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ABSTRACT

Language models (LMs) have demonstrated an improved capacity to handle long-
context information, yet existing long-context benchmarks primarily measure
LMs’ retrieval abilities with extended inputs, e.g., pinpointing a short phrase from
long-form text. Therefore, they may fall short when evaluating models’ global
context understanding capacity, such as synthesizing and reasoning over content
across input to generate the response. In this paper, we study long-context lan-
guage model (LCLM) evaluation through many-shot in-context learning (ICL).
Concretely, we identify the skills each ICL task requires, and examine models’
long-context capabilities on them. We ask the first question: What types of ICL
tasks benefit from additional demonstrations, and are these tasks effective at eval-
uating LCLMs? We find that classification and summarization tasks show notable
performance improvements with additional demonstrations, while translation and
reasoning tasks do not exhibit clear trends. This suggests the classification tasks
predominantly test models’ retrieval skills. Next, we ask: To what extent does each
task require retrieval skills versus global context understanding from LCLMs? We
develop metrics to categorize ICL tasks into two groups: (i) retrieval tasks that re-
quire strong retrieval ability to pinpoint relevant examples, and (ii) global context
understanding tasks that necessitate a deeper comprehension of the full input.
We find that not all datasets can effectively evaluate these long-context capabili-
ties. To address this gap, we introduce a new many-shot ICL benchmark, MANY-
ICLBENCH, designed to characterize LCLMs’ retrieval and global context un-
derstanding capabilities separately. We benchmark 11 open-weight LCLMs using
MANYICLBENCH. We find that while state-of-the-art models demonstrate satis-
factory performance up to 64k tokens in retrieval tasks, many models experience
signiiﬁjcant performance drops at only 16k tokens in global context understanding
tasks

1 INTRODUCTION

Long-context language models (LCLMs) have revolutionized the way users interact with language
models by extending the context size from 2K to 128K or even 1M tokens (Team et al.,2024a;|GLM
et al.,|2024; Dubey et al.| [2024), which unlock challenging applications, such as long- and multi-
document summarization, multi-turn dialogue, and code repository comprehension. Despite the
recent progress in building LCLMs, existing benchmarks primarily evaluate these models’ retrieval
capabilities (Liu et al., 2023} Hsieh et al.;,|2024). From synthetic tasks such as Needle-in-A-Haystack
(Kamradt, 2023)) and RULER benchmark (Hsieh et al., [2024) to real-world challenges like long-
novel QA (Karpinska et al., |2024)), the majority of benchmarks assess how well LCLMs retrieve
specific pieces of information from extensive contexts. As a result, evaluating models’ global
understanding of the full context remains lacking.

To fill the gap, |Li et al.| (2024])) introduce LongICLBench, which uses many-shot ICL classification
tasks to evaluate models’ long-context performance, arguing that these tasks require the compre-
hension of the entire input. A few other works have also explored many-shot ICL for long-context

"'Data and code are available at https://github.com/launchnlp/ManyICLBench
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models (Agarwal et al.| 2024} Bertsch et al., [2024). Yet, they have mainly relied on classification
tasks (L1 et al.|[2024} Bertsch et al.,|2024), which are insufficient to distinguish which skills LCLMs
require to perform well on many-shot ICL classification tasks. Recently, |Agarwal et al.| (2024)) study
non-classification ICL tasks but only on Gemini 1.5 Pro. In this work, we want to conduct a com-
prehensive study on many-shot ICL across a wide range of models, with a goal of identifying tasks
that benefit from additional demonstrations and explore their utility in evaluating long-context
models. Moreover, we seek to determine the extent to which these tasks rely on retrieval versus
global context understanding.

RQ1: Which tasks benefit from many-shot ICL? First, we investigate ICL tasks that are used in
prior work, including classification, summarization, and reasoning, under many-shot settings with
context lengths from 1k to 128k (Agarwal et all 2024). We find that classification and summa-
rization tasks show strong positive correlation between context lengths and model performance.
Our findings indicate that translation and reasoning tasks such as ARC (Clark et al., 2018) and
FLORES-200 (NLLB Team, 2022)) do not gain much performance with an increasing number of
demonstrations. Science and symbolic reasoning tasks exhibit inconsistent trends between context
lengths and model performance. This variance in performance is mainly attributed to the specific na-
ture of tasks, where more demonstrations do not boost the models’ task understanding. Interestingly,
math tasks benefit from additional demonstrations only when step-by-step solutions are derived and
using strong LCLMs.

RQ2: What skill does each task primarily measure? We then analyze the retrieval and global
context understanding skills necessary for each ICL task. We use the ratio between the performance
change of removing dissimilar examples and the change of removing similar examples. A high ratio
means a more pronounced drop in performance upon removing similar examples, which indicates
the task’s heavy reliance on retrieval capabilities. Our analysis indicates that existing many-shot
ICL classification tasks (Li et al.l [2024) predominantly assess retrieval abilities rather than global
context understanding. This leads us to categorize tasks into retrieval and non-retrieval groups.

Subsequently, we explore whether non-retrieval tasks genuinely benefit from additional demon-
strations and assess models’ global context understanding skills. By comparing the performance
of models with unique demonstrations versus duplicated examples on non-retrieval tasks, we aim to
determine if duplicating examples adversely affects performance compared to adding new examples.
If this is the case, it signifies that unique demonstrations provide additional beneficial information,
reinforcing the notion that these tasks require global context understanding. Using this method, we
identify a subset of non-retrieval tasks that evaluate models’ comprehension of global content.

Following the categorization, we propose a new many-shot ICL benchmark, MANYICLBENCH,
designed for evaluating long-context models and advocate for the inclusion of many-shot ICL tasks
as effective evaluation candidates. Importantly, on MANYICLBENCH, models are tested to either
retrieve the most similar demonstrations or assimilate all demonstrations to enhance their under-
standing of the task (Lin & Lee} |2024; Bertsch et al., 2024). Therefore, MANYICLBENCH evalu-
ates both retrieval skills and global context understanding, thus providing a holistic assessment of
long-context models’ capabilities.

In summary, we make the following contributions in this paper:

* Investigate whether ICL tasks benefit from additional demonstrations and assess their suit-
ability for evaluating LCLMs with a context length up to 128k tokens.

* Develop methods to characterize the primary skills evaluated by ICL tasks, where we focus
on distinguishing between retrieval capabilities and global context understanding.

 Construct a many-shot ICL benchmark, named MANYICLBENCH, designed for evaluat-
ing LCLMs on both retrieval and global context understanding, while excluding irrelevant
datasets previously used in LCLM evaluation.

e Benchmark 11 widely-used state-of-the-art LCLMs on MANYICLBENCH to assess their
performance comprehensively.
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2 RELATED WORK

2.1 LONG-CONTEXT LANGUAGE MODELS AND EVALUATION

As large language models grow in scale, there is an increasing demand for handling tasks that require
extended contexts. Tasks such as long document summarization (Kryscinski et al., |[2022)), conver-
sations with long-context memory (Xu et al., |2021), and repository-level code completion (Zhang
et al.| 2023) have garnered significant interest. Advances in efficient attention mechanisms, such as
flash attention (Dao et al., |2022) and grouped query attention (Ainslie et al.l [2023)), alongside the
development of GPUs with larger memory capacities, have enabled LLMs to be trained on extended
contexts. Techniques like position interpolation (Chen et al., [2023; |Peng et al. [2023) and context
compression (Chevalier et al., [2023; Mohtashami & Jaggi, [2023} [Jiang et al., 2024) have further
extended the context window size to up to 1 million tokens.

Despite these advancements, the NLP community still seeks a universal and effective method for
evaluating long-context models. One prominent task is Needle-in-a-Haystack (Kamradt, |2023),
which requires models to retrieve the most relevant document from a large set of documents. Cur-
rently, most evaluation benchmarks focus on synthetic tasks that primarily assess the retrieval capa-
bilities of long-context models (Hsieh et al.,|2024; [Kamradt, 2023} Lee et al.,[2024; [Lei et al.,[2024).
Only a few benchmarks, such as [Karpinska et al.| (2024) and |[Zhang et al.| (2024), emphasize the
model’s ability to comprehend the global context. For example, [Karpinska et al.| (2024) manually
curated a set of challenging questions based on various novels to evaluate global context understand-
ing. It is the first work to create a realistic long-context benchmark emphasizing retrieval and global
context understanding skills.

2.2 MANY-SHOT ICL wiTH LCLMSs

Because the context length of large language models expands, the number of demonstrations that can
be utilized in ICL has also increased. Studies by Li et al.|(2024), Bertsch et al.| (2024)), and |Agarwal
et al.| (2024) have examined various properties of ICL under the many-shot setting. |Bertsch et al.
(2024) explore whether models are merely performing retrieval tasks or genuinely understanding
the tasks during many-shot ICL classification. Similarly, |Agarwal et al.| (2024) analyzes the per-
formance of tasks beyond classification in the many-shot context, using Gemini-Pro, and finds that
additional demonstrations generally enhance task performance. Furthermore, Li et al.| (2024) pro-
pose a long-context evaluation benchmark LongICLBench comprising many-shot ICL classification
tasks, noting that current long-context models still face challenges in this area. None of the prior
works has studied what skill each ICL task measures LCLMs for. LongICLBench mostly focuses
on classification tasks, which may only evaluates the retrieval ability of LCLMs. Unlike previous
studies, our work provides a more comprehensive analysis of many-shot ICL across a diverse set
of tasks and multiple models. We introduce novel metrics to measure retrieval skills and the level
of task understanding required for each task. We identify a set of ICL tasks suitable for evaluation
and present a refined long-context evaluation benchmark with fine-grained categorization based on
required retrieval skills and task understanding.

2.3 IN-CONTEXT LEARNING

In-context learning (ICL) enables models to quickly recognize and perform tasks during inference
by conditioning on a set of provided demonstrations (Brown et al.,[2020)). Many previous works have
sought to understand the mechanisms behind in-context learning (ICL). |Xie et al.| (2022} suggests
that models implicitly perform Bayesian inference during inference, retrieving relevant skills learned
during pretraining. Additionally, Lin & Lee|(2024) introduces the concept of a dual operating mode
in ICL: task learning and task retrieval. With sufficient demonstrations, models can adapt to unseen
tasks learned during pretraining, thereby enhancing performance as the number of demonstrations
increases. To explore how many-shot ICL operates, Bertsch et al.| (2024) modified the attention
patterns by restricting attention among individual examples. Their findings suggest that performance
improvements primarily arise from retrieving similar examples rather than comprehending the task.
However, their experiment is limited to classification tasks. It may also be biased when comparing
full attention and block attention, as block attention allows access to more demonstrations. Our work
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Dataset Task Category Avg. Tokens/Shot Max # of Shots # of Tasks
BANKING77 Intent Classification 13.13 5386 1
GoEmotions Emotion Classification 15.85 5480 1
DialogRE Relation Classification 233.27 395 1
TREC Question Classification 11.25 6272 1
CLINC150 Intent Classification 8.95 7252 1
MATH Math reasoning [185.52, 407.90] [286, 653] 4
GSMS8K Math reasoning 55.78 784 1
BBH Reasoning [48.27, 243.01] [406, 2660] 4
GPQA MQ - Science [183.55, 367.02] [314, 580] 1
ARC MQ - Science [61.54, 61.54] [1997, 2301] 2
XLSUM New Summarization 621.32 220 1
FLORES-200 Translation [63.63, 101.74] [570, 1965] 3

Table 1: Dataset Information. GPT-40 tokenizer is used to calculate # of tokens. Max # of shots
is the number of shots can be fitted into the 128k context window. For datasets that have multiple
subtasks, we list the range for each value. We have 22 tasks in total.

tries to design better experiments to investigate during many-shot ICL what skill each task mainly
requires from LCLMs.

3 EXPERIMENT SETTING

To investigate many-shot ICL across various tasks and model sizes, we select 11 models ranging
from 3.8B to 123B parameters. Our evaluation includes 12 datasets with 22 subtasks, spanning clas-
sification, summarization, reasoning, and translation domains. For each task, we randomly sample
200 data points from the test set, using the full test set if it contains fewer than 200 samples.

For each task, we construct prompts for different context window sizes by incrementally adding new
demonstrations from the training set to the prompt of the shorter context window size and duplicate
training examples if they are insufficient to fill the context window. To ensure a fair comparison, we
randomize the order of demonstrations and consistently use the same set of examples across all con-
text sizes. For simplicity, we apply greedy decoding across all models and conduct each experiment
using three different random seeds. For the prompt construction, we only include demonstrations
and provide minimal task instruction.

3.1 DATASETS

We include five datasets for classification tasks: BANKING77, GoEmotions, DialogRE, TREC, and
CLINCI150. For the summarization task, we use XLLSUM, and for translation, we use FLORES-
200. Additionally, we incorporate four datasets for reasoning tasks: MATH, BBH, and GPQA, and
ARC. More details about each dataset can be found in Table[I] and [A]l

For the MATH, BBH, GPQA, and ARC tasks, we use accuracy as the evaluation metric. Macro
F1-score is employed as the metric for all classification tasks. Rouge-L (Lin, 2004) is used for the
XLSUM summarization task. ChrF (Popovic} 2015)) is applied for translation evaluation.

3.2 MODELS

The list of models we use in our experiment is: Llama-3.1 8B and 70B (Dubey et al.}[2024), GLM-4-
9B-Chat (GLM et al.} 2024), Mistral Nemo (12B) and Large (123B) (Mistral Al, 2024), Qwen2 7B
and 72B (Yang et al., 2024)), Phi-3 mini (3.8B), small(7B), and medium(14B) (Abdin et al. |2024),
and Jamba 1.5 Mini (12B/52B)(Team et al.| 2024c)), and Gemini-1.5-Pro (Team et al., |2024b)).We
only run Gemini-1-5-Pro on our benchmark. We use the instruction-tuned version of all the models.
For models with more than 50B, we run the quantized version of the models, and ing we show that
the quantized version exhibits the same trend as the unquantized version with increasing context
length.
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4  WHICH TASKS BENEFIT FROM MORE EXAMPLES?

In this section, we explore the extent to which many-shot ICL enhances model performance across
different task types. Previous work has either focused on only classification tasks (Bertsch et al.,
2024) or studied only one specific model (Agarwal et al., [2024). In contrast, our analysis provides
a comprehensive evaluation of many-shot ICL across both classification and generation tasks using
ten open-weights LCLMs, excluding Mistral-Large in this section. We collect tasks from previous
work (Bertsch et al 2024} |Agarwal et al.| [2024; [Li et al.l [2024)), categorize them into six types:
classification, translation, summarization, math reasoning, science reasoning, and symbolic reason-
ingE| The results, illustrated in Figure |1} include aggregated model performance across task types
and the correlation coefficients between context lengths and performance from 1k to 64k. We also
plot models’ performance on individual task in
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Figure 1: (a) Aggregated performance of models over datasets in different categories of tasks. (b)
Average pearson correlation coefficient between context lengths (1k to 64k) and the corresponding
performance.

Classification performance steadily improves with more shots: Figure [Ta demonstrates a con-
sistent performance increase across all models as more demonstrations are added for classification
tasks. This trend indicates a strong positive correlation between context length and performance,
which is illustrated in Fig[Tb] Given that classification tasks often involve extensive label spaces,
e.g., CLINC150 has 150 classes, additional demonstrations provide models with exposure to more
classes and thus enhance their ability to perform accurately. This is consistent with prior research
findings (Bertsch et al.l 2024).

Subjective tasks do not benefit from more examples: The GoEmotions task, though being a
classification problem, exhibits a fluctuating performance trend across all models with increasing
shots in Figure[6] We attribute this inconsistency to the subjective nature of the task, where nuanced
emotional categories may lead to low annotator agreement (Demszky et al.l 2020). This variance in
the annotated labels may results in a weaker correlation between context length and performance.
This finding highlights a limitation in using ICL tasks with ambiguous ground truths to evaluate
LCLMs, as their performance does not improve with more demonstrations.

Summarization shows gradual performance gains only: On summarization, most models ex-
hibit a high correlation between context length and performance. However, there is a noticeable
slowdown in the performance gains as the number of demonstrations increases. This suggests that
while additional context may improve performance, it does so at a diminishing rate, particularly for
smaller models like Llama-3.1-8B that struggle to leverage longer contexts effectively.

Models’ performance fluctuates on translation tasks: As shown in Figure [/ the performance
curves for all models across different languages differ. For the low-resource language, models show
larger performance gap than those in the high-resource language, e.g., Spanish. In Chinese, mod-

2We exclude datasets that are noisy or not open access.
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els become spikier than in other languages across different context sizes. In Figure[Ta] translation
tasks show a very flat curve, with no significant improvement as the number of demonstrations
increases. This result contrasts with|Agarwal et al.|(2024)), where the Gemini-1.5 Pro model demon-
strated consistent performance improvements in Kurdish and Tamil translation tasks as the context
size increased. We think the performance inconsistency is caused by the mismatched multilingual
capability of models and different model sizes.

Math tasks benefit from additional demonstrations, particularly for stronger models: In math
reasoning tasks, only the Llama-3.1 and Qwen2 model families show significant performance im-
provements with additional demonstrations. Notably, Qwen2 performance plateaus at 16k length,
while Llama-3.1 continues to improve until 64k. The models with larger parameter sizes tend to ex-
hibit more consistent performance gains, supporting findings from |Agarwal et al.| (2024) who have
demonstrated that Gemini 1.5 Pro improves on math tasks with more examples.

Inconsistent trends in science and symbolic tasks: For science and symbolic reasoning tasks, the
performance trends are less predictable, with some models displaying minimal changes when seeing
additional examples, while others benefit. This variability suggests that not all tasks lend themselves
to the advantages of many-shot ICL equally.

Ideally, for every task, additional demonstrations should either improve performance or, at the very
least, not harm it. A model with robust long-context capabilities should exhibit a non-decreasing
performance trend as the context length increases. Given the inconsistent performance on non-
classification tasks and even decreasing performance on some reasoning tasks, in the next two sec-
tions, we further investigate what aspects these datasets evaluate and identify a set of tasks useful
for evaluating important skills of LCMLs.
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glm-4-9b-chat
Mistral-Nemo-Instruct

17 17 Llama-3.1-8B-Instruct-AWQ
Llama-3.1-70B-Instruct-AWQ

1.6 1.6 Qwen2-7B-Instruct-AWQ
Qwen2-72B-Instruct-AWQ

% avg

=
w

Retrieval Load Ratio

=
N

11

1.0 = ]
Classification Summarization Math Science Symbolic

GPQA
BBH-dyck_|

GPQA_cot
ARC-Easy

GSM8K
ARC-Challe

dialogRE
trec_50
clinc150
XLSUM
MT_Kurdish
MT_Chinese
MT_Spanish
MATH-algeb

banking77
MATH-geome

goEmotions
MATH-count
MATH-numbe
BBH-geomet
BBH-salien
BBH-word_s

Figure 2: Retrieval Load Ratio on different categories of tasks from 1k to 64k tokens. The ratio of 1
indicates models are not doing retrieval during ICL. Classification is the only category of tasks that
has a very high ratio, which means classification tasks requires models retrieval skill during ICL.
The rest of tasks is close to 1, and models’ performance on these tasks do not rely on retrieving
similar examples.

5 TASK CATEGORIZATION: RETRIEVAL VS. GLOBAL CONTEXT
UNDERSTANDING

To understand what skill each ICL task primarily requires from LCLMs, in this section, we first
measure the retrieval load of each task and divide them into retrieval vs. non-retrieval tasks (3.1).
Among non-retrieval tasks, we then conduct experiments to identify tasks that truly benefit from
additional demonstrations and measure the model’s global context understanding skill.(5.2))

5.1 RETRIEVAL TASKS

To identify retrieval tasks, we propose a simple metric, retrieval load ratio, to assess whether tasks
predominantly rely on models to retrieve relevant examples during many-shot ICL. We consider
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retrieval load as the retrieval skill required by LCLMs to solve a ICL task. Concretely, for each
ICL task, we create two variants of the original demonstrations at each context size ranging from
1k to 64k by removing the 10% most similar and the 10% least similar examples. The model’s
performance on these variants is then evaluated, and we have score,,,s; for removing similar exam-
ples and score;.qst for removing dissimilar examples. Here we use BM25 retriever to calculate the
similarity. We then average the ratios between scorejcqs: and score,os¢ from 1k to 64k lengths as:

SCOT€leqst

1 64k
Retrieval Load Ratio = - Z( (1)

l
55, SCOTemost
Intuitively, if a model predominantly relies on retrieval for a task, removing most similar examples
will result in a more pronounced performance drop compared to removing dissimilar ones, which
causes the ratio to be larger than 1. Conversely, if there is minimal difference between the two, it
means the model does not retrieve similar examples to perform the task, and the ratio will be close
to 1.

Classification tasks requires high retrieval load: As shown in Figure 2| all classification tasks
exhibit high retrieval load ratio across the six models. The BBH geometric shapes task also shows a
high retrieval raio, indicating that tasks like BANKING77, CLINC150, and TREC50 demand strong
retrieval capabilities from the models. Tasks such as GoEmotions and dialogRE have relatively
lower retrieval ratios, suggesting they require moderate retrieval skills. Among the symbolic tasks,
BBH-geometric_shapes is the only reasoning task that has a high retrieval load ratio. This task
involves determining the geometric shape given a full SVG path element, making it similar to a
classification task. The high retrieval load ratio of classification tasks can possibly explain the largest
positive correlation between performance and context lengths, as displayed in Fig[Tb]

Tasks with low retrieval load: All the non-classification tasks have a low retrieval load ratio. In
Figure [I] models show inconsistent correlations on performance and context lengths for different
non-retrieval tasks. This inconsistency may be attributed to the incapability of the LCLMs or the
nature of the tasks, which we will investigate more in the next section.
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Figure 3: Global context index is the average % difference between adding duplicated vs. unique
examples from 2k to 16k context for non-retrieval tasks. 0% means duplicating does not harm the
model’s performance. Easy tasks such as ARC and word sorting do not benefit from additional
information. When a task is too difficult, e.g., GPQA, the model cannot effectively learn all demon-
strations unless explanations are provided.

5.2 GLOBAL CONTEXT UNDERSTANDING TASKS

In this section, we investigate whether non-retrieval tasks truly benefit from additional demonstra-
tions and whether models use all the demonstrations to understand the task during ICL. We exclude
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the translation tasks from this set of experiments due to inconsistent tokenization for different lan-
guages and mismatched multilingual capability of models.

Global Context Index: We propose another metric, global context index, to measure the global
context understanding skill required by a task. Specifically, for each non-retrieval task, we have two
variants of demonstrations, which both start with the same demonstrations used in the 1k context-
length experiment. From 2k to 16k, the unique variant will keep adding unique demonstrations to
the prompt, whereas the duplicate variants will repeat the same demonstrations in the 1k length. We
denote the performance of the unique variant scoreyyique and the performance of duplicate variant
SCOT€quplicate- Then, we average the percentage difference between scoreynigue and scorequplicate
from 2k to 16k lengths as:

16k
1
Global Context Index = 1 l;:k(

SCOT€ynique — SCOTE€duplicate

) 2)

8COT Cynique

If duplicating examples results in worse performance on a non-retrieval task than adding unique
examples, the global context index will be positive and suggests that the model benefits more from
unique demonstrations. This means that performance improvements come from learning from di-
verse examples rather than simply picking up on formatting patterns or relying on spurious correla-
tions between in-domain tokens and predictions. Since non-retrieval tasks typically do not rely on
retrieving similar examples, we can conclude that the performance gain on these tasks is likely due
to the models’ improved global context understanding when more demonstrations are available.

We use Llama-3.1-70B for the experiment because it is best at using additional demonstrations out
of all models we have tested so far, e.g., it shows a high positive correlation between context lengths
and performance in Fig[Ib] Then, we only conduct the experiment up to 16k to minimize the impact
of the model’s long context capability.

Global context understanding tasks: In Figure |3] tasks such as the math problems and summa-
rization, Dyck languages, translation error detection from BBH, and GPQA with explanations all
have worse performance with duplicated demonstrations. This means that they necessitate a greater
degree of global context understanding rather than relying on the retrieval of relevant examples.
These tasks are often complex reasoning challenges, for which models may lack pretraining skills to
solve perfectly, underscoring the need for additional demonstrations or deeper task comprehension.

ICL Tasks that are not suitable for LCLM evaluation: In Figure |3 ARC-Easy, ARC-Challenge,
GPQA, the BBH word sorting tasks are indifferent to duplicating examples. This indicates that these
tasks do not benefit from additional demonstrations. Most of these tasks assess the intrinsic abil-
ities of the models reasoning with their parametric knowledge, thus a few demonstrations suffice.
Adding more demonstrations may introduce distractions rather than improve performance. Interest-
ingly, GPQA with “chain-of-thoughts” benefit from additional examples. We suspect that without
these solution steps, GPQA is too challenging for the model to understand even after seeing many
demonstrations with answers only.

6 MANYICLBENCH: A MANY-SHOT ICL BENCHMARK TO MEASURE
RETRIEVAL SKILL AND GLOBAL CONTEXT UNDERSTANDING

In this section, we present a new long-context benchmark MANYICLBENCH, designed to evaluate
LCLMs’ retrieval skills and global context understanding capabilities using the ICL setup. Based
on the results from Section 5} we group tasks into two types:

o 5 Retrieval Tasks: BANKING?77, dialogRE, TREC50, CLINC150, and the geometric shape task
from BBH.

¢ 9 Global Context Understanding Tasks: all math tasks, summarization task, GPQA with expla-
nations, translation error detection, and dyck language task from BBH.

Evaluation results of popular LCLMs are summarized in Table

Most models struggle at retrieving examples after 32k length: Up to a context length of 16k, all
models demonstrate a steady performance increase, indicating effective retrieval from shorter con-
texts. However, performance begins to decline after reaching 32k tokens, particularly for the Mistral
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Retrieval Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.
GLM-4-9b-Chat 31.63  34.99 5591 71.14
Mistral-Nemo-Instruct 3344 3545 53.90 63.61
Mistral-Large-Instruct-AWQ 49.15 5123 66.16 73.04
Llama-3.1-8B-Instruct- AWQ 32,13 34.63 55.31 68.81
Llama-3.1-70B-Instruct-AWQ 38.75 42.87 61.92 73.53
Qwen2-7B-Instruct-AWQ 30.18  34.03 53.20 66.41
Qwen?2-72B-Instruct-AWQ 3641 41.89 62.85 7717
Phi-3-Mini-Instruct 30.27  30.90 45.48 54.28
Phi-3-Medium-Instruct 31.73  33.55 47.45 55.70
Phi-3-Small-Instruct 3148  36.27 49.60 56.30
Jamba-1.5-Mini 32.10 3691 55.44 66.51
Gemini-1.5-Pro 3640 4731 62.21 73.03
Global Context Understanding Tasks 1k 2k 4k 8k 16k 32k 64k 128k AVG. AVG.L.
GLM-4-9b-Chat 36.79 3623 3830 3930 37.60 3794 36.53 3545 37.27 36.64
Mistral-Nemo-Instruct 3394 3488 3492 3472 | 2822 28.64 30.60 26.05
Mistral-Large-Instruct-AWQ 57.09 5630 56.21 56.12 5643  53.33 48.94 36.47
Llama-3.1-8B-Instruct-AWQ 3131 3279 33.02 3450 3425 3522 3371 | 2788 32.84 32.27
Llama-3.1-70B-Instruct-AWQ 4553  47.60 4839  49.08 49.64 49.83 4774 43.99 37.23
Qwen2-7B-Instruct-AWQ 37.75 3947 4386 4455 4283 35.17 | 33.00 32770 38.67 33.62
Qwen2-72B-Instruct-AWQ 4738 49.03  50.32 50.69 50.78 4856  48.18  48.68 49.20 48.47
Phi-3-Mini-Instruct 29.86 29.20 | 26.61 2695 27.65 | 2634 2554 26.90 24.98
Phi-3-Medium-Instruct 3774 37.15 3149 3202 33.04 33.19 33.06 32.78 30.27
Phi-3-Small-Instruct 38.40 38.40 3835 | 31.69 34.04 3459 | 33.74 3246 3521 33.60
Jamba-1.5-Mini 27.86  29.04 2893 2886 27.86 | 2492 23.12 2242 26.63 23.48
Gemini-1.5-Pro 5826 6088 6130 6520 65.05 65.12 6238 63.61 66.20 66.92

Table 2: Model performance on retrieval and global context understanding tasks. AVG. is the aver-
age model performance of all context lengths. AVG.L. is the average model performance of 32k, 64k

and 128k. Red indicates performance improvement compared to 1k. = Blue indicates performance
downgrade compared to 1k. A darker color means higher improvement or downgrade. BOLD num-
ber means the largest number of a column. Many models start downgrading their performance after
32k on retrieval tasks. On global context understanding tasks, many models start struggling even
before 16k.

family and Jamba models. After 64k, the Llama 3.1 family and the mini and medium versions of
Phi-3 exhibit a notable downgrade in performance. In contrast, the Qwen-2 family maintains robust
performance, with minimal degradation from 64k to 128k. Remarkably, only GLM-4 continues to
improve in retrieval performance beyond 64k, indicating its impressive retrieval capabilities within
a very long context window. Interestingly, larger models like Mistral-Large and Llama-3.1-70B ex-
hibit the most significant performance losses as context length increases, suggesting that size alone
does not ensure superior long-context retrieval ability.

Challenges in global context understanding tasks: Global context understanding tasks prove to be
more challenging, with many models struggling even at short context lengths like 2k or 4k. Only the
Llama 3.1 family, Qwen2 family, and GLM-4 models effectively leverage many demonstrations up
to 16k. At 32k, only the Llama 3.1 models sustain performance. As context length extends from 32k
to 128k, all models experience performance degradation, highlighting that current architectures still
struggle to grasp global context and utilize demonstrations effectively. Notably, Qwen2-72B and
GLM-4 are the only models that do not experience significant performance drops in this category.

The paradox of model size: Despite the common assumption that larger models possess greater
capabilities, our findings illustrate that larger models can experience more substantial performance
losses compared to smaller models if not trained adequately on long-context data. For instance,
Mistral-Large (123B) shows optimal performance from 1k to 32k but experiences a dramatic drop
beyond 32k, which is worse than Phi-3-Mini (3.8B). A similar trend is observed with Llama-3.1-70B
at 128k. Both underscore the importance of targeted training for long-context tasks.

Llama 3.1 performance and training limitations: The Llama 3.1 models initially capitalize on
additional demonstrations effectively up to 64k but suffer significant performance declines at 128k.
This pattern aligns with trends observed in other long-context evaluation benchmarks
[2024). We suspect that these performance drops are linked to insufficient training with long-context
data during the supervised fine-tuning (SFT) stage. According to Table 7 in (Dubey et al.,[2024)), the
average token count for long-context datasets is around 38k, indicating limited exposure for models
to effectively learn from data points at 128k lengths.
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Qwen2 and GLM-4 show relatively robust capabilities on both tasks: The Qwen2-72B model
consistently maintains performance across both retrieval and global context understanding tasks,
demonstrating its adaptability for longer contexts. Trained on data with up to 32k tokens, Qwen2
models employ modified RoPE frequency and training-free positional interpolation methods to han-
dle longer contexts. However, the Qwen2 family models drop their performance from 16k to 32k
in the global context of understanding tasks but maintain their performance after 32k. This raises
the question of whether the training-free length extension methods enable models to use additional
demonstrations or merely maintain their performance in the short context length and ignore ad-
ditional examples during many-shot ICL. Meanwhile, GLM-4-chat also shows a relatively robust
performance at a longer context size and is the only model to experience a performance increase
from 64k to 128k on retrieval tasks. GLM-4’s training methodology closely mirrors that of Llama
3.1 models, with adjustments to the RoPE base and continuous training on long-context data. The
difference is, during SFT, GLM-4-9B follows LongAlign (Bai et al., [2024), which determines the
length distribution of the long-context SFT data carefully. GLM-4-9B also goes through the RLHF
stage with both short and long data.

Gemini-1.5-Pro shows a very robust long context capability: Similar to other open-weight mod-
els on retrieval tasks, Gemini-1.5-Pro begins to show performance degradation beyond 32k. How-
ever, it is one of only three models (alongside Qwen-2-72B and GLM-Chat-9B) that demonstrate
impressive retrieval capabilities beyond 64k and maintain performance at 128k. On global context
understanding tasks, Gemini-1.5-Pro significantly outperforms other open-weight models, showcas-
ing its ability to grasp the global context and effectively utilize all the demonstrations.

Future directions can be investigating the optimal length distribution of both pre-training and SFT
long-context data, as well as studying the effects of continual training on long-context data and the
implementation of training-free length extension methods.

7 CONCLUSION

We investigated many-shot in-context learning (ICL) across various tasks using different open-
weight models, assessing their suitability for evaluating long-context language models (LCLMs).
Our findings indicate that classification and summarization tasks consistently benefit from addi-
tional demonstrations, while other tasks do not. To identify a set of tasks suitable for long-context
evaluation, we introduced the concept of retrieval load ratio to assess the retrieval demands of differ-
ent tasks. This analysis revealed that classification tasks predominantly rely on the model’s retrieval
capabilities. For non-retrieval tasks, we conducted duplication experiments to differentiate global
context understanding tasks from those that introduce noise. Based on these insights, we categorized
tasks into two distinct groups: retrieval tasks and global context understanding tasks. Furthermore,
we introduced a novel many-shot ICL benchmark, ManyICLBench, designed to evaluate both re-
trieval and global context understanding skills of LCLMs. Benchmarking open-weight LCLMs
on ManyICLBench revealed that most models struggle with global context understanding tasks at
lengths below 16k tokens. In contrast, performance on retrieval tasks tends to decline after 32k
tokens.
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A  DATASETS

BANKING77 (Casanueva et al., 2020) is an intent classification task in the banking domain. It has
over 10k customer service queries labeled with 77 intents.

GoEmotions (Demszky et al.| 2020) contains 58 Reddit comments labeled for 27 emotion categories
or Neutral.

DialogRE (Yu et al.l [2020) is a relation extraction dataset that is built based on transcripts of an
American TV show Friends. It comprises 10,168 relation triples for 1,788 dialogues and 36 total
relations types. We only focus on relation classification for this dataset.

TREC (Li & Roth, [2002; Hovy et al.| |2001) is a question classification dataset with six coarse and
50 fine class labels. It contains 5,500 questions in the training set and 500 in the test set.

CLINC150 (Larson et al.,|2019)) is an intent classification dataset with 150 intents from 10 domains.

MATH (Hendrycks et al.l 2021])) is a dataset of 12,5000 challenging completion mathematics prob-
lems. Each problem has a full step-by-step solution. We use four subdomains from the dataset:
algebra, geometry, counting and probability, and number theory.

GSMSK (Hendrycks et al.,2021)) consists of 8.5K high quality grade school math problems created
by human problem writers. These problems take between 2 and 8 steps to solve, and solutions pri-
marily involve performing a sequence of elementary calculations using basic arithmetic operations
(+ - / *) to reach the final answer.

BBH (Srivastava et al., 2022) is a subset of 23 challenging BIG-Bench tasks (Suzgun et al.,|2022),
which include task categories such as mathematics, commonsense reasoning, and question answer-
ing. We use four subtasks from BBH-Hard: geometric shape, salient translation error detection,
word sorting, and dyck languages.

ARC (Clark et al., 2018)) is a dataset of 7,787 genuine grade-school level, multiple-choice science
questions. The dataset is partitioned into a Challenge Set and Easy Set, where the former contains
only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence
algorithm.

GPQA (Rein et al.} [2023)) is a dataset of 448 multiple-choice questions with detailed explanations
written by domain experts in biology, physics, and chemistry.

XLSUM (Hasan et al.| 2021) is a summarization dataset that focuses on news articles from BBC. In
this work, we focus only on English news articles.

FLORES-200 (NLLB Team) [2022) is a translation benchmark that contains many low-resource
languages. We follow |Agarwal et al.| (2024) and choose the translation task from Tamil to English.
Additionally, we also test models on Chinese and Spanish.

B MODELS

Llama-3.1 8B and 70B (Dubey et al.| [2024): We use both the 8B and 70B Llama 3.1 Instruction
models. These multilingual models are trained on a 128k context window using position interpola-
tion. The models are further fine-tuned with synthetic long-text Supervised Fine-Tuning (SFT) data
and also undergo Direct Preference Optimization (DPO) (Rafailov et al., [2024)).

GLM-4-9B-Chat (GLM et al.,|2024): This is a 9-billion-parameter multilingual model, also trained
on a 128k context window with position interpolation. It is further fine-tuned with labeled long-text
SFT data and undergoes a DPO stage.

Mistral Family (Mistral Al |2024): We use both 12-billion-parameter and 123-billion-parameter
multilingual models, trained on a 128k context window.

Qwen2 7B and 72B (Yang et al., 2024)): These two models are trained with a context size of 32k
tokens, and their context window is extended to 128k by YARN (Peng et al., [2023), a dynamic
position interpolation technique.
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Phi-3 (Abdin et al., [2024): We use the mini (3.8B), small (7B), and medium (14B) versions of Phi-3
models. They are trained with the context size of 4k tokens on high quality data, and LongRope
(Ding et al.,|2024) extends their context size to 128k.

Jamba-1.5-Mini (Team et al, 2024c)): It’s a hybrid SSM-Transformer model with 12B of active
parameters and 52B of total parameters with a context size of 256k tokens.

Gemini-1.5-Pro: It is a commercial model introduced by Google and has a context size of 2 million
tokens.

C QUANTIZATION VS. REGULAR

We compare the 4-bit quantized version and unquantized version of both Llama-3.1 8B and Llama-
3.1-70B. In both Figure ] and Figure [5] we can observe that the quantized version experiences a
little performance drop but exhibits the same trend as the unquantized version with the increasing
context length.
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Figure 4: Comparison between Llama-3.1-8B and 4-bit quantized Llama-3.1-8B. There are some
performance gaps between two models on translation, science, and math tasks, but with the increas-
ing context size, the performance trend is the same for both models.
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Figure 5: Comparison between Llama-3.1-70B and 4-bit quantized Llama-3.1-70B. Similar to the
smaller model, the performance trends hold for both models except the translation tasks. In our
benchmark, we exclude all the translation tasks because of the inconsistent multilingual ability of
LCLMs.
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D TASK PERFORMANCE

In this section, we present the models’ performance on individual tasks and group them by the task
categories: classification, translation, summarization, and reasoning.
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Figure 6: Models’ performance on all classification tasks. All tasks except GoEmotions show a
very consistent gain with increasing context size. We excluded GoEmotions from our benchmark
because of the data’s strong subjectivity.
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Figure 7: Models’ performance on all translation tasks and the summarization task. For translation
tasks, we do not observe a clear pattern among different languages and models, which can be caused
by LCLMs’ different multilingual abilities. We can see a slightly positive trend for the summariza-
tion task.
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Figure 8: Models’ performance on all math tasks. Overall, the larger and stronger models benefit
more from the increasing context window size on math tasks.
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Figure 9: Models’ performance on all science tasks. For the ARC task, the performance of all models
stays the same across all context sizes. For GPQA, we can see larger and more robust LCLMs keep
or increase their performance with the increasing context size.
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Figure 10: Models’ performance on all symbolic tasks. For the geometric shape and translation
error detection tasks, we can all model benefit from the increasing context length. We suspect the
word sorting task may too easy for the models, so the lines are flat. For the dyck language task, the
models experience performance gain up 16k context length but start downgrading afterward.

E ADDITIONAL RETRIEVAL LOAD EXPERIMENTS

To ensure the performance downgrade is not caused by the absence of certain labels in the retrieval
load experiment from Section 5, we replace similar examples with distant examples with the same
labels. The new retrieval load ratio formula is %ﬁ We use Llama-3.1 models and conduct
this experiment from 1k to 64k with both BM25 and SBERT (Reimers & Gurevych,2019) retrievers
and exclude XLSUM.

BM25: The trend in Figure[2Jmatches the results of Figure[IT] All the classification tasks downgrade
performance more when similar examples are replaced. However, the degree of downgrade is less
significant than removing similar examples.

SBERT: For SentenceTransformer, we use multi-qa-MiniLM-L6-cos-v1 as the base model. In ad-
dition to XLSUM, we exclude geometric shape, Dyck language, and dialogRE because the inputs
of the first two tasks are mainly symbols and numbers, and the input of dialogRE is too long for
the retriever to be effective. The trends observed from Figure 2] and Figure [TTftill hold in Figure
[T2} That is, all the classification tasks still have a higher ratio and the non-classification tasks have a
ratio close to 1.
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Retrieval Load Ratio Measurement (BM25 Replacement)
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Figure 11: Retrieval Load Ratio under the replacement setting with BM25 on all tasks expect XL-
SUM from 1k to 64k tokens. The ratio of 1 indicates models are not doing retrieval during ICL
because similar demonstrations don’t help models perform better. Similar to Figure 2] classification
is the only category of tasks that has a higher ratio, which means classification tasks largely require
model retrieval skills during ICL. The rest of the tasks is close to 1, and the models’ performance on
these tasks does not rely on retrieving similar examples.
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Figure 12: Retrieval Load Ratio under the replacement setting with SBERT on selective tasks from
1k to 64k tokens. A ratio of 1 signifies that models do not perform retrieval during in-context
learning (ICL), as similar demonstrations do not enhance their performance. As shown in Figure[2]
classification tasks are the only category with a higher retrieval load ratio, indicating a strong depen-
dence on retrieval during ICL. In contrast, other tasks exhibit ratios close to 1, suggesting minimal
reliance on retrieval, with models’ performance largely unaffected by retrieval-based demonstra-
tions.

F ADDITIONAL GLOBAL CONTEXT INDEX RESULT

In Figure [T3] We present the global context index for each non-retrieval task with input lengths of
up to 64k, observing results consistent with those from the 16k input length setup.
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Global Context Index
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Figure 13: Global context index is the average % difference between adding duplicated vs. unique
examples from 2k to 64k context for non-retrieval tasks. 0% means duplicating does not harm the
model’s performance. Easy tasks such as ARC and word sorting do not benefit from additional
information. When a task is challenging, e.g., GPQA, the model cannot effectively learn all demon-
strations unless explanations are provided.
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