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Abstract

Causal discovery, i.e., inferring underlying causal
relationships from observational data, is highly
challenging for Al systems. In a time series mod-
eling context, traditional causal discovery meth-
ods mainly consider constrained scenarios with
fully observed variables and/or data from station-
ary time-series. We develop a causal discov-
ery approach to handle a wide class of nonsta-
tionary time series that are conditionally station-
ary, where the nonstationary behaviour is mod-
eled as stationarity conditioned on a set of latent
state variables. Named State-Dependent Causal
Inference (SDCI), our approach is able to recover
the underlying causal dependencies, with prov-
able identifiablity for the state-dependent causal
structures. Empirical experiments on nonlinear
particle interaction data and gene regulatory net-
works demonstrate SDCTI’s superior performance
over baseline causal discovery methods. Im-
proved results over non-causal RNNs on mod-
eling NBA player movements demonstrate the
potential of our method and motivate the use of
causality-driven methods for forecasting.

1. Introduction

Deep learning has achieved profound success in vision and
language modelling (Brown et al., 2020; Nichol et al., 2022).
Still, it remains a grand challenge for deep neural networks
to perform causal discovery (Yi et al., 2020; Girdhar & Ra-
manan, 2020; Sauer & Geiger, 2021), which is critical for
interpretability, generalization, and robustness (Lake et al.,
2017; Scholkopf et al., 2021). Theoretically, structure iden-
tifiability is key to ensure a unique correspondence between
observations and the underlying causal structures (Peters
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et al., 2017). Practically, better algorithms are needed to
accurately extract the causal structure from data.

In time series analysis, causal discovery identifies the under-
lying temporal causal structure of the observed sequences.
Historical approaches rely on a restrictive assumption: sta-
tionarity (Granger, 1969; Peters et al., 2017; Tank et al.,
2021; Lowe et al., 2022), while real-world data is often
nonstationary with potential hidden confounders. To ad-
dress this issue, three major strategies have been recently
proposed: (1) modelling nonstationary noise (Huang et al.,
2020; Gong et al., 2023); (2) introducing time-dependent ef-
fects with a fixed causal structure (Huang et al., 2015; 2019);
and (3) using discrete latent variables to capture structural
changes over time (Saggioro et al., 2020). Despite these ad-
vances, causal discovery in nonstationary time series under
realistic assumptions remains an open challenge.

This work addresses causal discovery for nonstationary time
series based on a much relaxed assumption, conditionally
stationary time series, where the dynamics of the observed
system change depending on a set of discrete “state” vari-
ables. These causal structures can change not only during
time, but also across samples (Lowe et al., 2022). This
assumption holds for many real-world scenarios, such as
individuals whose different decisions depend on mood, past
experiences, or interactions with others. The causal discov-
ery task for such conditionally stationary time series poses
different challenges depending on the observability and de-
pendency of the states, which we classify into 3 scenarios:

States observed/independent: The states are observed
and/or independent on observations (Fig. 1a). Structure
identifiability can be established for both cases by Peters
et al. (2013), and Balsells-Rodas et al. (2024), respectively.

States determined: The states are hidden but depend on
observations directly. In Fig. 1b, the states are determined
by the balls’ positions (pink vs purple regions).

States recurrent: The states depend on historical events.
E.g., in Fig. lc, particles have state changes upon collision.
Also in a football game a player acts differently based on
earlier actions of the others.

We propose a novel framework to tackle both the theoretical
and algorithmic challenges for causal discovery from condi-
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(a) States observed.

(b) States determined.

(c) States recurrent.

Figure 1: Graphical representations of the data generation processes. a; represents the observations of a time series, and s;
denotes the state variables. The states affect observations by changing the causal structure f; for different state values.

tionally stationary time series in states determined and re-
current cases. Our contributions are summarised as follows,
providing advances in both identifiability and estimation:

* We introduce conditional summary graph as a compact
representation of the underlying causal graph structure
for conditionally stationary time series. This efficiently
addresses the exponential complexity of full-time graph
in summarising the causal structure of time series data
with nonstationary interactions between variables.

* We establish identifiability for the conditional summary
graph and related structural properties for conditionally
stationary time series satisfying “state determined” (Fig.
1b) or “state recurrent” (Fig. 1c¢) assumptions.

* We propose State-Dependent Causal Inference (SDCI) as
a practical algorithm to extract the conditional summary
graphs and model state dependencies, based on discrete
latent variable models and graph neural networks.

* We validate SDCI on semi-synthetic data based on physi-
cal and biological systems, and real-world datasets. Com-
pared to baselines including GNN and RNN-based ap-
proaches, SDCI achieves superior performance in iden-
tifying the underlying nonstationary structures in gene
regulatory networks; and forecasting future trajectories
from observations on NBA player movements.

2. Background
2.1. Causal Discovery in Stationary Time Series

Causally-driven time series are often modelled using struc-
tural causal models (SCM; (Pearl, 2009; Peters et al., 2017))
for describing data generation processes. Consider IV se-
quences of length 7', denoted by x;.7, where mﬁ” € R4
denotes the features of the ¢-th sequence at time ¢; which can
incorporate high-order moments, e.g velocity, acceleration.
The data dependencies in a temporal SCM are structured
via a causal graph, known as the full time graph, qur .

For simplicity, we assume no hidden confounders, no in-

stantaneous effects, and a first-order Markov property. In
stationary time series, the full time graph is static across
time steps. This allows us to define the summary graph
G ={V,E5), where V = {1,..., N} andanedgez’—>j
exists in £° if there is an edge from :I:,E 2 to :c 1n g
for some ¢t < t'. The identifiability of both GI'X and QS
is guaranteed under Time Series Models with Independent
Noise (TiMINo; (Peters et al., 2013)). By further assuming
an additive noise model (ANM), the SCM becomes:

) — f) (wt Lz ePA(j)(t—l)) +e9 )

where PAU) (¢ — 1) denotes the parents' of a:( 7 and e(J )~

Pe represents independent noise. In this setting, PAY) (t—1)
is constant in time and aligns with the summary graph G5.

2.2. Markov Switching Models

Markov Switching Models (MSMs; (Hamilton, 1989)) ex-
tend time series modeling by introducing discrete latent
variables u; € {1,...,U} that condition the autoregres-
sive process at each time step t. For regime-dependent time
series (Saggioro et al., 2020), the full-time graph GI'% is
time-dependent, but causally stationary (Assaad et al., 2022)
given the discrete latent variables u;,t € {1,...,T}. This
leads to deﬁning the regime-dependent graph, which is a set
of graphs GIE := {GEP|1 < u < U} where GEP encodes
the causal effects of x; for u; = u. Our work utilises MSMs
under the following key assumptions (m1-m3):

(m1) Conditional first-order Markov transitions, con-
trolled by u;_1 only: forany ¢t € {2,...,T},

P(Te| T 141, Uip—1) = p(xe|Te—1,up—1). (2)

(m2) Conditional stationarity: the transition distributions
do not change during time: for any v € {1, ...,U} we have

'The notation (¢ — 1) indicates that the parents of variable j
are considered at the previous time step.
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Figure 2: (a) Full time graph gfﬁf of a sample considering our problem setting, (b) regime-dependent graph, and (c)
conditional summary graph QIC: f( of the corresponding sample for K = 2. We denote states using numbers {1, 2} inside
each element. Different colors (red and blue) denote effects caused by different states.

for any t # ¢/, any 3,~ € RV such that

p(xy = Blei—1 =7, w—1 = u) =
P(wt’ = ,3|il?t'71 =7 Ur—1 = U) 3)

(m3) Factorisation based on a Gaussian ANM:

N
p(xe|Ti—1,ut—1) = HN(Q%EJ);
j=1

19, (@212, € PAG) (= 1)).0’T), )

Ut—1

for any t € {2,...,T}, where PAff;ll(t — 1) denotes the

parents of variable j at time ¢ — 1, as described by G2 .

3. State-Dependent Causal Inference (SDCI)

3.1. Conditionally Stationary Time Series

We focus on nonstationary time series where each time step ¢

Oy

is associated with [V latent variables s; = {s;7,...,s;
(4)

Each stl) € {1,...,, K} controls the causal effects of x;
to future observations x,y;. In other words, the causal
influences of azgi) ()
This can be viewed as a general MSM under assumptions

(m1-m3) by setting u; = ¢(s;) with global states U =

KN, for some injective  : {1,..., K} — {1,...,U}.

Fig. 2a exemplifies the full time graph illustrating these
assumptions. Here, the causal effects vary across time as
S1 # S # s3, leading to nonstationarity. From a MSM
view, we can extract a regime-dependent graph with KV
regimes (Fig 2b).

Although the regime-dependent graph captures the general
structure, it becomes inefficient as it scales exponentially
with N. Furthermore, a summary graph (aggregating all
the regimes) can be non-informative, due to inability to
distinguish state-dependent effects. Instead, we define the
conditional summary graph.

Definition 3.1 (Conditional summary graph, first-order
Markov setting). The conditional summary graph is a set

are dynamically modified by the state s, .

of K graphs, gf;; = {Q,?SH < k < K}, where K is
the number of possible state values. Each summary graph
G5 := {V, £S5} has the same vertices V = {1,..., N}.
An edge i — j exists in £ if there exists ¢ such that
s =k and ") connects to :cii)l ingrrt.
For simplicity, we omit self-connections in Fig. 2¢ (black
edges in Fig. 2a), where we show the conditional summary
graph extracted from the full time graph. For £ = 1 we
observe 553) =1, and a “red edge” connects a:§3) and a:f),
placing a red edge in £7°. Similar reasoning applies for
G§'S. Compared to summary or regime-dependent graphs
(Fig. 2b), the conditional summary graph offers a compact
and informative representation of state-dependent causal
structures. In summary, the SEM for conditionally station-
ary time series can be formalised as follows:

ng) = £

St—1

(w@ﬂwi?l ePAY) (t— 1))+5§,j)o ®)

St—1

This introduces the following assumption:

(m4) Multi-state dependence: The parents PAgZ )71 (t—1)
of variable j at time ¢ are defined by GO'% as:

AL (t—1) = {af)]

St—1

jec k=5 1<i< N}. (6)

C ,(f) C V denotes the children of variable ¢ in state k, speci-
fied by GE'5. To illustrate, in Fig. 2a the parents of 5>

(a2l 2 as2 e CF) and 2 € ).

o

are

3.2. Amortisation of Conditional Effects.

The conditional summary graph introduces linear scaling
with K. However, indexing the SEM in Eq. (5) by s;_;
requires KV functions. Taking inspiration from interac-
tive systems (Kipf et al., 2018; Lowe et al., 2022), we pro-
pose a two-stage interaction and aggregation framework,
formalised as the following assumption:
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Figure 3: SDCI extracts the labels of conditional effects that
describe state-dependent interactions in a sample.

(mS) Global function-type dependence: The effect be-
tween any pair of variables is determined by n. functional
effects F := {fo,..., fn.—1}, where fy(-) = O represents
the absence of an edge. Each functional effect is state-
dependent, i.e., the effects from variable ¢ at time ¢ are
determined by its state SE ") These effects are collected in

the labels of conditional effects:
W = {wi’j,k €{0,...,nc—1}1<i,j <N,

1<k <K wip=0 < jgzc,g“}, %)

where w; ; i, specifies the edge-type i — j at state k, associ-
ated to variable . In the aggregation stage, the interactions
are combined using a permutation invariant function g:

9 (@01) = g(wiﬂ,

{fo (@202, Ii #j}>, ®)

where e; = w, ;@ - The function g aggregates interac-

tions to variable 7, capturing complex state-dependent dy-
namics. This formulation effectively reduces the exponen-
tial complexity of conditionally stationary time series, and
can be efficiently implemented with graph neural networks
(GNNs) (Kipf et al., 2018). Furthermore, it aligns with
well-established mechanisms in physical systems, such as
aggregating forces from pair-wise interactions.

3.3. Implementation

We propose State-Dependent Causal Inference (SDCI), a
probabilistic approach to infer the underlying causal struc-
ture from time series. Given a dataset D, each sample
1.7 ~ D is driven by W, which may differ across samples.
SDCI models the joint dynamics of states, edge-types, and
observations (Fig. 3), and builds on graph neural networks
(GNN5s) and interactive systems (Kipf et al., 2018).

Generative model. The joint distribution for conditionally
stationary time series is dependent on s;.7, W, and ¢ :=

{tw, s, s }. For observed states, we define:
= py, (@r7[81.7, W)Py,, (W),  (9)
with a factorised prior on the edge labels py, (W) =

pl,/}(mlzTa W‘Sl:T)

Hszl [ Py, (wijk). We can guide ¢, through domain
knowledge (e.g. sparsity). Given W ~ py, (W) and s1.7,
a sequence x1.7 is generated as

T—-1 N

H prz (wg_)ﬂmt, St, W)

t=0 j=1

pwz (ml:T|Sl:T7 W) =

To compute py, (xgi)l |zt, s¢, W), the model queries edge-

types e\ = w; ;5 for s\

tions fe(mi ),:cg 2

= K/, retrieves pairwise interac-
), and aggregates them:

h(” Z 1 el = mgz)’ xg;)),
e>0
fiii)l - wi” +g(Yon?2), (0
i#j
where F := {fe}o<] Land g are parametrisable functions,

similar to Eq. (8). x; +)1 denotes the mean of wgﬂ_)l, which is
Gaussian distributed with covariance o2I. For latent states
with influence from x.7 (determined and recurrent cases;

Figs. 1b, 1c), the joint distribution extends to:

pw(ﬂJl:T,Sl;T,W) = Py (W)

T
H Doy, (Te|Ti—1, St—1, W)py., (St|Tei—1,, St—1:4—L.)-
t=1

where L, and L, are the maximum lags. The determined
case fixes L, = 0 and L, = 0; and we assume the states
are autonomous with shared parameters );:

pws(3t|wt:t7Lza St—1i-L,) =

Hm; St |mtt La 7st Leer)- (D

Inference. Building on VAE-based approaches (Kingma
& Welling, 2014; Lowe et al., 2022), we introduce a vari-
ational posterior parametrised by ¢ := {¢d, ¢s}; which
approximates the posterior over W, and s1.7 as follows:

Q¢(W731:T|m1:T) =44, (W|-731:T)q¢5(31:T|-731:T)- (12)

where ¢4, is factorised across edges
softmax(¢;x/7),
Gij = [, (@1:7)i; € REXM(13)

44, (Wijk|T1.T) =

The function ¢;; extracts embeddings for any pair ¢ — j
that represents the state-dependent causal interaction, and
the architecture of f4_ (1.7) is based on (Chen et al., 2021).
See Appendix B.3 for details. In the determined case, exact
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inference on the states is tractable (see Appendix B.2), and
we set ¢y, (S1.7|T1.1) = Py, (S1.7|T1.T)-

4o, (st 2}) = &) = fo.@”), (14)
In the recurrent case, ¢y, (S1.7|T1.7) = HZ;I g, (St|T1.7)

is implemented via a bidirectional RNN-GNN that approxi-
mates smoothing (details in Appendix B.3).

softmaxx(s75 /7)s

Objective. SDCI optimises the ELBO (Kingma &
Welling, 2014) (see Appendix B.1 for derivation):

log py(x1:7) > —KL(%w (W|w1:T)prw (W))
- i KL (qqﬁs (3t|$1:T)"Pws(st@t:t—LmaSt—lzt—Ls))
t=1

+ Eq¢(W,slzT\m1¢T) [Ingwm (xl:T‘slva W):| ) (15)

where reparametrisation tricks (Jang et al., 2017) en-
sure backpropagation for discrete samples W, s;.;p ~
qs(W, s1.7|x1.7). To reduce variance, we use straight-
through Gumbel-softmax and fix gradients to pass through
unperturbed marginals (Ahmed et al., 2023). During train-
ing, Eq. (10) becomes:

h(”) Zl( (= k)zl (wijr=e) fe wt ) gj))v (16)

e>0

and we optimise ¢ and v using mini-batch gradient ascent.

4. Theoretical Considerations

We provide identifiability guarantees for the labels of con-
ditional effects W, driving conditionally stationary time
series under assumptions (m1-m5). A detailed analysis of
identifiability for regime-dependent graphs under (m1-m3)
and conditional summary graphs under (m1-m4) is provided
in Appendix A. We first define partial identifiability for WW.

Definition 4.1 (Partial identifiability of conditional ef-
fects). Given observations x1.7 and a family of models
M satisfying (m1-m5), we say M is partially identifi-
able with respect to the labels of conditional effects if for
any p,p € M, with corresponding WV and W such that
p(x1.r) = p(er.7); K = K and there exist permutations
7€ S, and 0™ € Sk such that forany i, j € {1,..., N}
andk e {1,..., K }

wz]k

Wi, 5.k = 7T( i7j7a(i)(k)) R Wi 5.k 75 0. (18)
Remark 4.2. Mixture models can only be identified up to
permutations (Yakowitz & Spragins, 1968). Contrary to
previous work (Gassiat et al., 2016; Hilvd & Hyvarinen,
2020; Song et al., 2024), our results do not require knowl-
edge of the number of components K. Eq. (17) establishes
equivalences of G7'¢ up to element-wise permutations o
for outgoing edges {Cfl), cee C%) }+. Eq. (18) ensures per-
mutation equivalence in edge labels 1, ..., n..

Wi j o ) (k) < Wi 5.k = O7 (17)

This partial identifiability definition excludes the state distri-
bution, as no restrictions on the state dynamics are imposed.
It cannot generally be achieved under (m1-m5) without fur-
ther assumptions. However, our main focus in this work
is to recover state-dependent structures, and we leave state
distribution identifiability for future work. Below, we list
sufficient conditions for identifiability.

(al) Umque indexing of outgoing structure. For each

state st 1 €{1,..., K}, the graph representing the direct
causes of 7 is unique. That is, forany ¢ € {1,..., N}:

Vi K € {1, KhEk#K <« ¢ #£c% 19

This is stronger than the typical unique indexing assumption
for mixture models (Balsells-Rodas et al., 2024), where:
p(xs|es 1,81 = (k1,...,kn)) #

p(@e|ei—1,80-1 = (k1. ..., k),

for (1{?1,. .. ,kN) 7’5 (ki7 . >k§V)

(a2) Unique indexing of function types. Given (m1-m5):
(@a2.1): For any j € {l1,...,N}, and given
g(x@), {R)|i #£ ]}) where h(49) = f, (2, (j)) for

some e € {0,.. — 1}, the partial derivative 5% is
non-zero almost everywhere foranyi e {1,...,N}.

(a2.2): Edge-types differ almost everywhere: fy := 0, and
fore # ¢/, € {0,n.—1}, the following set has zero measure:

Xe,e’ = {.’131 € R? : dxy € Rd,

Ofc(®1,@2)  Ofl(T1, )
= AT o)

These assumptions ensure pairwise interactions are not can-
celled during aggregation, and the edge-types remain suffi-
ciently distinct. For example, SDCI, naturally satisfies (a2.1)
through GNN message passing. Additionally, implementing
edge-type functions as analytic functions guarantees (a2.2).
We now state the following identifiability result:

Theorem 4.3. Conditionally stationary time series satisfy-
ing (ml-m5) are partially identifiable with respect to condi-
tional effects (Def. 4.1), if they meet assumptions of unique
indexing of (al) outgoing structure and (a2) function types.

Proof sketch. The full proof is depicted in Appendix A.5,
and it can be divided into 3 major steps.

(i) Write p(x¢|x1.1—1) as a mixture model. Under (m1-
m3) and (al-a2), the regime-dependent graph is iden-
tifiable up to a permutation 7 € Sy~ (Theorem A.6).
Under state dependencies on x1.;—1, the key is to
show that the permutation equivalence of the transi-
tion distribution is preserved almost everywhere due
to (al-a2), no matter the overlap on x;_1.
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(i) Using (m4) and (al), regime-dependent graph iden-
tifiability transfers to conditional summary graph
identifiability (Theorem A.7).

(iii)) By (m5) and (al-a2), partial derivatives in the aggre-
gation step reveal permutation equivalence on the
edge-types (Corollary A.8).

While several prior works (Hélvd & Hyvarinen, 2020; Song
et al., 2024; Balsells-Rodas et al., 2024) introduce nonsta-
tionarity via regime switching, our approach offers three
key advantages:

¢ Unknown number of state values /: Most prior work,
including HMM-ICA (Hilva & Hyvarinen, 2020) and
CtrINS (Song et al., 2024), assumes that the number of la-
tent regimes is known. Our approach leverages Yakowitz
& Spragins (1968), which enables identifiability without
knowing the true number of regimes. This allows iden-
tification of K by model selection (McLachlan & Peel,
2000) (assuming convergence to the MLE), which is not
theoretically supported when K requires to be known.

* No assumption on state dependency: Prior works typi-
cally assume either the “states independent” case (Halva
& Hyvarinen, 2020; Balsells-Rodas et al., 2024; Rahmani
& Frossard, 2025); or the “states determined” case under
strong structural constraints (Song et al., 2024). Our
identifiability results make no assumptions about state
dependencies, allowing feedback from observations.

¢ Regime-dependent identifiability: Our theoretical re-
sults (Thms. A.6-A.7; Cor. A.8) build from general
Markov Switching Models to our specific implemen-
tation, SDCI. Theorem A.6 introduces a novel proof
strategy that extends from Yakowitz & Spragins (1968),
providing a general theoretical foundation for regime-
dependent causal discovery (Saggioro et al., 2020).

As mentioned, SDCI considers samples 1.7 ~ D, each
generated under different structures. The presented results
remain valid, as identifiability holds even when considering
the distribution of a single sample. However, the consis-
tency of SDCI, along with other approaches within the same
family, such as ACD (Lowe et al., 2022), remains an open
challenge. Recent works (Gong et al., 2023; Geffner et al.,
2024) have shown that the validity of variational objectives
for causal discovery relies on strong assumptions; including
universal approximation properties of ¢, absence of model
misspecification, and the infinite data limit. These works
assume fixed structures across samples, where SDCI can be
adapted by setting ¢4, W|z1.7) = ¢4, (V).

5. Related Work

Causal discovery for time series traditionally extends from
non-temporal data (Assaad et al., 2022). These approaches

include constraint-based methods (Entner & Hoyer, 2010;
Runge, 2018), score-based methods such as DYNOTEARS
(Pamfil et al., 2020) based on Dynamic Bayesian Networks
(Murphy et al., 2002), and functional causal model-based
methods (Shimizu et al., 2006; Zhang & Hyvirinen, 2009;
Peters et al., 2014) with constrained dynamics assumptions
(Peters et al., 2013). The functional causal model-based
approaches also motivate the use of deep generative models
for causal discovery in high-dimensions (Yu et al., 2019).

Our work focuses on modelling nonstationary time series
with discrete latent variables that condition the underlying
structure. It is related to Amortized Causal Discovery (ACD;
Lowe et al. (2022)), which assumes stationarity and amor-
tizes summary graph discovery across samples with different
graphs but shared dynamics. We extend ACD by allowing
the causal structure to vary according to latent state vari-
ables, thus enabling conditional stationarity. When observed
auxiliary variables are present, Monti et al. (2020) uses time
contrastive learning (Hyvarinen & Morioka, 2016) and non-
linear ICA for causal discovery; while Yao et al. (2022)
establishes identifiability conditions in the presence of piece-
wise stationary disturbances. Regime-dependent dynamics
assume no access to states Saggioro et al. (2020), where
Balsells-Rodas et al. (2024) proves identifiability through
Markov Switching Models; and Rahmani & Frossard (2025)
via a score-based approach. Varambally et al. (2024) also
proves identifiability when the discrete latents represent
global states. Our “states determined” model is similar to
Song et al. (2024), where identifiability is established by
assuming mechanism sparsity and knowledge of the num-
ber of regimes. Other works focus on fixed causal struc-
tures, modelling nonstationarity through noise distributions
(Huang et al., 2020; Gong et al., 2023) or time-varying ef-
fects (Huang et al., 2015; Zhang et al., 2017; Ghassami
et al., 2018; Huang et al., 2019); such as Huang et al. (2020)
with distribution shifts; Gong et al. (2023) with history-
dependent noise; or Huang et al. (2015) with time-varying
functional causal models.

6. Experiments
6.1. Springs and Magnets

We evaluate SCDI on spring data adapted from Kipf et al.
(2018); Lowe et al. (2022), consisting of particles in a box,
connected by springs with directed impact — meaning that
e.g. particle 7 could affect particle j with a force through a
connecting spring, but leaving particle ¢ unaffected by this
spring force. We further modify the dataset to introduce
repulsive magnetic interactions, resulting in 3 edge-types:
none, spring, and magnetic. We assess SDCI across de-
termined and recurrent states. In the determined case, the
state is modeled as a function of particles’ positions, while
the recurrent case involves state transitions when particles
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(a) States determined.

States
(b) States recurrent.
Figure 4: F) Score of the edge labels W and states for
samples with a shared underlying structure with K = 2.

B 3vars
B 5vars
= 10 vars

B 10 vars
M 20vars

States
(a) States determined.

States
(b) States recurrent.

Figure 5: F; Score of the edge labels VW and states with
structures varying across samples with K = 2.

collide with walls. Details on data generation, model hyper-
parameters, and additional results (including observed case)
are provided in Appendices C.1, B.4, and E.I respectively.

To empirically verify the consistency of SDCI in estimating
state-dependent structures, we begin with a fixed-graph set-
ting, where the graph remains constant across samples, and
use an amortised posterior ¢, (W|x1.7) = ¢4, (W) for
inference. Fig. 4 demonstrates that SDCI achieves perfect
structure estimation on both state settings. However, accu-
rately estimating the states in the recurrent case is more chal-
lenging, likely due to the exponential computational cost
of exact inference. Our formulation considers graphs that
vary across samples, and we present results again in both
state cases in Fig. 5. In this case, recovering state-dependent
structures is significantly more challenging. While SDCI
successfully captures the state dynamics in the determined
case, the increased complexity from variable graph struc-
tures makes recovering state-dependent structures in the
recurrent case notably difficult, even with only 3 variables.

We compare SDCI with causal discovery baselines in ex-
tracting graphs from conditionally stationary time series.
Specifically, we measure the F} score for summary graph
identification in determined states data with fixed and vari-
able graph structures, benchmarking against ACD (Lowe
et al., 2022), Rhino (Gong et al., 2023), and Neural Granger
Causality (N-GC; (Tank et al., 2021)). For variable graph
datasets, Rhino and N-GC require re-training for each sam-
ple, adding computational overhead. Results in Fig. 6 show
a clear advantage of SDCI in terms of summary graph es-
timation. We observe that approaches assuming causal sta-
tionarity struggle to aggregate the full structure into a co-
herent summary graph, limiting their performance. How-
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Figure 6: Summary graph (G°) F} score on determined
states data, with fixed and variable structures across samples.
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Figure 7: Test reconstruction MSE vs number of states /'
for data with ground truth K = 2 (red) and K = 4 (blue).

ever, N-GC particularly achieves strong results for vari-
able graphs, surpassing ACD despite its simplicity. Overall,
SDCI decomposes the nonstationary dynamics into con-
ditional stationary components while accurately capturing
state transition dynamics.

Selecting the number of states. Determining the number
of states K, or the number of regimes in regime-switching
dynamics, is a fundamental challenge in real-world data. As
discussed in Section 4, SDCI is also identifiable in terms
of K. Assuming the consistency of SDCI, K can be theo-
retically recovered by maximising the data log-likelihood,
which we approach by model selection (McLachlan & Peel,
2000). However, in practice, overestimating K may lead
to overfitting or redundant regimes. To overcome this is-
sue, standard selection heuristics such as the elbow method
(Thorndike, 1953) can be applied. Figure 7 shows the recon-
struction error for two settings: states recurrent with N =5
and K = 2 (in red); and states determined with N = 10 and
K = 4 (in blue). In both cases, the MSE plateaus when K
reaches its ground truth value, thus providing a principled
heuristic to identify the true number of states.

6.2. Gene Regulatory Networks

We extend our evaluation to the inference of Gene Reg-
ulatory Networks (GRNs) during cellular differentiation,
reprogramming and development, which are defined by dy-
namically changing gene interactions with nonstationary,
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Figure 8: Example of a bifurcating network (b) from Dyn-
Gen, where in (a) gray nodes denote target genes, and other
colors indicate genes activated by their corresponding states.

Figure 9: Conditional summary graphs extracted by SDCI.
Genes are grouped by states, and gray nodes denote targets.

and nonlinear dynamics (Schiebinger et al., 2019; Yeo et al.,
2021; Kamimoto et al., 2023; Bhaskar et al., 2024). We
simulate gene expression data using DynGen (Cannoodt
et al., 2021), a semi-synthetic simulation engine that models
dynamic regulatory interactions.” In DynGen, an underly-
ing state network introduces nonstationarity by activating
or deactivating groups of genes, leading to time-varying
structures. Fig. 8 illustrates an example of a bifurcating net-
work, where the system transitions through different states:
activating genes in A, then transitioning to B, and ending
by activating genes from C or D. See App. C.2 for details.

We simulate 1000 cells with N = 49 genes for T" = 50
time steps; under a bifurcating state network with 4 regimes.
We find SDCI is tailored to GRN setups, since the state
variables (K = 2) naturally activate or deactivate gene ex-
pressions. We evaluate SDCI in the 3 scenario classes, and
we leverage ground-truth information to manually activate
or deactivate genes in the observed case. In Table 1 we
report results in comparison to causal discovery baselines
in terms of estimating the underlying GRN structure, where
we observe SDCI shows superior performance in terms of
F1 score. In the observed case, we find that state auxiliary
information does not provide a significant advantage, as

*We do not use the widely-used DREAM3 benchmark (Mar-
bach et al., 2010) since it is limited by only simulating steady-state
and individual gene perturbation conditions.

Table 1: AUROC and F score of the GRN structure.

METHOD AUROC F1 SCORE
R-PCMCI (Saggioro et al., 2020) | 0.887 0.062
N-GC (Tank et al., 2021) 0.556 0.093
ACD (Lowe et al., 2022) 0.714 0.187
Rhino (Gong et al., 2023) 0.933 0.081
SDCI — Observed 0.805 0.182
SDCI — Determined 0.936 0.347
SDCI - Recurrent 0.855 0.276

o SDCI Obs (K=4)

0.31
ACD
« SDCI Unobs (K=4)
w0.2{ * SDCIUnobs (K=2) /
2 « VRNN .
o NRI-NPM W

0.075 20 40 60 80 100
Time

Figure 10: Test error on forecasts. The dashed line repre-
sents the mean value.

gene deactivation is typically gradual rather than abrupt.
The recurrent case suffers from the underlying exponential
cost of exact inference (approximated by q4), which is criti-
cal in high variable scenarios. In contrast, the determined
case proves to be a simple yet effective approach that adapts
to the time-varying dynamics in GRNs. We visualise the
estimated strucutre in Fig. 9, where genes are grouped by
their associated states. SDCI successfully detects deacti-
vated gene interactions, except for gene groups B and C;
and thus provides a robust framework for realistic GRNs
with direct applications to tasks such as cell type specific
regulatory network inference.

6.3. NBA Player Trajectories

We consider NBA player movements (Linou, 2016), a real-
world multi-agent trajectory dataset with highly nonlinear &
nonstationary dynamics. See Appendix C.3 for details of the
dataset, including our design for auxiliary states (as ground-
truth is unavailable). We evaluate SDCI under observed and
determined states. To simplify the task, we model the tra-
jectories of the players (position and velocity) conditioned
on the ball’s position and velocity. This is achieved by mod-
ifying Eq. (10) to include the ball features in the message
passing aggregation of the decoder. In addition to ACD, we
compare against non-causal baselines VRNN (Chung et al.,
2015) and NRI-NPM (Chen et al., 2021) (Appendix B.4).
All the models are trained on sequences of length 7" = 100.

Fig. 10 shows the average forecast error (MSE) of the player
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Figure 12: Learned regimes from SDCI on the NBA dataset.
The colour maps refer to the state posterior distribution
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positions on a held-out dataset. Overall GNN-based meth-
ods outperform VRNN. Moreover, ACD and SDCI achieve
better long-term forecasts, despite using first-order Markov
transitions. This is likely due to the “no-edge” interaction
for reducing error accumulation through time. The hidden
state setting allows SDCI to have a slight advantage over
ACD thanks to adapting player interactions through time.

Fig. 11 visualizes the extracted conditional summary graphs
from SDCI for a sample trajectory (additional visualiza-
tions in Appendix E.2). We observe that SDCI extracts
interpretable structures relevant to basketball plays: Players
2 and 5 receive the majority of interactions (Fig. 11b) as
Player 2 passes the ball to Player 5. Also interactions from
the read team (defense) to the blue team (offense) are more
prominent. Notably, SDCI adapts to nonstationary dynam-
ics by controlling interaction sparsity and switching regimes
throughout sequences.

While our identifiability theory does not require a pre-
determined number of states values K, in practice accurate
estimation of K remains a challenge, where different K
may return different results. For instance, Fig. 12 shows the
state posterior as a function of player positions on the court.
For K = 2, states change near the mid-court line, reflecting
common basketball play strategies where players transition
between “defense” and “offense”. The K = 4 case re-
turns a more fine-grained result by further partitioning the
court, with boundaries positioned near the three-point line.
Notably these insights arise despite model simplifications,
where the states are made dependent solely on positions,
excluding velocities. This highlights how SDCI can adapt

to diverse modelling choices while extracting interpretable
patterns in complex, nonstationary systems.

7. Conclusions

We have developed SDCI for causal discovery in condition-
ally stationary time series. The key innovation is the new
concept of conditional summary graphs that are identifi-
able under a broad class of underlying state dependencies
Evaluations on semi-synthetic data show SDCI’s superior
performance in extracting the underlying causal graph and
its potential for biology applications. Importantly, the im-
provement of SDCI over VRNN and NRI on modeling NBA
player movements demonstrate the promise of causality-
driven methods for forecasting and data interpretability.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Identifiability Proofs

We have introduced conditionally stationary time series in Section 3. Here, we will revise the model assumptions introduced
in the main text, and present of our identifiability theory; starting from general Markov Switching Models (m1-m3),
following with conditional summary graph identification under (m4), and finishing with identifiability of the labels of
conditional effects (m5) utilised in SDCI.

A.1. Preliminaries

We review the main model assumptions that characterise SDCI. We start with the assumptions that apply to general MSMs,
where we have a single global state at each time step t. In this case we denote the global state as u; =: p(s¢) € {1,...,U}
for some injective ¢ : {1,..., K} — {1,... U} (we use s; when referring to multiple states in SDCI).

(m1) Conditional first-order Markov transitions controlled by u;_; only:

P(Xe| 11, Wip—1) = p(@e|Tr—1,ue—1), VtE€{2,...,T}. 2n

(m2) Conditional stationarity: the conditional transition distribution does not change during time: for any v € {1,...,U}
we have for any ¢ # t/, any 3,~v € R4

plxy = Blri—1 =7, u—1 = u) = p(xy = Bley_1 =7, upy—1 = u). (22)

(m3) Factorisation structure based on the ANM model with Gaussian noise:
N .
i1, u) = [[N ( @, p) (x§21|x ePAY) (t- 1)) ,021), Vi e {2,..,T). (23)
j=1

Again, we formalise assumptions specific to conditionally stationary data, where the total state configuration is denoted

by grouping all the individual states s; = {s(1 ooy sgN)} € {1,..., K} . Note that this defines a specific structure in a
general MSM with U := KV global states.

(m4) Multi-state dependence: For each variable i € {1,..., N} attimet € {1,...,T}: a:g?) there exists a state variable
sV e {1,..., K}, suchthat s,_; := (s{,,...,sM) e {1 ., K}~ For any variable j € {1,...,N},PAY) (t —1),
is defined as follows:

St—1

PAY) (t—1):= {a:t )i e k= s 1,1§z‘§N}. (24)

where C,(:) C V denotes the outgoing edge structure (children) of variable ¢ € {1,..., K}, corresponding to a state
ke{l,...,K}.

(mS5) Global function-type dependence: We allow n. functional effects (including the no-edge effect). We define the
labels of conditional effects as

W= {wi,j,k €{0,... . ne—1}tije{l... Nhkef{l,. . K}w,,=0 < jgéC,(f)}, (25)

where each w;_; , denotes an edge-type from variable 7 to j at state k, associated to variable 7. Each edge-type corresponds
to a different function over the total function interactions F = {fo, ..., fn.—1}, where fo(-) = 0 from Eq. (25). Given a

state configuration s;_1, éle :R? — R%in Eq. (23) is defined as follows for any x;_; € RV¢:

fsgﬁl (Te-1) = (f’/’t 13 {fm (m, 1 mt 1) li # j})’ where ¢; = W s € {0,...,ne}, (26)
where e;, 7 € {1,..., N} denotes the interactions between variables ¢ and j, which are aggregated by a permutation invariant
function g.
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A.2. Partial Identifiability

We wish to analyse the identifiability of the labels VW for SDCI (m1-m5) in the case of unobserved states. However, we first
require developing identifiability for regime-dependent and state-dependent structures, i.e Qﬁg and G&% respecitvely. We
define identifiability of the regime-dependent structures for a general MSM (m1-m3).

Definition A.1 (Partial identifiability of regime-dependent graph). Given observations x;.7 and a family of models M
satisfying (m1-m3), we say M is partially identifiable with respect to its regime-dependent graph if for any p,p € M,

with corresponding PA(?) (£ — 1) and I/’K(l)(t —1)foranyi e {1,....,N},ue{l,....,U},and & € {1,...,U}), such

that p(x1.7) = p(x1.7); U = U and there exists a permutation 7 € Sy such that PAS) (t—1) = I/’:&S()u)(t — 1) for
ie€{l,...,N},andu € {1,...,U}.

We also define the identifiability of the outgoing edges C,gi) in terms of GU'%, given a model with N state variables and
multi-state dependence (m1-m4).

Definition A.2 (Partial identifiability of outgoing edge structure). Given observations x1.7 and a family of models M
satisfying (m1-m4), we say M is partially identifiable with respect to the outgoing edge structure if for any p, p € M, with

corresponding ,. an (@ orany: € {1,..., kel ..., , an AE 7...,A , such that p(x1.7) = p(x1.7);
ding C") dé]i)f 1,...,NLke{l,...,K},and k € {1,..., K}), such th

K = K and there exist permutations oY) € Sk such that C,(j) =CY  forie {1,...,N},and k € {1,...,K}.

o (k)

Finally, we further define identifiability of the labels of conditional effects under global function-type dependence (m5).
Definition A.3 (Partial identifiability of conditional effects). Given observations ;. and a family of models M satisfying
(m1-m5), we say M is partially identifiable with respect to the labels of conditional effects if for any p,p € M, with
corresponding W and W such that p(.7) = p(1.7); K = K and there exist permutations 7 € S,,_ and ¢(*) € Sk such
that forany ¢,5 € {1,...,N}andk € {1,...,K}:

Wik = W; 5,0 (k)y < Wijk =0, 27)

Wi gk =T (lﬂi7j7a(i)(k)) < Wi 5.k 75 0. (28)

As mentioned in the main text, these definition consider identifiability is partial since it does not cover the structure capturing
interaction between x1.7 and s1.7 as well as those within s;.7.

A.3. Sufficiency Conditions for Identifiability

The defined partial graph identifiability cannot be achieved without further assumptions for (m1-m5). Below we list the
sufficient conditions for such identifiability, some of them which we already introduced in the main text.

(al) Unique indexing of outgoing structure. Here we assume that for each state sf_)l c{1,., K}, ic{l,...,N} the
underlying graph representing the direct causes from variable ¢ to the rest of the variables is unique.

Vi K e {1, K}Lk#K < ¢V £c vie{l, . N} (29)
This assumption has equivalences to MSMs, i.e. when considering all state variables, s;_1 € {1,..., K}V as a global state,

U1 € {1,...,KN}.

(b1) Unique indexing of regime-dependent graph structure. For each possible state u;—1 € {1,...,U} the underlying
graph representing the direct causes between variables is unique. In other words, the resulting U graphs are different. This
implies that the following holds:

Vuu' € {1, Uhu#d & 3Fje{l,..N}stPAY _ (¢-1)#PAY _ (t-1). (30)
Assume an invertible injective mapping o : {1,..., K} — {1,..., K™} such that we can map a specific state configura-
tion (k1,...,ky) to an assigned value k1. € {1,..., KN} thatis, k1.xy = o(k1, ..., ky). With this view, we can write

the state variables in terms of one global state variable with KV regimes. We connect assumption (al) to assumption (b1)
defined for MSMs as follows.
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Proposition A.4. Assumption (al) implies assumption (bl ).

Proof. Recall the definition of PAY) .

St—1"

PAY) (t—1)={a’) |jeci k=5, 1<i< N} (1)

St—1
Given two state configurations (k1,...,kn), (kl,..., k) € {1,..., K}" that differ in at least one k;,i € {1,..., N},
under (al), we have C,ii) #+ C,(CZ{). Again from (al), 3j € {1,..., N} such that j € Cl(c? and j ¢ C,(;,'_). From Eq. (31), and by
writing PAng1 (t — 1), as a MSM with one global state (u; := s;) we have

Ge{l . Nysta ePAl o (t—1), andal ¢ PAY L (E—1)

t—1=¢ Ut—1=@
: (4) ()
= Jje{1,...,N} s.t. PAJFI:@(,%M,CN)(t —-1)# PAu]tfl:SO(kllwuxkE\])(t -1) (32
Therefore, assumption (b1) also holds. L]

We now revisit the functional assumptions introduced in the main text, and establish connections to MSMs.
(a2) Unique indexing of function types. Under the model assumptions (m1-m5), we assume the following:

(a2.1): Forany j € {1,..., N}, and given g(x"), {h("7)|i # j}), where h(+) = f, (2 x)) for some e € {0,...,n, —
1}, the partial derivative % is non-zero almost everywhere for any ¢ € {1,..., N}.

(a2.2): Edge-types differ almost everywhere: f := 0, and for e # ¢/, € {0,n. — 1}, the following set has zero measure:

Ofe(x1,®2)  Ofe(T1,T2)
8151 o 8(121 '

Xy e {acl € R?: 3z, € RY, (33)

(b2) Functional faithfulness. This condition considers the functional properties of fs(,f Zl in terms of its faithfulness to

the graph structure. We require the following sense of faithfulness in terms of the functional behaviour for all s;_; €
{1,..., K}¥:

(b2.1) fs(le is differentiable w.r.t. PAg{ )_ (t — 1) almost everywhere. Also all the entries of the Jacobian matrix
i) |
dPAY)  (t—1)’

St—1

when well defined, are non-zero almost everywhere w.r.t. PA(SJ; )71 (t—1).

(b2.2) If aciz_)l ¢ PA(SQ1 (t — 1), then fs(,le is a constant w.r.t. w§’31

Intuitively, this faithfulness condition requires the output of the function fs(,f 21 to vary if and only if PA(S{ )_ L (t — 1) varies.
We also connect (a2) to (b2).

Proposition A.5. (a2) implies (b2).

To see this, note that (a2.1) and (a2.2) force the derivatives w.r.t PAg{ )71 (t — 1) to be non-zero almost everywhere (which
implies (b2.1). Furthermore, this is only violated in a zero measure set of points, or when variable ¢ interacts with j via fo,

but this only is possible when wil_)l ¢ PAg]l1 (t — 1), which implies (b2.2).
A.4. Identifiability of Markov Switching Models

With the above assumptions we can now state the following identifiability results:

Theorem A.6. A Markov Switching Model (m1-m3) under assumptions (bl) and (b2) is partially identifiable with respect to
its regime-dependent graph (Def. A.1).
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Proof. Assume there exist two MSMs satisfying p(x1.7) = p(x1.7). Since wlog. p(x1.t) = p(x¢|T1.0—1)p(X1.4—1), the
fact that p(x1.7) = p(@1.7), and p(x¢|x1.4—1) is a probability distribution imply that

p(mt|m1:t—1) :ﬁ(wt‘mlzt—l)a Vt: 2;"';T' (34)

Now since the model assumes (m1) a conditional first-order Markov structure controlled by the previous state s;—1 (Eq. (21)),
we can show that the conditional distribution is a finite mixture distribution:
U
p(xe|ri—1) = ZP(th =uleys—1)p(Ts|Ti—1, U1 = u). (35)
u=1
We assume (bl) and functional faithfulness (b2). Since (m3) p(xy.¢|@i—1,u—1 = ) is Gayssian (Eq. (23)), using the
identifiability result of Gaussian finite mixture (Yakowitz & Spragins, 1968) we have U = U, and for almost any given

x;_1 = a € RY? (modulo some zero-measure sets) we have the following result: for any u € {1,...,U}, there exists
(e, u) € {1,...,U} such that

p(ut—1 = U|$1:t—2a Ti—1 = Of) = ﬁ(ut—l = ﬁ(a,u)|$1:t—27$t—1 = Oé)7

. X (36)
P(Te|Ti—1 = o, up—1 = u) = P41 = @, up—1 = U, u)).

To clarify, Proposition 2 in Yakowitz & Spragins (1968) establishes multivariate Gaussian distributions are identifiable
if and only if the means or covariances are distinct. Our assumptions (b1) and (b2) ensure distinct means for almost any
;1 = € RV4,

The (m3) factorised Gaussian structure (Eq. (23)) and the above identification result further indicate that

pEP i1 = o, up g = u) = p(@?|@_y = o, ui_y = d(a,u)), Vji=1,..,N. (37)

Again wlog., let us denote the mean function ofp(:cgj)\mt_l = @,ui_1 = u) as fﬁj) foryj=1,...Nandu=1,... K,
and we also use a short notation PASj ) (t — 1) to denote the input variables for fI(Lj ). Under (b2.1) of the (b2) functional
faithfulness assumption, and given that U, N < oo, there exist an open set X C RV such that (X)) = (RN ?), where
1(+) denotes the Lebesgue measure of a Euclidean space, and both Eq. (37) and the following condition hold (note that
PAY (t — 1) C @y_1):

all the entries of ———————
dPAY) (t — 1)

|#,_,—c are non-zero, Ve € X, Vj € {1,...,N}. (38)

To see this: under (b2.1) we have for each u € {1,...,U} there exists an open set X, C PAY) (¢ — 1) with u(X,) =
M(PAEL] ) (t — 1)) such that the partial derivatives computed within this set are non-zero. Then we can construct X" as follows:

U
X=xnx, X=X x{z eRlz; ¢ PAD(t-1)}),
u=1

U
~ ~ i 7 /\( )
X =) (X x (7, e Rz, ¢ PA, (t —1)}). (39)

u=1

We can show wlog. that u(X, x {z\”, € RYa{", ¢ PAY (¢ — 1)}) = u(RN?) since the Lebesgue measure of RV is a
product measure. Therefore using the union bound we also have ;(X) = p(RN?),

Now we show that 4 (e, u) is a constant for a € X’ almost everywhere, and those « values satisfy 4 (o, u) = 4(u) and
i —~(4) )
PA)(t — 1) = PA;(,(t — 1) forall j € {I,...,N}.

(i) By model definition (m3) (Eq. (23)) and assumption (b2.1), within ;1 = o« € X we have p(:cgj)|a:t,17 U1 =
u) = p(:vgj)|PA7(j)(t —1),u¢—1 = u). Similarly for p we have ﬁ(w%j) |et—1,ut—1 = G(a,u)) = ﬁ(w&j)ﬂag()ayu) (t—
1), ut—1 = (e, u)).
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Then from Eq. (37) and assumption (b2.2), there exist at most a zero-measure set Xy C X of a values such that

PAi(L w(t=1)) # PA ) (t —1). Otherwise, we can show that there exist two a # ' € X, with PAEL()a w(t=1)) =

PAEL()Q w(t=1)) # PAY) (¢ — 1), which contradicts with Eq. (37) and (b2.2). This means, by Eq. (23) again, and

notice that p(X\Xp) = p(X):

—(5) ; .
PA; (o (t—1)=PAY)(t—1), VoaeX\Xy, Vje{l,. N}

(ii) Under (b1) unique indexing of causal graph structure, we have @(c, u) as a constant w.r.t. &« € X\ Xy. To see this,

if there exist o, @’ € X\ A} such that 4(a, u) # 4(a’, u), then from (bl), there exists j € {1,..., N} such that

PAEL(Q w(t—1)) # PAS()Q .)(t — 1)), a contradiction to point (i) above. We now write @(cx, u) = i(u) w.l.o.g., then

we have

PAV) (t — 1) = PAff(L)( 1), VaeX\Xy, Vje{l,.., N}

In summary, we have shown that there exists a permutation 7 € Sy such that & = 7(u) and the following equivalence holds
forall j € {1,..., N} and almost everywhere for z; ; € RV9:

i R i ; — (4)
pla @1, uy = u) = pla a1, ur = 7(w), PAY(t —1) =PA,(t - 1),

(40)
Vie{l,..,N}, Vo, i€ X\Xy, mX\Ap)=pu(RN?).

A.5. Identifiability of Conditionally Stationary Time Series

We start by introducing assumption (m4) and establish identifiability of the conditional summary graph under unique
indexing of outgoing edges (al) and functional faithfulness (bl).

Theorem A.7. The multi-state dependent model (m1-m4) is partially identifiable w.r.t. the outgoing edge structure (Def. A.2)
up to permutation equivalence of the states, if it satisfies the assumptions of (al) unique indexing of causal graph structure
and (b2) functional faithfulness.

Proof. Assume there exist two models under (m1-m4), satisfying p(x1.77) = p(x1.7). For simplicity, we first want to
view the above as a mixture model of KV regimes with one global state. Assume again an invertible injective mapping
o:{1,...,K}N — {1,..., K™} such that we can map a specific state configuration (k1, ..., ky) to an assigned value
kin € {1,..., KN} thatis, ki.y = @(k1,...,kn). Therefore, for any t € {1,..., T}, we can obtain u; = ¢(s;) to
reduce the multi-state model into a general MSM. Given that assumption (al) implies (b1), from Theorem A.6 there exists a
permutation permutation 7 € Sk~ such that kin = 7(k1.n) and the following equivalence holds for all j € {1,..., N}
and almost everywhere for ;1 € RVd.

: L : == ()
p@P |21, uy = ki) = Pl @1, w1 = T(kiy), PAY (t—1)=PAL, (- 1),

Vi€ {l,..,N}, Vo, ;€ X\Xy, pX\Xp)=pu®R ).

(41)

We can revert the above back to the multi-state model notation (m1-m4), obtaining the following equivalence for the causal

effects:

i —(J)
PAEQ’M,“N)(t — 1) =PA (porop 1) (ko) (E— 1), (42)

where the permutation 7 is general and can permute both state indices and values. From (m4), recall the definition of

I)AAEk)17~--7§N)(t — 1) for some (ki,...,kn) € {1,..., K}, and consider the equivalence on PAEk i) (t = 1) for some
(k)l,...,kN) S {17...,K}N2

PA(J)

st—1=(k1,..

L e =Ulaf 15 eV =B a1 @

=1 =1

Cz

=1
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Then for a given ¢ € {1,..., N} and by fixing k = k; € {1,..., K}, we can recover the outgoing edge structure C,E,i)

from PAéi) )(t —1)forall j € {1,..., N}. Equivalently, by fixing k = k; € {1,..., K}, we can recover 5](;) from

I/’KEQ _____ i) (t—1) forallj € {1,...,N}

Cl(cl) = U {] ‘ xgl—)l € PAE‘ii)l,.“,kz‘—l,kf,ki#»l kN) } U {j | mgl—)l € PAUAfl7---»’%—17’571;11+17~--»7A€N)(t B 1)} - (?lgcl)'
j=1 j=1

Given the unique indexing assumption (al), every k necessarily needs to map to a different k. Therefore, k is obtained from
a permutation of &, which might differ among variables. Therefore, there exists o(*) € Sk such that C, (@) — ¢t () (k) for all

ie€{l,...,N}and k € {1,..., K}. This implies that the multi-state dependent model (m1-m4) is partially identifiable
with respect to its outgoing edge structure. O

Corollary A.8. Conditionally stationary time series (m1-m5) are partially identifiable w.r.t. the labels of conditional effects
(Def. A.3) up to permutations, if they satisfy: (al) unique indexing of outgoing structure, and (a2) unique indexing of function
types.

Proof. Under (m1-m4) and assuming (al-a2), from Theorem A.6 the following equivalence holds for all j € {1,..., N} and
almost everywhere for 2;_; € RV

p (wl(fj)|wt717 St—1 = (kla sy kN)) = ﬁ (wi(fj)|mt717 St—1 = (U(l)(k1)7 cee 7J(N)(kN))> 5
Vie{l,.,N}, Va, 1 €X\X, u(X\X)=p®RN).

(44)

From Gaussian identifiability (Yakowitz & Spragins, 1968), we have féle (1) = fs(le (z¢—1), foreachj € {1,...,N}
and any x;_1 € X\ Aj. From (m5), we have

f'gzl (mt_l) =9 (fegi’{) (mgl)laxg 1) 7f (N J) (wt i,mij)l))
i (Fnp (@ath) o Fp (2] oi) ) = A2 (@), 49)

where ¢; )/ 1= w, . We can directly establish a relation from eg ) to ei 9

ng ) with respect to w§_>1

(i.0) i using the partial derivative on the mean of

off @) _ 09 Oy oy ey 0f (@) )
oz, ORI 9gD T 0hGD) 920~ gz,

where the derivative of g is independent of s;_;, and also notably j (which will be of great importance later). Under
assumption (a2.2), the set
Xfunc—U ee’UXee)
e#e’!

is zero measured. )E'e,e/ denote the sets in (a2.2) for another model p under (m1-m5) that satisfies (al-a2). Assume Xj
contains the points where the partial derivative of g with respect to h(*7) is zero, where we know it has measure zero from
(a2.1). Therefore, for any ¢o € X\ (X U (XN Xpune)),

N af”..
o (i,9)
. L= Ag . 47
2, —a)  OROD 9z o, o

o9 Oy
PESEPON

Note X\ (XoU(XY Xfyne)) is full measured. Given that e{"?) € {0, ..., n, —1}, from (a2.1-a2.2) we know that if e!"*) = 0
we have eg 4 = 0 due to having non-zero derivatives on fe for any e # 0. Furthermore from (a2.2), for any e # ¢’ the

derivatives of f. and f., are not equal. Then, any et b ) # 0 must map uniquely to another etl 9) # 0, otherwise under
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assumption (a2.1-a2.2) we have a contradiction with Eq. (47), as it will imply a repetition of edge- types Therefore for each
i and each j, there exists a permutation 7(9) € S, _; such that for any 6\ = 79 (")) for e{™1) € {1,... n. — 1}.
This does not imply any direct identifiability on the set of functions fi, ..., f, —1, but the labels of condltlonal effects W.
Due to permutation invariance of the aggregation g, the partial derivative terms % are equal across 7 and j for ﬁxed

xo € X\(X U (XN X}fyunc)). This forces the permutations 7(*7) to be equal, as otherwise, edge-types where e ;é 0

mapping to different égl ]1) will violate Eq. (47) under assumptions (a2.1-a2.2). Therefore, there exists 7 € S,,__1 such that

for any 6" = 7(e{")) for e{"?) € {1,...,n. — 1}. Now, recall the definition of W:
W= {wijp € {0, n =1} ig e 1, Nh ke {1l Khwige =0 <= j¢ i}, (48)

(i J)

t—1 =
@y , we have the following equivalence for W when w; gk #0,forany i, j € {l,...,N},and k € {1,..., K}.

4,758 1

From Theorem A.7, indexing w.r.t k in the above equatlon is equivalent up to a permutation ¢(*) on W. Considering e

Wik =T (’lf)i’j,g(i)(k)) , Wik € {1, ey M — 1}. 49)

This implies partial identifiability with respect to the labels of conditional effects VV (Def. A.3). O

B. Implementation Details
B.1. ELBO Derivation

Below we derive the ELBO objective for SDCI, which is expressed in Eq. (15). We start with the likelihood term py (z1.7)
and write it in terms of the joint distribution py (z1.7, 1.7, W).

log py (x1.7) =log » > py(@rr, s1.7, W) (50)
W si.T
pw(th,SLT,W)
>E, e oimn o |1 51
= Tae(Wsrrlmr) [og geW, s1.r|T1.7) Gb
pw(ivl:T,Sl:TW)} [ Py, (W) }
>Ey e e |10 +E oy |1og — P V) 52)
BV >[ " go(surlmir) o Vi) |98 4 OW]@sr) (
> By, v mmrlon) 08 b (@rr 510, W] = KL (g5, Wlrr) | [po, 1)) (53)
HtTfl Py (3t|wt:t7L y St—1:t—L )
+E, (s iz |10 =1-%e = : (54
905 (s1:7l@1.T) [ & q(f?s(Sl:T'xl:T)
> By, fonr) | 108 i (@17]510,W)] = KL (05, Wi12)]|[pe,01)) (55)
T
- Z KL (Q¢S(St|m1:T)prs (3t|xt:t—Lm73t—1:t—Ls)) (56)
t=1

B.2. Exact Inference on State Variables

Exact inference on state variables based on sum-product implementations require computing the posterior for all combinations
of states at each time step, thus introducing O(K ™) complex1ty However, m the determmed states case, the state variable is

directly determined by observations, which implies p(sf5 x1e-1) = p(st 1 |:c 1)- To compute the reconstruction term in
Eq. (15), consider the likelihood distribution p(x1.7|W) = thl p(x¢|®1.4—1, W), where we assume the states have been

marginalised. Following our implementation, consider the likelihood term p(x;|x1..—1, V) and assume the message hgij )
follows delta distributed variable. Expanding the marginalisation equation of the state variables results in the following:

] 17 N 7 ] 7 7 7
po(@dare—, W) = [[pe. @008 2D T o, hijla?y, 20, W, 582y, (58, e )
] i#7 \si?
(57)
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Figure 13: Illustration of the implementation of the SDCI encoder which is adapted from ACD (Lowe et al., 2022) and
allow for conditioning on states. In the example, we consider 2 states.

Note that we can marginalise the states element-wise, thus reducing the exponential cost to O(NK). Given the above
equation is equivalent to Eq. (16), we can set g4, = py, for exact inference on state variables.

For the recurrent state case, we cannot simplify the forward state posterior py, (s,El_)1 |&1.4—1). To see why exact inference
here results in exponential cost, compute py; (€| 1..—1), where we can also try marginalising the states.

) 14 N . ) ) ) ) )
pw(ajt‘xl:t—law) = Hp¢m(wi(5])|h§ j)a“'ahg ])7w1(t]7)1)H prm (hij|$§217x§i)13stglf)l)pﬂi(sng)l'x%zfl)
J

i#] \st!
(58)
Where the state posterior is obtained using the forward algorithm:
po(s|@1em1) = ZP¢(5,E1_)1a5,EZ_)2|$1:t—1) = Zpr(S,EZ_)JS,(f_)g,wt—l:t—wf)pw(s,gi_)g|901:t—1) (59)
Sgi—)z 5522
where py, (SEZ'_)1 |s§i_)2, @—1:— ) is given from the state decoder, and py, (57(51_)2 |€1:1—1) is computed as follows:
(1) pw(sii—)z’ $1:t—2)pw($t—1|5§i—)27 Ti—2) (4) pw(:ct_1|8§i_)2, Ti_2)
pill(sth‘ml:t—l) - = pw(5t72|ml:t—2) ) (60)

Py (T1:6—2)Py (Tr—1]|T1:4—2) Py (Ti—1|T1:0—2)

and we find recursive terms py, (€—1|®1.4—2) and py (s§?2|m1:t,2). Unfortunately, computing p, (2:—1 \SQQ, T1_o) requires

marginalising (s§122, cey sg%) and involves all possible tuple combinations, thus introducing computational cost of O(K™V).
Py (@1, S1-1|W) = p(@e|@i—1, 8121, W) Z p(st—1]st—2 =k, @r—1)p(st—2 =, T1:4-1, W) (61)
St72:k?

B.3. Encoder Architecture

Below we provide details our encoder architecture g4 (W, s1.7|z1.7) = ¢4, W|21:7)q0, (S1:7]|21.7).

Fixed graph encoder. As mentioned, we consider an amortised encoder on WV for fixed state-dependent structures across
samples: g, (W|Z1.7) = ¢4, (W). We modify Eq. (13) and directly parametrise the logits ¢;; € R "< independently of
T1.T-

Variable graph encoder Our architecture extends directly from ACD (Lowe et al., 2022), and we incorporate additional
edge-edge layers proposed in Chen et al. (2021) only for SDCI under the recurrent state case. The logits ¢;; for the
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distribution g4, (W|x1.7) are obtained as follows. First, the model computes a latent embedding in) for each node ¢ using
the whole sequence:
2 = fo (@), (62)

Then each embedding is updated using a graph neural network (GNN) that captures the correlations between nodes.
Specifically the message passing procedure follows the two equations below:

27 = [ (27, 2), (63)

(@) _ (i) 64

Z9 Jos Z =2 . (64)
i#£]

For the recurrent state case, we incorporate edge-to-edge message passing operations proposed by Chen et al. (2021) after
computing the edge embeddings in Eq. (63). The edge-to-edge message passing treats the set of edges as a sequence, and
we implement the mapping using self-attention. See Chen et al. (2021) for additional details. Finally, we obtain the softmax
logits ¢;; € RE*" for every pair i — j and every state value 1 < k < K

bij = fo. (257, 25). (65)

The above network architecture design is visualised in Figure 13. according to equation 13. The details of the architecture
settings follows the designs in Lowe et al. (2022) and Chen et al. (2021). Each embedding step f3,, including the self-
attention network in the edge-to-edge message passing, uses two-layers of 256 dimensions and ELU (Clevert et al., 2016)
activations followed by a batch normalization. fy, uses skip connections and we modify its output size to generate a pairwise
embedding for each of the K states. For fully-observed state case, the architecture for g4, (V| 1.7, s1.7) follows a similar

structure, except that for the first layer we use zg) = f4 (concat(asgl;)T, égZ)T)), where .§§1)T is a one-hot encoded version of

the states {sy) V.

State encoder. For determined states, we use the state decoder explained in the next paragraph. For recurrent states, we
combine edge embeddings and the state posterior approximation from Ansari et al. (2021) to implement a GNN-RNN
network. First, we generate edge embeddings with temporal components. This is equivalent to Eq. (62) where we use wgl)
to obtain zyl Then, we obtain edge embeddings z (i )1,¢ similarly as in Eq. (63) using the same implemntation design. The
temporal edge are forwarded to a 3-layer bi-directional RNN with GRU cells and 256 dimensions, followed by a 1-layer
forward RNN with GRU cells and 256 dimensions. Finally, the resulting embeddings are aggregated following Eq. (65)

with similar implementation designs.

State Decoder. The state decoder is implemented as a two-layer MLP with 256 dimensions, where the input is dependent
on the requirements for each state dependency case: a:,gi) in the determined case, and (wgi), a:f_)l, sf_)l) in the recurrent case.
Observation Decoder. We implement the set of functions 7 = {f1,..., fu__, } using two-layer MLPs of 256 dimensions
and leaky-ReLU activations with slope 0.1. The mapping g uses skip-connections and the same design and the edge-type
functions above. For gene regulatory networks, we use incorporate node embeddings into the aggregator g following Gong
et al. (2023), resulting in increased network expressivity. The node embeddings have 16 dimensions. For NBA data, we
instead incorporate the ball’s features at each time step b; € R, denoting 3D position and velocity.

B.4. Training Specifications

Our method has been implemented with Pytorch (Paszke et al., 2019), and the experiments have been performed on NVIDIA
RTX 2080 Ti GPUs. Code for our experiments is available at https://github.com/charlio23/SDCI.

SDCI and ACD. All SDCI and ACD (Lowe et al., 2022) models have been trained using the following training scheme.
Following Kipf et al. (2018), the models are trained using ADAM optimizer (Kingma & Ba, 2015). In all datasets, the
learning rate of the edge labels encoder is 5 - 10~ for variable graphs, and 5 - 10~ for fixed graphs. The learning rate of
the decoder is 5 - 10~#. Learning rate decay is in use with factor of 0.5 every 200 epochs. The duration of the training phase
differs between datasets and state dependence considerations. We monitor the reconstruction error on validation data and
use early-stopping. We list additional specifications which depend on each dataset.
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* In springs and magnets data with determined states we train for 1000 epochs using a batch sizes of 100, 50, and 20 for
N being 5, 10, and 20 respectively. For recurrent states, the GNN-RNN network restricts GPU capacity, and we adapt
the number of epochs and batch size to perform 200k iterations, and decaying the learning rate every 60k iterations.

 In gene regulatory network data, in the determined state setting we reduce the batch size to 10 to meet GPU capacity
and train for 1000 epochs. For recurrent states, we lower the batch size to 1 due to the increased number of variables,
and train for 200 epochs (200k iterations), similarly to the springs and magnet case. In all settings, we use 2 edge-types
and a sparsity regularisation of 0.9 using py,, .

* In NBA data, we train for a total of 450k iterations due to the large number of samples, with a batch size of 100 and
decaying the learning rate every 200k iterations. We find both SDC and ACD perform best using 2 edge-types and a
sparsity regularisation of 0.8 using p,,, .

The decoder is trained with teacher forcing every 10 time-steps, i.e., it receives the ground-truth as input every 10 time-steps.
The variance of the decoder Gaussian distribution is 02 = 5 - 10~°. The temperature term of the edge label encoder 7 is set
to 0.5. The state encoder temperature y follows a schedule similar to Ansari et al. (2021) which prevents state collapse, i.e.
the model ignoring states. We first set v = 5, and decrease temperature every epoch by a factor of 0.8 until we have v = 0.5.

VRNN. The experiments with NBA player trajectories consider VRNN as a non-causal baseline to compare forecasting
performance. Below we specify the network architecture and training scheme. To allow a fair comparison between SDCI,
ACD, NRI, and VRNN, we modify the decoder defined in Chung et al. (2015) to condition the player positions on the ball
features, similarly as we did for the previous models: pg(x;|x <, 2<¢,b;), where b, € RS represents the ball features at
time ¢ (3D position and velocity). The architecture of the model follows the original work: 3-layer LSTM networks with
256 dimensions and a latent space size of 128 dimensions. The encoder and decoder architectures use two-layer MLPs of
256 dimensions. The models are trained using ADAM (Kingma & Ba, 2015) for 350K iterations with a learning rate of
10~* and batch size 32.

NRI-MPM. We train our NBA player trajectory model by using the first 100 time steps of player and ball trajectories as
input and predicting the next 100 time steps. Our experimental setup follows the settings outlined in (Chen et al., 2021). The
NRI model is trained with both the encoder and decoder using GRU- and Attention-based architectures for edge type [2, 4].
Training is conducted over 500 epochs with a batch size of 128. The initial learning rate is set to 2.5 x 107> and is decayed
by a factor of 0.5 every 200 epochs. We use a temperature parameter 7 = 0.5, and all hidden layers across the model have a
dimension of 256. During training, the model predicts M = 20 future time steps at each iteration.

Rhino. For GRN and springs, we tune the hyperparameters of Rhino based on the validation RMSE error. Our experimental
setup follows a similar configuration to (Gong et al., 2023), with the key difference that we use a single MLP layer with 15
hidden units for the function f;. We train the model using a batch size of 128 and an initial learning rate of 0.001, optimized
with Adam. The node embedding dimensions are set to 32 and 16 for each respective dataset. Additionally, we use lag =1,
auglag = 60, and apply a sparsity penalty As of 19 and 25 for the two datasets, respectively.

N-GC. For Neural Granger causality (Tank et al., 2021), we use the official implementation based on MLPs. We set the
default hyperparameter settings, which include large training runs with early stopping; and used MLPs with 256 hidden
units.

R-PCMCI. Regime-PCMCI does not support batch mode. This implies the algorithm needs to be re-trained for each
sample, and we take the average summary graph across all the samples. Given available official code implementation
(Saggioro et al., 2020), exploring hyperparameter settings resulted into errors from training with short sequences (1" = 50).
We use the predefined hyperparameters, and select 4 regimes to align with the number of components in the backbone state
network used in GRN data.

C. Datasets

In this section we provide detailed information about the datasets used in this work. For spring data, we generate 10000
samples of each setting for training the models. Regarding testing, we compute all the metrics using 100 samples, and we
note that Rhino and Neural Granger Causality require retraining for data with variable graphs across samples.
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C.1. Springs and Magnets

When considering springs and magnets with directed connections, we follow the generation procedure described Kipf et al.
(2018) with a small modification where the spring interaction between a pair of particles can change over time (depending
on state variables), and the addition of magnetic interactions. This assumes a setup with n. = 3, describing no-edge, and
spring or magnetic effects.

In this dataset, N particles are simulated inside a 2D box where they can collide elastically with its walls. Each pair of
variables is connected by a spring with uniform probability. To allow for identification of causal connections (directed
edges), the connection is made unidirectional. The spring interaction follows the Hooke’s law, and the magnetic interaction
follows a standard repulsive magnetic pole model. These interactions are captured in terms of third order moments and
aggregated following the second Newton’s law by summation of forces:

N
I'z = Zfij7 r; = {ri,i‘i}, r; € RQ, k= Sy), (66)

Jj=1

1 (ri—ry)
fij = _l(wijkzl)(ri - rj) + 1(wijk=2)ﬂ Hr _ r.JHQ’
1 J

where edge-types 1 and 2 are associated to spring and magnetic effects respectively. f;; is the unidirectional interaction
from particle j to particle ¢, r; and r; denote the 2D position and velocity of each particle. The continuous variable x;
is constructed by concatenating the position and the velocity measurements. Notice that the above equation defines the
evolution of the continuous variable for a single time-step. In our setting, we have that k = sij). Thus, f;; will change over
time, contrary to Kipf et al. (2018).

To generate samples, we first generate random labels of conditional effects V and the initial location and velocity. The
sparsity of the structure is set to 0.5, 0.7, and 0.8 when considering 5, 10, and 20 variables respectively. Then, trajectories
are simulated by solving the previous differential equations using leapfrog integration. The step size used is 0.001 and the
trajectories are obtained by sub-sampling each 100 steps. In our experiments, we set ' = 80. When considering determined,
we set st = 1(r§f2)>0) for 2 states; and st = 50({1(r§f’2)>0)’ 1(r52>0)} for 4 states, where ¢ injectively assigns integers to
tuples. For recurrent states, we consider X = 2 and alternate states on wall collision.

C.2. Gene Regulatory Networks

Gene expression data was generated with DynGen (Cannoodt et al., 2021). The simulation engine includes different types of
backbone state networks, namely bifurcation, cyclic, or single line networks. We choose a bifurcating network with 4 state
modules and 2 bifurcations; with a total of 49 genes, including 16 target genes and no housekeeping genes. Target genes are
characterised by not taking part of the activation/deactivation regimes and only receive interactions from genes associated
to states. A synchronised experiment was simulated with 50 time steps and for 1000 cells. Real sequencing experiments
cannot measure the same cell over time and simulation engines typically sample different populations of cells at every time
step. However, facilitating causal discovery require that the gene expression of the same cell is measured over time. To
obtain this, the model’s simulated mRNA counts were used directly. As mentioned, we used meta-data from the backbone
state transitions as auxiliary information to SDCI in the observed case.

C.3. NBA Data

The NBA dataset (Linou, 2016) consists of recordings from 632 NBA games played during Winter 2015-2016. Each game is
composed by approximately 400 to 600 events, which represents sequences of plays. In each trajectory, we find information
about the ball location and 5 players of the 2 different teams (10 in total). The coordinates of the ball and players are
represented in 3D and the length of each sequence can vary from 100 to 600. In our experiments, we consider a sequence up
to 200 time-steps (17" = 100 for reconstruction and the rest 100 steps for prediction), which gives us a total training dataset
of 150K samples and a test set of 6380 samples. Data inspection shows that the court size is 100 x 50, and we use this
information to standardise the data. For experiments with SDCI with observed states, we design some ground-truth states
which depend on different locations of the court. We set X' = 4 and our choice is shown in figure 14.

’Data extracted from the following code repository https://github.com/linouk23/NBA-Player-Movements — last
accessed 2022-09-28.
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Figure 15: Spring data with observed states for (a) increasing variables and state values, (b) data efficiency, and (c)
generalisation, where the x-axis indicates the test data and the legend indicates the model used. SDCI results are shown with
solid lines.

D. Comments on Evaluation Metrics
D.1. Summary Graph Estimation

For multi-dimensional data such as springs, we estimate the summary
graph of Rhino and N-GC by grouping elements together, and for each
element we include an edge if any of its dimensions has interactions
with other elements.

D.2. F; Scores

To clarify, the evaluation of the summary graph considers the micro
averaged F score, to account for increased sparsity on increasing
variables. For edge labels VV and states s1.7, we use macro averaged
I score, as no restrictions on proportion of labels are made. 0 a0 &0 80 100

D.3. Computing the Summary Graphs Figure 14: Hand-crafted ground-truth state map
on NBA data which is forwarded to SDCI with

Notice that SDCI can extract the conditional summary graph (CSG)  pcorved states. Colours indicate different states.

whereas the baselines we compare with only consider the summary

graph (SG). Consequently, the only immediate way to compare the

performance in capturing the causal structure among the methods we

consider is to evaluate the latter. From the definition of summary

graph, we deduce that one can estimate it by taking the union of the graphs in the CSG. This is used to compute the summary
graphs of both SDCI and the ground truth structure of the generative process.

E. Additional Results

In this section we report additional experiments and qualitative visualisations, which can be helpful to complement the main
results from Section 6 in the main text..

E.1. Springs and Magnets

Observed In this experiment the states are known and independent from the observations. For the ground truth dynamics,
the state transitions incrementally into the next one every 10 time-steps. We report accuracy with respect to the edge lables
W, and consider 2 edge-types. Figure 15a shows results with increasing variables and increasing states, where we compare
with ACD (dashed lines) as a stationary baseline. Although performance drops as K increases, SDCI is able to maintain
reasonable accuracy in edge-type identification in comparison to the stationary baseline. With increasing number of variables
both approaches see accuracy drops; our hypothesis is that this can be addressed by increasing model capacity. The next test
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considers data efficiency of SDCI with results reported in Figure 15b. We see that both SDCI and ACD are data efficient in
this scenario, where training on 10% of the data returns good performance already. Finally, we also report in Figure 15¢ on
generalisation to unseen data with different number of variables. Here both methods generalise better to settings where the
number of variables is similar to the ones they were trained.

Determined states We provide visualisations for the determined states case in Figure 17, where we show the predictions
of both SDCI and ACD as well as the corresponding conditional summary graphs and summary graphs extracted by both
methods respectively. We observe SDCI produces accurate causal graph estimates. Regarding time series forecasting, our
method is able make reasonable predictions. Notice that to train the models, we use teacher forcing every 10 time-steps,
which means that the learned models are less suited for long-term dynamics modelling. However, one can expect to obtain
more accurate predictions by progressively reducing the teacher forcing frequency during training. Considering ACD,
despite being restricted by assuming stationary time series, it still infers graph structures that allow the model to produce
adequate forecasts.

E.2. NBA Data

To further analyse the representations learned by SDCI, we visualise additional examples in Figure 16. The extracted graphs
exhibit similar patterns to those presented in the main text. In the first example, the blue team is on offense, and we observe
a higher presence of edges from the defending team. A similar pattern can be seen in the second example, where the red
team takes the offensive role instead. Overall, SDCI assigns regimes with distinct sparsity patterns, effectively adapting to
the nonstationary nature of the data.
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Figure 16: Examples of extracted conditional summary graphs from SDCI for K = 4, with states determined by the position
and velocity of the players. Each row describes a different sample.
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Figure 17: time series forecasting (left, dotted lines) of SDCI and ACD for 50 time-steps along with the ground-truth. We
use solid lines to denote the input to the models and the background color represents the state value. We show the associated
conditional summary graph (center) and summary graph (right) of SCDI (red) and ACD (blue) respectively along with the
ground-truth (GT, black) for each sample. Each row represents a different sample.
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