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MULTIVIEW EQUIVARIANCE IMPROVES 3D CORRE-
SPONDENCE UNDERSTANDING WITH MINIMAL FEA-
TURE FINETUNING
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Figure 1: Improving 3D correspondence understanding through finetuning on feature equiv-
ariance. Left: finetuning feature equivariance on one synthetic object can already enhance the vi-
sion transformer’s ability to generate better 3D feature correspondences on general objects. Right:
This improvement further leads to superior performance across multiple 3D tasks, including pose
estimation, video tracking, and semantic correspondence.

ABSTRACT

Vision foundation models, particularly the ViT family, have revolutionized image
understanding by providing rich semantic features. However, despite their success
in 2D comprehension, their abilities on grasping 3D spatial relationships are still
unclear. In this work, we evaluate and enhance the 3D awareness of ViT-based
models. We begin by systematically assessing their ability to learn 3D equivariant
features, specifically examining the consistency of semantic embeddings across
different viewpoints. Our findings indicate that improved 3D equivariance leads
to better performance on various downstream tasks, including pose estimation,
tracking, and semantic transfer. Building on this insight, we propose a simple yet
effective finetuning strategy based on 3D correspondences, which significantly en-
hances the 3D correspondence understanding of existing vision models. Remark-
ably, even finetuning on a single object for just one iteration results in substantial
performance gains. All code and resources will be made publicly available to
support further advancements in 3D-aware vision models.

1 INTRODUCTION

Common camera imaging systems struggle to depict the 3D world due to the limitation of capturing
only a single perspective at any given moment. In contrast, human perceptual capabilities exhibit a
remarkable trait known as view equivariance Köhler (1967); Koffka (2013); Wilson & Farah (2003),
allowing us to robustly understand 3D spatial relationships, as seen in tasks ranging from basic
object recognition Vetter et al. (1995); DiCarlo & Cox (2007) to more complex processes like mental
rotation and simulation Stewart et al. (2022).
Current large vision models, however, are primarily trained on 2D images, owing to the ease of data
acquisition and annotation in 2D. Consequently, their performance is typically evaluated on 2D tasks
Amir et al. (2021); Hedlin et al. (2023); Tang et al. (2023); Zhang et al. (2023). This raises critical
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questions: To what extent do these models possess an inherent awareness of 3D structures? How
does this awareness impact their performance on image-based 3D vision tasks? And, can we further
enhance the 3D awareness of these vision foundation models?

Many image-based 3D scene understanding and content generation tasks depend heavily on large
2D vision models, underscoring the importance of investigating these questions. Existing works
have begun to explore this area in task-specific contexts. For example, DietNeRF Jain et al. (2021)
finds that CLIP Radford et al. (2021) demonstrates higher feature similarities between views from
the same scene than from different scenes, which aids 3D reconstruction. LeRF Kerr et al. (2023)
shows that regularizing CLIP with DINO Caron et al. (2021) features improves 3D feature distilla-
tion from multiple views. However, these studies are tied to specific tasks such as feature distillation.
El Banani et al. (2024) probes the multi-view consistency of ViTs on the NAVI Jampani et al. (2023)
and ScanNet Dai et al. (2017) datasets. However, the limited size of these datasets makes it chal-
lenging to draw comprehensive conclusions.
To address the first question, how well do vision models understand 3D structures, we present a
comprehensive study of the 3D awareness of large 2D vision models. Specifically, we investigate
the view equivariance of latent features—i.e., the consistency of multi-view 2D image features rep-
resenting the same 3D point across different views. Using off-the-shelf multiview correspondences
rendered from Objaverse Deitke et al. (2023) (synthetic) and MVImgNet Yu et al. (2023) (real-
world), we find that current large vision models do exhibit some degree of view-consistent feature
generation, with DINOv2 demonstrating the strongest performance.
To answer the second question, how does this awareness influence performance in image-based 3D
vision tasks, we find that the quality of 3D equivariance is strongly correlated with performance on
three downstream tasks requiring 3D correspondence understanding: pose estimation, video track-
ing, and semantic correspondence. Consistent with previous findings Örnek et al. (2023); Tumanyan
et al. (2024); Zhang et al. (2023), DINOv2 Oquab et al. (2023) excels in these tasks.
Finally, to address the third question, can we improve the 3D awareness of vision foundation models,
we propose a simple yet effective method to enhance the view equivariance of 2D foundation mod-
els, thereby significantly improving their 3D correspondence understanding. During training, we
randomly select two different views of the same object from Objaverse and sample corresponding
pixels. We apply the SmoothAP Brown et al. (2020) loss to enforce feature similarity between these
corresponding pixels. This finetuning process, requiring only 10K iterations with LoRA and an ad-
ditional convolutional layer of a Vision Transformer (ViT), significantly improves the performance
of all tested models on 3D tasks. For instance, DINOv2 gains improvements of 9.58 (3cm-3deg in
pose estimation), 5.0 (Average Jaccard in tracking), and 5.06 (PCK@0.05 in semantic correspon-
dence). Surprisingly, even finetuning on a single multi-view pair sampled from one object for just
one iteration yields notable gains in 3D correspondence understanding. In such cases, DINOv2’s
performance improves by 4.85, 3.55, and 3.47 for 3cm-3deg (pose estimation), Average Jaccard
(tracking), and PCK@0.05 (semantic correspondence), respectively.
To summarize, our key contributions are: (i) We conduct a comprehensive evaluation of 3D equivari-
ance capabilities in 2D vision foundation models. (ii) We demonstrate that the quality of 3D equiv-
ariance is closely tied to performance on three downstream tasks that require 3D correspondence
understanding: pose estimation, video tracking, and semantic correspondence. (iii) We propose a
simple but effective finetuning method that improves the 3D correspondence understanding of 2D
foundation models, leading to marked performance gains across all evaluated tasks.

2 EVALUATION OF MULTIVIEW FEATURE EQUIVARIANCE

To assess how effectively current vision transformers capture 3D correspondence understanding,
we introduce a 3D equivariance evaluation benchmark focused on the quality of correspondences
between 2D points across different views for the same object. Additionally, we present three well-
established application tasks that rely on 3D correspondence, demonstrating a strong correlation
between the quality of 3D equivariance and downstream task performance. We evaluate five state-
of-the-art vision transformers: DINOv2 Oquab et al. (2023), DINOv2-Reg Darcet et al. (2023),
MAE He et al. (2022a), CLIP Radford et al. (2021) and DeiT Touvron et al. (2022), extracting their
final-layer features with L2 normalization. For DINOv2, we use the base model; results for other
variants are provided in the supplementary material.
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To evaluate 3D equivariance, we utilize rendered or annotated multiview correspondences from
Objaverse Deitke et al. (2023) and MVImgNet Yu et al. (2023), covering both synthetic and real
images. For Objaverse, we randomly select 1,000 objects from the Objaverse repository, rendered
across 42 uniformly distributed camera views, producing 42,000 images. Dense correspondences
are computed for each object across every unique ordered pair of views, resulting in 1.8 billion
correspondence pairs for evaluation. Similarly, 1,000 objects are randomly drawn from MVImgNet,
yielding 33.3 million annotated correspondence pairs for evaluation. Since MVImgNet employs
COLMAP to reconstruct 3D points, it provides sparser correspondences compared to Objaverse.

Figure 2: Feature visualizations of different models. The sample image is rendered from Obje-
verse. Colors are computed from the high-dimensional features using PCA. We can see that MAE
struggles to distinguish different parts of the content (e.g.similar features between head and body).
Both CLIP and DeiT produce inconsistent features for the chest region between View 1 and View 2.
DINOv2 gives the best correspondence.

Metric and Results We propose the Average Pixel Error% (APE), a metric that quantifies the av-
erage distance between predicted and ground-truth pixel correspondences, normalized by the length
of the shortest image edge. The predicted correspondence is determined by identifying the nearest
neighbor in the second view, given a reference point feature in the first view. APE for Objaverse
is shown in Figure 3, where APE is plotted on the x-axis, meaning lower values (towards the left)
indicate better performance. APE and PCDP for MVImgNet are plotted on Figure 5’s y-axis with
hollow circle and striped bar representing the evaluted pretrained models (fine-tuning results
will be discussed later). Percentage of Correct Dense Points% (PCDP) is a metric designed to
evaluate dense correspondences, similar to Percentage of Correct Keypoints% (PCK). It is reported
at various thresholds (5%, 10%, and 20% of the shortest image edge). We can see that DINOv2 and
its registered version outperform other vision transformers, highlighting DINOv2’s superior capabil-
ity for 3D equivariance. In Figure 2, we provide feature visualizations using PCA, where DINOv2
again demonstrates the best multiview feature consistency.

2.1 FEATURE EQUIVARIANCE CORRELATES TO CERTAIN TASK PERFORMANCES

3D Equivariance itself is not interesting unless it can be used. Below, we will talk about three mature
downstream applications that require 3D equivariance capability, and show a correlation between the
quality of 3D equivariance and the downstream applications.

2.1.1 TASK DEFINITIONS

One-Shot Object Pose Estimation In one-shot pose estimation, we assume access to a video
sequence or 3D mesh of the target object and aim to estimate its pose in arbitrary environments.
During onboarding, we store dense 2D image features from all rendered or annotated views in
a database. At inference, we compute correspondences between the input image and the stored
features to match 2D keypoints in the image to their 3D counterparts. Pose estimation from these
2D-3D correspondences is achieved using RANSAC Fischler & Bolles (1981) PnP (Perspective-
n-Point). Points are uniformly sampled using stratified sampling (stride 4) on 512 × 512 resized
images. RANSAC PnP runs for 10,000 iterations with a threshold of 8.
We evaluate on the OnePose-LowTexture and YCB-Video datasets. OnePose-LowTexture He et al.
(2022b) includes 40 low-textured household items captured in two videos: one for reference and
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Figure 3: Correlation between multiview feature equivariance and the task performances.
Along the horizontal axis, lower APE indicates better feature equivariance, while the vertical axis
reflects higher task performance across all four plots. The data points align roughly along the diag-
onal from the top left to the bottom right, suggesting a strong correlation between improved feature
equivariance and better task performance.

one for testing, simulating a one-shot scenario. Following He et al. (2022b), pose accuracy is eval-
uated using 1cm-1deg, 3cm-3deg, and 5cm-5deg thresholds. The YCB-Video dataset Xiang et al.
(2017) comprises 21 objects and 92 RGB-D video sequences with pose annotations and CAD mod-
els for one-shot generalization. A database is created by rendering objects from 96 icospherical
viewpoints. We report Average Recall (AR) for Visible Surface Discrepancy (VSD), Maximum
Symmetry-Aware Surface Distance (MSSD), and Maximum Symmetry-Aware Projection Distance
(MSPD) following Hodaň et al. (2020).

Video Tracking For video tracking, given the reference frame, we identify corresponding points
in other frames by computing cosine similarities between the dense features of the target object. To
improve robustness and accuracy, we follow the process in DINO-Tracker Tumanyan et al. (2024),
which applies a softmax operation within the neighborhood of the location with highest similarity.
We evaluate the models on the TAP-Vid-DAVIS Doersch et al. (2022) dataset, a benchmark designed
for testing video tracking in complex, real-world scenarios. Performance is measured using com-
monly applied metrics Tumanyan et al. (2024), including the Average Jaccard Index (AJ), Position
Accuracy (δxavg), and Occlusion Accuracy (OA).

Semantic Correspondence In the semantic correspondence task, we utilize feature correspon-
dences to establish precise keypoint matches between images captured from different instances from
the same category. Following the method in Zhang et al. (2023), for a given reference keypoint, we
identify the best match by selecting the location with the highest cosine feature similarity.
We use the PF-PASCAL Ham et al. (2017) dataset as our evaluation benchmark. This dataset typ-
ically consists of image pairs taken from the same viewpoint, but we additionally report the result
by shuffling the image pairs to include different viewpoints, thereby increasing the challenge. We
follow standard practice to use PCK@0.05, PCK@0.10, and PCK@0.15 as evaluation metrics.
The pipelines for all three tasks are illustrated in the figures provided in the supplementary material.

2.1.2 ON THE CHOICE OF THREE TASKS

Correspondence estimation is a fundamental component of 3D vision understanding, underlying key
tasks such as epipolar geometry, stereo vision for 3D reconstruction, and optical flow or tracking to
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Figure 4: Illustration of different types of correspondence tasks evaluated in our work.
describe the motion of a perceived 3D world. Stereo cameras, and even human perception, rely on
disparity maps—effectively, correspondences between projected 3D parts to understand depth and
spatial relationships. The three tasks we evaluated—pose estimation, video tracking, and semantic
correspondence—are intentionally selected to cover diverse aspects of correspondence estimation,
ranging from simpler to more complex scenarios: 1. Pose Estimation examines correspondences
within the same instance under rigid transformations (SE(3)); 2. Video Tracking extends this to
correspondences for the same instance under potential non-rigid or articulated transformations, such
as humans or animals in motion; 3. Semantic Correspondence requires correspondences across
different instances with similar semantics, often under arbitrary viewpoint changes. An qualitative
illustration of these correspondence types is shown in Figure 4.

2.1.3 RESULTS AND FINDINGS

Quantitative results are presented in Figure 3, where the y-axis in each graph shows the performance
of the vision models. DINOv2 consistently outperforms all other models across all three tasks, in
alignment with the rankings for 3D equivariance on the x-axis. There is a clear correlation between
the quality of 3D equivariance and performance on the downstream tasks: methods with lower APE
tend to perform better across all tasks, clustering towards the top-left of the graphs.

3 FEATURE FINETUNING WITH MULTIVIEW EQUIVARIANCE

Given the correlation between the multiview equivariance of network features and task perfor-
mances, we naturally come up with a question: Can we finetune the networks on feature equiv-
ariance to improve their 3D correspondence understanding and achieve better task performances?

Finetuning method The high-level intuition of improving the multiview equivariance of the net-
work features is to enforce the similarity between features of corresponding pixels in 3D space. We
experiment with multiple strategies including different training objectives and network architectures.
For the training loss, rather than employing a conventional contrastive loss, we opted for the
SmoothAP Brown et al. (2020) loss, which demonstrated superior performance. While contrastive
loss can help align the features of corresponding pixels, it relies on a predefined fixed margin for
positive and negative samples, which is ad hoc and often suboptimal. In contrast, SmoothAP opti-
mizes a ranking loss directly, leading to an improved average precision for feature retrieval between
corresponding pixels. We also experimented with the differentiable Procrustes alignment loss Li
et al. (2022), but it did not outperform. Detailed ablation results are given in Section 4.3.
In terms of architecture, besides the common practice of using LoRA to finetune large foundation
models, we introduced a single convolutional layer with a kernel size of 3 and a stride of 1. The
motivation behind this addition is rooted in the observation that ViT-family models process image
tokens as patches, resulting in much lower-resolution feature maps (e.g., 14x smaller in DINOv2).
The standard approach to obtain high-resolution per-pixel features is to apply linear interpolation.
Consequently, it is beneficial to explicitly exchange information between neighboring patches before
interpolation to achieve more accurate results. More ablation results are given in Section 4.1.
During training, we randomly select two views of the same object from a 10K subset of Objaverse
at each iteration and sample corresponding pixels. The model is trained for 10K iterations using the
AdamW optimizer with a learning rate of 1e-5 and weight decay of 1e-4. In the supplementary, we
show that our finetuning method is robust to the choice of learning rate.

3.1 IMPROVED FEATURE EQUIVARIANCE WITH GENERALIZATION

Figure 5 illustrates the performance of various models before and after finetuning. After fine-
tuning on Objaverse, all models show improved 3D equivariance on both Objaverse (synthetic) and
MVImgNet (real-world). This demonstrates the capacity of vision foundation models to perform
sim-to-real transfer, as finetuning on synthetic Objaverse objects results in enhanced performance
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Figure 5: Generalization from synthetic images (Objaverse) to real images (MVImgNet). Left:
Data points roughly around the diagonal from the bottom left to the upper right indicate the correla-
tion between the APE tested on the two datasets. The * next to the model name means it is finetuned.
All finetuning is done on Objaverse with only synthetic data. Right: Finetuned on Objaverse, the
feature equivariance of the model (measured in PCDP) improves on MVImgNet.

After
Fine-tuning

Before 
Fine-tuning

Input
Images

Figure 6: Feature visualization of DINOv2 before and after finetuning on MVImgNet objects
(left two) and TAP-VID-DAVIS scenes (right one). For each example, we select three different
views. The first column provides a reference color produced by PCA, while the second and third
columns show the predicted feature correspondences. Our finetuned model demonstrates reduced
noise and smoother feature boundaries, particularly noticeable in the reduction of jagged edges.

on the real-world MVImgNet dataset. Additionally, the performance on the two datasets is corre-
lated, with data points roughly aligning along the diagonal, indicating that improvements in synthetic
environments translate well to real-world settings. DINOv2 stands out as the best model. We also
compare the feature visualizations before and after finetuning in Figure 6, from which we can see
that after finetuning the model produces more consistent features with less noise.

3.2 IMPROVED TASK PERFORMANCES

One-shot Object Pose Estimation Figure 7 shows the performance of pose estimation on the
OnePose-LowTex and YCB-Video datasets before and after fine-tuning. As illustrated, all Vision
Transformers (ViTs) exhibit noticeable improvements after being fine-tuned on synthetic Objaverse
data. For instance, the best-performing model, DINOv2-Reg, improves by 3.46, 6.67, and 6.92
for the 1cm-1deg, 3cm-3deg, and 5cm-5deg thresholds, respectively. Additionally, models that
performed weaker before fine-tuning show larger gains. For example, DeiT improves by 4.65, 16.39,
and 17.76. Similar trends are observed for the YCB-Video dataset, where models like MAE, initially
the weakest, show substantial improvement after fine-tuning.

Video Tracking Similarly, in the video tracking task, we observe consistent improvements across
all ViTs after fine-tuning, as shown in Figure 8. The top-performing model, DINOv2, achieves
improvements of 6.45, 5.73, and 2.69 in AJ, δxavg , and OA, respectively.

Semantic Correspondence In the semantic correspondence task, shown in Figure 9, DINOv2
exhibits improvements of 5.06, 3.86, and 1.98 for PCK@0.05, PCK@0.10, and PCK@0.15, respec-
tively. Notably, we find that fine-tuned models show enhanced understanding of keypoint semantics
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Figure 7: One-shot pose estimation results before and after feature equivariance finetuning.

Figure 8: Video tracking results before and after feature equivariance finetuning.

across different instances, even from the same viewpoint. This suggests that 3D equivariance con-
tributes to a better understanding of fine-grained semantics, despite not finetuned for that purpose.
We also compared with FiT Yue et al. (2024) and DUSt3R Wang et al. (2024), while their perfor-
mance are much worse than ours. Detailed quantitative results including FiT and DUSt3R on all
these tasks are available in the supplementary materials.

3.3 EXTREMELY FEW-SHOT FINETUNING

Training with Only One Object We plot the performance relative to the number of training ob-
jects used, as shown in Figure 10, keeping the total number of iterations fixed at 10K. Surprisingly,
fine-tuning on just one object already provides significant performance improvements. Addition-
ally, the object was randomly selected from Objaverse. We tested six different objects, all of which
yielded similar results. The results are shown in Figure 11. Notably, even simple shapes like an un-
textured hemisphere can enhance the 3D correspondence understanding of the ViTs in these tasks.

Convergence Within a Few Iterations Figure 12 plots the performance of downstream tasks
versus the number of training iterations on a single object. Interestingly, our experiments reveal that
training with just a single multi-view pair of one object for a single iteration significantly boosts
the model’s 3D equivariance, as shown by the sharp improvement at the first elbow of Figure 12.
This finding is remarkable, indicating that fine-tuning for 3D correspondence in vision transformers
is highly efficient in capturing essential 3D spatial relationships with minimal data. Even with
such a minimal training setup, the model effectively learns the desired 3D properties, substantially
improving performance across tasks without requiring extensive training or large datasets.

3.4 FINETUNING VIT ENHANCES 3D TASKS IN THE WILD

A key advantage of theViT features studied here are highly generalizable across diverse datasets and
tasks, supporting a even wider range of applications. For example, SparseDFF Wang et al. (2023)
uses DINO to aggregate and fine-tune consistent features across views for few-shot transfer manip-
ulation policy learning; LERF Kerr et al. (2023) employs dense DINO features for regularization;
and Wild Gaussians Kulhanek et al. (2024) utilizes off-the-shelf DINO features as priors to estimate
occlusions and reconstruct 3D scenes in complex settings. To demonstrate the effectiveness of our
fine-tuned features, we conducted experiments on Wild Gaussians (W-G) and found that replacing
the original features with our fine-tuned DINO features improved novel view synthesis quality in
the wild, as shown in Table 1. Additionally, in the supplementary we show that substituting LERF’s
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Figure 9: Semantic correspondence results before and after feature equivariance finetuneing.

Figure 10: Finetuned performances w.r.t. #training objects. We evaluate the performances of the
DINOv2 model finetuned with 0, 1, 5, 10, 20, 50, 100 objects on the three tasks.

DINO regularizer with our fine-tuned version enhances language-embedded field performance, with
detailed results and analysis provided therein.

Mountain Fountain Corner Patio Spot Patio-High

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
W-G 20.82 0.668 0.239 20.90 0.668 0.213 23.51 0.810 0.152 21.31 0.802 0.134 23.96 0.777 0.165 22.04 0.734 0.202
Ours 21.01 0.672 0.234 20.97 0.672 0.212 23.74 0.810 0.151 21.23 0.802 0.133 24.01 0.778 0.163 22.11 0.734 0.201

Table 1: Quantitative comparison of novel view synthesis quality across different scenes.
Our fine-tuned DINO features consistently improve performance over the original Wild-Gaussians
method, showing higher PSNR and SSIM scores, and lower LPIPS values.

4 DESIGN CHOICES FOR FINETUNING

In this section, we ablate and verify the design choices of our finetuning strategy and share some
findings. We use the best DINOv2 base model for all our ablations.

4.1 ADDITIONAL CONVOLUTION LAYER HEAD

We append a single convolution layer to the original model architecture and find that gives sur-
prisingly good performance. Adding a single convolutional layer to the finetuning architecture was
motivated by the need to improve the resolution and consistency of the dense feature maps produced
by Vision Transformer (ViT) models. The typical ViT models process images as low-resolution
patches, and while global attention mechanisms facilitate communication between patches, they are
not optimized for generating dense per-pixel features during interpolation. By incorporating a con-
volutional layer with a kernel size of 3 and a stride of 1, we can explicitly exchange information
between neighboring patches, allowing the model to generate more accurate and high-resolution
feature maps before interpolation. We ablate the number of convolutional layers and table 2 shows
that one conv layer gives the best performance.

4.2 TRAINING DATA

MVImgNet v.s. Objaverse Our results indicate that finetuning on MVImgNet is slightly worse
compared to finetuning on Objaverse, likely due to the denser correspondences provided by Ob-
javerse. Both datasets provide a similar object-centric multi-view setup. Although Objaverse is a
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Figure 11: Finetuning with different objects. All results are tested with finetuned DINOv2.
Dashed lines indicate the performances of the original pretrained model. The feature finetuning
method is effective with as few as one single object. It also shows insensitivity to the specific choice
of the object, even if the object has limited textures or is uncommon in daily life.

Figure 12: Finetuned DINOv2 performances w.r.t. #training iterations, trained with only one
object over 0, 1, 5, 10, 20, 50, 100, 1000, 10000 training iterations.

synthetic dataset and MVImgNet consists of real-world captures, large foundation models tend to
be largely agnostic to the distinction between simulated and real images.

Object-centric datasets v.s. scene-centric datasets An interesting result, as shown in Table 3, is
that finetuning on scene-centric datasets (e.g. RealEstate10K Zhou et al. (2018), Spaces Flynn et al.
(2019), and LLFF Mildenhall et al. (2019), which contain diverse real-world scenes with complex
backgrounds, does not necessarily improve the performance but sometimes make it worse (e.g. PF-
PASCAL). This may indicate that 3D objects themselves have already encoded enough 3D spatial
reasoning information. And scene-centric dataset does include much more background clutter that
may distract the network, leading to less accurate feature representations.

4.3 LOSS FUNCTIONS

We start with naive contrastive loss and found that it does not perform as well. This is because
contrastive loss does not directly optimize for the correspondence. In contrast, SmoothAP optimizes
a ranking loss directly, leading to an improved average precision for feature retrieval between cor-
responding pixels. We also experimented with the differentiable Procrustes alignment loss from Li
et al. (2022), but it did not outperform SmoothAP. Detailed comparisons are given in Table 4.

5 RELATED WORKS

Vision Transformers Dosovitskiy (2020) (ViTs) have made significant strides in image understand-
ing by employing self-attention mechanisms to capture global contextual information, outperform-
ing traditional convolutional neural networks (CNNs) in tasks such as image classification and ob-
ject detection. However, despite their success in 2D applications, adapting these models to grasp 3D
spatial relationships remains a challenging and relatively unexplored area.
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ViT models OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δxavg OA PCK0.05 PCK0.10 PCK0.15

DINOv2-FT (Conv 0) 11.69 53.85 72.83 44.50 60.79 84.08 44.82 57.14 65.26
DINOv2-FT (Conv 1) 13.58 58.03 77.35 46.85 63.84 84.15 47.25 60.76 67.57
DINOv2-FT (Conv 2) 13.12 56.14 75.45 47.42 63.25 84.12 46.32 58.05 64.90
DINOv2-FT (Conv 3) 12.15 53.63 74.46 46.84 62.14 82.90 41.60 53.97 60.22

Table 2: Ablation on the number of appended conv layers.

ViT models OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δxavg OA PCK0.05 PCK0.10 PCK0.15

DINOv2-FT (Objaverse) 13.58 58.03 77.35 46.85 63.84 84.15 47.25 60.76 67.57
DINOv2-FT (MVImgNet) 13.65 56.98 74.61 41.53 58.89 82.67 45.13 57.93 65.40

DINOv2-FT (Scene-Centric) 15.95 60.79 76.35 47.36 63.07 80.27 41.73 52.33 60.33

Table 3: Ablation on the dataset used for finetuning.

ViT models OnePose-LowTex TAP-VID-DAVIS PF-PASCAL (Diff. View)
1cm-1deg 3cm-3deg 5cm-5deg AJ δxavg OA PCK0.05 PCK0.10 PCK0.15

DINOv2-FT (SmoothAP) 13.58 58.03 77.35 46.85 63.84 84.15 47.25 60.76 67.57
DINOv2-FT (Contrastive) 13.28 55.57 75.68 43.79 62.20 81.84 46.70 58.08 66.21

DINOv2-FT (DiffProc) 12.92 55.00 74.86 43.60 61.32 82.74 43.89 57.22 64.66

Table 4: Ablation on the loss function used. SmoothAP delivers the best overall performance.

There is growing interest in assessing the 3D comprehension of vision models. While some studies
have investigated how well generative models capture geometric information from a single image
Bhattad et al. (2024); Du et al. (2023); Sarkar et al. (2024), these efforts are generally specific to
generative models, limiting their applicability to broader vision tasks. More closely aligned with
our work is El Banani et al. (2024), which evaluated the 3D awareness of visual foundation models
through task-specific probes and zero-shot inference using frozen features. In contrast, we delve
deeper and introduce a simple yet effective method for finetuning 3D awareness in ViTs.
Several researchers have also explored applying large-scale models to 3D tasks. For instance,
some approaches utilize features from pre-trained models for tasks such as correspondence match-
ing Zhang et al. (2023); Cheng et al. (2024) and pose estimation Örnek et al. (2023). Ima-
geNet3D Ma et al. (2024) investigates how global tokens from ViT vary across views to aid pose
estimation. While their work focuses on view-dependent global features, ours emphasizes dense,
pixel-level features invariant to viewpoint changes. Their top-down pose estimation approach classi-
fies poses using pretrained features with a domain-specific linear layer, which limits its applicability
across diverse datasets. In contrast, we argue that finding correspondences, or learning equivariant
representations, is a more effective strategy for general unseen tasks and datasets.
Recent works, such as FiT Yue et al. (2024) and DVT Yang et al. (2024), attempt to finetune pre-
trained features. FiT lifts 2D features into 3D space and then projects them back into 2D to enforce
3D consistency. DVT, on the other hand, implements a denoising process to reduce periodic noise
artifacts in images, a method that is orthogonal to our approach. Additionally, DUSt3R Wang et al.
(2024) directly predicts 3D coordinates for each 2D pixel, but it lacks a shared consistent feature
space and forfeits the rich semantic information provided by large vision models.

6 CONCLUSION

In this work, we systematically evaluated the 3D awareness of large vision models, with a specific
focus on their ability to maintain view equivariance. Our comprehensive study demonstrates that
current vision transformers, particularly DINOv2, exhibit strong 3D equivariant properties, which
significantly correlate with performance on downstream tasks such as pose estimation, video track-
ing, and semantic transfer. Building on these insights, we introduced a simple yet effective finetuning
method that enhances the 3D correspondence understanding of 2D ViTs. By leveraging multiview
correspondences and applying a loss function that enforces feature consistency across views, our ap-
proach yields substantial improvements in task performance with minimal computational overhead.
Remarkably, even a single iteration of finetuning can lead to notable performance gains.
Our findings highlight the importance of 3D equivariance in vision models and provide a practi-
cal path to improving 3D correspondence understanding in existing models. We believe this work
opens up new opportunities for enhancing the 3D capabilities of vision transformers. All code and
resources will be made publicly available to support further research in this direction.
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7 STATEMENTS

Ethics Statement. Our method leverages open-sourced simulation data and real data whose data
collection process follows strict ethical guidelines. In using these data, we follow the same ethical
considerations to protect sensitive information. There is no ethical concerns detected of the proposed
method to our knowledge, and we will strive to adhere to ICLR code of conduct for future use of the
proposed method.
Reproducibility Statement. We provide extensive details for ease of re-implementation. We strive
to ensure our method is reproducible and the findings in this paper are generalizalble. We will
release code, results, and scripts for reproduction to promote future research in 3D deep learning.
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