
Semantic search for 100M+ galaxy images using
AI-generated captions

Nolan Koblischke∗1,2, Liam Parker3,2,4,5, Francois Lanusse6,5,
Irina Espejo Morales2, Jo Bovy1, Shirley Ho2,5,7

1University of Toronto, 2New York University, 3University of California, Berke-
ley, 4Lawrence Berkeley National Laboratory, 5Flatiron Institute, 6Université
Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, 7Princeton University

Abstract

Finding scientifically interesting phenomena through slow, manual labeling cam-
paigns severely limits our ability to explore the billions of galaxy images produced
by telescopes. In this work, we develop a pipeline to create a semantic search engine
from completely unlabeled image data. Our method leverages Vision-Language
Models (VLMs) to generate descriptions for galaxy images, then contrastively
aligns a pre-trained multimodal astronomy foundation model with these embedded
descriptions to produce searchable embeddings at scale. We find that current VLMs
provide descriptions that are sufficiently informative to train a semantic search
model that outperforms direct image similarity search. Our model, AION-Search,
achieves state-of-the-art zero-shot performance on finding rare phenomena despite
training on randomly selected images with no deliberate curation for rare cases.
Furthermore, we introduce a VLM-based re-ranking method that nearly doubles
the recall for our most challenging targets in the top-100 results. For the first
time, AION-Search enables flexible semantic search scalable to 140 million galaxy
images, enabling discovery from previously infeasible searches. More broadly, our
work provides an approach for making large, unlabeled scientific image archives
semantically searchable, expanding data exploration capabilities in fields from
Earth observation to microscopy. The code, data, and app are publicly available at
https://github.com/NolanKoblischke/AION-Search.

1 Introduction

Recent advances in AI capabilities have prompted visions of “a country of geniuses in a datacenter”,
highly capable AI agents available on demand to accelerate scientific discovery [Amodei, 2024]. In
astrophysics, where telescopes will generate billions of galaxy images that far exceed human capacity
for manual inspection, deploying such AI agents at scale presents an opportunity to analyze vast
astronomical datasets. Here, we take a step towards this vision by using Vision-Language Models
(VLMs) as image annotators. We investigate whether VLMs can generate informative descriptions of
galaxy images, then use this capability to train AION-Search, a CLIP-based search engine on these
generated captions. PAPERCLIP pioneered astronomical text-image retrieval using ∼4,000 abstracts
and associated observations for Hubble Space Telescope observing proposals, though the approach
faced inherent limitations from misaligned text-image pairs, where one text can map to multiple
images or contain irrelevant information [Mishra-Sharma et al., 2024]. With VLM annotators, we
can overcome these constraints by generating specific descriptions for each image, enabling semantic
search for any telescope at scale. The Legacy Survey [Dey et al., 2019] and Hyper Suprime-Cam
(HSC) [Aihara et al., 2018] are wide-field imaging surveys that have collectively imaged hundreds of
millions of galaxies. While these datasets are a valuable resource for studying galaxy evolution and
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cosmology, finding specific phenomena of interest, such as gravitational lenses or specific galaxy
morphologies, remains challenging due to the sheer data volume.

Currently, scientists rely on volunteers to answer fixed-choice questions, which are then used to
train classifiers for finding specific types of galaxies [Walmsley et al., 2018, Gonzalez et al., 2025].
These sorts of labeling campaigns, like Galaxy Zoo, are costly and slow, often requiring months
of effort [Walmsley et al., 2022, Walmsley et al., 2025, Lintott et al., 2008]. For Galaxy Zoo,
volunteers answer hierarchical fixed-choice questions such as “Is there any sign of a spiral arm
pattern?” followed by “How many spiral arms are there?” With upcoming surveys like Euclid (1.5
billion galaxies by 2031 [Laureijs et al., 2011]) and LSST (20 billion by 2035 [Ivezić et al., 2019]),
these manual approaches will inevitably miss discoveries. These labeling campaigns have been used
to train supervised deep-learning models [Walmsley et al., 2023, Walmsley et al., 2022]. However,
such models inherit the biases of the volunteer-labeled training set and are constrained to predicting
answers to fixed question sets (the models explicitly learn the fraction of volunteers selecting each
answer), and therefore do not support free-form, open-vocabulary queries.

While self-supervised methods offer similarity search [Stein et al., 2021, Parker et al., 2024, Hayat
et al., 2021], they retrieve the most visually similar images to the query image, rather than all images
containing a desired feature, making them inadequate for targeted searches. An effective semantic
search engine would require informative captions that capture the physical phenomena present in
galaxy images. VLMs demonstrate promising capabilities for this task, having been pretrained on
extensive corpora that include research papers, observational annotations, and online discourse about
galaxy images. This allows them to describe a broad range of observable phenomena rather than
the predefined categories derived from volunteer labeling campaigns typically used for supervised
training. Our objective is to evaluate whether VLM-generated descriptions possess sufficient accuracy
and information content to serve as training data for a contrastive learning framework. To enable
efficient semantic search at scale, we train a CLIP-based model that aligns image representations from
AION [Parker et al., 2025], an astronomy multimodal foundation model, with these VLM-generated
descriptions. With the flexibility provided by AION and VLM descriptions, this approach provides
scalable semantic search extensible to any future telescopes.

1.1 Related Work

In recent years, approaches to improve text-visual understanding, such as CLIP [Radford et al.,
2021], have achieved remarkable performance on a variety of downstream tasks, including retrieval,
by training on pairs of image-captions extracted from the web. However, because high-quality
image-text pairs are finite, recent work has explored using synthetic captions to augment training
data [Zheng et al., 2024, Zhang et al., 2025]. For CLIP-like models, SynthCLIP [Hammoud et al.,
2024] demonstrates that while performance with fully synthetic captions does not match performance
with real captions, it exhibits good scalability trends and has competitive performance in some of
the downstream tasks. For retrieval, CLIPS [Liu et al., 2024b] proposes to learn both with web and
synthetically augmented captions, achieving state-of-the-art in cross-modal retrieval tasks.

In the context of scientific images, the scarcity of text-image pairs is even more pronounced because
it relies on domain expertise and standardized benchmarks are rare. A common workaround is to
convert categorical labels into natural-language prompts with templates and train CLIP-style models
on these synthetic pairs [Liu et al., 2024a, Shi and Zou, 2017, Khattak et al., 2024]. In particular,
INQUIRE [Vendrow et al., 2024] produces a benchmark for text-to-image retrieval in ecology and
additionally evaluates reranking with multimodal models. More recently, a few efforts experiment
with generating captions directly from images using pre-trained VLMs [Chen et al., 2025, He et al.,
2025, Yuan et al., 2025]. VLMs have also been used in astronomy for image classification [Tanoglidis
and Jain, 2024, Zaman et al., 2025]. To our knowledge, this work is the first example in astrophysics
of using VLM-generated captions to generate training sets for semantic retrieval.

1.2 Paper Outline

We begin in §2.1 by benchmarking whether VLMs can generate astronomy-relevant image descrip-
tions by comparing them to human annotations on a set of galaxy images. Next, in §2.2, we use the
best prompt-model pair to generate free-form captions for a large collection of telescope images and
embed the text. To generate semantically searchable embeddings directly from images, we learn
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Figure 1: Evaluating VLM descriptions and the accuracy-cost trade-off. Left: GPT-4.1-mini
generates a free-form description for a galaxy image. An LLM-judge converts the text into Galaxy
Zoo answers and we compare them to the volunteer consensus answers. Right: Mean performance of
OpenAI and Google VLMs on the benchmark versus the estimated batch-API cost to caption 100,000
images. Points show the mean over three runs (GPT-4.5: one run), vertical bars denote standard errors
on the mean. The dashed line highlights the Pareto frontier. GPT-4.1-mini offers a strong accuracy
per dollar, while larger models (e.g., o3) are more accurate but more costly.

in §2.3 a shared text-image space by contrastively aligning a frozen, pre-trained astronomy image
encoder to the VLM text embeddings using shallow projection heads. We evaluate in §2.4 zero-shot
retrieval with natural-language queries targeting three scientifically interesting galaxy-image phenom-
ena: spiral galaxies (galaxies with winding arms), galaxy mergers (two galaxies colliding or recently
merged, sometimes leaving distorted shapes), and strong gravitational lenses (where a foreground
galaxy bends the light from a more distant object so it appears as arcs, rings, or multiple images), and
we test in §2.5 a VLM-based re-ranking stage. This makes large datasets of unlabeled astronomical
images semantically searchable.

2 Methodology

2.1 Evaluating VLM image descriptions

We evaluate the capacity of Vision-Language Models to generate scientifically accurate descriptions
of galaxy images using the Galaxy Zoo-DECaLS catalog [Walmsley et al., 2022], which provides
crowd-sourced annotations for Legacy Survey images, where human volunteers answer a series
of hierarchical questions about each galaxy’s visual properties. We use this dataset as a testbed
to evaluate relative performance across models in capturing key features of galaxies, rather than
as a comprehensive benchmark. For cost-effective evaluation, we curate a test set of 64 images
meeting the criteria: (i) each question having strong consensus (>70% agreement) among sufficient
annotators (>10), and (ii) diversity, enforced by limiting any identical classification to at most five
examples. This size enables multiple evaluation runs across 13 different VLMs while keeping API
costs manageable (with GPT-4.5, the most expensive model, costing $9 per evaluation) and provides
sufficient statistical power to identify performance tiers.

We conduct two forms of evaluation. First, we directly prompt VLMs to answer the same questions
that human annotators answered. Second, we prompt VLMs to generate free-form image descriptions,
since these descriptions will serve as training data for our contrastive model, which we subsequently
evaluate using an LLM-judge to extract answers to the annotation questions from these descriptions.
Specifically, we use Gemini-2.5-Flash [gemini-2.5-flash-preview-05-20] [Comanici et al.,
2025] to extract decision tree answers from the generated descriptions, allowing responses of “not
stated” when information is absent which is scored as incorrect. As seen in Figure 1, accuracy
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generally trades off with cost, forming a Pareto frontier. We choose GPT-4.1-mini for mass captioning
since it offers the strongest per-question accuracy (50.1± 3.3%) within our budget.

2.2 Caption generation for scientific images

To construct our training dataset, we sample 300,000 galaxy images brighter than 19 magnitudes in
r-band. We keep the selection simple, a single brightness cut to remove faint sources, and we do not
build the training set from curated rare-object catalogs (e.g., Galaxy Zoo, strong lens lists), so the
model stays general rather than biased toward any one target class. We split our sampling across
telescopes to demonstrate that our search can work across different imaging modalities, 120,000
from HSC (PDR3 Wide [Aihara et al., 2022]) and 180,000 from Legacy Survey (DR10 South [Dey
et al., 2019]). This data is sourced from the Multi Modal Universe (MMU) dataset, which has been
pre-processed to remove non-galaxy sources and low quality images [Angeloudi et al., 2024]. The
final dataset consists of 160×160 pixel cutouts with 5 channels for HSC and 4 channels for Legacy
Survey. We turn each multi-band cutout into a color image for the VLMs by putting the bands on the
same scale, mapping (z,r,g) bands to (R,G,B), and applying a standard transformation for galaxy
images from Lupton et al. [2004] so faint features show up without blowing out bright features.
Using the optimal prompt–model configuration identified through our evaluation framework (i.e.,
gpt-4.1-mini with the prompt in Appendix Fig. 4), we generate descriptions for each image. These
textual descriptions are subsequently embedded using OpenAI’s text-embedding-3-large [Ope-
nAI, 2024b]. After excluding overlap with downstream benchmarks, 255,948 galaxies receive
embedded descriptions and are used for training, with generation and embedding costs totaling
∼$150.

2.3 Learning semantic embeddings through contrastive alignment

These generated embeddings already enable semantic search, however writing descriptions for
all 140 million images in the Legacy Survey and HSC MMU catalogs would be prohibitively
expensive. To address this, we predict the semantic embeddings from images directly. We use the
pre-trained AION as our image encoder, an astronomy foundation model pretrained via masked
modeling on over 200 million observations that achieves state-of-the-art performance on galaxy image
similarity search [Parker et al., 2025]. The AION Transformer-based encoder-decoder architecture
accommodates varying input formats, capable of handling both HSC images (5 bands) and Legacy
Survey images (4 bands), and can be used for future telescope surveys. We use AION-1-Base,
the 300M parameter variant with 768-dimensional embeddings, contrastively aligning its image
encoder outputs with our text embeddings to create a shared semantic space. The encoder weights of
AION-1-Base and text-embedding-3-large are not updated during training.

Our alignment architecture uses four-layer residual MLPs as projection heads for both image and text,
learning a shared 1024-dimensional embedding space through a contrastive loss. Motivated by prior
work suggesting that shorter captions may lead to higher performance in contrastive learning [Li
et al., 2023], we compare training on the original multi-paragraph descriptions against those using
single-sentence summaries generated by gpt-4.1-nano (see Appendix Fig. 5 for prompt). We
train on a single NVIDIA A100 GPU using AdamW optimizer [Loshchilov and Hutter, 2019] with
learning rate 1e-4, weight decay 0.05, and cosine annealing. We leverage AION-1-Base encoder em-
beddings averaged over token-space (768-dimensional) for images and text-embedding-3-large
(3072-dimensional) for text. This average pooling follows the AION embedding protocol for simi-
larity search and morphology classification [Parker et al., 2025]. We use symmetric cross-entropy
(InfoNCE [van den Oord et al., 2018]) as the contrastive loss.

2.4 Evaluating search capabilities

We adopt the retrieval evaluation protocol established for AION, assessing performance on three
categories with varying rarity in the AION benchmark datasets of Legacy Survey images: spiral
galaxies (24 622 in GZ-DECaLS dataset, making up 26% of the dataset being searched), mergers
(726 in GZ-DECaLS dataset, 2%), and gravitational lenses (758 in HSC strong lens catalog cross-
matched with Legacy Survey images, 0.1%). Full details about dataset construction is described in the
Appendix A. Each image has relevance scores ranging from 0.0 to 1.0: for spirals and mergers, the
score represents the fraction of human volunteers who identified each category; for lenses, the images
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receive 1.0 if present in expert-curated lens catalogs and 0.0 otherwise. The rarity of gravitational
lenses, with only a few thousand confident examples in the literature [Vujeva et al., 2025], coupled
with their usefulness including constraining cosmology and measuring the mass and shape of dark
matter halos makes them a challenging and scientifically valuable target.

To measure the search performance, we use the Discounted Cumulative Gain (DCG) to evaluate
ranking quality, capturing both precision and the relative ordering of retrieved results. Normalizing
DCG (nDCG) by the DCG with ideal ordering (IDCG). If ri is the relevance label of a candidate
ranked at position i, the discounted and normalized cumulative gain of the top-10 images are

DCG@10 =

10∑
i=1

2ri − 1

log2(i+ 1)
; nDCG@10 =

DCG@10

IDCG@10

We evaluate against unsupervised baseline models from astronomy (AION-1 variants, Astro-
CLIP [Parker et al., 2024], and Stein et al. [2021]), and computer vision (DINOv2 [Oquab et al.,
2023]) that were trained via self-supervised learning and perform retrieval by computing cosine
similarity between query image embeddings and candidate embeddings, where queries are selected
as high-confidence examples (>90% volunteer agreement for morphologies, or presence in lens
catalogs), with performance measured by averaging nDCG@10 across queries. For our model, we
query with the text embeddings for: “visible spiral arms”, “merging”, and “gravitational lens”.

2.5 Post-search VLM re-ranking

To improve the accuracy of a search, we experiment with a re-ranking step where a VLM examines
the top-k retrieved images and assigns a score (1-10) based on the search query (e.g., “Does this
galaxy image display signs of gravitational lensing? Rank 1-10.’), then reorder based on these scores.
Specifically, for each retrieval task (spirals, mergers, and lenses) conducted in Section 2.4, we apply
GPT-4.1 to score each of the top-1000 retrieved images and reorder them based on these scores.
This automated verification step is inspired by current discovery pipelines, where classifiers produce
thousands of false positives that require manual inspection by expert teams (e.g. Schuldt et al. [2025]
for lenses).

To push this approach further, we investigate whether scaling test-time compute can improve re-
trieval results, analogous to how OpenAI scaled test-time compute to enhance logical reasoning
capabilities [OpenAI, 2024a]. To evaluate this hypothesis, we construct a controlled test dataset
using higher-resolution HSC images, the same data used for initial human identification, rather
than lower-resolution Legacy Survey images, comprising 20,000 non-lenses and 200 confirmed
gravitational lenses from published HSC strong-lens catalogs (see Appendix A).

We perform semantic search using AION-Search with the query “gravitational lens” and measure
performance by counting confirmed lenses in the top-100 results after re-ranking the initial top-
1000 retrievals, comparing against two baselines: the original AION-Search ranking and AION-1-B
similarity search. Our experimental design investigates two dimensions of computational scaling: (1)
model capacity, comparing GPT-4.1-nano, GPT-4.1-mini, and GPT-4.1 in ascending order of size and
cost; and (2) inference-time strategy through n-sample averaging, where we generate n independent
scores per image and average them for the final ranking.

3 Results

3.1 VLM image descriptions

We first evaluate whether current VLMs from OpenAI [OpenAI, 2025a,b] and Google [Comanici
et al., 2025] can accurately describe the visual properties of galaxy images using our curated Galaxy
Zoo test set (Section 2.1). We find that having o3 fill out the GalaxyZoo questions directly results
in 23.6 ± 1.0% of images (over three runs) where the full decision tree paths matching that of
the majority human consensus. While this is lower than the average volunteer (51.9 ± 2.4 %), it
significantly exceeds random chance (4.1± 1.1%), demonstrating that VLMs can provide a noisy but
informative signal for human labeling tasks. This average volunteer performance represents the mean
probability across galaxies that any individual volunteer would match the majority, computed as the
product of the vote fractions for each question and assuming the majority vote as ground truth.
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“Visible spiral arms” “Edge-on disk with dust”

“Close-up active star formation” “System of multiple galaxies”

“A single faint tidal stream wrapping around” “Close-up galaxy merger with tidal tails”

Figure 2: AION-Search enables semantic retrieval of galaxies matching free-form natural
language queries. Top three retrieved images from HSC survey for each query demonstrate the
system’s ability to identify specific astronomical phenomena that would traditionally require volunteer
labeling to catalog and train a supervised classifier. Cosine similarity scores are shown in the bottom
right of each image

Testing our free-form description benchmark on 13 different models from Google and OpenAI with
three runs each (with one run for GPT-4.5), we evaluated performance across different price points
(Figure 1). We found GPT-4.1-mini to be optimal for our budget constraints, while models like o3
offer stronger performance but higher cost. We then use the benchmark to optimize a general prompt
using AIDE [Jiang et al., 2025] which led to 50.1 ± 3.3% with GPT-4.1-mini, ensuring that the
prompt is sufficiently general to capture galaxy features beyond Galaxy Zoo’s fixed question set (see
Appendix Fig. 4 for prompt). We use this setup for the CLIP training set caption generation. When
the LLM-judge infers decision-tree answers from free-form captions generated by o3, only 12.5% of
images have all the answers exactly matching the volunteer majority-vote, substantially lower than
when o3 is directly provided the Galaxy Zoo questions.

3.2 Search performance

We demonstrate our system retrieving galaxies for complex queries like ‘close-up active star formation’
and ‘a single faint tidal stream’ in Figure 2, which are free-form searches that traditional supervised
methods cannot perform and would typically require months-long volunteer labeling campaigns to
enable.

Table 1 reports nDCG@10 scores for retrieval for spiral galaxies, mergers, and gravitational lenses.
Our AION-Search model, trained on the summarized VLM-generated captions, consistently outper-
forms similarity-based baselines across all categories. For spirals, we observe an nDCG@10 of 0.941
compared to 0.643 for the strongest baseline (AION-1-L). For mergers, the model achieves 0.554
versus 0.384 (AION-1-XL), and for gravitational lenses 0.180 compared to 0.015 (AION-1-XL).

Consistent with prior work [Li et al., 2023], training on single-sentence summaries improves
nDCG@10 by 0.143 (spirals), 0.084 (mergers), and 0.180 (lenses) relative to multi-paragraph
descriptions, likely because shorter captions reduce noise and overfitting to caption-specific details.
Baseline methods using visual similarity to find lenses return fewer than a single lens on average
in their top-10 results when averaged across multiple queries. In contrast, our semantic approach
retrieves two lenses in the top-10.

3.3 Re-ranking

On our dataset of 200 confirmed gravitational lenses hidden among 20,000 non-lenses, AION-Search
(zero-shot) successfully retrieves 38 lenses within its top-1000 retrievals, demonstrating strong initial
recall. While the top-100 precision matched AION-1-B one-shot similarity search (7 lenses), we
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Spirals Mergers Lenses

AION-1-B 0.632 0.281 0.012
AION-1-L 0.643 0.303 0.011
AION-1-XL 0.621 0.384 0.015
Parker et al. [2024] 0.602 0.248 0.006
Stein et al. [2021] 0.590 0.340 0.007
Oquab et al. [2023] 0.477 0.060 0.003
Random 0.263 0.037 0.000

AION-Search 0.941 0.554 0.180
AION-Search (re-rank) 0.992 0.678 0.290

Table 1: Semantic search performance on astronomical images demonstrates superiority over
similarity-based methods. Quantitative comparison of retrieval performance (nDCG@10) across
three astronomical phenomena of varying rarity. AION-Search, trained on VLM-generated captions,
achieves strong performance using text queries (“visible spiral arms”, “merging”, “gravitational lens”)
compared to similarity-based baselines using image queries. Performance gains are most pronounced
for rare phenomena. GPT-4.1 re-ranking of top-1000 results further improves performance across all
categories. Baseline methods include various AION-1 model sizes (B, L, XL), AstroCLIP [Parker
et al., 2024], astronomical self-supervised models [Stein et al., 2021], and DINOv2 [Oquab et al.,
2023]. Retrieval scores for randomly shuffled data are shown for reference.

find that VLM re-ranking can greatly improve performance. By applying GPT-4.1 with 5-sample
averaging to re-rank the initial 1000 retrievals, we nearly doubled the number of gravitational lenses
in the top-100, increasing from 7 to 13.

Furthermore, our results reveal a relationship between test-time compute in re-ranking and retrieval
performance for rare astronomical phenomena (Figure 3). As we scale from GPT-4.1-nano through
GPT-4.1, and from single evaluations to 5-sample averaging, we increase the number of retrieved
lenses.

4 Discussion & Conclusion

Our results demonstrate that VLMs can understand galaxy images well enough to allow for 1)
generating descriptions for semantic search and 2) scoring an image to enable effective reranking
of search results. Although VLM descriptions contain hallucinations (e.g. saying a galaxy has two
spiral arms instead of three (Fig. 1)), these imperfect annotations nonetheless provide an effective
training signal for contrastive learning. Our resulting semantic search model achieves strong zero-shot
performance with text queries for spiral galaxies, mergers, and gravitational lenses, substantially
outperforming similarity-based retrieval methods that rely on example images.

VLM-based re-ranking consistently improves retrieval performance across all tasks (Table 1): spirals
improve from 0.941 to 0.992 nDCG@10 and mergers from 0.554 to 0.678, improvements even when
AION-Search already achieves strong baseline performance. The most substantial gains occur for
gravitational lenses, where re-ranking nearly doubles the number found in the top-100 (from 7 to 13),
with performance scaling with test-time compute. This pattern makes re-ranking particularly valuable
for discovering rare astronomical phenomena at scale, offering an alternative to resource-intensive
manual labeling campaigns that typically require months to years of volunteer effort [Walmsley et al.,
2023, 2025, Lintott et al., 2008].

Future work will focus on using AION-Search for astronomical discovery. Beyond gravitational
lenses, the system could be applied to other scientifically valuable but under-explored phenomena,
yet remain poorly cataloged due to their rarity with no dedicated classifiers or labeling campaigns.
For example, finding galaxies with two tidal streams which can provide stronger constraints on the
shape of dark matter halos [Nibauer et al., 2023].

Re-ranking could be extended through agentic approaches that provide models with image manipula-
tion capabilities and domain-specific computational tools, such as astrophysical modeling packages
(e.g. lens modeling with the lenstronomy package [Birrer et al., 2021]). Recent work demonstrates
that tool-augmented multimodal reasoning substantially improves visual understanding tasks [Shao

7



... a distinctive arc-
like feature to the 
left ... 

... multiple compact 
sources arranged in 
a nearly symmetrical 
pattern ...

... a distinctly 
curved, arc-like 
feature nearby ...

1-sample


5-sample avg.


Figure 3: VLM re-ranking improves gravitational lens discovery and performance scales with
test-time compute budget. Left: First three gravitational lenses identified by GPT-4.1 with 5-sample
averaging for re-ranking, showing rank improvements from initial AION-Search results along with
excerpts from the GPT-4.1 explanations (see Appendix Fig. 6 for prompt). The distinctive lensing
features detected would traditionally require expert astronomers to visually inspect thousands of
candidates [Schuldt et al., 2025]. Right: Performance scales with test-time compute: number of
confirmed lenses in top-100 results after re-ranking the top-1000 AION-Search results. Baseline
methods (AION similarity search and no re-ranking) finds only seven lenses. VLM re-ranking perfor-
mance improves with both model size (gpt-4.1-nano to gpt-4.1) and inference-time compute via
N-sample averaging, reaching 13 lenses with GPT-4.1 5-sample averaging. This demonstrates that
spending more compute at search-time improves discovery of rare astronomical phenomena.

et al., 2024, Hu et al., 2024, Yang et al., 2023]. If a discovery is made, these analysis pipelines
produced by the agent can be examined and verified by a human expert. Such methods could provide
an effective way to scale test-time compute, beyond the N-sample averaging explored in this work.

The minimal training required for AION-Search demonstrates the quality of the AION representations.
With LSST expected to image 20 billion galaxies by 2035 [Ivezić et al., 2019], full manual inspection
becomes infeasible, making automated semantic search necessary. The AION architecture addresses
this need through its unified latent space that handles multiple modalities (4-band Legacy Survey and
5-band HSC images as demonstrated here, plus spectroscopic measurements of stars and galaxies),
allowing the same model to process new telescope data. Future implementations of AION-Search
could incorporate time-series photometry or spectroscopic observations of stars and other astronomical
sources, providing a single general-purpose semantic search engine for astronomy.

Several limitations constrain our approach. VLMs fail to detect subtle features, and our model inherits
biases from GPT-4.1-mini. Our VLM benchmark captures limited visual information through its
fixed question structure, providing insufficient assessment of description completeness. To get past
this, one could evaluate VLM responses against expert-curated free-form descriptions containing all
observable physical properties of an image. Furthermore, the astronomy performance of these VLMs
likely benefits from pretraining on online image-text discourse and annotations (e.g., Galaxy Zoo),
and VLM descriptions may be weaker in scientific domains without comparable corpora.

This approach could generalize to other scientific domains with large unlabeled image archives such
as Earth observation, microscopy, and materials science, particularly where rare phenomena are
valuable but costly to identify manually. As VLM capabilities generally improve over time, the gap
between AI and human annotation quality will likely narrow.

We demonstrate that synthetic VLM descriptions provide a sufficient signal for semantic retrieval,
significantly improving on self-supervised baselines and enabling open-vocabulary search. By
training cross-modal encoders on ∼250,000 synthetic captions, we enable natural language search
over 140 million astronomical images without human annotation. A VLM-based re-ranking step
further improves results, and its performance increases with test-time compute. We establish that
large-scale scientific image archives can be made semantically searchable without human supervision,
offering a generalizable framework for scientific image retrieval.
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of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing Applications at the University
of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of
Chicago, Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell
Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos
e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundacao
Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao,
the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the University of California at
Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales
y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil
Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich,
Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut
de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig Maximilians Universitat Munchen and the associated Excellence
Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, the
Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National
Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.
BASS is a key project of the Telescope Access Program (TAP), which has been funded by the
National Astronomical Observatories of China, the Chinese Academy of Sciences (the Strategic
Priority Research Program “The Emergence of Cosmological Structures” Grant # XDB09000000),
and the Special Fund for Astronomy from the Ministry of Finance. The BASS is also supported by the
External Cooperation Program of Chinese Academy of Sciences (Grant # 114A11KYSB20160057),
and Chinese National Natural Science Foundation (Grant # 12120101003, # 11433005). The Legacy
Survey team makes use of data products from the Near-Earth Object Wide-field Infrared Survey
Explorer (NEOWISE), which is a project of the Jet Propulsion Laboratory/California Institute of
Technology. NEOWISE is funded by the National Aeronautics and Space Administration. The
Legacy Surveys imaging of the DESI footprint is supported by the Director, Office of Science, Office
of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123,
by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility
under the same contract; and by the U.S. National Science Foundation, Division of Astronomical
Sciences under Contract No. AST-0950945 to NOAO.
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The Hyper Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan
and Taiwan, and Princeton University. The HSC instrumentation and software were developed by
the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and
Mathematics of the Universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator
Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics
in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program
from Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology
(MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology
Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton
University.
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A Retrieval benchmark details

All retrieval experiments use Legacy Survey images [Dey et al., 2019] following the AION retrieval
protocol in Section 7.3 in Parker et al. [2025], restated here for comparability.

Galaxy Zoo-DECaLS is a citizen-science project where volunteers label galaxy morphology [Walms-
ley et al., 2022]. We keep galaxies with at least three volunteer votes and cross-match with Legacy
Survey South resulting in 171,000 galaxies. For evaluation, each candidate image gets a relevance
score equal to the fraction of volunteers who chose that class (r ∈ [0, 1]).

We reproduce the AION parent sample for strong gravitational lenses by first cross-matching the
Legacy Survey and HSC datasets to approximately reproduce the sample used in the HSC strong
lensing searches [Jaelani et al., 2024]. Then we require: 0.2 ≤ zphot ≤ 1.2 (photometric redshift, i.e.
an estimated distance from broadband colors), M⋆ > 5× 1010 M⊙ (stellar mass, i.e. the total mass
in stars), and star formation rate per unit stellar mass less than 10−10 yr−1. We then cross-match
to published strong-lens catalogs as listed in Parker et al. [2025] Section 7.3 and assign relevance
r = 1.0 to cataloged lenses and r = 0.0 otherwise, yielding 758 lenses.

Since lenses are extremely rare in this dataset, nDCG@10 is inherently noisy. Unlike the similarity-
based baselines in Table 1, which can vary image queries per task, our lens experiment use a single
text query, “gravitational lens”, so we cannot vary queries to estimate variability. Instead, we
randomly partition the lens evaluation set into 10 disjoint subsets and recompute nDCG@10 on each.
Doing so results in nDCG@10 scores ranging from 0.00 to 0.29, with a mean of 0.123 ± 0.114
(standard deviation), consistent with the overall score of 0.180 but highlighting the high variance
induced by the small number of positives. For comparison, performing the same 10-fold evaluation
for spirals and mergers yields mean nDCG@10 values of 0.973± 0.033 (range [0.889, 1.000]) and
0.456± 0.077 (range [0.310, 0.620]), respectively. To remain comparable with the original AION
retrieval benchmark [Parker et al., 2025], Table 1 reports nDCG@10 values computed on the full
evaluation set for all methods.

B Prompts

Training set generation prompt

Analyze this astronomical image and provide a detailed description, assuming the reader has
domain expertise and the description will be reviewed by astrophysicists.
1. Morphology: Describe a detailed morphological classification of the main object(s) (e.g.,
spiral, elliptical, irregular, merging system, etc.).
2. Prominent Features & Characteristics: Detail specific astronomical features observed, for
example: spiral arms, bars, dust lanes, star-forming regions, tidal features, merger remnants,
foreground stars, lensing effects, etc. Mention these features if and only if they are present
in the image. If they are not present, do not mention them. The features mentioned here
were just examples, state any feature you believe astrophysicists would be interested in. For
each feature, describe its key characteristics (e.g., morphology, extent, brightness, orientation,
interaction with other components, physical phenomena occurring, etc.).
3. Additional Context & Interpretation: Include any further observational details or astro-
physical interpretations.
Only focus on the center object(s) in the image. Keep your response under 300 words.

Figure 4: Prompt for generating free-form astronomical image descriptions with VLMs, designed to
generate comprehensive general descriptions about the physical phenomena in the image rather than
answers to specific questions (as in Galaxy Zoo’s decision tree).

14



Summarizer prompt

Please summarize the following description into a single sentence CLIP query:

<original_description>
{{original_description}}
</original_description>

Only output the summary without any additional text.
Do not use any of the following words: ‘no‘, ‘not‘, ‘without‘, ‘absence‘, ‘lack of‘, ‘no
obvious‘, ‘no signs‘, ‘absence of‘ or any other negation words or phrases.
Ignore any phrases containing negation from the original description containing these words.

Figure 5: Prompt for generating single-sentence summaries from multi-paragraph VLM descriptions
using gpt-4.1-nano. The prompt leads to shorter descriptions that exclude negations to improve
contrastive learning performance [Li et al., 2023].

Reranking prompt

Does this galaxy image display signs of gravitational lensing? Rank 1-10 where 10 means
you are entirely sure there are signs of gravitational lensing and 1 being you are entirely sure
there are no signs of gravitational lensing.

Figure 6: Prompt used in the VLM re-ranking stage for the experiment in Section 2.5: for each
retrieved galaxy image, the model assigns a 1–10 score indicating confidence in gravitational lensing.

15


	Introduction
	Related Work
	Paper Outline

	Methodology
	Evaluating VLM image descriptions
	Caption generation for scientific images
	Learning semantic embeddings through contrastive alignment
	Evaluating search capabilities
	Post-search VLM re-ranking

	Results
	VLM image descriptions
	Search performance
	Re-ranking

	Discussion & Conclusion
	Retrieval benchmark details
	Prompts

