Under review as a conference paper at ICLR 2026

THE LIMITS OF INFERENCE SCALING THROUGH RE-
SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research has generated hope that inference scaling, such as resampling
solutions until they pass verifiers like unit tests, could allow weaker models to
match stronger ones. Beyond inference, this approach also enables training rea-
soning models, where data is curated using rejection sampling against a verifier.
However, we show that this approach is fundamentally limited when verifiers are
imperfect and have a non-zero probability of producing false positives. Resampling
cannot decrease this probability, so it imposes an upper bound to the accuracy of
resampling-based inference scaling, regardless of compute budget. Our analysis
shows that there is a strong correlation between the model’s single-sample accu-
racy and its false positive rate on HumanEval and MBPP, whose unit tests have
limited coverage. Therefore, no amount of inference scaling of weaker models can
enable them to match the single-sample accuracy of a sufficiently strong model.
Empirical results show that optimal sampling attempts are often fewer than 10, as
the negative utility of false positives outweighs benefits, bending inference scaling
curves downward. Finally, false positives may have other undesirable qualities,
like poor adherence to coding style conventions.

Llama 3.1 70B

1.0
2 0.8 W'
g @ GPT-40 ’
e —
809 - .
TE GPT-40's Pass@1 Phi-3 I\-ll.lr-u’_ r Llama 3.1 4058 0.6 - —
§2 T T Command-R® o phi3 Medium Llama3.170B
s g 0.8 COUEGE“iCOdeGgmmand Llama 3.1 88 L) RV
'g w StarCoder',’.\ o ©CodeLlama 138 E 0.4 m,,,,,__\
65 Vicuna g Mistral 78 \Code Liama 78 2 ‘ —
(o] CodeT5p 16B Q - C/B-Ratio =0
ag 0.7 Command-Light -3 0.2 - C/B-Ratio = 1
] I % -~ C/B-Ratio = 2
52 C/B-Ratio = 4
og 06 0.0 C/B-Ratio = 8
< % Conditional
a 0.22x + 0.72, R? = 0.891, p = 0.000 Pass@1
03 0.2 0.4 0.6 0.8 1.0 02100 10* 10°

Single-Sample Accuracy (Pass@1)

Single-sample accuracy vs. resampling limits on
HumanEval+. The x-axis shows single-sample ac-
curacy on HumanEval+ (which contains comprehen-
sive unit tests), while the y-axis shows the highest
achievable accuracy when resampling with an infinite
compute budget, using HumanEval’s more limited
unit tests as verifiers. Weaker models (models with
lower single-sample accuracy) produce false positive
solutions at higher rates. Models below the cutoff
line are unable to match GPT-40 through resampling,
as GPT-40’s Pass@1 exceeds the accuracy of such a
model even when conditioned on its solutions passing
the unit tests. Results on MBPP+ follow a similar
pattern (Figure [3).

K (Attempts)

The cost of false positives limits the
reward of resampling. False positives
w.r.t. an imperfect verifier (HumanEval
unit tests) incur a "cost" (e.g., subtle bugs
in code), while correct answers provide a
benefit. The reward (y-axis) depends on
this cost-benefit ratio (C/B-Ratio). Problem
instances that require more attempts tend to
be harder, hence more susceptible to false
positives. Thus, even with zero
computational cost, for realistic
cost-benefit ratios, the optimal number of
samples K is finite and very low.

Figure 1: Overview of our main findings.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Scaling the amount of compute used during inference is a promising way to improve LLM per-
formance. Techniques include reasoning (Wei et al., [2023; Wu et al., |2024 |Setlur et al., [2024]),
reflecting on model outputs to revise candidate solutions (Shinn et al.,|2023; Zhong et al.| 2024), and
compositions of these and other atomic techniques (Saad-Falcon et al., |2024; |Welleck et al., [2024)).

Inference scaling through resampling stands out for its simplicity and broad applicability. It works by
generating many candidate outputs until one is satisfactory, based on feedback from a verifier (Song
et al., 2024} |Qin et al.| 2024; Brown et al., 2024} [Hassid et al.| [2024; |Li et al., [2024a). Unlike
techniques such as majority voting where gains from inference scaling quickly plateau (Table [I)),
resampling has given rise to the hope of usefully scaling inference compute by many orders of
magnitude.

We provide evidence that tempers this assumption. Our key concern is that the generalization gap —
where a model performs well on benchmarks but fails to generalize to the real-world — is amplified
when using repeated sampling to lift the performance of weaker models.

Specifically, we study the use of unit tests as verifiers for coding benchmarks, to see if inference
scaling for less capable models allows us to match the accuracy of more capable models. We make
the following contributions.

Review of inference scaling techniques and their limitations (Section [2). We review papers on
inference scaling, categorizing the primary techniques and listing their domain-specific applications
and known limitations.

Demonstration of generalization gap (Section[3). We provide empirical evidence on two bench-
marks, HumanEval+ and MBPP+ (Liu et al.| |2023b), showing that the apparent gains from resampling
with imperfect verifiers are unlikely to translate into real-world performance. Despite achieving
comparable results to stronger models on standard unit tests, less capable models suffer from a larger
generalization gap—producing incorrect solutions that fail the extended test suite (false positives) at
higher rates than stronger models.

In particular, we observe that even if given an infinite inference budget, in many cases a weaker model
cannot match the performance of a single invocation of a sufficiently strong model.

Empirical analysis to understand the limitations of inference scaling with imperfect verifiers
(Section[d). We examine how introducing a cost (negative utility) for returning false positives impacts
the optimal number of resampling attempts on HumanEval+. We find that even with an infinite
inference budget, the optimal number of samples is often finite and very low (e.g., K’ < 5 in Figure).
Hence, resampling quickly reaches a point of diminishing returns without bridging the performance
gap for smaller models. If the cost of an incorrect solution is higher than the benefit of a correct
solution, the optimal K can be zero — the risk of a false positive for a weak model is high enough
that it is effectively useless (Figure d). In Section [C]we present a theoretical model that complements
the findings in this section.

Evidence that this affects code quality beyond correctness (Section [5). We show that the reliance
on imperfect verifiers not only affects the functional correctness but also overall quality of the
generated code. We evaluate candidate solutions on HumanEval+ based on various readability
metrics such as adherence to naming conventions (that we specify in the prompt) like snake_case
and camelCase, line-level commenting, and guidelines regarding the maximum line length and
number of lines in function implementations. We find that false positive solutions are lower quality
across all models and metrics when compared to true positive solutions. While other aspects of code
quality such as simplicity and modularity are harder to test automatically, we speculate that the same
pattern holds for those properties as well.

We also conduct a qualitative analysis to identify recurring error types causing a larger generalization
gap for weaker models.

Our findings have three additional implications. First, they show the importance of building highly
accurate verifiers. This goal might benefit from treating verification technology as a specialized
subfield with its own metrics and benchmarks. This is especially true for training-time uses: models
trained with feedback from imperfect verifiers may learn to exploit weaknesses in the verifier rather

Under review as a conference paper at ICLR 2026

Generator Generator
Candidates [A e o N B R
N ~ J
e.g. Majority
voting | ‘ < | ‘ < ‘ | Verifier
Accept
Output D D
a) Ensembling b) Ranking c) Verification

Figure 2: Schematic illustration of various resampling techniques for inference scaling.

than solve tasks robustly, potentially leading to safety concerns (Krakovna et al., 2020; Amodei et al.|
2016).

Second, the use of imperfect verifiers as the ground truth for evaluation is flawed. We used Hu-
manEval+ and MBPP+ for evaluation; the gaps we identify would have been invisible if we had
used HumanEval and MBPP both as verifiers and as benchmarks. While the limitations of these
benchmarks for measuring absolute performance are well known (Zhang et al., [2024b; [Liu et al.}
2023b), our results show that they might result in misleading comparisons between models as well.

Third, our findings highlight limitations in resampling-based data curation for reasoning models.
Reasoning models rely on datasets curated through rejection sampling against verifiers. When these
verifiers are imperfect, the curated datasets risk including mislabeled examples, which incurs a cost
on model performance. This introduces a bottleneck: without stronger base models or highly accurate
verifiers, the gains from resampling-based data curation to train reasoning models are likely limited.

While we do not claim that resampling is the predominant scaling technique, our findings suggest
that the persisting gap between oracle and imperfect verifiers should be taken seriously and could
pose limitations across inference scaling strategies. We invite research on ways to mitigate the issues
identified in this work.

2 SCALING INFERENCE COMPUTE WITH VERIFIERS

Table |1| provides an overview of the main techniques for scaling inference compute with LLMs.
Some methods such as majority voting (Wang et al.,|2023b} |Chen et al.| 2024a)) or resampling using
verifiers (Brown et al., 2024} Xin et al.| |2024) generate many candidate solutions and then select
one. Other methods such as reasoning (Wei et al., [2023) and critique (Shinn et al., [2023; Madaan
et al.,[2023)) refine a single solution. In practice, these methods can be combined in flexible ways
and the distinction between them is not always clear (Section[A.T). Note that our notion of inference
scaling excludes methods such as those used to train OpenAI’s ol series of models, since we are only
looking at improvements during inference time to available language models, rather than training
improvements.

All these methods except verifier-based resampling are known to have important limitations that cast
doubt on how much scaling is truly possible, as summarized in Table[T} Resampling using verifiers
has a different control flow than other methods, which gives it an intuitive appeal (Figure[2): we can
potentially regenerate solutions indefinitely until one is correct. This enthusiasm around resampling
is partly driven by the empirically observed inference scaling laws, which suggest that the fraction of
tasks for which we find at least one correct solution scales predictably with the number of samples
over multiple orders of magnitude (Brown et al., [2024)).

However, the usefulness of this depends on the availability of a capable verifier (Davis et al., [2024).
In some settings, we may have an oracle verifier, such as a proof checker, that does not suffer
from false positives — that is, if the proof checker verifies the proof, it is guaranteed to be correct.
False negatives of the verifier (including nontermination under a fixed compute budget) are less of a
problem, as one can simply generate more samples until a true positive is found. It is possible that

Under review as a conference paper at ICLR 2026

Table 1: Overview of inference scaling techniques. This table shows the main categories of
techniques for inference scaling along with their descriptions and known limitations. Note that
rankers, often implemented with reward models, are sometimes referred to as verifiers and the
boundary can be unclear.

Technique Description Limitations

Reasoning Applying structured logical steps » Performance gains are unreliable and domain-dependent
to improve output quality (Wel (Liu et al.|[2024{|Stechly et al.|[2024||Kojima et al.|[2023)
et al.}2023{|DeepSeek-Al et al.. « Can increase the likelihood to produce harmful or undesir-
2025) able output (Shaikh et al.|[2023)

Critique Self-evaluating and refining initial ¢ Improvements from self-refinement worsens performance
outputs (Shinn et al.|[2023) for tasks with high model uncertainty (Stechly et al.|[2023]

Huang et al.|2024a]|Tyen et al.|[2024)
¢ Self-refinement amplifies self-bias (Xu et al.}[2024)

Fusion Combining multiple samples into ¢ Unreliable performance improvements that vary by task
one output (Saad-Falcon et al.! (Saad-Falcon et al.|[2024)
2024)

Ranking Scores and ranks the best samples ¢ Doesn’t scale with sample budget (Brown et al.|[2024)
from multiple candidates (Cobbe * Underperform compared to other methods (Zhang et al.]
et al.|[2021{/Hassid et al.}[2024; 2024a)

Liu et al.[[2023a{|Lightman et al..
2023{|Liu et al.||2023c{[Hosseini
et al.|[2024b{ Kirchner et al.![2024]
Setlur et al.}[2024{|Snell et al./
2024{|Vacareanu et al.}[2024{/Chen|

et al.|[2024c)

Majority Voting Using consensus among multiple * Hurts performance on hard tasks and non-monotonous scal-
samples to determine final ing under task heterogeneity (Chen et al.|2024a)
output(Wang et al.|[2023b{|[Lietal.] « Sample inefficient for queries with many answer possibili-
2024b{|Wang et al.|[2024b) ties (Wang et al.|[2024b)

* Limited applicability for tasks with non-discrete answers

Oracle Leverages ground-truth evaluator * Not available for most domains

Verification for free until correct solution is
found (Xin et al.)2024{ First et al.!

2023)

Imperfect Scores and accepts or rejects * Bigger generalization gap for weaker models (Section[3}

Verification candidate solutions (Zhang et al.. * Optimal number of samples is finite and low (Section &}

(This paper) 2024a} Davis et al.|2024{|Yao

et al| 2023 Gundawar et al.| 2024 * Low code quality of false positives (Sectlon@

Kambhampati et al.|[2024)

every correct solution is a false negative of the verifier, but it is unclear if this is a problem that arises
in practice.

But in other settings such as coding and reasoning, we only have imperfect verifiers such as unit tests
or LM judges, which suffer from false positives: incorrect solutions that nonetheless pass the verifier.
In these settings, we don’t have easy methods to guarantee the correctness of generated solutions at
inference time. As a result, we cannot distinguish between false positives and true positives simply
by increasing the compute budget. We survey papers that use verifiers in Table 2]

In this paper, we investigate the effect of scaling inference compute with access to imperfect verifiers.

3 REPEATED SAMPLING WITH WEAKER MODELS LEADS TO WORSE
GENERALIZABILITY

In computer programming tasks, unit tests are commonly employed as verifiers to assess the correct-
ness of candidate solutions generated by language models. While unit tests are practical and efficient,
they often suffer from imperfect test coverage, leading to false positives where incorrect solutions
pass the tests (Gulwani et al.}2017). This affects many benchmarks such as HumanEval (Chen et al.|
2021), APPS (Hendrycks et al.,[2021), or MBPP (Austin et al.,[2021). This imperfection raises the
question: Do less capable models produce false positives—implementations that pass the standard
unit tests but fail the comprehensive ones—at a higher rate than stronger models?

Under review as a conference paper at ICLR 2026

Paper Verifier Verifier Type Domain Verifier Implementation
Category
Chen et al.|(2022) Imperfect Unit tests Coding Checks agreement of tests and samples
Shinn et al.|(2023) Imperfect LM-as-judge, Coding, QA LLM evaluator generates decision re-
Unit tests wards

Yao et al.|(2023) Imperfect =~ LM-as-judge Planning LLM evaluates reasoning steps

First et al.|(2023) Oracle Proof checker Math Proof checker

I'hakur et al.[(2024) Oracle Proof checker Math Proof checker

Yang et al.|[(2023) Oracle Proof checker Math Proof checker

Wang et al.|(2023a) Oracle Proof checker Math Proof checker

Azerbayev et al.|(2024) Oracle Proof checker Math Proof checker, Majority voting

Huang et al.|(2024b) Oracle Proof checker Math Proof checker

Xin et al.[(2024) Oracle Proof checker Math Proof checker

Brown et al.|(2024) Oracle Proof checker Math Proof checker

Davis et al.|(2024) Imperfect = LM-as-judge QA, Math LLM judges correctness of generations

Hassid et al. |(2024) Imperfect ~ Unit tests Coding Unit tests

Zhang et al.|(2024a) Imperfect Generative RM Math Verification as part of the model output

Zhuge et al.|(2024) Imperfect ~ Agent-as-judge Agents, Coding Agents evaluate outputs of other agents

Kapoor et al.|(2024) Imperfect ~ Unit tests Coding Unit tests

Saad-Falcon et al.|(2024) Imperfect = LM-as-judge Coding, Reasoning LLM judges correctness of generations

Liang et al.|(2024) Imperfect Program-of- Coding, Math Checks CoT against generated PoT

thought

Cook et al.|(2024) Imperfect =~ LM-as-judge Instruction- LLM checks answer against generated
following checklists

Gundawar et al.|(2024) Imperfect ~ Agent-as-judge Travel planning Pre-defined constraints verified by critic

agents

Table 2: Survey of papers on LLM verification methods, their approaches, and specific verifier
implementations.

Experimental setup. To investigate this, we conducted experiments on two widely used coding
benchmarks: HumanEval+ and MBPP+. MBPP consists of simple programming tasks designed
to evaluate the basic coding abilities of models (Austin et al., 2021). HumanEval+ and MBPP+
are extensions of the original HumanEval and MBPP benchmarks (Liu et al., 2023b) and contain
additional hidden test cases to assess correctness beyond the unit tests included in the original
benchmarks.

We evaluated multiple models of varying capabilities, including weaker and stronger models, gen-
erating at least 50 samples for each model and benchmark task. We used the standard unit tests
provided with the benchmarks as imperfect verifiers to filter the candidate solutions. To assess the
generalization gap, we then evaluated solutions that passed the original benchmark test sets on the
more comprehensive hidden test cases (see Section [D|for details). These tests are extensive, and we
assume that solutions that pass the full set of tests are correct. (If this assumption is not true, the
generalization gaps that we reveal only grow bigger.)

Findings. Weaker models exhibit a higher probability of producing false positives compared to
stronger models (Figure [3). This probability scales inversely with the true capability. This linear
relationship holds with remarkable consistency across models of various families, including Cohere’s
Command models, GPT-4o, and the Llama 3.1 family. This suggests that while weaker models
appear to perform well on standard benchmarks through increased sampling, they fail to generalize
effectively and, importantly, they generalize worse than more capable models. They tend to generate
fragile solutions that exploit the limitations of the unit tests. We speculate that this is because weaker
models’ “true understanding” of the programming tasks is worse.

The empirical results reinforce a core insight. Suppose Psirong(Correct) >
Pyeak (Correct|Pass Verifier). That is, the single-sample accuracy of a strong model exceeds that of
a weaker model, even conditioned on the weaker model passing the base unit tests. Then the weaker
model cannot match the performance of a single invocation of the stronger model, no matter how big
the compute budget for the weaker model. In Figure[3] this is shown by a horizontal line. No model
below the line can match the performance of GPT-40 through resampling.

The effect is largely driven by a subset of the tasks where the unit tests are poor. When we limit the
analysis to these tasks, the relationship is even more pronounced Section B}

Note that our results rely on human-generated unit tests as verifiers. In practice, we might expect to
use language-model-generated unit tests for inference-time verification. It is an open question as to
how the findings change when the unit-test verifiers are LLM-generated.

Under review as a conference paper at ICLR 2026

1.0

1.0 1.0

0

]
c ﬁ @ GPT-40
©,09 o ® 0.9
®E GPT-40's Pass@1 Phi-3 '_f'.'[“ o Lama3.14058 GPT-3.5Turbo or 4
§2 Command-R ® o Phi-3Medium Lama3.1708 CommandR g M S g @ lama 3.1 708
5808 CodeGen2 CodeGen Llama 3.1 88 0.8 Mistral Large ——>
-_a > VY LJ Command. Code Llama 138 . Llama 3.1 88 Llama 3.1 405B
c'd StarCoder g8 @ ' -00e GPT-40's Pass@1
O Vicuna 7BMistral 7B ~~"7F PEEE SR T T T T T T T . - - - - - -
(V] E ® CodeT5p 168 Command
> = 0.7 command-Light 0.7 Py
23
E I Command-Light
50

c
Y706 0.6
<%

a 0.22x + 0.72, R2 = 0.891, p = 0.000 0.23x + 0.67, R2 = 0.892, p = 0.000

0.5 0.5
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8
Single-Sample Accuracy (Pass@1) Single-Sample Accuracy (Pass@1)
HumanEval+ MBPP+

Figure 3: Generalization gap with infinite compute budget. We show the relationship between the
accuracy of individual samples (x-axis) and the achievable accuracy given an infinite compute budget
and limited unit tests (y-axis; note that it starts at 0.5). We evaluate performance on the extended test
suites of HumanEval+ and MBPP+, using the unit tests from the original benchmarks as verifiers.
For both benchmarks, the trend is that less capable models are more likely to generate false positives
than stronger models. In Section[B] we show our results with the full y-axis as well as upper (lower)
bounds on the conditional accuracy accounting for tasks for which we did not observe any solutions
passing the unit tests.

4 HOW MANY SAMPLES ARE OPTIMAL?

In the previous section we looked at the behavior of resampling in the limit as the number of samples
grows large. Now we look at inference scaling curves, which allow us to study how accuracy varies
as a function of the number of samples.

We add one important detail: we model the cost of false positives, such as code that passes unit tests
but has subtle bugs. The cost of bugs (which might result in buggy software being deployed) is not
easily comparable to the labor-saving benefit of correct solutions, and this cost-benefit ratio can vary
greatly depending on the application. So we consider many possible values for the cost-benefit ratio,
including zero, which is the setting considered in previous work on inference scaling. The ratio can
potentially be much higher than 1 in some applications, such as security sensitive ones, since bugs
might translate to exploitable vulnerabilities.

Experimental setup. For each model of interest, we generated 200 samples for each task in the
HumanEval benchmark. For each K < 200, If a passing solution was found within K samples, we
assigned rewards based on the outcome: a true positive yielded a benefit of 1, while a false positive
incurred a cost, with values set according to different cost-benefit ratios: 0, 1, 2, 4, or 8 (Figure[d). If
no passing solution was found within K samples, we assigned a reward of O (both, cost and benefit
are 0). We repeated this whole process 1,000 times and computed the mean reward for each K. The
set of samples was the same in all 1,000 runs, but the order of samples was randomly permuted. This
setup allows us to empirically observe the relationship between the number of sampling attempts K
and the reward for various cost-benefit ratios. The results are illustrated in Figure] for the Llama 3.1
(Dubey et al.,|2024) and Code Llama (Roziere et al.,[2024) model families. The scaling curves for
GPT-4o are included in Figure [I3]

Findings. The results show that the effectiveness of repeated sampling quickly reaches a point of
diminishing and even negative returns. Each additional attempt brings a trade-off: although it might
yield a correct solution, it might instead yield a false positive, and the false positive rate increases
with K (Figure[5). At first this is surprising, since sampling is a memoryless process. To understand
why it happens, we need to look at the distribution of task difficulty (Figure[6)), which turns out to
be strongly bimodal. The easy tasks get solved within a few attempts, and for the remaining harder
tasks, false positives are more likely. This aligns with findings by |Chen et al.| (2024a), who observed
a similar inverse U-shaped accuracy curves explained by the heterogeneity in task difficulties.

Under review as a conference paper at ICLR 2026

C/B-Ratio = 0 C/B-Ratio = 1 C/B-Ratio =2 —e— C/B-Ratio = 4 C/B-Ratio=8 — - Gondmenal
Llama 3.1 8B Llama 3.1 70B Code Llama 7B Code Llama 13B
0.8~ """ —oooo——== 08 0.8 . 0.8 -
0.6 —— 06 X— 06 o6
T > : — — |
G 0.4 04 T 04 0.4
q;, . —S— *
€ 02— X 02, 0.2 0.2
—— x .
0.0 0.0 0.0 — 0.0 T——
02190 10! 102 %20 10! 102 ~02%q0 10! 102 ~920 10! 102
K (Attempts) K (Attempts) K (Attempts) K (Attempts)

Figure 4: Inference scaling curves in the presence of a cost for false positives. We show the reward
as a function of the number of attempts K across various cost-benefit ratios for the Llama 3.1 and
Code Llama model families. Crosses mark the optimal number of samples for each setting. Standard
inference scaling curves with no cost (i.e., cost-benefit ratio is 0) are provided for reference. We find
that, even at zero computational cost, there is a finite optimal number of samples K that is often very
low.

Llama 3.1 70B Code Llama 7B

[}

Eo.s 0.8

° N

Soe6 0.6

- .

n

8 0.4 0.4

0.2 ! 0.2

do .

©

ILO'O'»”)’\":\“)N 00 A e s D A
N T W Y T 07) A VA A S MY SN 2

R RN NG AT W

K Range (Powers of 2) K Range (Powers of 2)

Figure 5: False positive rate as a function of the number of attempts K for Llama 3.1 70B and
Code Llama 7B on HumanEval+. We include plots for additional models in Section |g

Thus, even with zero computational cost, the optimal number of samples is finite and low (Figure F).
For example, at a cost-benefit ratio of 4, the optimal number of samples is K < 5 for all four models.
If the ratio is high enough, the optimal number of samples is zero — the expected cost of a false
positive outweighs the expected benefit of a correct solution, so the reward is always negative and it
is best not to attempt a solution at all.

We note one important caveat: for some models such as Llama 3.1 70B, the false positive rate
increases dramatically with K, whereas for others such as the Code Llama and Command families,
the increase is much more gradual, resulting in much higher values of the optimal I, especially for
low cost-benefit ratios. We have not been able to identify any intuitive reason for this difference.

To summarize, weaker models cannot “sample their way” to top-level performance if the verifier
cannot reliably filter out false positives because the risks quickly outweigh the benefits. Our findings
in this section align with our theoretical model in Section [C| which generalizes these findings to other
benchmarks.

5 FALSE POSITIVE SOLUTIONS ARE LOW-QUALITY EVEN BEYOND
CORRECTNESS

While correctness is a fundamental criterion for evaluating code generated by LLMs, it is not the only
determinant of code quality. High-quality code possesses attributes beyond mere functionality, such
as readability, maintainability, and efficiency. Readability simplifies error-checking and is considered
one of the most useful properties of high-quality code (Borstler et al.| [2023)). It can be measured using
various metrics, including code length guidelines (e.g., PEP8), adherence to naming conventions like
snake_case or camelCase, and consistent commenting (Zheng et al., [2024). Intuitively, shorter
code with clear variable names and informative comments is generally easier to read and maintain.

To understand the relationship between imperfect verifiers and code quality, we evaluated the
readability of code generated by various models in our setup.

Under review as a conference paper at ICLR 2026

Experimental setup. On HumanEval, we evaluate the readability scores of candidate solutions that
pass standard unit tests and the more comprehensive test suite. For each measure of code readability,
we use a different prompt instructing the model to adhere to the desired guidelines (see Section D] for
detailed prompts). We rely on the prompts and implementation from [Zheng et al.| (2024).

The results show notable differences in code quality between false positives and robust implementa-
tions. False positives, passing only the standard but not the extended unit tests, tend to have worse
code quality across all metrics (see Figure [7). This trend is consistent across models of varying
capabilities. This suggests that the limitations of imperfect verifiers for coding tasks extend beyond
correctness issues but also affect other code characteristics important for software development. This
affects weaker models more, given that they are more prone to generate false positives.

An open question arising from our findings is whether fine-tuning LLMs on code quality metrics
could improve not only the quality of generated code but also robustness 2023)), potentially
mitigating the prevalence of false positives.

10 Llama 3.1 8B GPT-40 Llama 3.1 8B GPT-40
L
808
©
%5 0.6
504
g
Yo2
S
Y00

0.0 02 08 1.0 00 02 08 1.0 00 02 08 1.0 00 02 0.8
Pass@l Pass@l Pass@l Pass@l
HumanEval+ MBPP+

Figure 6: Distribution of task difficulties for Llama 3.1 8B and GPT-40 on HumanEval+ and
MBPP+. We include barplots for all models on both benchmarks in Section

1.0
0.91 0.92 0.91
0.90 088 088088 = gg 088
0.80 r 0.80 0.80
0.8
0.75
0.72

>
£06
.%
K] 0.43 0.43
04 0.38
o

0.2 mmm P(Adheres to camelCase | Pass Unit Tests)

mmm P(Adheres to camelCase | Correct)

mmm P(Adheres to camelCase | False Positive)
0.0 - - -

Figure 7: False positives tend to be lower-quality code than correct implementations. For
example, false positive solutions fail to adhere to the came 1Case naming convention more often
than robust implementations. Figure[I6]shows that this holds consistently across models and for all
four code quality metrics we test. GPT-3.5 exhibits a low relative performance in using camelCase
but performs comparably to other models in following snake_case (Section D). This has also

been found in previous work (Zheng et al.|, [2024).

Qualitative analysis of false positives. To better understand the characteristics of false positive

implementations, we randomly sample 10 implementations across all models that pass the standard

tests but fail the additional unit tests, 5 for each benchmark. Through manual analysis, we identified

several recurring error types. All examples mentioned in the following are included in Section[D.3]

1. Logical errors: Such errors were common. For instance, in the HumanEval/30 task, the model
is tasked with returning only positive numbers from a list. The solution shown in Section [D.3]
incorrectly converts floats to integers, passing the basic tests that included only integers but failing
extended tests that introduce float values.

Under review as a conference paper at ICLR 2026

2. Edge case handling: Sometimes solutions failed to account for atypical inputs, which happened
to not be covered by the standard unit tests. For example, in HumanEval/6, the solution failed
to handle an empty list input. It is important to note that tasks in HumanEval and MBPP often
are ambiguous as to how edge cases should be handled. For example, for HumanEval/149 some
solutions fail because they return an assertion error instead of an empty list for the edge case of
getting an empty list as input. We expect that ambiguity should affect weaker and stronger models
similarly, but have not tested this.

3. Inefficient implementations: While most false positives result from logic errors or edge case mis-
handling, some were also caused by inefficient implementations. For instance, in HumanEval/15,
the solution involved a for-loop that became inefficient when handling larger inputs, causing a
timeout on the extended tests. Following |Liu et al.|(2023b)), we set the timeout such that each
candidate solution must compute in less than one second or four times the time it takes to run each
test on the ground truth implementation, whichever is greater.

6 DISCUSSION

We study a setting where all generators are paired with the same verifier. The verifier has imperfect
coverage, but no false negatives. In real-world deployment settings, human-written unit tests are
rarely available and we would need to rely on the use of automated test generation techniques.
These approaches include symbolic execution (Lukasczyk & Fraser, |2022), specialized transformers
(Tufano et al.l 2021)), and LLMs (Chen et al., [2024b; |2022; Siddiq et al.| 2024). Model-generated
tests introduce new challenges including a disparity between verifiers and a risk of false negatives.
This could widen the generalization gap. We leave an investigation of the impact of model-generated
unit tests as a next step.

Resampling is used not only to scale inference but also to train large reasoning models. Many
state-of-the-art reasoning models are trained on datasets curated through rejection sampling (NovaSky
Team| 2025} [DeepSeek-Al et al., [2025; [Bespoke Labs| [2025)), where verifiers filter out incorrect
outputs. However, imperfect verifiers can introduce mislabeled examples, implicitly incurring a cost
of false positives. We hypothesize that weaker models paired with imperfect verifiers fail to produce
datasets of sufficient quality to train competitive reasoning models, creating a bottleneck: without
stronger base models or more accurate verifiers, gains from resampling-based data curation to train
reasoning models are limited.

Although our experiments focus on coding tasks, we want to emphasize that our theoretical results
are domain-agnostic: resampling relying on imperfect verifiers with non-zero false positive rates will
face the same fundamental ceiling.

Related work has also studied the risks of over-optimizing against imperfect rewards. For example,
Gao et al.|(2022) analyzes how optimizing against proxy reward models can lead to degraded true
performance. Our setting differs in that we focus on inference-time resampling, where the ceiling on
achievable accuracy arises directly from false positives rather than reward misalignment.

Finally, our findings weaken support for previous papers’ claims that resampling is an effective
strategy to increase accuracy by trading off inference time compute (Kapoor et al.l 2024; |(Chen et al.,
2024al)); here resampling with imperfect verifiers is inherently limited.

Limitations. Our experiments focus on repeated sampling in the context of coding tasks. Coding
offers a clear example of the challenges posed by imperfect verifiers, other domains might exhibit
different behavior. Future work could extend these findings to tasks such as reasoning (Hosseini
et al., [2024a), web agents (Bai et al., 2024} He et al., |2024), or agent-user interaction (Yao et al.|
2024). Another limitation is prompt sensitivity, which affects LLM evaluations (Biderman et al.|
2024; Liang et al., 2023)). While we followed the original authors’ implementation provided with the
HumanEval+ and MBPP+ benchmarks (Liu et al.,[2023b)), prompt engineering could influence false
positive generation. Additionally, we did not investigate how benchmark contamination affects our
findings, as models could be overly optimized for passing the standard test cases. Finally, we did
not explore mitigation strategies such refining solutions after they passed the verifier (Saad-Falcon
et al.,[2024). Similarly, we did not test alternative strategies to inference scaling that, e.g., induce
more diversity during sampling (Wang et al., 2024a).

Under review as a conference paper at ICLR 2026

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete Problems in Al Safety, July 2016. URL http://arxiv.org/abs/1606.06565.
arXiv:1606.06565.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Do-
han, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program Synthesis
with Large Language Models, August 2021. URL http://arxiv.org/abs/2108.07732.
arXiv:2108.07732 [cs].

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An Open Language Model For Math-
ematics, March 2024. URL http://arxiv.orqg/abs/2310.10631. arXiv:2310.10631.

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar. DigiRL:
Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning, June
2024. URL http://arxiv.org/abs/2406.11896. arXiv:2406.11896.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distilla-
tion. www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-
distillation, 2025. Accessed: 2025-01-22.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa Jaiswal,
Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason Phang,
Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata, Frangois Yvon,
and Andy Zou. Lessons from the Trenches on Reproducible Evaluation of Language Models, May
2024. URL http://arxiv.org/abs/2405.14782. arXiv:2405.14782.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large Language Monkeys: Scaling Inference Compute with Repeated Sampling, July
2024. URL http://arxiv.org/abs/2407.21787, arXiv:2407.21787 [cs].

Jiirgen Borstler, Kwabena E. Bennin, Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten
Kleiner, Bonnie MacKellar, Rodrigo Duran, Harald Storrle, Daniel Toll, and Jelle van Assema.
Developers talking about code quality. Empirical Software Engineering, 28(6):128, September
2023. ISSN 1573-7616. doi: 10.1007/s10664-023-10381-0. URL https://doi.org/10,
1007/s10664-023-10381-0.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
CodeT: Code Generation with Generated Tests, November 2022. URL http://arxiv.org/
abs/2207.10397. arXiv:2207.10397.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems,
March 2024a. URL http://arxiv.org/abs/2403.02419. arXiv:2403.02419 [cs, eess].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107,
03374, arXiv:2107.03374 [cs].

10

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2406.11896
http://arxiv.org/abs/2405.14782
http://arxiv.org/abs/2407.21787
https://doi.org/10.1007/s10664-023-10381-0
https://doi.org/10.1007/s10664-023-10381-0
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2207.10397
http://arxiv.org/abs/2403.02419
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Under review as a conference paper at ICLR 2026

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin. ChatUniTest:
A Framework for LLM-Based Test Generation. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, FSE 2024, pp. 572-576,
New York, NY, USA, July 2024b. Association for Computing Machinery. ISBN 9798400706585.
doi: 10.1145/3663529.3663801. URL https://dl.acm.org/doi/10.1145/3663529,
3663801.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is Tree
Search Useful for LLM Planning? It Depends on the Discriminator, June 2024c. URL http:
//arxiv.org/abs/2402.10890. arXiv:2402.10890.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, November 2021. URL http:
//arxiv.org/abs/2110.14168. arXiv:2110.14168 [cs].

Jonathan Cook, Tim Rocktéschel, Jakob Foerster, Dennis Aumiller, and Alex Wang. TICKing All
the Boxes: Generated Checklists Improve LLM Evaluation and Generation, October 2024. URL
http://arxiv.org/abs/2410.03608. arXiv:2410.03608.

Jared Quincy Davis, Boris Hanin, Lingjiao Chen, Peter Bailis, Ion Stoica, and Matei Zaharia.
Networks of Networks: Complexity Class Principles Applied to Compound Al Systems Design,
July 2024. URL http://arxiv.org/abs/2407.16831l arXiv:2407.16831 [cs].

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqgi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
January 2025. URL |http://arxiv.org/abs/2501.12948, arXiv:2501.12948 [cs].

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-Verification Reduces Hallucination in Large Language Models, September
2023. URL http://arxiv.org/abs/2309.11495, arXiv:2309.11495.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston

11

https://dl.acm.org/doi/10.1145/3663529.3663801
https://dl.acm.org/doi/10.1145/3663529.3663801
http://arxiv.org/abs/2402.10890
http://arxiv.org/abs/2402.10890
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2410.03608
http://arxiv.org/abs/2407.16831
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2309.11495

Under review as a conference paper at ICLR 2026

Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoycheyv, Niladri Chatterji, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzman, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqgian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,

12

Under review as a conference paper at ICLR 2026

Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shugiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vitor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The Llama 3 Herd
of Models, August 2024. URL http://arxiv.org/abs/2407.21783\ arXiv:2407.21783.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-Proof Generation and
Repair with Large Language Models, March 2023. URL |http://arxiv.org/abs/2303|
04910. arXiv:2303.04910.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization, 2022.
URLhttps://arxiv.org/abs/2210.10760.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program Synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1-119, July 2017. ISSN 2325-1107, 2325-1131. doi:
10.1561/2500000010. URL https://www.nowpublishers.com/article/Details/
PGL-010. Publisher: Now Publishers, Inc.

Atharva Gundawar, Karthik Valmeekam, Mudit Verma, and Subbarao Kambhampati. Robust Planning
with Compound LLM Architectures: An LLM-Modulo Approach, November 2024. URL http:
//arxiv.org/abs/2411.14484. arXiv:2411.14484.

Michael Hassid, Tal Remez, Jonas Gehring, Roy Schwartz, and Yossi Adi. The Larger the Better?
Improved LLM Code-Generation via Budget Reallocation, July 2024. URL http://arxiv,
org/abs/2404.00725. arXiv:2404.00725 [cs].

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models,
June 2024. URL http://arxiv.org/abs/2401.13919. arXiv:2401.13919.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding, January 2021. URL http:
//arxiv.org/abs/2009.03300. arXiv:2009.03300 [cs].

Arian Hosseini, Alessandro Sordoni, Daniel Toyama, Aaron Courville, and Rishabh Agarwal. Not All
LLM Reasoners Are Created Equal, October 2024a. URL http://arxiv.org/abs/2410,
01748, arXiv:2410.01748 [cs].

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STaR: Training Verifiers for Self-Taught Reasoners, August 2024b. URL http:
//arxiv.orqg/abs/2402.06457. arXiv:2402.06457 [cs].

13

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2303.04910
http://arxiv.org/abs/2303.04910
https://arxiv.org/abs/2210.10760
https://www.nowpublishers.com/article/Details/PGL-010
https://www.nowpublishers.com/article/Details/PGL-010
http://arxiv.org/abs/2411.14484
http://arxiv.org/abs/2411.14484
http://arxiv.org/abs/2404.00725
http://arxiv.org/abs/2404.00725
http://arxiv.org/abs/2401.13919
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2410.01748
http://arxiv.org/abs/2410.01748
http://arxiv.org/abs/2402.06457
http://arxiv.org/abs/2402.06457

Under review as a conference paper at ICLR 2026

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large Language Models Cannot Self-Correct Reasoning Yet, March 2024a.
URLhttp://arxiv.org/abs/2310.01798. arXiv:2310.01798.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. MUSTARD: Mastering Uniform Synthesis of Theorem and
Proof Data, May 2024b. URL http://arxiv.org/abs/2402.08957. arXiv:2402.08957.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen, and Ion Stoica.
LLM-Assisted Code Cleaning For Training Accurate Code Generators, November 2023. URL
http://arxiv.org/abs/2311.14904. arXiv:2311.14904.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Saldyt, and Anil Murthy. LLMs Can’t Plan, But Can Help Planning in LLM-Modulo
Frameworks, June 2024. URL http://arxiv.org/abs/2402.01817. arXiv:2402.01817.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Al Agents
That Matter, July 2024. URL http://arxiv.org/abs/2407.01502. arXiv:2407.01502.

Jan Hendrik Kirchner, Yining Chen, Harri Edwards, Jan Leike, Nat McAleese, and Yuri Burda.
Prover-Verifier Games improve legibility of LLM outputs, August 2024. URL http://arxiv,
org/abs/2407.13692. arXiv:2407.13692 [cs].

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners, January 2023. URL http://arxiv.org/abs/
2205.11916k arXiv:2205.11916.

Victoria Krakovna, Laurent Orseau, Richard Ngo, Miljan Martic, and Shane Legg. Avoiding Side
Effects By Considering Future Tasks, October 2020. URL http://arxiv.org/abs/2010/
07877, arXiv:2010.07877.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7B Language Models Already Possess Strong Math Capabilities, March
2024a. URL http://arxiv.org/abs/2403.04706. arXiv:2403.04706.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More Agents Is All You Need,
February 2024b. URL http://arxiv.org/abs/2402.05120, arXiv:2402.05120 version:
1.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang
Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré,
Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda
Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert
Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan
Mai, Yuhui Zhang, and Yuta Koreeda. Holistic Evaluation of Language Models, October 2023.
URLhttp://arxiv.org/abs/2211.09110. arXiv:2211.09110.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang, Yingbo Zhou, and Semih Yavuz. Improving
LLM Reasoning through Scaling Inference Computation with Collaborative Verification, October
2024. URL http://arxiv.org/abs/2410.05318. arXiv:2410.05318.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023. URL
http://arxiv.org/abs/2305.20050. arXiv:2305.20050.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel

Ward, and Yi Zhang. TinyGSM: achieving >80% on GSMS8k with small language models,
December 2023a. URL http://arxiv.org/abs/2312.09241, arXiv:2312.09241.

14

http://arxiv.org/abs/2310.01798
http://arxiv.org/abs/2402.08957
http://arxiv.org/abs/2311.14904
http://arxiv.org/abs/2402.01817
http://arxiv.org/abs/2407.01502
http://arxiv.org/abs/2407.13692
http://arxiv.org/abs/2407.13692
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2010.07877
http://arxiv.org/abs/2010.07877
http://arxiv.org/abs/2403.04706
http://arxiv.org/abs/2402.05120
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2410.05318
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/2312.09241

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
November 2023b. URL |https://openreview.net/forum?id=1gvx610Cu7.

Ryan Liu, Jiayi Geng, Addison J. Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L. Griffiths.
Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Think-
ing Makes Humans Worse, October 2024. URL http://arxiv.org/abs/2410.21333.
arXiv:2410.21333.

Yixin Liu, Avi Singh, C. Daniel Freeman, John D. Co-Reyes, and Peter J. Liu. Improving Large
Language Model Fine-tuning for Solving Math Problems, October 2023c. URL http://arxiv,
org/abs/2310.10047. arXiv:2310.10047.

Stephan Lukasczyk and Gordon Fraser. Pynguin: automated unit test generation for Python. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Com-
panion Proceedings, ICSE *22, pp. 168-172, New York, NY, USA, October 2022. Association
for Computing Machinery. ISBN 978-1-4503-9223-5. doi: 10.1145/3510454.3516829. URL
https://dl.acm.org/doi/10.1145/3510454.35168209.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative
Refinement with Self-Feedback, May 2023. URL http://arxiv.org/abs/2303.17651.
arXiv:2303.17651.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-
Turn Program Synthesis, February 2023. URL http://arxiv.org/abs/2203.13474|
arXiv:2203.13474.

NovaSky Team. Sky-tl: Train your own ol preview model within 450. hitps : //novasky —
ai.github.io/posts/sky — t1,2025. Accessed : 2025 — 01 — 09.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large Language Models are Effective
Text Rankers with Pairwise Ranking Prompting, March 2024. URL http://arxiv.org/abs/
2306.17563l arXiv:2306.17563.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom,
and Gabriel Synnaeve. Code Llama: Open Foundation Models for Code, January 2024. URL
http://arxiv.org/abs/2308.12950. arXiv:2308.12950.

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok Natarajan, Nahum Maru, Hristo Todorov, Etash
Guha, E. Kelly Buchanan, Mayee Chen, Neel Guha, Christopher Ré, and Azalia Mirhoseini. Archon:
An Architecture Search Framework for Inference-Time Techniques, October 2024. URL http:
//arxiv.org/abs/2409.15254, arXiv:2409.15254.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding Progress: Scaling Automated Process
Verifiers for LLM Reasoning, October 2024. URL http://arxiv.org/abs/2410.08146.
arXiv:2410.08146.

Omar Shaikh, Hongxin Zhang, William Held, Michael Bernstein, and Diyi Yang. On Second Thought,
Let’s Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning, June 2023. URL http:
//arxiv.org/abs/2212.08061. arXiv:2212.08061.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: language agents with verbal reinforcement learning. Advances
in Neural Information Processing Systems, 36:8634-8652, December 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

15

https://openreview.net/forum?id=1qvx610Cu7
http://arxiv.org/abs/2410.21333
http://arxiv.org/abs/2310.10047
http://arxiv.org/abs/2310.10047
https://dl.acm.org/doi/10.1145/3510454.3516829
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2306.17563
http://arxiv.org/abs/2306.17563
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2409.15254
http://arxiv.org/abs/2409.15254
http://arxiv.org/abs/2410.08146
http://arxiv.org/abs/2212.08061
http://arxiv.org/abs/2212.08061
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat,
and Vinicius Carvalho Lopes. Using Large Language Models to Generate JUnit Tests: An Empirical
Study, March 2024. URL http://arxiv.org/abs/2305.00418. arXiv:2305.00418.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute Optimally
can be More Effective than Scaling Model Parameters, August 2024. URL http://arxiv.org/
abs/2408.03314. arXiv:2408.03314 [cs].

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The Good, The Bad, and The Greedy:
Evaluation of LLMs Should Not Ignore Non-Determinism, July 2024. URL http://arxiv.org/
abs/2407.10457. arXiv:2407.10457.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. GPT-4 Doesn’t Know It’s Wrong: An
Analysis of Iterative Prompting for Reasoning Problems, October 2023. URL http://arxiv}
org/abs/2310.12397. arXiv:2310.12397.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of Thoughtlessness? An
Analysis of CoT in Planning, June 2024. URL http://arxiv.org/abs/2405.04776.
arXiv:2405.04776.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An In-Context
Learning Agent for Formal Theorem-Proving, August 2024. URL http://arxiv.org/abs/
2310.04353! arXiv:2310.04353.

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundaresan. Unit Test
Case Generation with Transformers and Focal Context, May 2021. URL http://arxiv.org/
abs/2009.05617. arXiv:2009.05617.

Gladys Tyen, Hassan Mansoor, Victor Carbune, Peter Chen, and Tony Mak. LLMs cannot find reasoning
errors, but can correct them given the error location, June 2024. URL http://arxiv.org/abs/
2311.08516. arXiv:2311.08516.

Robert Vacareanu, Anurag Pratik, Evangelia Spiliopoulou, Zheng Qi, Giovanni Paolini, Neha Anna John,
Jie Ma, Yassine Benajiba, and Miguel Ballesteros. General Purpose Verification for Chain of Thought
Prompting, April 2024. URL http://arxiv.org/abs/2405.00204. arXiv:2405.00204 [cs].

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning In Natural Language Improves LLM
Search For Code Generation, September 2024a. URL http://arxiv.org/abs/2409.03733\
arXiv:2409.03733 [cs].

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang. LEGO-Prover:
Neural Theorem Proving with Growing Libraries, October 2023a. URL http://arxiv.org/
abs/2310.00656. arXiv:2310.00656.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft Self-Consistency Im-
proves Language Model Agents, June 2024b. URL http://arxiv.org/abs/2402.13212,
arXiv:2402.13212.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language Models,
March 2023b. URL http://arxiv.org/abs/2203.11171. arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
January 2023. URL http://arxiv.org/abs/2201.11903. arXiv:2201.11903.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From Decoding to Meta-Generation: Inference-time Algo-
rithms for Large Language Models, June 2024. URL http://arxiv.org/abs/2406.16838|
arXiv:2406.16838.

16

http://arxiv.org/abs/2305.00418
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2407.10457
http://arxiv.org/abs/2407.10457
http://arxiv.org/abs/2310.12397
http://arxiv.org/abs/2310.12397
http://arxiv.org/abs/2405.04776
http://arxiv.org/abs/2310.04353
http://arxiv.org/abs/2310.04353
http://arxiv.org/abs/2009.05617
http://arxiv.org/abs/2009.05617
http://arxiv.org/abs/2311.08516
http://arxiv.org/abs/2311.08516
http://arxiv.org/abs/2405.00204
http://arxiv.org/abs/2409.03733
http://arxiv.org/abs/2310.00656
http://arxiv.org/abs/2310.00656
http://arxiv.org/abs/2402.13212
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2406.16838

Under review as a conference paper at ICLR 2026

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Jason Weston, and Sainbayar Sukhbaatar. Thinking
LLMs: General Instruction Following with Thought Generation, October 2024. URL http://
arxiv.org/abs/2410.10630. arXiv:2410.10630.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale
Synthetic Data, May 2024. URL |http://arxiv.org/abs/2405.14333, arXiv:2405.14333.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Yang Wang. Pride and
Prejudice: LLM Amplifies Self-Bias in Self-Refinement, June 2024. URL http://arxiv.org/
abs/2402.11436. arXiv:2402.11436.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem Proving with Retrieval-Augmented Language
Models, October 2023. URL http://arxiv.org/abs/2306.15626. arXiv:2306.15626.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models, December
2023. URL http://arxiv.org/abs/2305.10601. arXiv:2305.10601.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A Benchmark for
Tool-Agent-User Interaction in Real-World Domains, June 2024. URL http://arxiv.org/
abs/2406.12045. arXiv:2406.12045.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative Verifiers: Reward Modeling as Next-Token Prediction, August 2024a. URL http:
//arxiv.orqg/abs/2408.15240. arXiv:2408.15240 [cs].

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao
Dong, and Jie Tang. NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval
and Natural User Prompts, May 2024b. URL http://arxiv.org/abs/2405.04520.
arXiv:2405.04520.

Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Le Sun. Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language
Models, October 2024. URL http://arxiv.org/abs/2407.11470. arXiv:2407.11470.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a Human: A Large Language Model Debugger
via Verifying Runtime Execution Step-by-step, June 2024. URL http://arxiv.org/abs/
2402.16906l arXiv:2402.16906.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas
Chandra, and Jirgen Schmidhuber. Agent-as-a-Judge: Evaluate Agents with Agents, October 2024.
URL http://arxiv.org/abs/2410.10934, arXiv:2410.10934.

17

http://arxiv.org/abs/2410.10630
http://arxiv.org/abs/2410.10630
http://arxiv.org/abs/2405.14333
http://arxiv.org/abs/2402.11436
http://arxiv.org/abs/2402.11436
http://arxiv.org/abs/2306.15626
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2406.12045
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2408.15240
http://arxiv.org/abs/2405.04520
http://arxiv.org/abs/2407.11470
http://arxiv.org/abs/2402.16906
http://arxiv.org/abs/2402.16906
http://arxiv.org/abs/2410.10934

Under review as a conference paper at ICLR 2026

A ADDITIONAL DETAILS ON SECTION [2]

A.1 EDGE CASES IN OUR GENERATOR-VERIFIER SETTING

The setting described in Figure 2] considers verifiers and generators as distinct components, where
verifiers score and accept or reject individual samples from the generator’s output to enable accuracy
improvements through resampling.

This creates interesting edge cases with methods like Chain-of-Verification (CoVe) (Dhuliawala et al.|
2023), Tree of Thoughts (ToT) (Yao et al.,|2023), and Reward Models (RMs) (Snell et al., [2024)
where verification and generation are more tightly coupled. While ToT fits within our framework by
producing aggregate scores and a decision on whether the problem is solvable from a given state or not
(i.e. potentially rejecting solutions), CoVe differs fundamentally in its verification approach. Instead
of producing numeric scores and accepting or rejecting solution candidates, CoVe uses verification
of intermediate facts used for answering a question to improve a single response through iterative
refinement. This makes CoVe less suitable for inference scaling through resampling because there
is no way to distinguish between the quality of multiple samples and using a verifier’s verdict for
resampling.

18

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS ON SECTION[3]

1.0 GPT-3.5 Turbo Llama 3.1 405B Llama 3.1 8B

0.8
0.6
0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Tasks
Fraction of Tasks
Fraction of Tasks

Passpus@1 Passpius@1 Passpius@1
1.0 Llama 3.1 70B Mistral Large Mistral Small
0.8
0.6
0.4
0.2
0.0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
Passpus@1 Passpus@1 Passpus@1
1.0 Command Command-Light Command-R
0.8
0.6

0.4

" l
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Passpus@1 Passpus@1 Passpus@1
10 GPT-40
0.8
0.6
0.4
0.2
0.0 00 02 04 06 08 10
Passﬁ’lus(@:l

Figure 8: Distribution of task difficulties across models on MBPP+.

19

Under review as a conference paper at ICLR 2026

Fraction of Tasks

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

CodeGen 6B

=

00 02 04 06 08 1.0
Passpus@1
CodeT5+ 16B

00 02 04 06 08 1.0
Passpus@1
Mistral 7B

00 02 04 06 08 1.0
Passpus@1
Command

L — I =

00 02 04 06 08 10
Passpus@1
Llama 3.1 70B

00 02 04 06 08 1.0
Passpus@1
Llama 3.1 405B

00 02 04 06 08 1.0
Passpus@1

Fraction of Tasks

Vicuna 7B CodeGen2 7B
(]
~
G
'-l
.
o
c
)
2
v
©
S
'S
00 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8
Passpys @1 Passpus@1
Code Llama 7B StarCoder
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Passpus@1 Passpus@1
Code Llama 13B Command-R
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Passpus@1 Passpus@1
Command-Light Llama 3.1 8B
00 02 04 06 08 10 00 02 04 06 08 1.0
Passpus@1 Passpus@1
Phi-3 Mini Phi-3 Medium
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Passpus@1 Passpus@1
GPT-40
[
00 02 04 06 08 1.0
Passpus@1

Figure 9: Distribution of task difficulties across models on HumanEval+.

20

Under review as a conference paper at ICLR 2026

Llama 3.1 70B Llama 3.1 8B Code Llama 7B Code Llama 13B
[}
w08 0.8 0.8 0.8
e«
[
2 0.6 0.6 0.6 0.6
-
[
B804 0.4 0.4 0.4
(-9
go.z 0.2 0.2 0.2
:,, Ml (1]
o0 Ao «0'0 o « 0.0 Ao o 00 A
ROGEV RN N VR Q;?’ PR N N2 0 @
~ ¢ ~ Q,v' N N b“
K Range (Powers of 2) K Range (Powers of 2) K Range (Powers of 2) K Range (Powers of 2)
Command-Light Command Phi-3 Mini Phi-3 Medium
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4
”lllllll”l lllll llll 1]
0 y W 11 . mmi N
'b"é” \°’7\§”4$" N ARV SO < RN VAR SO S
N7 W ,», N W oY A N W o (P AR A
<o bu N AT ¥ N bu N X
K Range (Powers of 2) K Range (Powers of 2) K Range (Powers of 2) K Range (Powers of 2)
GPT-40
0.8
0.6
0.4
0.2
oo m Il ™
&2 0 %go 6,;» & ,9
N

K Range (Powers of 2)

Figure 10: False positive rates as a function of the number of attempts X in HumanEval+. K
ranges are aggregated into bins of increasing size (i.e., powers of 2).

1.0

1.0 1.0

n

£

n
c |"_’ __eGPT-4o
94508 Gpraos pass@l 0.8
© C T
g = Command-R e Phi-3 Mini ﬁn} Medium Llama 3.1 708 GPT-3.! 5 Turbo
- _— GPT-40
o CodeGen _— C d-R Mistral Small > o
53° 6C°”e°e"./ Comand i 06 e ~ & Uama31708 __ GPTA4o's Pass@l _
§c ° 8 g ode Lama i S T ama 31 4058

] Vlcuna 7B 1\ B Llama 3.1 8B
o £ 0.4 Mistral 7 0.4 _—
3. s CodeTSg ErCB " . o

L —~

[I Command-Light arcoder -~ Command
5 g’ o
3 - 0.2 0.2 Command-Light
<%

[-¥ ~— 0.52x + 0.45, R? = 0.893, p = 0.000 ~——— 0.66x + 0.28, R? = 0.891, p = 0.000

0.0 0.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8
Single-Sample Accuracy (Pass@1) Single-Sample Accuracy (Pass@1)
HumanEval+ MBPP+

Figure 11: Relationship between the conditional accuracy after passing the standard unit tests
and single-sample accuracy for tasks on which the unit tests (i.e. the ''verifier'') have a precision
of less than 90%. For both benchmarks, we find a more pronounced relationship between capability
and the probability of a false positive than when considering all tasks. Note that, the number of
considered tasks with 70/150 and 128/321 is substantial. This plot shows the full y-axis.

B.1 DETAILS ON DATA AND IMPLEMENTATION

In the following, we provide more details on our analysis on HumanEval+ and MBPP+.

Sample Collection. To evaluate the generalization gap between weaker and stronger models, we
collected multiple samples per model and task. For both benchmarks and each model, we used samples
generated with a temperature setting of 0.8. For sample generation, we use the implementation

21

Under review as a conference paper at ICLR 2026

1.0 1.0

[1]

]

] GPT-40
§= 09 - d 0.9
®E _GPTHo'sPass@l | _thM'“' — _Ti'a’f ilfsi GPT3.5Turbo oo
g 2 Command-R -\TI;I—I; Medium _Ulama 3.1 708 Command-R | Mistral Small "Llama 1708
B008 CodeGen2 CodeGe Llama 3.1 88 0.8 Mistral Large =1 T
-_a > Y- mma ode Liama 138 . ama 3.1 88 Llama 3.1 405B
c's i oder Ne detl ma 78 _GPT-4o'sPass@l | — |\ _ _ _ _ __ _ __ _
O Vicunfa 7gMistral N
o £ 3 deTj5p 16 ‘ommand
> 5 0.7 command-Light 0.7
W \
E I Command-Light
32
S ‘5 0.6 0.6
< 0

©

a 0.22x + 0.72, R? = 0.891, p = 0.000 0.23x + 0.67, R? = 0.892, p = 0.000

0.5 0.5
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Single-Sample Accuracy (Pass@1) Single-Sample Accuracy (Pass@1)
HumanEval+ MBPP+

Figure 12: Worst-case upper and lower bounds for our HumanEval+ and MBPP+ analysis.
We show the relationship between the accuracy of individual samples (x-axis) and the achievable
accuracy given an infinite compute budget and limited unit tests (y-axis; note that it starts at 0.5).
Error bars indicate the bounds on the conditional accuracy when we account for tasks for which we
did not observe any passing solutions. For the upper (lower) bound, we set the conditional passing
rate to 1 (0) when computing the accuracy estimates. Note that for Command-Light, even after
collecting 1000 samples for each task on HumanEval+, we still observed a substantial fraction of the
tasks without a single passing solution.

provided by |Liu et al.|(2023b)), and other than the temperature use their default settingsE] We collected
a minimum of 50 samples for each model and task. For most models in our experiments Vicuna 7B,
Mistral 7B, CodeT5p 16B, CodeGen, CodeGen2, Code Llama 7B, and Code Llama
13B, we used samples made available by |Liu et al.|(2023b)). These were collected using the same
temperature setting (i.e., 0.8). We had access to 200 samples per model and task for these models.
Additionally, on HumanEval+, we collected 200 samples for L1ama 3.1,Phi-3, GPT-40 and
the Command family of models. For Command-Light, we even collected 1000 samples for each
task to reduce the number of tasks without any solutions passing the HumanEval unit tests (Figure[T2).
On MBPP+, we collected 50 samples for each model and task.

B.2 ADDITIONAL DETAILS ON EXCLUDED TASKS FROM MBPP+

Tasks excluded by original EvalPlus authors (21 tasks). These exclusions are based on an update
to MBPP+, during which the authors removed several broken tasks, reducing the total to 378 tasks.
These tasks were excluded because of issues with the oracle implementation leading to unreliable
evaluations 2]

In addition to the task excluded by the MBPP+ creators, in our evaluations, we excluded a total of 57
tasks from the benchmark for two main reasons:

Tasks excluded due to additional oracle issues (28 tasks). We identified and excluded an additional
28 tasks where all generated solutions that passed the base tests failed the extended test suite and
across all models. We used this strict criterion to ensure we would not count solutions as false
positives that are in fact robust but fail the extended test suite due to bugs in the MBPP+ harness. The
primary cause was an implementation issue in the MBPP+ oracle when handling large numerical
inputs, where the np.allclose () function used for checking output equivalence would raise
exceptions. After these exclusions, our final evaluation set consisted of 350 tasks from the MBPP+
benchmark.

Tasks excluded due to solutions passing plus tests but failing standard unit tests (29 tasks). An
additional 29 tasks were excluded for which the extended unit tests yielded passing solutions that
failed the base tests provided with the original benchmark. We intend to report these tasks to the

ISee: https://github.com/evalplus/evalplus/tree/937c46858cf8e687b31b5a728b7083d6e5a84971
2See: |https://github.com/evalplus/evalplus/releases/tag/v0.3.1

22

https://github.com/evalplus/evalplus/tree/937c46858cf8e687b31b5a728b7083d6e5a84971
https://github.com/evalplus/evalplus/releases/tag/v0.3.1

Under review as a conference paper at ICLR 2026

benchmark creators, aiming to include these tasks in a future version of the paper once the issue is
resolved. Notably, excluding these tasks did not significantly impact our final results.

B.3 ADDITIONAL DETAILS ON EXCLUDED TASKS FROM HUMANEVAL+

Tasks excluded due to solutions passing plus tests but failing standard unit tests (14 tasks).
Similar to MBPP+, we excluded 14 tasks from HumanEval+ from our analysis because passing
solutions on the plus tests failed the standard unit tests. Including those tasks in the analysis did,
as for MBPP+, not impact our results in any significant way. We plan to report these tasks to the
benchmark creators.

23

Under review as a conference paper at ICLR 2026

C ADDITIONAL DETAILS ON SECTION [4]

In addition to the empirical analysis presented in Section 4} in this appendix, we provide a theoretical
model that formalizes the limitations of inference scaling with imperfect verifiers and generalizes our
findings to other benchmarks. We build on the verifier-based judge setup introduced by |Davis et al.

(2024). We provide a Python notebook with the implementation of our mode

— 1.0
0.5 /f
/\ ;
0.8 /
0.4 ;
i
|
Foy !

-E 0.3 =0.6 ! —— Probability of Correct Solution
© o \/ Probability of False Positive
g © ; Belief Task Easy
8 0.2 -g 0.4 ——-- Belief Task Hard

o 0.
a.
0.1
0.2 X
0.0 —— FP Cost = -0.7 x TP Benefit
) —— FP Cost = -1 x TP Benefit
—— FP Cost = -2 x TP Benefit 0.0

2 4 6 8 10 12 14 2 4 6 8 10 12 14
K (Attempts) K (Attempts)

Figure 13: Even with zero computational cost, the optimal number of samples is finite and very
low (K < 3). For this plot, we set the parameters as empirically observed for Llama 3.1 8B on
HumanEval (see Table [3]for the exact values). The left plot shows the expected value of generating
additional candidate solutions as a function of the number of attempts K for various cost-benefit
ratios. For all cost-benefit ratios, the expected value peaks at very low K, after which it begins to
decline, indicating negative returns from additional sampling. The right depicts the probabilities of
generating a correct solution vs. a false positive at each step K. As K increases, the likelihood of
generating a correct solution decreases, while the probability of generating a false positive increases.
There is a trade-off between continued sampling and increasing risk, emphasizing the limitations of
scaling inference compute with imperfect verifiers. Note that when setting the cost of a false positive
to be 10 times higher than the benefit of a true positive, the optimal number of samples becomes

K = 0 (Figure [4).

3See supplementary materials, file 1imits_to_inference_scaling_model.ipynb

24

Under review as a conference paper at ICLR 2026

GPT-40

Llama 3.1 405B
Llama 3.1 70B
Phi-3 Medium
Phi-3 Mini
Llama 3.1 8B
Command-R
Code Llama 13B
Code Llama 7B
CodeT5+ 16B
Command
StarCoder
Mistral 7B
CodeGen 6B
CodeGen2 7B
Vicuna 7B
Command-Light

600

500

-400

-300

-200

100

O O O O O O O O 0O O O o © o o o ~

N R N e e e e = T = B IR R
Nl o ©o W O ©O O ©O O © O F FH K R F B =

01 02 03 04 05 06 07 08 09 1.0
FP-Cost / TP-Benefit Ratio

10

Figure 14: Heatmap of optimal number of samples K for various false positive cost vs. true positive
benefit ratios in our model with parameters set as observed on HumanEval+. The y-axis shows
models sorted by their Pass@1 accuracy. We observe that for a relative cost of 10 (i.e., the cost of
returning a false positive is 10 times more costly than the reward of returning a true positive), the
optimal number of samples is K = 0 for almost all models, effectively making them useless.

C.1 MODEL SETUP
The underlying model consists of two components:

* Generator: Produces candidate solutions to a task, with different success probabilities
based on task difficulty.

— Tasks are either easy (11) or hard (Ts), with prior probabilities p; and py respectively.
— The probabilities of generating a correct solution are r; for easy tasks and ry for hard
tasks, so 1 > 7.

* Verifier: An imperfect verifier checks the correctness of generated solutions.

— Completeness (c): Conditional probability of accepting a correct solution.
— Soundness (s): Conditional probability of rejecting an incorrect solution.

PARAMETER VALUES USED IN MODEL UNDERLYING FIGURE[I3]
PROBABILITY OF REJECTION

The probability that a sample is being rejected by the verifier, denoted [3;, is given by:

Bi=1=cr;+s(l—r;) 1

where ¢ = 1 for easy tasks and ¢ = 2 for hard tasks. These probabilities (51 and [32) determine how
likely a generated solution is to be rejected depending on the task type.

BELIEF UPDATES

After each rejection, the belief that the task is of type T» (hard) increases. The posterior probability
that the task is of type 77 or T5 after k — 1 rejections is:

p(k) _ Bf_lpi
i Flop + B85 e

2

25

Under review as a conference paper at ICLR 2026

Parameter | Value
Probability of correct solution (easy task), r; 0.87
Probability of correct solution (hard task), 0.13
Completeness, ¢ 1
Soundness, s 0.75
Prior probability of easy task, p; 0.58
Prior probability of hard task, p 0.42
Benefit for correct solution (true positive), Vrp 1

Cost for false positive, Vip [-0.7, -1, -2]
Computational cost per attempt, C}, 0

Table 3: Parameter values used in the model setup in Figure|13|as observed for the L1ama 3.1 8B
model evaluated on HumanEval+. These values reflect the empirically observed probabilities and
prior settings. Following the observed empirical task difficulty distribution as shown in Figure[6] in
this setup we assume tasks with Pass@1 > (.5 to be easy, and those with Pass@1 < 0.5 to be hard.

As more rejections occur, it usually becomes more likely that the task is hard (75). In Figure[I3] we
see how the belief that the task is easy decreases, while the belief that the task is hard increases as the
number of attempts K grows.

PROBABILITY OF CORRECT AND FALSE POSITIVE SOLUTIONS

For the k-th attempt, the probability of generating a correct solution or a false positive depends on

the task type. The overall probabilities are weighted by the posterior beliefs p%),

The belief-weighted probability of returning a correct or false positive at attempt k, conditional on
the £ — 1 previous attempts being rejected are:

Py =p¥ - Prog, + %) - Pror, 3)
PY =¥ P, + 0% - P, (4)

where:

Prpr,=c-rm1, Prpr,=c- 12

Py, =(1—r1)-(1=8), Per=1-r)-(1-5)

In Figure the right plot shows the evolution of PT(’;) and Pés) as the number of attempts K

increases. Initially, the probability of generating a correct solution is higher, but for higher K, the
probability of generating a false positive increases.

EXPECTED VALUE OF GENERATING ADDITIONAL SOLUTIONS
The expected value of generating a solution at the k-th attempt is:
k k - k _ k
BVi = [Vie P+ Vie -] - [8170 o) + 8570 oY) 5)

where:

e V1p is the benefit for a correct solution.

* Vrp is the cost for a false positive being “accepted” as the solution.

26

Under review as a conference paper at ICLR 2026

OPTIMAL NUMBER OF ATTEMPTS

The total expected value after K attempts is:

K

Reward = Z EV, (6)
k=1

The optimal number of attempts, Ky, is the value of K that maximizes the reward, which are shown
across models and for various Vg p /Vp-ratios in Figure

C.2 INFERENCE SCALING CURVE FOR GPT-40

Ratio = 0

Reward
o .
N

* Ratio = 1
Ratio = 2
Ratio = 4
Ratio = 8

Conditional
Pass@1

10° 10! 102
K (Attempts)

Figure 15: Inference scaling curves in the presence of a cost for GPT—-40. In addition to the
models in Figure [T} we provide the inference scaling curves for GPT-40 as the model with the
highest single-sample accuracy on on HumanEval+ in our experiments. We find that the benefits of

search are minimal (i.e. curves are flat) in line with what we expect from the empirical task difficulty
distribution shown in Figure 9}

27

Under review as a conference paper at ICLR 2026

D ADDITIONAL DETAILS ON SECTION

10 camelCase 10 snake_case
') 093093 0.930.93
0.900.91 0-920910_!m 0_8801680 e 086088 0'910'910.51 091091 g9 0.8 o.gg 0:010910.92 0920-920.85
0.8 0.80 080080 o8
0.72
206 0.6
=
©
Q2 0.430.43
204 0.38 0.4
) [
0.2 mmm p(Adheres to Code Quality Instruction | Pass Unit Tests) 0.2
mmm p(Adheres to Code Quality Instruction | Correct)
W= P(Adheres to Code Quality Instruction | False Positive)
o0 - < ® 2 v o0 ® 2 »
o o @ A) @ N
Q,\,u 8 «,«Q K 6’& 6&0 Q,\,u 8 \}Q S 6’& g &
© % > o) & © % > o & &
Q&:’, <& \’o& & & Q&:’, <& \fo& & &
S Na N~ A N S RS N W W
10 Line Length 10 Commenting
0.850.86
0.8 0.770.770.76 0.800.80 . 0.80 0.8 .
0.72 071 -
069069 066 070 059 065 0.0 oo 0.660.66
0.6 0.6 059059 o5
0.48 046
0.40041 044 008 0 m
0.4 0.4 0.35
0.30
0.2 0.2 I
0.0 N 0.0 Y N
o o @ N o @ N
<> & 5 «© <> & 2 5 &
g A 'y a>« N s L A '\, 2 % o
[c;, 2y N (‘} N [c)o) £ N (‘} (‘}
& <& \o& 4 32 & N \0& & &
& & > N = & Na > N A

Figure 16: False positives tend to be lower-quality code compared to correct solutions across
all models and code quality metrics. We evaluated four key code quality metrics: adherence to
camelCase and snake_case naming conventions, line-length compliance, and presence of line-
level comments. This trend holds consistently across models and for all four code quality instructions
we test.

D.1 DETAILS ON DATA AND IMPLEMENTATION

We used the implementation provided by [Zheng et al.| (2024) to collect samples and evaluate the
different code readability metrics. Each code quality metric had a separate prompt instructing the
model to follow certain guidelines (Section[D.2)). For each model and code quality instruction, we
generated 50 samples per task on HumanEval+. As for our main experiments, we set the temperature
to 0.8. All other parameters were set to their default value as provided with the implementationﬁ

4See: https://github.com/jszheng2l/RACE/tree/3b8ee591abd5febd8ae8ecl7c7b9907949c5e1d5

28

https://github.com/jszheng21/RACE/tree/3b8ee591abd5febd8ae8ec17c7b9907949c5e1d5

Under review as a conference paper at ICLR 2026

D.2 PROMPT EXAMPLES FOR READABILITY METRICS

1) Naming conventions

Please generate the Python code to solve the following problem, and use came1Case for both function
names and variable names.\n\nProblem:\n\n{problem }

Please generate the Python code to solve the following problem, and use snake_case for both
function names and variable names.\n\nProblem:\n\n{problem}

2) Code length

Please generate the Python code to solve the following problem, where each line is less than 70
characters long and each function is less than 30 lines long.\n\nProblem:\n\n{problem }

3) Commenting guidelines

Please generate the Python code to solve the following problem, and add comments for each line in
each function.\n\nProblem:\n\n{problem }

Figure 17: Prompt templates for each metric of code readability we consider in our experiments for
SectionE] following Zheng et al.[(2024).

D.3 QUALITATIVE EXAMPLES OF FALSE POSITIVES

def get_positive(l: list):
return [int (item) for item in 1 if item > 0]

a) Example implementation generated by CodeGen-6B which fails additional unit tests from Hu-
manEval+.

Standard unit tests

assert get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2,
3, 9, 123, 1]
assert get_positive([-1, 2, -4, 5, 6]) == [2, 5, 6]

Example unit test from extended test suite
assert get_positive([0.5, 0, -4, 2.5, 5, -2.2, -8, 7.7, 9.9, -10.5]) ==
[0.5, 2.5, 5, 7.7, 9.9]

b) Standard unit tests for the HumanEval/30 task and one example test from the extended test suite of
HumanEval+.

Figure 18: Example implementation that passes the standard tests but is incorrect. In HumanEval/30,
the model is asked to Return only positive numbers in the list. The code was generated by CodeGen-
6B (Nijkamp et al.,[2023) and passes the tests provided with the original HumanEval benchmark but
fails the extended tests. The implementation contains a logical error due to unnecessarily converting
positive floats to integers.

29

S}

Under review as a conference paper at ICLR 2026

def string_sequence(n: int) -> str:
2 ans = ""
3 for i in range(0, n + 1):
4 ans = ans + str(i) + " "
5 return ans[:-1]

Figure 19: HumanEval/15 asks to generate a space-delimited sequence of numbers. The implementa-
tion generated by CodeGen fails on the extended test suite due to the inefficient for-loop that times

out on larger inputs.

def sort_numbers (numbers: str) —-> str:

2 str_num_dict = {

3 "zero": 0, "one": 1, "two": 2, "three": 3, "four": 4,

4 "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9,

5 }

6 num_list: List[int] = [str_num_dict[word] for word in numbers.

split ()]

7 num_list.sort ()

8 sorted_str_nums: List[str] = [

9 word for word, num in str_num_dict.items () if num in
num_list

10]

11 return " ".join(sorted_str_nums)

Figure 20: HumanEval/19 asks to sort space-delimited number words. The implementation generated
by Code Llama 7B fails to maintain duplicates in the output, incorrectly removing repeated
numbers during the dictionary lookup process.

def find_char_long(string
) : 2
words = string.split ()
return [word for word
in words if len (word
) >= 4]

Example implementation generated
by GPT-3.5 which fails additional 5
unit tests from MBPP+. 6

Standard unit tests

assert set (find_char_long(’'Please move back
to stream’)) == set(['Please’, "'move’,
back’, ’'stream’])

assert set (find_char_long(’Jing Eco and Tech
")) == set([’Jing’, ’'Tech’])

assert set (find_char_long (' Jhingai wulu road

== set ([’ Jhingai’, ' !

’

Zone 37)) wulu’,
road’, ’'Zone’])

Example unit tests from extended test
suite

assert set (find_char_long("This is a very
long string with no words that are at
least 4 characters long.")) == set ([’
This’, ’very’, ’long’, ’'string’, ’'with’,
"words’, ’'that’, ’"least’, ’characters’,

"long’1])

Standard unit tests for the MBPP/7 task.

Figure 21: Exemplary implementation that passes the standard tests but is incorrect. In MBPP/7, the
model is asked to write a function to find all words that are at least 4 characters long in a string. The
code was generated by gpt-3.5 and passes the tests provided with the original MBPP benchmark but
is incorrect and fails to pass the extended tests.

30

Under review as a conference paper at ICLR 2026

def parse_nested_parens (paren_string: str) -> List[int]:
2 def parse_paren_group (paren_group: str) —-> int:
3 counter = 0
4 max_counter = 0
5 for paren in paren_group:
6 if paren == '’ (’:
7 counter += 1
3 if counter > max_counter:
9 max_counter = counter
10 elif paren == '")’:
1 counter -= 1
12 return max_counter
13 return [parse_paren_group (paren_group) for paren_group in
paren_string.split (’ 7)1

Figure 22: HumanEval/6 requires parsing nested parentheses groups. The implementation generated

by Code Llama 7B incorrectly processes empty input strings.

I |def sorted_list_sum(lst):

2 assert lst, "List can not be empty."

3 if isinstance(lst[0], str):

4 new_lst = [word for word in 1lst if len(word) % 2 ==
5 new_lst.sort ()

6 return sorted(new_1lst, key=len)

7 else:

8 return sorted(lst)

Figure 23: HumanEval/149 asks to process a list of strings, removing odd-length strings and sorting
the result. The implementation generated by CodeT5p 16B incorrectly handles empty input by

raising an assertion error instead of returning an empty list.

def countNumbersWithOne (n) :

if n ==
For single-digit numbers, we only have 1
return 1

count = 0

Calculate the range for n-digit numbers
start = 10*x* (n-1)
end = 10xxn

for num in range(start, end):
str_num = str (num)
if str_num[0] == "1’ or str_num[-1] == "1":
count += 1

return count

Figure 24: Example candidate implementation failing to adhere to came 1Case naming convention
for HumanEval/83 generated by GPT—-4o0 due to variable str_num in line 13 not complying.

31

Under review as a conference paper at ICLR 2026

def get_positive(l: list):
return [int (item) for item in 1 if item > 0]

)

Figure 25: HumanEval/30 asks to return positive numbers from a list. The implementation generated
by CodeGen fails on the extended test suite because it converts float values to integers before
returning the list.

I |def number_of_substrings(s):

2 char_count = [0] = 128

3 result = 0

4 for char in s:

5 char_count [ord(char)] += 1

6 for i in range(len(s)):

7 result += char_count[ord(s[i])] * (len(s) - 1)
8 return result

Figure 26: MBPP/238 asks to count non-empty substrings in a string. The implementation generated
by Command uses an incorrect algorithm that produces wrong results.

def split (string):
return [char for char in string if char.isalpha()]

Figure 27: MBPP/565 asks to split a string into characters. The implementation generated by
Command-Light incorrectly filters for alphabetic characters only and fails to handle empty strings
correctly.

I |def is_samepatterns (words, patterns):

2 if len(words) != len(patterns):

3 return False

4 word_to_pattern = {}

5 pattern_to_word = {}

6 for word, pattern in zip(words, patterns):

7 if word in word_to_pattern and word_to_pattern[word] !=

pattern:

8 return False

9 if pattern in pattern_to_word and pattern_to_word[pattern]
!'= word:

10 return False

11 word_to_pattern[word] = pattern

12 pattern_to_word[pattern] = word

13 return True

Figure 28: MBPP/74 asks to check if words follow given patterns. The implementation generated by
GPT-3.5 fails on the extended test suite when handling repeated elements, incorrectly returning

False.

32

Under review as a conference paper at ICLR 2026

I |def find_even_pair (nums) :

2 even_count = 0

3 xor_pairs = set ()

4 for i in range(len (nums)) :

5 for j in range(i+l, len(nums)):

6 if (nums([i] » nums[]j]) % 2 == 0:

7 pair = tuple(sorted((nums[i], nums[]j])))
3 xor_pairs.add(pair)

9 return len(xor_pairs)

Figure 29: MBPP/166 asks to count pairs of integers with even XOR. The implementation generated
by Llama 3.1 8B incorrectly counts only unique pairs using a set.

def diff_even_odd (numbers) :
2 even = None
3 odd = None
4 for num in numbers:
5 if num % == 0 and even is None:
6 even = num
7 elif num % 2 == 1 and odd is None:
8 odd = num
9 if even is not None and odd is not None:
10 break
11 return abs (even - odd)

Figure 30: MBPP/594 asks to write a function to find the difference between the first even and the
first odd number of a given list. The implementation generated by GPT—-3. 5 incorrectly returns the
absolute value of the difference.

E DECLARATION OF LLM USAGE AND COMPUTE RESOURCES

In this work, LLMs are the main subject of study and used for sampling solutions for coding
benchmarks. For all our experiments using OpenAl models, we utilized the endpoints provided by
OpenAl, either directly or through the Azure OpenAl Service. For the analysis on HotPotQA using
Llama models, we relied on the endpoints provided by Together.ai. As our work primarily relied on
external APIs, we did not use any GPUs for inference and our experiments did not require training of
LLMs.

F IMPACT STATEMENT

Our work aims to enhance the technical understanding of the limitations of inference scaling methods.
In particular, we contribute new findings on resampling in combination with imperfect verifiers
and how this approach can fail to lift the accuracy of weaker models to match the performance of
stronger models. While these findings have implications for the training of reasoning models and the
deployment of compound Al systems—including code generation tools—their broader ethical and
societal implications mirror those already familiar in the development and use of large-scale language
models. We do not identify any additional, domain-specific concerns that arise uniquely from our
study. Instead, our results reinforce the importance of reliable evaluation metrics and thorough
verification methods, which in turn support safer and more trustworthy applications in coding as well
as in other areas where compound Al systems are increasingly adopted.

33

Under review as a conference paper at ICLR 2026

G REPRODUCIBILITY STATEMENT

We release code to reproduce all experimental results of this paper in a GitHub repositoryﬂ This
repository also contains all code samples for all models used in our experimentsﬂ Additionally, we
provide an implementation of the theoretical model in Section |C|as a Python notebookﬂ

’See supplementary materials, file anonymized_github_repo_url.txt for URL

6See supplementary materials, files humaneval_evalplus.txt, mbpp_evalplus.txt, and
humaneval_race.txt for URLs to anonymous download

’See supplementary materials, file 1imits_to_inference_scaling_model.ipynb

34

	Introduction
	Scaling inference compute with verifiers
	Repeated sampling with weaker models leads to worse generalizability
	How many samples are optimal?
	False positive solutions are low-quality even beyond correctness
	Discussion
	Additional details on sec:scaledinferencecomputewithverifiers
	Edge cases in our generator-verifier setting

	Additional details on sec:worsegeneralization
	Details on data and implementation
	Additional details on excluded tasks from MBPP+
	Additional details on excluded tasks from HumanEval+

	Additional details on sec:theorysection
	Model setup
	Inference scaling curve for GPT-4o

	Additional details on sec:beyondcorrectness
	Details on data and implementation
	Prompt examples for readability metrics
	Qualitative examples of false positives

	Declaration of LLM usage and compute resources
	Impact Statement
	Reproducibility statement

