enhancement
via timestep encoding.

TF Looped Timestep
d=12 r=12 r=12

8.64e-03 1.43e-02 1.70e-03

Table 3: Enhancement via timestep encoding on perplexity performance for WikiText-103.

Metric TF Looped TF w/ Timestep Encoding

d=12 r=1 r=3 r=6 r=1 r=3 r=6

Train Perplexity (↓) 5.11 6.65 5.64 5.61 6.29 5.31 5.05
Test Perplexity (↓) 19.6 33.11 27.93 28.16 31.18 23.45 22.42

Language Modeling. We use the WikiText-103 (Merity et al., 2017) dataset, containing over
100 million tokens from Wikipedia articles, to compare wide-block Looped Transformers, approxi-
mately matched in parameters to 12-layer standard Transformers, with and without timestep encod-
ings across 1, 3, and 6 loops, evaluated by perplexity. Details are in Appendix C.4. We observe that
timestep encoding enhances training approximation and improves test perplexity (Table 3). We also
found that test perplexity falls short compared to standard Transformer.

6 CONCLUSION

We have established approximation rates for Looped Transformers by introducing the modulus of
continuity for sequence-to-sequence functions. Our analysis reveals a limitation inherent to the
looped architecture, prompting the incorporation of a time-dependent scaling parameter. This re-
search is the first to investigate the function approximation capabilities of Looped Transformers.
Additionally, our experiments demonstrate that Looped Transformers can solve certain dynamic
programming (DP) tasks that traditional Transformers struggle with, though the underlying mech-
anism remains unclear. While we have derived upper bounds, the tightness of these approximation
rates is still undetermined. Future work will explore more complex and practical tasks, such as
mathematical problem-solving.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: fast convergence at large depth. In Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161, 2021. URL
https://proceedings.mlr.press/v161/bachlechner21a.html.

Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped
transformers. In Proceedings of the 41st International Conference on Machine Learn-
ing, pp. 2319–2363. PMLR, 2024. URL https://proceedings.mlr.press/v235/
back-de-luca24a.html.

Sangmin Bae, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, and Tal Schuster. Re-
laxed recursive transformers: Effective parameter sharing with layer-wise lora. arXiv preprint
arXiv:2410.20672, 2024.

Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for piecewise
polynomial networks. Advances in neural information processing systems, 11, 1998.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Hugo Touvron et al. Llama: Open and efficient foundation language models, 2023. URL https:
//arxiv.org/abs/2302.13971.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization, 2024. URL https://arxiv.org/abs/2409.15647.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=qHrADgAdYu.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K. Ng, Zhenguo
Li, and Zhaoqiang Liu. On the expressive power of a variant of the looped transformer. arXiv
preprint arXiv:2402.13572, 2024. URL https://arxiv.org/abs/2402.13572.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=flNZJ2eOet.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar.
Can looped transformers learn to implement multi-step gradient descent for in-context learn-
ing? In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=o8AaRKbP9K.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Proceedings of the 40th
International Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/giannou23a.html.

11

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://proceedings.mlr.press/v161/bachlechner21a.html
https://proceedings.mlr.press/v235/back-de-luca24a.html
https://proceedings.mlr.press/v235/back-de-luca24a.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2409.15647
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://arxiv.org/abs/2402.13572
https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=o8AaRKbP9K
https://openreview.net/forum?id=o8AaRKbP9K
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How well
can transformers emulate in-context newton’s method? arXiv preprint arXiv:2403.03183, 2024.
URL https://arxiv.org/abs/2403.03183.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Haotian Jiang and Qianxiao Li. Approximation rate of the transformer architecture for sequence
modeling. arXiv preprint arXiv:2305.18475, 2024. URL https://arxiv.org/abs/2305.
18475.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank weight
matrices universal approximators? In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=nJnky5K944.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of trans-
formers. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8JCg5xJCTPR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=H1eA7AEtvS.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2018. URL https:
//openreview.net/forum?id=rk6qdGgCZ.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for
sequence-to-sequence functions with infinite dimensional input. In Proceedings of the 40th In-
ternational Conference on Machine Learning, 2023. URL https://proceedings.mlr.
press/v202/takakura23a.html.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL https:
//arxiv.org/abs/2408.00118.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In Proceedings of the 40th International Conference on Machine Learning, 2023. URL
https://proceedings.mlr.press/v202/von-oswald23a.html.

Liu Yang, Kangwook Lee, Robert D Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HHbRxoDTxE.

12

https://arxiv.org/abs/2403.03183
https://arxiv.org/abs/2305.18475
https://arxiv.org/abs/2305.18475
https://openreview.net/forum?id=nJnky5K944
https://openreview.net/forum?id=8JCg5xJCTPR
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://proceedings.mlr.press/v202/takakura23a.html
https://proceedings.mlr.press/v202/takakura23a.html
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://proceedings.mlr.press/v202/von-oswald23a.html
https://openreview.net/forum?id=HHbRxoDTxE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu net-
works. In Proceedings of the 31st Conference On Learning Theory, 2018. URL https:
//proceedings.mlr.press/v75/yarotsky18a.html.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Shijun Zhang, Jianfeng Lu, and Hongkai Zhao. On enhancing expressive power via compositions of
single fixed-size ReLU network. In Proceedings of the 40th International Conference on Machine
Learning, 2023. URL https://proceedings.mlr.press/v202/zhang23ad.html.

A PROOFS OF FUNCTION APPROXIMATION

Figure 3: Overview of proof sketch.

We present the formal proof of Theorem 3.7. In Appendix A.2, we provide the whole proof re-
lying on lemmas, introduced in the following subsections. In Appendix A.4, Appendix A.5, and
Appendix A.6, we provide the key lemmas. The overview of proof outline is shown in Fig 3.

A.1 NOTATIONS

• The bold notation for functions indicates that they are applied in a token-wise manner.
• We define the nearest functions as follows:

near+(a,S) := argmin
b∈S,b>a

|a− b|

near-(a,S) := argmin
b∈S,b<a

|a− b|

The function near(a,S) identifies the element in the set S that is closest to a. The function
near+(a,S) finds the closest element greater than a, while near-(a,S) identifies the closest ele-
ment less than a.

13

https://proceedings.mlr.press/v75/yarotsky18a.html
https://proceedings.mlr.press/v75/yarotsky18a.html
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://proceedings.mlr.press/v202/zhang23ad.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Given two values a and b, and the number of divisions n, we can define the linear interpolation
output at an index t (where t ranges from 0 to n) as follows:

lin interp(a, b, t, n) := a+
t

n
(b− a)

A.2 PROOF OF THEOREM 3.7

Theorem 3.7. Given a function f ∈ FPE([0, 1]
d×N), for any r ∈ N, there exists a Looped

Transformer TF : R(24d+1)×N → R(24d+1)×N of single head, head size s = 1, and width size
q = 99d+ 8, and two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd such that∥∥L2 ◦ TF◦r ◦L1 − f

∥∥
Lp([0,1]d×N)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd),

for δ =
(
(r −N)/2

)−1/((N+1)d+1)
, where L1 and L2 represent the token-wise applications of L1

and L2, respectively.

Proof. Since any continuous function can be approximated by a piecewise constant function with
arbitrarily small errors, we approximate f ∈ FPE with piece-wise constant function f̄ : [0, 1]d×N →
Rd×N . We choose δ−1 ∈ N, which determines how finely the input is divided; then, we divide the
input space [0, 1]d×N into δ-discretized cubes, denoted by {QB} for B ∈ {0, 1, . . . , δ−1 − 1}d×N

defined by

QB :=
{
X ∈ [0, 1]d×N : Xi,n ∈

[
Bi,nδ,Bi,nδ + 1

)
, i = 1, 2, . . . , Nd

}
.

Note that we do not consider the trifling regions in Zhang et al. (2023) as we use the Lp norm rather
than the uniform norm.

Each cube is associated with representative X̂B ∈ QB. We can define piecewise constant function
f̄ for X ∈ [0, 1]d×N as

f̄(X) := f(X̂B) where B satisfies X ∈ QB.

We can bound the error within each cube as: ∥f̄(X) − f(X)∥p ≤ ωf (δ
√
Nd) for any X ∈

[0, 1]d×N .

Our construction consists of three steps to approximate f̄ . The first and second steps map the
input X to the coordinates of the discretized input space. The third step approximately maps these
coordinates to the target embeddings. The outline of three step is:

1. The network, with (δ−1 − 1)-loops, maps the input space [0, 1]d token-wise to the coordinates
β ∈ {0, 1, . . . , δ−1 − 1}d of divided cubes, and then bijectively maps these coordinates to an
integer, representing token IDs in the set {0, 1, . . . , δ−d}, using a δ−1-base system.

2. The network, with N loops, performs a contextual mapping from the set of distinct N token IDs
into the set of extended sequence ID. Specifically, the network using Step1 and Step2 maps the
discretized coordinates B ∈ {0, 1, . . . , δ−1 − 1}d×N , for each dimension d and each token N ,
representing it in a δ−1 system with Nd digits (N tokens are ordered). Furthermore, dummy
indices are needed to reduce the approximation error in the next step.

3. The network, with δ2(N+1)d − 1 loops, approximately maps contextual token IDs to the output
embeddings of each token in a token-wise manner. Contextual token IDs refer to token IDs
assigned to each token within the context of a sequence ID. To achieve a small approximation
error, the network has to be designed so that neighboring IDs correspond to similar output token
embeddings.

The details for each steps are provided below.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Step 1. Token-wise Quantization. The input space for each token x ∈ [0, 1]d are divided into
δ-discretized cubes, denoted by {Qβ} for β ∈ {0, 1, . . . , δ−1 − 1}d, defined as

Qβ :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, βiδ + 1

)
, i = 1, 2, . . . , d

}
.

By Lemma A.4, there exist a feed-forward layer FF(1) : R5d → R5d of width size q = 7d, and two
affine linear maps L(1)

1 : Rd → R5d and L′(1)
2 : R5d → Rd such that

L′(1)
2 ◦

(
id + FF(1)

)◦(δ−1−1) ◦ L(1)
1 (x) = β s.t. xi ∈

[
βiδ, βiδ + 1

)
for any i = 1, 2, . . . , d. Let B denote the output of the token-wise application to the input x ∈
[0, 1]d×N .

In addition, we need to bijectively map the d-dimensional vector β to an integer token ID, denoted
by z. We use a δ−1-base system; define the vector u(δ−1) ∈ Rd as

u(δ−1) := (δ−(d−1), δ−(d−2), . . . , δ−1, 1)⊤,

and define z as
z := u⊤

(δ−1)β ∈ {0, 1, . . . , δ
−d − 1}.

To implement this, we define L(1)
2 : R5d → Rd with L′(1)

2 : R5d → R via

L(1)
2 (x) = u⊤

(δ−1)L
′(1)
2 (x).

Thus, we have(
L(1)

2 ◦ (FF
(1)
1)◦(δ

−1−1) ◦L(1)
1 (x)

)
n
= u⊤

(δ−1)β = z s.t. x:,n ∈ Qβ,

for n = 1, 2, . . . , N .

We define the input cubes for each token assigned to z as follows:

Qz :=
{
x ∈ [0, 1]d : xi ∈

[
βiδ, βiδ + 1

)
for i = 1, 2, . . . , d s.t. z = u⊤

(δ−1)β
}
.

We can confirm that

∥xz − xz−1∥2 ≤ δ
√
d ∀xz ∈ Qz,∀xz−1 ∈ Qz−1 s.t. βd = 1, 2, . . . , δ−1 − 1.

While, we have

∥xz − xz−1∥2 ≤
√
d ∀xz ∈ Qz,∀xz−1 ∈ Qz−1 s.t. βd = 0. (11)

Informally, in this δ−1-base representation, the least significant digit corresponds to the index of the
d-th dimension, βd. When incrementing the token ID one by one, the index in the d-th dimension
increases sequentially 0, 1, 2, . . . , δ−1 − 1, without changing the other digits; thus, consecutive IDs
imply that the tokens are “similar” to each other in d-dimensional space, with a distance of at most
δ
√
d. However, when a carry occurs, the higher-order digits may change significantly, causing

tokens that were not originally adjacent to appear next to each other in terms of their indices, as
we are essentially projecting a d-dimensional space onto a 1-dimensional space. In this case, the
distance is only bounded by

√
d.

Step 2. Contextual Mapping. The networks, with N -loops, map the list of N token IDs, denoted
by z ∈ {0, 1, . . . , δ−d − 1}N , to sequence IDs bijectively. Furthermore, this mapping is not only
bijective; it also requires the inclusion of additional dummy indices.

Note: We consider only the case where all N input tokens are distinct, disregarding other cases,
which can be treated as negligible when δ is small. The number of subsets where one of the N
tokens is duplicated is

(δ−d)
N − δ−d · (δ−d − 1) . . . (δ−d −N − 1) < Cδ−(N−1)d,

where C is a constant. The volume of these subsets is Cδ−(N−1)d/δ−Nd = Cδd, so the error with
respect to the Lp norm is O(δd).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Let Lδ denote the set, composed of distinct N tokens, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}.

Due to permutation equivalence, we can assume without loss of generality that elements of z ∈ Lδ

is ordered, i.e., z1 > z2 > · · · > zN . Define u(δ−d) := (δ−(N−1)d, . . . , δ−d, 1)⊤, which satisfy∥∥∥u⊤
(δ−d)z − u⊤

(δ−d)z
′
∥∥∥ > 1, if z ̸= z′ for any z, z′ ∈ Lδ.

This mapping, u⊤
(δ−d)z, represents z in a δ−d-base system. Then, we define sequence ID of z ∈ Lδ

as:

s(z) := u⊤
(δ−d)z =

N∑
n=1

znδ
−(N−n)d. (12)

By Lemma A.5, there exist a Transformer block TF′(2) : R3×N → R3×N with single head, head
size s = 1, and width size q = 3, and two affine linear maps L′(2)

1 : R → R3 and L′(2)
2 : R3 → R

such that
L′(2)

2 ◦ TF′(2)◦N ◦L′(2)
1 (z⊤) = s(z) · 1⊤

N ,

where z⊤ → u⊤
(δ−d)z is a contextual mapping.

Furthermore, we have to add dummy indices to alleviate the approximation error caused by the
looped architecture in Step 3. Recall that B ∈ {0, 1, . . . , δ−1 − 1

d×N} represents the coordinates
of the inputs. Let Z ∈ {0, 1, . . . , δ−1− 1}d×N denote the coordinates where the tokens are ordered
by their token IDs, i.e., u⊤

(δ−1)Z1
> u⊤

(δ−1)Z2
> · · · > u⊤

(δ−1)ZN
, i.e., z = u⊤

(δ−1)Z. Thus, by
redefining the sequence ID of Eq. 12 for Z instead of z, sequence IDs in δ−d-base can be rewritten
in the δ−1-base system as follows:

s(Z) = u⊤
(δ−d)(u

⊤
(δ−1)Z)

=

d∑
i=1

N∑
n=1

Zi,nδ
−
(
(N−n)d+(d−i)

)
.

We also define the sequence IDs for each B as:

s(B) =

d∑
i=1

N∑
n=1

Bi,nδ
−
(
(N−n)d+(d−i)

)
.

Then, we define extended sequence IDs as:

sextend(Z) := 2s(Z)−Zd,N

= Zd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Zi,nδ
−
(
(N−n)d+(d−i)

)
,

sextend(B) := Bd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
.

Recall that Bd,N ∈ {0, 1, . . . , δ−1 − 1}. We define the dummy indices as:

sbdummy(B) := b+

d∑
i=1

(i,n) ̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
, for b = δ−1, δ−1 + 1, . . . , 2δ−1 − 1.

We define each set as follows:

Sdistinct := {sextend(Z)} , Sdistinct+duplicate := {sextend(B)} ,
Sdummy :=

{
sbdummy(B) | b = δ−1, δ−1 + 1, . . . , 2δ−1 − 1

}
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then, we can see that

Sdistinct ⊂ Sdistinct+duplicate, Sdistinct+duplicate ∩ Sdummy = ∅,
Sdistinct+duplicate ∪ Sdummy = {0, 1, . . . , 2δ−Nd − 1}. (13)

We define the input cubes for each token assigned to extended sequence ID s as follows:

Qs :=
{
X ∈ [0, 1]d×N : Xi,n ∈

[
Bi,nδ,Bi,nδ+1

)
for i = 1, 2, . . . , Nd s.t. s = sextend(B)

}
.

We can confirm for that

∥Xs −Xs−1∥2 ≤ δ
√
Nd ∀Xs ∈ Qs,∀Xs−1 ∈ Qs−1 s.t. Bd,N = 1, 2, . . . , δ−1 − 1. (14)

While, we have

∥Xs −Xs−1∥2 ≤
√
Nd ∀Xs ∈ Qs,∀Xs−1 ∈ Qs−1 s.t. Bd,N = 0. (15)

Informally, this set represents a collection of consecutive sequence IDs, where the first N −1 tokens
are identical, and the N -th token is “similar”. For example: (1) I write ‘a paper’, and (2) I write
‘papers’. As explained in token IDs, if only the d-th dimension of the N -th token differs, then
the tokens remain adjacent in the d-dimensional space. As a result, the total variation in the input
sequence within the set is bounded by δ

√
d.

To implement this, we slightly modified TF′
2. By Corollary A.6, there exist a Transformer block

TF(2) : R5×N → R5×N with single head, head size s = 1, and width size q = 4, and two affine
linear maps L(2)

1 : R2 → R5 and L(2)
2 : R5 → R such that

L(2)
2 ◦ TF

(2)◦N ◦L(2)
1 (

([
z⊤

Zd,:

])
) = sextend(z) · 1⊤

N for any z ∈ Lδ .

Step 3. Token-wise Mapping. From Step 1 and Step 2, the network takes a token ID and se-
quence ID as input for each token, which together form a contextual token ID. The network with
δ−2(N+1)d−1 loops approximately maps these contextual token IDs to the output token embeddings
of the target function.

To construct contextual token IDs, we define a bijective mapping L(3)
0 : N2 → N as follows:

L(3)
0 (z, s) := 2δ−Ndz + s,

where z represents a token ID and s represents a extended sequence ID. Note that sequence IDs are
less than 2δ−Nd, so informally, it’s as if we are adding another digit, zn, as the most significant digit
in a δ−d-based system. Define the set of contextual token IDs for distinct N token IDs as:

Kdistinct :=

{
L3

(
zn, sextend(Z)

)
: n = 1, 2, . . . , N

}
.

We also define the set for all inputs, including cases where some token IDs are duplicated, as

Kdistinct+duplicate :=

{
L3

(
βn, sextend(B)

)
: n = 1, 2, . . . , N

}
=

{
s+ 2δ−Ndz : s ∈ Sdistinct+duplicate, z = 0, 1, · · · , δ−d

}
=

{
Bd,N +

d∑
i=1

(i,n)̸=(d,N)

N∑
n=1

2Bi,nδ
−
(
(N−n)d+(d−i)

)
+ 2δ−Ndz

}
,

and dummy contextual token ID as

Kdummy :=

{
s+ 2δ−Ndz : s ∈ Sdummy, z = 0, 1, · · · , δ−d

}
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We can confirm, from Eq. 13,

Kdistinct ⊂ Kdistinct+duplicate, Kdistinct+duplicate ∩ Kdummy = ∅,
Kdistinct+duplicate ∪ Kdummy = {0, 1, . . . , 2δ−(N+1)d − 1}.

We now define the target output token embedding for each extended contextual mapping ID. Define
g : K → Rd, the mapping from extended contextual IDs to their token embeddings, as follows:

g(k) =

{
f̄(X):,n s.t. L3

(
βn, sextend(B)

)
= k for k ∈ Kdistinct+duplicate,

lin interp
(
g(near-(k)), g(near+(k)), k − near-(k), δ−1

)
for k ∈ Kdummy.

When Bd,n ̸= 0, from Eq. 14, we have

g(k)− g(k − 1) ≤ ωcont
f (δ

√
d),

since the token zn remains the same for both k and k − 1. While Bd,n = 0, a carryover occurs, and
we only bound the input sequences as in Eq.15, with the possibility that the token ID differs, the
variation is bounded as Eq.11. Since we have dummy token IDs, there are redundant indices before
the carryover occurs. As a result, the variation in the next index is bounded by a factor of δ, i.e.,

∥g(k)− g(k − 1)∥p ≤ δ
(
ωcont
f (

√
Nd) + ωtok

f (
√
d)
)
.

Since that ωcont,tok
f (n · t) ≤ n · ωcont,tok

f (t) for any n ∈ N and t ∈ [0,∞) with δ < 1, we have

∥g(k)− g(k − 1)∥p ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd).

Thus, we have

|(g(k)i − g(k − 1)i| ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) for i = 1, 2, . . . , d.

By Lemma 4.1, there exist feed-forward layer FF(3) : R14d → R14d of width size 20d and two
affine linear maps L(3)

1 : Rd → R14d and L(3)
2 : R14d → Rd such that

|
(
L(3)
2 ◦ (id + FF(3))

(2δ−(N+1)d−1)
◦ L(3)

1 (k)− g(k)
)
i
| ≤ ωtok

f (δ
√
d) + ωcont

f (δ
√
Nd),

for any i = 1, 2, . . . , d and k = 0, 1, . . . , 2δ−(N+1)d − 1.

Consolidation into Single Looped Transformer. Lastly, we demonstrate f̃ can be represented in
Looped Transformers. Let

X(0) ∈ R1×N , X(1) ∈ R5d×N , X(2) ∈ R5d×N , X(3) ∈ R14d×N

denote the divided input space. Define single head Attn : R(24d+1)×N → R(24d+1)×N with head
size 1 as:

Attn

X(0)

X(1)

X(2)

X(3)

 =

 05d+1×N

Attn(2)(X(2))
014d×N

 ,

where Attn(2) denote the self-attention layer of TF(2). Let

x0 ∈ R, x1 ∈ R5d, x2 ∈ R5d, x3 ∈ R14d

denote the token-wise input space. Define FF : R24d+1 → R24d+1, with impulse function defined
in Proposition A.3, as:

FF

 x0

x1

x2

x3

 =

x0 + 1

FF(1)(x1)

FF(2)(x2) + impulse(δ−1−1)

(
L(2)
1 ◦ L

(1)
2 (x1, (x1)d)

)
FF(3)(x3) + impulse(δ−1+N)

(
L(3)
1 ◦ L

(3)
0 (x1,x2)

)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where FF(2) denotes the feed-forward layer of TF(2), and impulse refers to the dimension-wise
application of impulse. Note that x0 serves the role of a counter. As shown in Proposition A.3, the
impulse requires 4 ReLU functions per dimension. With 19d dimensions, this results in an additional
width of 72d+4. The total width consists of 7d for FF(1), 4 for TF(2), and 20d for FF(3), resulting
in a total width of 99d+8. Define two affine linear maps L1 : Rd → R24d+1 and L2 : R24d+1 → Rd

such that
L1(x) = (0,L(1)

1 (x),019d)
⊤
, L2

(
(x0,x1,x2,x3)

⊤)
= L(3)

2 (x3).

Thus, we have

f̃(X) = L2 ◦ TF◦(δ−1+N+2δ−(N+1)d) ◦L1(X)

s.t. ∥f̃(X)− f̄(X)∥p ≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) +O(δd).

Deriving Approximation Error. Generally, the following inequality holds.

n∑
i=1

xp
i ≤

(
n∑

i=1

xi

)p

for xi ≥ 0 and p ≥ 1.

Substituting xi = ∥f̄(X)− f(X)∥p into the above inequality results in

∥f̄ − f∥Lp([0,1]d×N) =
(∫ ∥∥f̄(X)− f(X)

∥∥p
p
dX
)1/p

≤
∫
∥f̄(X)− f(X)∥pdX. (16)

Also we can bound the entire norm with the token-wise norm as:

∥f̃(Xk)− f̄(Xk)∥p ≤ max
n
∥f̃(Xk):,n − f̄(Xk):,n∥p ≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p.

With the triangle inequality, we have approximation error as

∥f̃ − f∥Lp([0,1]d×N) ≤ ∥f̃(X)− f(X)∥p · 1

≤ ∥f̃(X)− f̄(X)∥p + ∥f̄(X)− f(X)∥p
≤ max

n,k′∈K
∥f̄(Xk′):,n − f̄(Xk′−1):,n∥p + ∥f̄(X)− f(X)∥p +O(δd)

≤ ωtok
f (δ

√
d) + ωcont

f (δ
√
Nd) + ωf (δ

√
Nd) +O(δd).

Then, δ must be expressed in terms of the number of loops r to determine the approximation rate.

r = δ−1 +N + 2δ−(N+1)d ⇔ δ−1 + 2δ−(N+1)d = r −N

⇔ δ−1 · 2δ−(N+1)d ≥ r −N

⇔ 2δ−(N+1)d−1 ≥ r −N

⇔ δ ≤
(r −N

2

)−1/
(
(N+1)d+1

)
. (17)

Thus, we can derive Theorem 3.7.

A.3 PIECEWISE LINEAR FUNCTIONS

Here, we define three functions implemented with ReLU functions.
Proposition A.1 (Rectangular function). Given t ∈ R, define rectt : R→ R as:

rectt(x) =

{
1 if x ∈ [t, t+ 1),

0 otherwise.

Four ReLU functions can approximate rectt with arbitrarily small error via

ϕt(x) := σR

(
x−t+ϵ

ϵ

)
− σR

(
x−t
ϵ

)
+ σR

(−x+t+1
ϵ

)
− σR

(−x+t+1−ϵ
ϵ

)
− 1,

where limϵ→0 ϕt(x) = rectt(x).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition A.2 (Step function). Define step : R→ R as:

step(x) =

{
0 if x < 0,

1 if x ≥ 0.

Two ReLU functions can approximate step with arbitrarily small error via

ϕ(x) := σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
,

where limϵ→0 ϕ(x) = step(x).
Proposition A.3 (Impulse function). Given θ ∈ N, define impulseθ : R → R for x ∈ [−M,M]
and t ∈ N as:

impulseθ(x, t) =

{
x if t = θ,

0 otherwise.
Four ReLU functions can approximate impulseθ with arbitrarily small error via

impulseθ(x, t) :=σR

(
x+ 2M(t− θ + 1/2)

)
− 2MσR(t− θ + 1/2)

− σR

(
x+ 2M(t− θ − 1/2)

)
+ 2MσR(t− θ − 1/2).

A.4 STEP 1. TOKEN-WISE QUANTIZATION

Figure 4: An illustration of hk(x).

We aim to construct quantization function g : [0, 1]d → {0, 1, . . . , δ−1}d for each dimension as

g(x) = (g(x1), g(x2), . . . , g(xd))
⊤
,

where g(x) =

{
k if x ∈ [kδ, (k + 1)δ),

0 otherwise.

This function g : R→ R can be expressed as

g(x) =

n−1∑
i=0

i · recti(x)

for any n ∈ N and x ∈ R. The illustration of hk(x) := k · rectk(x) is shown in Fig 4. The
key idea is that hk(x) can be represented with a single function h in the form of h

(
kx, k2, k

)
.

Lemma A.4 implement h
(
kx, k2, k

)
with a feed-forward layer and perform the summation through

a skip connection.
Lemma A.4. Given any δ−1 ∈ N and x ∈ Rd, there exist a feed-forward layer FF : R5d → R5d of
width size q = 7d, and two affine linear maps L1 : Rd → R5d and L2 : R5d → Rd such that(
L2 ◦

(
id + FF

)◦(δ−1−1) ◦ L1(x)
)
i
=

{
k if xi ∈ [kδ, (k + 1)δ), k = 0, . . . , δ−1 − 1,

0 otherwise,

for any i = 1, 2, . . . , d.

Proof. On the basis of proposition A.1, define function hk(x) = k · rectk(x) via

hk(x) := σR

(
k
ϵ (x−

k
δ + ϵ)

)
− σR

(
k
ϵ (x−

k
δ)
)
+ σR

(
k
ϵ (−x+ k

δ + 1)
)

− σR

(
k
ϵ (−x+ k

δ + 1− ϵ)
)
− k,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

which satisfies

hk(x) =

{
k if x ∈ [kδ, kδ + 1),

0 otherwise.

For any x ∈ [kδ, kδ + 1) where k = 0, 1, . . . , δ−1 − 1, we have

δ−1−1∑
i=0

hi(x) = hk(x) = k.

Define function h : R3 → R to represent hk via

h(kx, k2, k) := σR

(
kx
ϵ −

k2

ϵ + k
)
− σR

(
kx
ϵ −

k2

ϵ

)
+ σR

(
− kx

ϵ + k2

ϵ + k
ϵ

)
− σR

(
− kx

ϵ + k2

ϵ + k 1−ϵ
ϵ)− σR(k) = hk(x).

Define ξk as

ξk =
(
kx, k2, k, x,

k−1∑
i=0

hi(x)
)⊤

.

Then, construct a feed-forward layer FF : R5 → R5 with a skip connection such that

(
id + FF

)
(ξk) =

(
id + FF

)(
(kx, k2, k, x,

k−1∑
i=0

hi(x))
⊤
)

=
(
(k + 1)x, (k + 1)2, k + 1, x,

k∑
i=0

hi(x)
)⊤

= ξk+1.

via

(
id + FF

)

kx
k2

k
x∑k−1

i=0 hi(x)

 =

kx
k2

k
x∑k−1

i=0 hi(x)

+

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 −1 1 −1 −1

σR

0 0 0 1 0
0 0 2 0 0
1
ϵ − 1

ϵ 1 0 0
1
ϵ − 1

ϵ 0 0 0
− 1

ϵ
1
ϵ

1
ϵ 0 0

− 1
ϵ

1
ϵ

1−ϵ
ϵ 0 0

0 0 1 0 0

kx
k2

k
x∑k−1

i=0 hi(x)

+

0
1
1
0
0

=

kx
k2

k
x∑k−1

i=0 hi(x)

+

x

2k + 1
1
0

hk(x)

=

kx+ x

k2 + 2k + 1
k + 1
x∑k−1

i=0 hi(x) + hk(x)

=

(k + 1)x
(k + 1)2

k + 1
x∑k

i=0 hi(x)

 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then, define two affine linear maps L1 : R1 → R5 and L2 : R5 → R1 by

L1(x) := (0, 0, 0, x, 0), L2(x1, x2, x3, x4, x5) := x5.

Thus, we have

L2 ◦
(
id + FF

)◦(δ−1−1) ◦ L1(x) = L2 ◦
(
id + FF

)◦(δ−1−1)
(ξ1)

= L2(ξδ−1)

=

δ−1−1∑
i=0

hi(x).

For d-dimensional inputs, we need d-times parameters.

A.5 STEP 2. CONTEXTUAL MAPPING

The network takes token IDs as inputs, denoted by z ∈ {0, 1, . . . , δ−d − 1}N . We consider only
the case where all token IDs are distinct, since this accounts for the majority when δ is small. The
network maps token IDs into a sequence ID using inner product with the vector u ∈ RN defined as
u := (δ−(N−1)d, δ−(N−2)d, . . . , δ−d, 1)⊤ i.e.

CM(z) := u⊤z.

Due to permutation equivalence, we can assume without loss of generality that elements of z ∈ Lδ

is ordered, i.e., z1 > z2 > · · · > zN . Then the map CM satisfies∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′.

In other words, CM represent z in δ−d-base system. The network computes u⊤z in the form of∑N
i=1 δ

−(N−i)dzi. The network computes s(k) :=
∑k

i=1 δ
−(k−i)dzi in each loop, and after N -

loops, it outputs s(N) = u⊤z. To implement this, the self-attention layer select zk in the k-th loop
iteration. We design the key and value weights to select the maximum token ID. The feed-forward
layer post-processes the token ID as if selected, then replaces it with negative value to prevent
selection in subsequent iterations, i.e., the post-processed token IDs for the k-th loop is

z
(k)
i = z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise.

Lemma A.5. Consider the set, composed of distinct indices for d-dimension δ-discretized regions
of N tokens, i.e.

Lδ := {z ∈ {0, 1, . . . , δ−d − 1}N | zi ̸= zj for all i ̸= j}.

There exists a function CM : RN → R composed of Transformer block TF : R3×N → R3×N with
single head, head size s = 1, and width size q = 3, and two affine linear maps L1 : R → R3 and
L2 : R3 → R, such that

L2 ◦ TF◦N ◦L1(z
⊤) = CM(z⊤) · 1⊤

N ,

for any z ∈ Lδ , where L1 and L2 denote the token-wise applications of L1 and L2, respectively,
and CM is a contextual mapping, which satisfies the following properties:

1. For any z ∈ Lδ , the N entries in CM(z⊤) are all distinct.
2. For any z, z′ ∈ Lδ , if z is not a permutation of z′, all entries of CM(z⊤) and CM(z′⊤) are

distinct.

Proof. Due to permutation equivalence, we can assume without loss of generality that elements of
z ∈ Lδ is ordered, i.e., z1 > z2 > · · · > zN . Define u ∈ RN as u := (δ−(N−1)d, . . . , δ−d, 1)⊤,
which satisfy ∥∥u⊤z − u⊤z′∥∥ > 1, if z ̸= z′ for any z, z′ ∈ Lδ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then z → u⊤z is a contextual mapping. We show how to construct Transformer block TF :
R3×N → R3×N with single head and head size s = 1 such that, for any z ∈ Lδ ,

TF◦N

 z⊤

0⊤
N

0⊤
N

 =

 0⊤
N

0⊤
N

u⊤z · 1⊤
N

 .

where 0N ∈ RN denote a zero vector. For z ∈ Lδ , we define two series z(k) and s(k) by

z
(k)
i = z s.t.

{
z < 0 if i ≤ k,

z = zi otherwise,
for i = 1, . . . , d.

s(k) =

k∑
i=0

δ−idzi.

While z(k) is not uniquely determined, any vectors that satisfies the conditions is accepted as z(k).
We can confirm that s(k) satisfies

s(k) =

k∑
i=1

δ−(k−i)dzi

=
(k−1∑

i=1

δ−(k−i)dzi
)
+ zk

=
(k−1∑

i=0

δ−d · δ−(k−1−i)dzi
)
+ zk

= δ−d · s(k−1) + zk.

(18)

Recall that s(N) = u⊤z. Define a single-head self-attention Attn : R3×N → R3×N such that

Attn

 z⊤

y⊤

s⊤

 =

 0
maxj zj · 1⊤

N
0

 ,

via the weight parameters

WO =

[
0
1
0

]
, WV = WK = WQ = [1 0 0]

Define FF : R3 → R3 of width size q = 3 via:

FF

([
x1

x2

x3

])
=

−M 0 0
0 −1 0
0 1 δ−d − 1

σR

([
1 −1 0
0 1 0
0 0 1

][
x1

x2

x3

]
+

[
ϵ
0
0

])

=

 −MσR(x1 − x2 + ϵ)
−σR(x2)

(δ−1 − 1)σR(x3) + σR(x2)

 ,

where 0 < ϵ < δ−1 and M > ϵδ−1. For x1 ∈ {0, 1, . . . , δ−d}, we have

x1 −MσR(x1 − x2 + ϵ) = z, s.t.
{
z = x1 if x1 < x2,

z < 0 otherwise.

This post-processes the token ID as if selected, then replaces it with negative value. We have

z
(k)
i −MσR(z

(k)
i − zk + ϵ) =

{
z < 0 if i ≤ k + 1,

z = zi otherwise,

= z
(k+1)
i for i = 1, . . . , d.

(19)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We can confirm that Transformer block TF : R3×N → R3×N composed of Attn and FF satisfies

TF

 (z(k))⊤

0⊤
n

(s(k))⊤

 = (id + FF) ◦ (id + Attn)

 (z(k))⊤

0⊤
n

(s(k))⊤

= (id + FF)

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤

= (id + FF)

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤

=

 (z(k))⊤

zk · 1⊤
N

(s(k))⊤

+

 −MσR

(
(z(k))⊤ − zk · 1⊤

N + ϵ1⊤
N

)
−zk · 1⊤

N

(δ−1 − 1)(s(k))⊤ + σR(x2)

=

 (z(k+1))⊤

0⊤
n

δ−1(z(k))⊤ + zk1
⊤
N

 because Eq. 19

=

 (z(k+1))⊤

0⊤
n

(s(k+1))⊤

 because Eq. 18.

We define two affine linear maps L1 : R → R3 and L2 : R3 → R as L1(x) := (x, 0, 0) and
L2(x1, x2, x3) := x3. Thus, we have

L2 ◦ TF◦N ◦L1(x
⊤) = L2 ◦ TF◦N

 z⊤

0⊤
N

0⊤
N

 = L2

 0⊤
N

0⊤
N

sN · 1⊤
N

 = (u⊤z) · 1⊤
N .

Recall that z → u⊤z is a contextual mapping.

Corollary A.6. There exist a Transformer block TF2 : R5×N → R5×N with single head, head size
s = 1, and width size q = 4, and two affine linear maps L1 : R2 → R5 and L2 : R5 → R such that

L2 ◦ TF2
◦N ◦L1

([
z⊤

Zd,:

])
=
(
2u⊤z −Zd,N

)
· 1⊤

N for any z ∈ Lδ .

where u := (δ−(N−1)d, . . . , δ−d, 1)⊤.

Proof. Define a single-head self-attention Attn : R5×N → R5×N such that

Attn

z⊤

Zd,:

y⊤

s⊤

q⊤

 =

0
0

maxj zj · 1⊤
N

0
Zd,argmaxj zj

· 1⊤
N

 ,

via the weight parameters

WO =

0
0
1
0
1

 , WV = WK = WQ = [1 0 0 0 0]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Define FF : R4 → R4 of width size q = 4 via:

FF

x1

x2

x3

x4

x5

 =

−M 0 0 0
0 −1 0 0
0 1 δ−d − 1 0
0 1 0 −1

σR

1 0 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

x1

x2

x3

x4

x5

+

ϵ
0
0
0
0

=

−MσR(x1 − x2 + ϵ)

0
−σR(x2)

(δ−1 − 1)σR(x3) + σR(x2)
−σR(x4) + σR(x2)

 ,

where 0 < ϵ < δ−1 and M > ϵδ−1. Note that the fourth columns after t loops are zt, so at the
end, we obtain zN . Then, we define two affine linear maps L1 : R2 → R5 and L2 : R5 → R as
L1(x1, x2) := (x1, x2, 0, 0, 0) and L2(x1, x2, x3, x4, x5) := 2x4 − x5.

A.6 STEP 3. FUNCTION VALUE MAPPING WITH BIT EXTRACTION

We use a bit extraction technique (Bartlett et al., 1998) to approximately memorize the piecewise
linear function.Consider n ∈ N input indices k = 0, 1, . . . , n − 1 ∈ N with associated values
y0, y1, . . . , yn−1 ∈ R. The network approximately memorize the difference yi − yi−1 with base-2
representation. Since binary representation limited to {0, 1}, yi − yi−1 has to be re-scaled with
ϵ := |yi − yi−1| as

ai =
⌊yi
ϵ

⌋
,

where ⌊x⌋ = max{n : n ≤ x, n ∈ Z}. Then, the difference bi = ai−ai−1 satisfies bi ∈ {−1, 0, 1},
bi, and it can be represented using two binary values ci, di ∈ {0, 1} as follows:

bi = ci − di,

and we have

ak = a0 +

k∑
i=0

bi = a0 +

k∑
i=0

di +

k∑
i=0

di for k = 0, 1, 2.

Lemma A.8 and Lemma 4.1 show that
∑k

i=0 ci and
∑k

i=0 di can be realized by composition of
single feed-forward layer. Thus the networks can approximate yi with ϵai denoted by ỹi with the
following accuracy

|ỹi − yi| = |ϵ
⌊yi
ϵ

⌋
− ϵ

yi
ϵ
| = ϵ|

⌊yi
ϵ

⌋
− yi

ϵ
| ≤ ϵ.

For d-dimensional inputs-outputs pair, we construct the networks for each dimension i.e.

ỹ = (ỹ1, ỹ2, . . . , ỹd)

The key idea of our lemma and proof follows Lemma D.1 from Zhang et al. (2023) as shown in
below; however, we cannot directly apply their result here, as it requires depth-2 networks.
Proposition A.7 (Lemma D.1 in Zhang et al. (2023)). Given any r ∈ N+, there exist FF : R3d →
R3d of width size 8 and depth 2 with two affine linear maps L1 : R2 → R5 and L2 : R5 → R such
that: For any θ1, θ2, . . . , θr ∈ {0, 1}, it holds that

L2 ◦ FF◦r ◦ L1

(
k, bin0.θ1θ2 · · · θr

)
=

k∑
ℓ=1

θℓ for k = 0, 1, . . . , r,

where bin 0.θ1θ2 · · · θr denote the binary representation of θ =
∑n

i=1 θi2
−i.

We found that loop unrolling allows us to reduce the number of layers from 2 to 1, replacing xk+1 =
ReLU(ReLU(x′k)) with (xk+1, x′k) = ReLU(x′k, xk). Although our method makes the weights
dependent on θ1, θ2, . . . , θr ∈ 0, 1, this does not present an issue for our construction in function
approximation. Specifically, θ1, θ2, . . . , θr is fixed for each target function, and the role of the
network is to learn the weights tailored to that single function.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Lemma A.8. Given θ1, θ2, . . . , θr ∈ {0, 1} for r ∈ N+, there exist a feed-forward layer FF : R7 →
R7 of width size 10 and two affine linear maps L1 : R→ R7 and L2 : R7 → R s.t.

L2 ◦ (id + FF)
◦r ◦ L1

(
k) =

k∑
i=1

θi for k = 0, 1, . . . , r.

Proof. From proposition A.2, we have a function step(x) defined by

step(x) := σR

(
x
ϵ + 1

)
− σR

(
x
ϵ

)
,

satisfies

step(x) =

{
1 if x ≥ 0,

0 if x < 0.

Define βi for i = 0, 2, . . . , r as

βi = bin 0.θi · · · θr,

where bin 0.θ1θ2 · · · θr denote the binary representation of θ =
∑n

i=1 θi2
−i and θ0 := 0. We have

θi = step(bin 0.θi · · · θr − 1
2) = step(βi − 1

2),

implying, for i = 1, 2, . . . , r − 1,

βi+1 = 2βi − θi = 2βi − step
(
βi − 1

2

)
.

For given k ∈ 0, 1, . . . , r, we have

k∑
i=1

θi =

k∑
i=1

θi +

r∑
i=k+1

0 =

r∑
i=1

θi · step(k − i) =

r∑
i=1

σR

(
θi + step(k − i)− 1

)
=

r∑
i=1

σR

(
step(βi − 1

2) + step(k − i)− 1
)
.

(20)

To compute the right-hand side, we need two nested ReLU functions. By using loop unrolling, we
precompute step(βi− 1

2) and step(k− i) in the previous loops, allowing us to require only a single
layer. Define ξl for l = 0, 1, . . . , r as

ξl =
(
k − l, βl, βl+1, step(βl −

1

2
), step(k − l), sum(l)

)⊤
,

where sum(l) :=
∑l

i=1 σR

(
step(βi − 1

2) + step(k − i) − 1
)

. Note that we have βl+1 in the l-th

loop to precompute step(βl+1 − 1
2) and step

(
(k − (l + 1)

)
for the l + 1-th loop.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Define FF : R7 → R7 such that

(
id + FF

)
(ξl) =

(
id + FF

)

k − l
βl

βl+1

step(βl − 1
2)

step(k − l)
sum(l)

=

k − l
βl

βl+1

step(βl − 1
2)

step(k − l)
sum(l)

+

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0
0 0 0 0 −1 1 −1 0 0
0 0 0 0 0 0 0 0 1

σR

0 1 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 1/ϵ 0 0 0
0 0 1/ϵ 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
1/ϵ 0 0 0 0 0
1/ϵ 0 0 0 0 0
0 0 0 1 1 0

k − l
βl

βl+1

step(βl − 1
2)

step(k − l)
sum(l)

+

0
0
0

−1/(2ϵ) + 1
−1/(2ϵ)

0
0

−1/ϵ+ 1
−1/ϵ
−1

+

−1
0
0
0
0
0
0

=

k − l
βl

βl+1

step(βl − 1
2)

step(k − l)
sum(l)

+

−1
σR(βl)− σR

(
step(βl − 1

2)
)

σR(βl+1)−
(
σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ)

)
−σR

(
step(βl − 1

2)
)
+ σR(

βl+1−1/2
ϵ + 1)− σR(

βl+1−1/2
ϵ)

−σR

(
step(k − l)

)
+ σR(

k−(l+1)
ϵ + 1)− σR(

k−(l+1)
ϵ)

σR

(
step(k − l) + step(βl − 1

2)− 1
)

=

k − (l + 1)

2βl − step(βl − 1
2)

2βl+1 − step(βl+1 − 1
2)

step(βl+1 − 1
2)

step
(
(k − (l + 1)

)
sum(l + 1)

 =

k − (l + 1)

βl+1

βl+2

step(βl+1 − 1
2)

step
(
(k − (l + 1)

)
sum(l + 1)

 = ξl+1,

Define L1 : R2 → R3 and L2 : R3 → R via

L1(k) := (k, β0, β1, 0, 0, 0)
⊤
= ξ0, L2(x1, x2, x3, x4, x5, x6, x7) := x7,

respectively. Note β1 is defined by given θ1, θ2, . . . , θr

We prove Lemma 4.1 with Lemma A.8.

Lemma 4.1. Given yk ∈ Rd for k = 0, 1, . . . ,m− 1 with

|(yk − yk−1)i| ≤ εi for k = 1, 2, . . . ,m− 1,

there exist feed-forward layer FF : R14d → R14d of width size 20d and two affine linear maps
L1 : Rd → R14d and L2 : R14d → Rd such that

|
(
L2 ◦ (id + FF)(m−1) ◦ L1(k)− yk

)
i
| ≤ εi for k = 0, 1, . . . ,m− 1,

for any i = 1, 2, . . . , d.

Proof. We prove this for the case where d = 1, considering yk ∈ R for k = 0, . . . ,m. Define

ai =
⌊
yi

ε

⌋
for i = 0, 1, . . . ,m− 1,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where ⌊x⌋ = max{n : n ≤ x, n ∈ Z} and set

bi = ai − ai−1 for i = 1, 2, . . . ,m− 1.

Since bi ∈ {−1, 0, 1}, there exist ci ∈ {0, 1} and di ∈ {0, 1} such that

bi = ci − di for i = 1, 2, . . . ,m− 1.

Thus, we have

ak = a0 +

k∑
i=1

ci −
k∑

i=1

di for k = 0, 1, . . . ,m− 1.

From Lemma A.8, there exist FF(c),FF(d) : R7 → R7 and affine linear maps L′
2 : R7 → R and

L(c)
1 ,L(d)

1 : R→ R7 such that

L′
2 ◦ (id + FF(c))

◦(m−1)
◦ L(c)

1

(
k) =

k∑
i=1

ci, L′
2 ◦ (id + FF(d))

◦(m−1)
◦ L(d)

1

(
k) =

k∑
i=1

di,

for k = 0, 1, . . . ,m− 1. Then, define FF : R14 → R14, for x,y ∈ R7,

FF(x,y) := (FF(c)(x),FF(d)(y)).

Define L1 : R→ R14 and L2 : R14 → R as

L1(x) :=
(
L(c)
1 (x),L(d)

1 (x)
)
, L2(x,y)

⊤ := ϵ
(
a0 + L′

2(x)− L′
2(y)

)
.

We can confirm that

L2 ◦ (id + FF)◦(m−1) ◦ L1(k)

= L2 ◦ (id + FF)◦(m−1) ◦
(
L(c)
1 (k), L(d)

1 (k)
)

= L2 ◦
(
(id + FF(c))◦(m−1) ◦ L(c)

1 (k), (id + FF(d))◦(m−1) ◦ L(d)
1 (k)

)
= ϵ
(
a0 + L′

2 ◦ (id + FF(c))◦(m−1) ◦ L(c)
1 (k)− L′

2 ◦ (id + FF(d))◦(m−1) ◦ L(d)
1 (k)

)
= ϵ
(
a0 +

k∑
i=1

ci −
k∑

i=1

di
)
= ϵak.

Thus we have
|
(
L2 ◦ (id + FF)◦(m−1) ◦ L1(k)− yk

)
i
| = |ϵak − yk| ≤ ε.

We can extend this for d-dimensional input.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B ROLE OF TIME DEPENDENT SCALING PARAMETERS

We demonstrate that time-dependent scaling parameters overcome the limitations inherent to the
looped architecture and eliminate the dependence of the approximation rate on the modulus of con-
tinuity. We use the architecture defined in Section 4 as:

FF(x)→ η(t)⊙ FF(x) for the t-th loops,

Following lemma demonstrate that time dependent scaling parameters can exactly map indices to
output vectors.

Theorem 4.2. Given yk ∈ Rd for k = 0, . . . ,m−1, there exist feed-forward layer FF : R4d → R4d

of width size 6d and η(t) ∈ R4d and two affine linear maps L1 : Rd → R4d and L2 : R4d → Rd s.t.

L2 ◦ (id + η(m− 1)⊙ FF) ◦ · · · ◦ (id + η(1)⊙ FF) ◦ L1(k) = yk.

The key idea of the proof is that we use the impulse function defined as

impulse0((yl)i, k − l) =

{
(yl)i if k = l,

0 otherwise,

for i = 1, 2, . . . , d and l = 0, 2, . . . ,m − 1, which extracts the corresponding (yl)i in the l-th loop
if the index matches k.

Proof. We consider the case when d = 1, where yk ∈ R for k = 0, . . . ,m − 1. We update yk as
follows:

yk → yk + ϵ,

where ϵ is chosen such that none of the yl values are zero.

Next, we define η(l) as:

η(l) = (0, 1,
yl

yl−1
− 1, 1)⊤ for l = 1, 2, . . . ,m− 1.

By Proposition A.3, we have

impulse0(x, t) := σR

(
x+ 2M(t+ 1/2)

)
− 2MσR(t+ 1/2)

− σR

(
x+ 2M(t− 1/2)

)
+ 2MσR(t− 1/2)

=

{
x if t = 0,

0 otherwise,

where M > max yk. Define

s(l) :=

l∑
i=0

impulse0
(
y(i−1), k − (i− 1)

)
,

for l = 1, 2, . . . ,m− 1. This satisfies

s(m− 1) =

m−1∑
i=0

impulse0
(
y(i−1), k − (i− 1)

)
= yk.

Define ξl as

ξl =
(
k, k − l, yl, s(l))

)⊤
.

for l = 0, 1, 2, . . . ,m− 1.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Then, define FF : R4 → R4 of width size q = 6 via:

(id + η(l)⊙ FF)(ξl−1) = ξl−1+

η(l)⊙

0 0 0 0 0 0
0 0 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 −2M 2M

σR

0 0 1 0
0 0 −1 0
0 2M 1 0
0 2M 1 0
0 1 0 0
0 1 0 0

 ξl−1 +

0
−1
M
−M
1/2
−1/2

+

 0
−1
0
0

= ξl−1 +

0
1

yl

yl−1
− 1

1

⊙

0
−1

σR(yl−1)− σR(−yl−1)(
σR

(
yl−1 + 2M((k − (l − 1)) + 1/2)

)
−2MσR((k − (l − 1)) + 1/2)

−σR

(
yl−1 + 2M(k − (l − 1)− 1/2)

)
+ 2MσR(k − (l − 1)− 1/2)

)

=

 k
k − (l − 1)

yl−1

s(l − 1)

+

0
1

yl

yl−1
− 1

1

⊙
 0

−1
yl−1

impulse0
(
y(l−1), k − (l − 1)

)

=

 k
k − l
yl
s(l)

 = ξl.

for l = 1, 2, . . . ,m− 1. Thus we have

(id + η(m− 1) · FF) ◦ · · · ◦ (id + η(1) · FF)(ξ0) = ξm−1

Then, define two affine linear maps L1 : R1 → R4 and L2 : R4 → R1 by

L1(x) := (k, k, y0, 0), L2(x1, x2, x3, x4) := x4 − ϵ.

We can extend this to d-dimensional input by using d time parameters, by applying above to each
dimension.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C DETAILS OF EXPERIMENTS

This appendix section provides additional details on the experiments for each task, including prob-
lem descriptions, training configuration, and supplement of results.

C.1 DYNAMIC PROGRAMMING PROBLEMS

We categorize certain DP problems and employ the following tasks.

• Knapsack Problems: Subset Sum and Knapsack
• Two-Sequence Problems: Edit Distance (ED) and Longest Common Subsequence (LCS)

C.1.1 KNAPSACK PROBLEM

We use the knapsack problem and its special case, the subset sum problem. These tasks are solvable
in time O(nW), where n is the length of the input sequence and W represents the weight capacity.

Subset sum task is to determine whether there exists a subset of these integers whose sum equals a
specified number T . It is a subset of the Knapsack problem We randomly sample n = 10 integers
from the range 1 to 100 and select T randomly from 1 to the sum of these n integers. For example,
a sample in the dataset of input sequence length 10 looks like

67 93 81 29 2 19 77 74 50 98 | 195 <sep> 1.

Knapsack problem is defined as follows: given a set of items, each with a weight and a value, select
a subset of items that maximizes the total value while ensuring that the total weight does not exceed
a specified limit. We concatenated the values, weights, and maximum capacity with a separator. For
example, a sample in the dataset of input sequence length 20 looks like

9 10 13 1 17 5 12 3 12 2 4 8 11 8 2 10 8 17 10 16 | 8 3 8 7 9 6 7
2 8 2 3 5 4 2 5 7 10 8 6 7 | 48 <sep> 52.

C.1.2 TWO SEQUENCES

We use tasks that compute metrics between two given sequences. These tasks can be solved using
dynamic programming with a time O(n2), where n denotes the length of each input sequence. In
the dataset, the two sequences are concatenated with a separator.

Longest Common Subsequence (LCS) is the longest common to a given set of sequences. We
use problems with input lengths of 60 and 100. Two sequences are sampled uniformly from the
alphabet. For example, a sample in the dataset of length 60 looks like

g q p b b g q b p h b v i b q m r w c v c v b v w b v g r v q h g
m b r w c r c h i h c c q p m w r w b p g h p w g p w | i i a p i
i i p r i p x i c r b f p b x p i x c c p f r x y i a p c v b p r

c r v v i c y p x f a c f p p b i i a r a c <sep> 18.

Edit Distance (ED) problem, also known as Levenshtein distance, is to find the minimum cost
required to change one sequence into the other. We adopted the problem setting and data generation
approach from Feng et al. (2023), but applied larger input lengths. The costs for insertion, deletion,
and replacement were set to 2, 2, and 3, respectively. They generate instances of the edit distance
problem as shown in Algorithm 1. The first string is randomly selected, while the second is generated
in two ways: (1) a random string yielding a large edit distance, and (2) a corrupted copy of the first
string, resulting in a small edit distance. For example, a sample in the dataset of length 60 looks like

k y s i s x x x y s s l o o o k o s k o o s l y x k x s y s y x s
o s l y k o o l s k x x y l y i y o s y o y x i i k s | k l l l o
y l y s l k l x i i o k k y o i x s y o s i k x l l x i y k o l y

o o y x o l s x x l i y l i o s i i i l l y <sep> 105.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Algorithm 1: ED Data Generation from Feng et al. (2023)
Input : Length of the First String n
Input : Alphabet V = {a, b...z}
Output: Sequence s1, s2
Sample t uniformly from {3, 4...10} ;
T ← Sample t letters from V ;
s1← Sample n letters uniformly from T ;
Sample p uniformly from [0, 1] ;
if p < 0.4 then

Sample l uniformly from {n− 3, n− 2, ..., n+ 2};
s2← Sample l letters uniformly from T ;

else
do

s2 ← s1 ;
for i← 1 to n do

Sample p uniformly from {0, 1...len(s2)− 1};
Sample l uniformly from T ;
Randomly conduct one of the followings: pop s2[p], substitute s2[p] with l, insert l

into s2[p];
end

while len(s2) not in [n− 3, n+ 2];
end

C.2 SUPPLEMENTARY INFORMATION ON DP TRAINING AND RESULTS

This section provides supplementary information on the training process and results.

Training Configuration for DP We used Looped Transformers of 4 attention heads and a 256-
dimensional. We used the AdamW optimizer (Loshchilov & Hutter, 2018) with β1 = 0.9, β2 =
0.999, weight decay = 0.01, and linear decay scheduler initial lr = 10−4 and end lr = 0 with 5
warm up, training for 50 epoch with batch size 64. For time-dependent models, we initialize γ(t) as
zero vectors and α(t) as one vectors, following Peebles & Xie (2023); Bachlechner et al. (2021).

Training and Test Accuracy for ED Figure 5 demonstrates a positive correlation between train-
ing and test accuracy, allowing us to assess approximation power through test accuracy.

20 40 60 80 100
Number of Loops

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

n
Ac

cu
ra

cy

Train Accuracy vs. Number of Loops
w/o time depnedncy
w/ timestep encoding

20 40 60 80 100
Number of Loops

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Test Accuracy vs. Number of Loops
w/o time depnedncy
w/ timestep encoding

Figure 5: Training and test accuracy for the edit distance task with a sequence length of 60.

C.3 IN-CONTEXT LEARNING

We followed the setting of Garg et al. (2022); Yang et al. (2024). The problem is to learn the function
class from a given sequence composed of the pairs of input xi and output values f(xi). The input
for model is (x1, f(x1), . . . ,xk, f(xk),xtest), and model learns to predict f(xtest). The model is
trained on f(xk) and its performance is evaluated on f(xtest) using the squared error.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Decision Tree. We use depth-4 decision trees with 20-dimensional inputs. Each function in this
class is represented by a full binary tree with 16 leaf nodes. Non-leaf nodes are associated with
specific input coordinates, while leaf nodes are assigned target values. To evaluate f(x), the tree
is traversed from the root, moving to the right if the coordinate value is positive and to the left
otherwise. Inputs and leaf node values are sampled from N(0,I), and the coordinates for non-leaf
nodes are drawn uniformly at random.

Training Configuration. Our training setup follows the approach of Yang et al. (2024). We use
Looped Transformers with 8 attention heads and a dimensionality of 256, considering both 12-loop
and 70-loop configurations. For time-dependent models, we initialize γ(t) as zero vectors and α(t)
as one vector. Following the curriculum training approach of Garg et al. (2022); Yang et al. (2024),
we progressively increase the task dimensionality from 5 to 20 in steps of 1 every 5000 steps, while
the sequence length increases from 26 to 101 in increments of 5 over the same interval. Training is
conducted over 200, 000 steps with a learning rate of 1× 10−4.

C.4 LANGUAGE MODELING

Tokenization is performed using byte-pair encoding, following GPT-2 Radford et al. (2019). The
Looped Transformer model is based on the GPT-2 decoder architecture (Radford et al., 2019), with
16 attention heads and a dimensionality of 2048. For time-dependent models, we initialize γ(t)
as zero vectors and α(t) as one vector. We employed the AdamW optimizer (Loshchilov & Hut-
ter, 2018) with parameters β1 = 0.9, β2 = 0.95, learning rate lr = 10−4, and weight decay
weight decay = 0.1. The training was conducted for 100000 iterations with a batch size of 64, a
block size of 1024, and 20 gradient accumulation steps. The best perplexity was evaluated on both
the training and test sets.

33

	Introduction
	Background
	Transformer architecture
	Looped Transformer
	Theoretical analysis on function approximation

	Approximation Rate of Looped Transformers
	Preliminary
	Definition of continuity for sequence-to-sequence functions
	Main Result
	Proof Sketch

	From Theory to Practice: Introducing Timestep Encoding
	Motivation
	Timestep Encoding

	Experiments
	Varying Loops with Dynamic Programming
	Enhancement via Timestep Encoding

	Conclusion
	Proofs of Function approximation
	Notations
	Proof of Theorem 3.7
	Piecewise Linear functions
	Step 1. Token-wise Quantization
	Step 2. Contextual mapping
	Step 3. Function value mapping with bit extraction

	Role of Time dependent scaling parameters
	Details of Experiments
	Dynamic Programming Problems
	Knapsack Problem
	Two Sequences

	Supplementary Information on DP Training and Results
	In-Context Learning
	Language Modeling

