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ABSTRACT

Neural networks that can produce accurate, input-conditional uncertainty represen-
tations are critical for real-world applications. Recent progress on heteroscedastic
continuous regression has shown great promise for calibrated uncertainty quan-
tification on complex tasks, like image regression. However, when these methods
are applied to discrete regression tasks, such as crowd counting, ratings predic-
tion, or inventory estimation, they tend to produce predictive distributions with
numerous pathologies. Moreover, discrete models based on the Generalized Linear
Model (GLM) framework either cannot process complex input or are not fully
heterosedastic. To address these issues we propose the Deep Double Poisson Net-
work (DDPN). In contrast to networks trained to minimize Gaussian negative log
likelihood (NLL), discrete network parameterizations (i.e., Poisson, Negative bino-
mial), and GLMs, DDPN can produce discrete predictive distributions of arbitrary
flexibility. Additionally, we propose a technique to tune the prioritization of mean
fit and probabilistic calibration during training. We show DDPN 1) vastly outper-
forms existing discrete models; 2) meets or exceeds the accuracy and flexibility of
networks trained with Gaussian NLL; 3) produces proper predictive distributions
over discrete counts; and 4) exhibits superior out-of-distribution detection. DDPN
can easily be applied to a variety of count regression datasets including tabular,
image, point cloud, and text data.

1 INTRODUCTION

The pursuit of neural networks capable of learning accurate and reliable uncertainty representations
has gained significant traction in recent years (Lakshminarayanan et al., 2017; Kendall & Gal, 2017;
Gawlikowski et al., 2023; Dheur & Taieb, 2023). Input-dependent uncertainty is useful for detecting
out-of-distribution data (Amini et al., 2020; Liu et al., 2020; Kang et al., 2023), active learning (Settles,
2009; Ziatdinov, 2024), reinforcement learning (Yu et al., 2020; Jenkins et al., 2022), and real-world
decision-making under uncertainty (Abdar et al., 2021). While uncertainty quantification applied
to regression on continuous outputs is well-studied, training neural networks to make probabilistic
predictions over discrete counts has traditionally received less attention, despite multiple relevant
applications. In recent years, neural networks have been trained to predict the size of crowds (Zhang
et al., 2016; Lian et al., 2019; Zhang & Chan, 2020; Zou et al., 2019; Luo et al., 2020; Lin & Chan,
2023), the number of cars in a parking lot (Hsieh et al., 2017), traffic flow (Lv et al., 2014; Liu
et al., 2021; Li et al., 2020), agricultural yields (You et al., 2017), inventory of product on shelves
(Jenkins et al., 2023), and bacteria in microscopic images (Marsden et al., 2018). In this paper, we are
interested in training neural networks to output a flexible, calibrated, and properly specified predictive
distribution over discrete counts (Figure 1).

A common approach to uncertainty representation in complex regression tasks has been to apply
the generalized linear model (GLM) framework, but to replace the linear predictor with a neural
network. The network is then trained to output the mean and variance of a Gaussian distribution,[
µ̂i, σ̂

2
i

]T
= fΘ(xi) (Nix & Weigend, 1994), while minimizing Gaussian negative log likelihood

(NLL) loss via gradient-based optimization. This form of input-conditional predictive variance is
known as heteroscedastic regression. Recent work has improved the performance of heteroscedastic
regression by mediating the influence of σ̂2 on the gradient of the mean, which can cause instability
during training, miscalibrated predictive variance, or a poor mean fit (Immer et al., 2024; Seitzer
et al., 2022; Stirn et al., 2023).
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Figure 1: An overview of the Deep Double Poisson Network (DDPN) and discrete heteroscedastic
regression problem. A deep neural network processes complex data as input (i.e. image, text or point
cloud) and outputs the parameters of a discrete probability distribution over an integer prediction
range. The mean, µi, and inverse dispersion, ϕi, vary for each input, xi and allow for over-, under-,
and equi-dispersion.

However, when each of these methods is applied to count regression, the model is trained to output
an input-dependent probability density function, p(y|fΘ(x)); y ∈ R, over a discrete output space,
i.e. y ∈ Z≥0. Applying a continuous density function to a discrete domain creates three critical
pathologies. First, the continuous predictive distribution will assign non-zero probability mass
to infeasible real values that fall in between valid integers. Second, the predictive intervals are
unbounded and can assign non-zero probability to negative values when the predicted mean is small.
Third, the boundaries of the predictive intervals (i.e., high density interval or 95% credible interval)
are likely to fall between two valid integers, diminishing their interpretability and utility. To overcome
these limitations, we desire a properly specified probability mass function, conditional on the input
features: p(y|fΘ(x)); y ∈ Z≥0.

Discrete regression has historically been treated similarly to the Gaussian case. For example, previous
work trains a network to predict the λ parameter of a Poisson distribution and minimize its NLL
(Fallah et al., 2009). However, the Poisson parameterization of the neural network suffers from the
equi-dispersion assumption: predictive mean and variance of the Poisson distribution are the same
(λ̂ = µ̂ = σ̂2). Therefore, the model is not flexible enough to produce separate input-dependent mean
and variance predictions. Another common alternative is to train the network to minimize Negative
Binomial (NB) NLL (Xie, 2022). The Negative Binomial breaks equi-dispersion by introducing
another parameter to the PMF. This helps disentangle the mean and variance, but suffers from the
over-dispersion assumption: σ̂2 ≥ µ̂. Consequently, this model is not flexible enough to assign
uncertainty less than its mean prediction for a given input. Meanwhile, discrete GLMs fit without a
neural network feature extractor lack representational capacity to process complex input and are also
not fully heteroscedastic (Efron, 1986; Murphy, 2023).

Our Contributions To address these issues, we introduce the Deep Double Poisson Network
(DDPN), a novel discrete neural regression model (See Figure 1). In contrast to Gaussian-based
heteroscedastic regressors, DDPN is a neural network trained to output the parameters of the Double
Poisson Distribution (Efron, 1986), which represents a highly flexible, discrete predictive distribution,
p(y|fΘ(x)); y ∈ Z≥0. DDPN is fully heteroscedastic such that the predicted mean and dispersion
are independent, conditioned on the input. Additionally, we demonstrate that DDPN is subject
to similar dynamics between mean and dispersion during training as Gaussian-based techniques
(Immer et al., 2024; Seitzer et al., 2022; Stirn et al., 2023), and propose a β modification to the
NLL to temper this relationship and achieve ‘tunable mean fit’ (Figure 3). Compared to existing
discrete regression models, DDPN is flexible enough to handle over-, under- and equi-dispersion,
making it a superior choice to the Poisson and Negative Binomial deep networks for discrete
predictive uncertainty quantification. Our experiments show that DDPN can learn accurate and
reliable uncertainty representations on both tabular and complex data (image, point cloud, and text).
DDPN matches or exceeds the performance and calibration of Gaussian-based alternatives and offers
superior out-of-distribution detection compared with existing techniques.
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Method Discrete Predictive Complex Data Fully Heteroscedastic Tunable Mean Fit

Discrete GLMs ✓ ✗ ✗ ✗
Gaussian DNN ✗ ✓ ✓ ✗

Gaussian β-NLL ✗ ✓ ✓ ✓
Poisson/NB DNN ✓ ✓ ✗ ✗

DDPN (ours) ✓ ✓ ✓ ✓

Table 1: Summary of contributions and existing work.

2 MODELING PREDICTIVE UNCERTAINTY WITH NEURAL NETWORKS

Predictive uncertainty can be decomposed into two types: epistemic (uncertainty of the model
weights) and aleatoric uncertainty (observation noise) (Kendall & Gal, 2017; Der Kiureghian &
Ditlevsen, 2009).

2.1 EPISTEMIC UNCERTAINTY

Epistemic uncertainty refers to uncertainty due to model misspecification. Modern neural networks
tend to be significantly underspecified by the data, which introduces a high degree of uncertainty
(Wilson & Izmailov, 2020). In general, this type of uncertainty can be reduced through additional data
acquisition. A variety of techniques have been proposed to explicitly represent epistemic uncertainty
including Bayesian inference (Wilson & Izmailov, 2020; Chen et al., 2014; Hoffman et al., 2014),
variational inference (Graves, 2011), and Laplace approximation (Daxberger et al., 2021). Recently,
deep ensembles have emerged as a simple and popular alternative (Lakshminarayanan et al., 2017;
D’Angelo & Fortuin, 2021). Other work connects Bayesian inference and ensembles by arguing the
latter can viewed as a Bayesian model average where the posterior is sampled at multiple local modes
(Fort et al., 2019; Wilson & Izmailov, 2020). This approach has a number of attractive properties:
1) it generally improves predictive performance (Dietterich, 2000); 2) it can model more complex
predictive distributions; and 3) it effectively represents uncertainty over learned weights, which leads
to better probabilistic calibration.

2.2 HETEROSCEDASTIC REGRESSION FOR ALEATORIC UNCERTAINTY

Aleatoric uncertainty quantifies observation noise and generally cannot be reduced with more data
(Der Kiureghian & Ditlevsen, 2009; Kendall & Gal, 2017). In practice, this uncertainty can be
introduced by low resolution sensors, blurry images, or the intrinsic noise of a signal. Aleatoric noise
is commonly modeled in machine learning by fitting the parameters of a distribution over the output,
rather than a point prediction. Uncertainty is often represented by a dispersion parameter, σ, that is
learned from the training data. When dispersion varies for each input, σi, we get a heteroscedastic
model. Below, we detail how aleatoric uncertainty is modeled in both the GLM and deep learning
literature.

2.2.1 GENERALIZED LINEAR MODELS

Under this paradigm, observation noise is modeled by specifying a conditional distribution,
p(yi|ηi, σ), where p is a member of the exponential family, ηi = wTxi represents the natural
parameter of p, and σ is the dispersion term (McCullagh, 2019; Murphy, 2023). A link func-
tion, l(·), is selected to specify a mapping between the natural parameter and the mean such that
l(µi) = ηi = wTxi. The model is then fit by minimizing NLL. Many common models can be
viewed under this general framework, including logistic regression, Poisson regression, and binomial
regression (Fahrmeir et al., 2013). It was in this setting that the Double Poisson distribution was first
introduced. However, initial models with this distribution were strictly linear, and constrained the
dispersion term with an explicit dependence on the mean. Specifically, given parameter vectors α
and β = [β0, β1, β2]

T , Efron (1986) assumes log(µ̂i) = η̂i = α
Txi and σ̂i =

M

1+e−(β0+β1µ̂i+β2µ̂2
i
)
.

This approach has two key limitations: 1) the predicted dispersion, σ̂i, does not directly depend on
the input xi, and is instead a function of the predicted mean, µ̂i); 2) the hyperparameter M introduces
an upper bound on the dispersion, which in turn curtails the feasible range of confidence values.
In practice, the authors set M = 1.25, which hardly allows for under-dispersion (σ > 1). Both of
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Figure 2: Simulation experiment with a known data-generating process featuring heteroscedastic
variance over discrete outputs. Here we model varying levels of dispersion, with severe under-
dispersion on the high values of y and increased spread on the low values of y. We show the ground
truth aleatoric uncertainty interval and the test data points. We visualize the mean fit and “learned”
aleatoric uncertainty (centered 95% credible interval of the predictive distribution) of each of 4
probabilistic neural networks on the test split of the dataset, along with the mean absolute error
(MAE) and NLL. All models adequately fit the mean. However, only the Gaussian DNN and
DDPN correctly recover the heteroscedastic pattern in all regions. The Poisson DNN and NB DNN
lack sufficient flexibility to capture under-dispersion.

these measures significantly limit the family of distribution functions the model can learn. Follow-up
studies all assume a constant dispersion term, applying even stronger limits on flexibility (Toledo
et al., 2022; Zhu, 2012; Zou et al., 2013). In contrast to these, our proposed approach drastically
expands the family of functions that can be modeled. DDPN learns a non-linear mapping that can
be trained on complex data and can fully disentangle the mean and dispersion, allowing for pure
heteroscedastic regression. We also introduce a tunable hyperparameter that allows for custom
prioritization between mean fit and overall likelihood calibration.

2.2.2 GENERALIZED REGRESSION WITH DEEP LEARNING

GLMs are limited in their predictive power and cannot fit complex data. To address this, similar
theoretical principles have been applied to specify deep neural networks, which are much more flexible
than GLMs and map to a larger number of data modalities (Fallah et al., 2009; Xie, 2022; Qi et al.,
2020; Barron, 2019; Fan et al., 2019). These works adjust the natural parameter mapping as follows:
let z = gΘ1:L−1

(xi) denote the features extracted by the first L− 1 layers of a neural network. Both
the mean and dispersion are outputs of the network: l(µi) = ηi = w

T
η z(xi), σi = w

T
σ z. One specific

example of this approach is detailed in both Nix & Weigend (1994) and Kendall & Gal (2017), where
the network is trained to output the mean and log variance of a Gaussian, [µ̂i, log σ̂i]

T
= fΘ(xi)

with the objective of minimizing Gaussian NLL. Recent work has identified issues with this training
strategy due to the the influence of σ̂ on the mean, µ̂. Immer et al. (2024) reparameterize the neural
network to output the natural parameters of the Gaussian distribution. Seitzer et al. (2022) propose a
modified loss function and introduce a hyperparameter, β ∈ [0, 1], which tempers the impact of σ̂2 on
the gradient of the mean. Stirn et al. (2023) re-scale the gradient of µ̂ and modify the architecture of
the underlying network to include separate sub-networks for µ̂ and σ̂2, along with the stop gradient
operation to prevent the gradient of σ̂2 from impacting the µ̂(x) sub-network.

For count regression, one can specify a neural network that outputs the parameters of a discrete
distribution. For example, Fallah et al. (2009) train a neural network to predict the mean and variance
parameter, λ, of a Poisson distribution, while Xie (2022) applies this idea to the Negative Binomial
distribution. As discussed previously, these approaches suffer from the equi- and over-dispersion
assumptions. In contrast, DDPN produces a fully heteroscedastic, discrete predictive distribution,
and offers tunable mean fit through a likelihood β modification.

3 DEEP DOUBLE POISSON NETWORKS (DDPN)

In this section, we introduce the Deep Double Poisson Network (DDPN), which is a neural network
that outputs the parameters of the Double Poisson distribution (Efron, 1986; Toledo et al., 2022). The
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main idea of DDPN is to flexibly and accurately model an input-conditional predictive distribution
over the space of discrete counts (See Figure 1). We propose 1) a fully heteroscedastic parameteriza-
tion that disentangles predicted mean and dispersion conditioned on the input, 2) a novel loss function
based on the Double Poisson likelihood (Equation 2), and 3) the introduction of a hyperparameter, β,
to the loss function that offers tunable prioritization between fitting the natural likelihood and mean
accuracy.

We assume access to a dataset, D, with N training examples {xi, yi}Ni=1, where each yi ∈ Z≥0 is
drawn from some unknown nonnegative discrete distribution p(yi|xi). Let X denote the space of
all possible inputs x, let P denote the space of all possible distributions over Z≥0, and let ψ ∈ Rd

denote a vector of parameters identifying a specific p ∈ P . We wish to model P with a neural
network fΘ : X → P with learnable weights Θ. In practice, we model fΘ : X → ψ ∈ Rd. Given
such a network, we obtain a predictive distribution, p̂(y|fΘ(x)), for any input x.

In particular, suppose that we restrict our output space to PDP ⊂ P , the family of Double Poisson
distributions over y. Any distribution p ∈ PDP is uniquely parameterized by ψ = [µ, ϕ ]

T ≻ 0, for
mean, µ, and inverse dispersion, ϕ. The distribution function, p : Z≥0 → [0, 1], is defined as follows
(where c is a normalizing constant):

p(y|µ, ϕ) = ϕ
1
2 e−ϕµ

c(µ, ϕ)

(
e−yyy

y!

)(
eµ

y

)ϕy

, c(µ, ϕ) ≈ 1 +
1− ϕ

12µϕ

(
1 +

1

µϕ

)
(1)

Let Z denote a random variable with a Double Poisson distribution function (Equation 1). Then
we say Z ∼ DP(µ, ϕ), with E[Z] ≈ µ and Var[Z] ≈ µ

ϕ (Efron, 1986). We specify a model 1,

[log µ̂i, log ϕ̂i]
T = fΘ(xi), with the following structure: let zi = gΘ1:L−1

(xi), be the d-dimensional
hidden representation of the input xi produced by the previous L− 1 layers. We then apply two sepa-
rate linear layers to this hidden representation to obtain our distribution parameters: log(µ̂i) = w

T
µzi

and log(ϕ̂i) = w
T
ϕzi. In contrast to previous work described in Section 2.2.1, this parameterization

allows for fully disentangled mean and dispersion predictions, conditioned on the hidden represen-
tation of the input. Additionally, this removes the constraint, M , on the dispersion and allows for
arbitrary sharpness of the predictive distribution.

3.1 DDPN OBJECTIVE

To learn the weights we minimize the following objective based on Double Poisson NLL:

LDDPN (yi, µ̂i, ϕ̂i) =
1

N

N∑
i=1

(
−1

2
log ϕ̂i + ϕ̂iµ̂i − ϕ̂iyi(1 + log µ̂i − log yi)

)
(2)

During training, we minimize LDDPN iteratively via stochastic gradient descent (or common
variants). We provide a full derivation of Equation 2 in Appendix A.3.

3.2 β-DDPN: NLL LOSS MODIFICATIONS

As first noted in Seitzer et al. (2022), when training a heteroscedastic regressor with Gaussian
likelihood, the ability of a neural network to fit the mean can be harmed by the presence of the
predicted variance term in the partial derivative of the mean. We observe that this same phenomenon
exists with DDPN. We have the following partial derivatives with respect to µ̂i and ϕ̂i:

∂LDDPN

∂µ̂i
= ϕ̂i

(
1− yi

µ̂i

)
,

∂LDDPN

∂ϕ̂i

= − 1

2ϕ̂i

+ µ̂i − yi(1 + log µ̂i − log yi) (3)

1For both µ̂ and ϕ̂ we apply the log “link” function to ensure positivity and numerical stability. We simply
exponentiate whenever µ̂i or ϕ̂i are needed (i.e., to evaluate the density function in Equation 1)
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Notice that if ϕ̂i is sufficiently small (corresponding to large variance), it can completely zero out
∂LDDPN

∂µ̂i
regardless of the current value of µ̂i . Thus, during training, a neural network can converge

to (and get “stuck” in) suboptimal solutions wherein poor mean fit is explained away via large
uncertainty values. To remedy this behavior, we propose a modified loss function, the β-DDPN:

Lβ−DDPN (yi, µ̂i, ϕ̂i) =
1

N

N∑
i=1

⌊
ϕ̂−β
i

⌋(
−1

2
log ϕ̂i + ϕ̂iµ̂i − ϕ̂iyi(1 + log µ̂i − log yi)

)
(4)

where ⌊·⌋ denotes the stop-gradient operation. With this modification we can effectively temper the
effect of large variance on mean fit. We now have the following partial derivatives:

∂Lβ−DDPN

∂µ̂i
=
(
ϕ̂1−β
i

)(
1− yi

µ̂i

)
,

∂Lβ−DDPN

∂ϕ̂i

= − 1

2ϕ̂1+β
i

+ µ̂i − yi(1 + log µ̂i − log yi)

(5)

The Double Poisson β-NLL is parameterized by β ∈ [0, 1], where β = 0 recovers the original
Double Poisson NLL and β = 1 corresponds to fitting the mean, µ, with no respect to ϕ (while still
performing normal weight updates to fit the value of ϕ). Thus, we can consider the value of β as
providing a smooth interpolation between the natural DDPN likelihood and a more mean-focused
loss (Figure 3). For an empirical demonstration of the impact of β on DDPN, see Figure 5.

3.3 DDPN ENSEMBLES

Figure 3: Effect of the pro-
posed β modification. The
partial derivative of the likeli-
hood w.r.t the mean, ∂L

∂µi
, nat-

urally depends on ϕi, which
can cause poor mean fit to be
explained away via large un-
certainty values, harming ac-
curacy. Increasing β reduces
this dependency.

The formulation of DDPN described above applies to neural net-
works with a single forward pass. As noted in Section 2, multiple
independently trained neural networks can be combined to improve
mean fit and distributional calibration by modeling epistemic un-
certainty. Thus, we propose a technique for constructing an en-
semble of DDPNs to further enhance the quality of the predictive
distribution. Following Lakshminarayanan et al. (2017) and Fort
et al. (2019), we train M different DDPNs on the same dataset
and only vary the random initialization point. This produces M
different solutions {Θm}Mm=1 yielding M distinct predictive dis-
tributions for any given input, {p(yi|fΘm(xi))}Mm=1. For our en-
semble prediction, we form a uniform mixture of each distribution:
p(yi|xi) =

1
M

∑M
m=1 p(yi|fΘm(xi)). In Appendix A.5 we provide

well-known equations for recovering the mean and variance of this
mixture distribution (Marron & Wand, 1992).

4 EXPERIMENTS

We evaluate DDPN across a variety of count regression tasks based
on tabular, image, point cloud, and text data. Each dataset has been
divided using a 70-10-20 train/val/test split with a fixed random seed
(results are reported on the test split). We compare a number of
baselines, including a Poisson Generalized Linear Model (GLM), a Negative Binomial GLM, a
Double Poisson GLM (Efron, 1986; Toledo et al., 2022; Zhu, 2012; Zou et al., 2013), a Gaussian
Deep Neural Network (DNN) (Nix & Weigend, 1994), a Poisson DNN (Fallah et al., 2009), Negative
Binomial DNN (Xie, 2022), the “faithful” DNN regressor presented in Stirn et al. (2023), the naturally
parameterized Gaussian regressor from Immer et al. (2024), and the reparameterized network (with
β = 0.5, as recommended) from Seitzer et al. (2022). Additionally, we show the impact of the β-
DDPN modification (with subscripts indicating the exact value of β) presented in Section 3.2. We refer
to these as “single forward pass” methods. We also ensemble our method and compare to ensembles
of Gaussian, Poisson, and Negative Binomial DNNs to demonstrate the impact of modeling both
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aleatoric and epistemic uncertainty. Gaussian ensembles are formed using the technique introduced
in Lakshminarayanan et al. (2017), while Poisson and Negative Binomial ensembles follow the same
prediction strategy outlined in Section 3.3. All experiments are implemented in PyTorch (Paszke
et al., 2017). Choices related to network architecture, hardware and hyperparameter selection are
reported in Appendix B. Source code is freely available online2.

Each regression method is evaluated in terms of two criteria. First, Mean Absolute Error (MAE)
measures the predictive accuracy and mean fit; lower values imply higher accuracy. Second, Negative
Log Likelihood (NLL) measures the calibration, or quality, of the predictive distribution (Can-
dela et al., 2005); lower values imply greater agreement between the predictive distribution p and
the observed label yi. We choose to omit the commonly-used ECE (Kuleshov et al., 2018) as a
measure of calibration due to its recently identified shortcomings when evaluating discrete prob-
ability distributions (Young & Jenkins, 2024). To facilitate comparison between NLL obtained
from continuous and discrete models, we use the continuity correction to convert Gaussian den-
sities into probabilities. Given a predicted Gaussian CDF F̂i for some input-output pair (xi, yi),
we take P (Y = yi|F̂i) ≈ F̂i(yi +

1
2 ) − F̂i(yi − 1

2 ). We then compute NLL as the average of
−log P (Y = yi|F̂i) across the evaluation set. For each technique, we train and evaluate 5 models
and report the empirical mean and standard deviation (in parentheses). To form ensembles, these
same 5 models are combined.

4.1 SIMULATION EXPERIMENTS

To clearly illustrate the flexibility of the DDPN in modeling count data, we simulate a dataset that
exhibits varying levels of dispersion. The exact data generating process is described in Appendix
B.1. We train a small multi-layer perceptron (MLP) to output the parameters of a Gaussian, Poisson,
Negative Binomial, or Double Poisson distribution using the appropriate NLL loss. The resultant
models’ predictive distributions over the test split of the synthetic dataset are visualized in Figure 2.
MAE and NLL are both reported in each panel of the figure.

DDPN clearly meets or exceeds the flexibility and accuracy of the Gaussian while maintaining a
proper distribution over discrete counts. It achieves slightly better mean fit (lower MAE) and roughly
equivalent calibration (NLL). Conversely, the Poisson and Negative Binomial DNNs lack the capacity
to recover the heteroscedastic variance pattern of the data. For another simulated demonstration
of DDPN’s flexibility, see Appendix A.2, where we show DDPN can recover the ground-truth
conditional dependencies in the data even when explicitly misspecified.

4.2 TABULAR DATASETS

We perform two experiments on tabular datasets, one with high frequency counts, and one with low
frequency counts. The Bikes dataset (Fanaee-T & Gama, 2014) describes the number of hourly
bike rentals between the years 2011 and 2012 in the Capital bikeshare system. The features are the
corresponding weather and seasonal information. The 25th, 50th, and 75th percentiles of the labels,
yi, are (40, 142, 281), indicating high frequency events. The Collision dataset (for Transport,
2022) is formed from the casualties, collisions, and vehicles tables in the United Kingdom’s 2022
Road Safety data. In this task, the goal is to predict the number of casualties in a collision, given
features about the accident (i.e., drivers, vehicles, location, etc.). The labels are severely right-skewed,
ranging from 1 to 16 with a mean of 1.278 and a median of 1. For each dataset, we train an MLP to
output the parameters of each benchmarked distribution. See Table 2 for results.

In Bikes we observe DDPN surpasses state-of-art heteroscedastic Gaussian regression baselines
in terms of mean fit and approaches the performance of the Poisson DNN. We note that Poisson
likely performs well because the provided features are not sufficient for concentrated predictions
and the data are naturally equi- to over-dispersed. On the other hand, both DDPN and β1.0-DDPN
outperform all methods in terms of probabilistic fit (NLL). In Collision, we see that β0.5-DDPN
and β1.0-DDPN top the baselines in terms of mean fit while maintaining competitive NLL with the
DP GLM. DDPN also performs well on these two dimensions and is close to Seitzer and NB DNN in
terms of mean fit. In both cases, modeling epistemic uncertainty via ensembling provides significant
improvements in mean fit and calibration, with DDPN outperforming alternatives.

2https://anonymous.4open.science/r/ddpn-651F/README.md
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Bikes Collision
MAE (↓) NLL (↓) MAE (↓) NLL (↓)

Si
ng

le
Fo

rw
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ss

Poisson GLM 110.07 (2.59) 9.81 (0.02) 0.394 (0.00) 1.186 (0.01)
NB GLM 190.03 (0.00) 10.83 (0.09) 0.322 (0.02) 1.120 (0.01)
DP GLM 164.43 (8.87) 8.71 (0.79) 0.271 (0.00) 0.675 (0.00)

Gaussian DNN 38.70 (2.65) 5.00 (0.04) 0.305 (0.00) 0.772 (0.10)
Poisson DNN 27.76 (0.34) 5.81 (0.04) 0.316 (0.01) 1.181 (0.00)

NB DNN 32.33 (6.71) 4.72 (0.08) 0.277 (0.00) 1.183 (0.01)
Stirn et al. (2023) 28.54 (0.40) 5.07 (0.06) 0.302 (0.00) 1.005 (0.00)

Seitzer et al. (2022) 38.64 (0.80) 5.01 (0.05) 0.274 (0.00) 0.722 (0.00)
Immer et al. (2024) 35.30 (0.74) 5.03 (0.04) 0.304 (0.00) 0.723 (0.00)

DDPN (ours) 28.18 (0.34) 4.67 (0.01) 0.280 (0.00) 0.719 (0.01)
β0.5-DDPN (ours) 30.36 (1.06) 4.73 (0.03) 0.269 (0.00) 0.710 (0.01)
β1.0-DDPN (ours) 28.93 (0.80) 4.70 (0.01) 0.269 (0.00) 0.707 (0.01)

D
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em

bl
es

Gaussian DNN 34.40 4.87 0.282 0.756
Poisson DNN 26.01 5.15 0.278 1.178

NB DNN 28.00 4.62 0.270 1.179
DDPN (ours) 25.96 4.57 0.271 0.610

β0.5-DDPN (ours) 27.30 4.65 0.270 0.703
β1.0-DDPN (ours) 26.37 4.60 0.270 0.697

Table 2: Results on tabular datasets: We report the Mean Absolute Error (MAE) and Negative Log
Likelihood (NLL) for each method. We denote the best performer in bold and the second-best
performer with an underline.

Although the linear models we measure perform adequately on Collision, they struggle with
the more complex feature interactions in Bikes, thus failing to model the true data distribution.
This supports our commentary on the built-in rigidity of GLMs in Section 2.2.1. Overall, our results
suggest that DDPN is effective in the tabular regime for both high and low-frequency counts.

4.3 COMPLEX DATASETS

We introduce an image regression task on the person class of MS-COCO (Lin et al., 2014), which
we call COCO-People. In this dataset, the task is to predict the number of people in each image.
We also define an inventory counting task (Jenkins et al., 2023), where the goal is to predict the
number of objects on a retail shelf from an input point cloud (see Figure 21 in the Appendix for an
example). Finally, we predict discrete user ratings from the “Patio, Lawn, and Garden” split of a
collection of Amazon reviews (Ni et al., 2019). The objective in this task is to predict the discrete
review value (1-5 stars) from an input text sequence, which historically has been addressed with
Gaussian NLL (Mnih & Salakhutdinov, 2007; Koren et al., 2009). For COCO-People, each model
was trained with a small MLP on top of the pooled output from a ViT backbone (initialized from
the vit-base-patch16-224-in21k checkpoint (Wu et al., 2020; Deng et al., 2009)). For the
Inventory dataset, each model was fitted with a variant of CountNet3D (Jenkins et al., 2023) that
was modified to output the parameters of a distribution instead of regressing the mean directly. All
text regression models were constructed as a small MLP on top of the [CLS] token in the output
layer of a DistilBert backbone (starting from the distilbert-base-cased checkpoint) (Sanh
et al., 2019). See Table 3 for results.

In COCO-People we see strong performance in terms of both mean fit (MAE) and calibration
(NLL), with either DDPN or β1.0-DDPN leading all methods. As expected, DDPN outperforms
benchmarks in terms of calibration, while β1.0-DDPN yields the best mean performance. We show
example predictions from the COCO-People test set in Appendix C.1. In Inventory, DDPN and
β1.0-DDPN achieve the best mean fit, with the slight edge in NLL going to DDPN. Reviews sees
β0.5-DDPN and β1.0-DDPN score favorably in terms of mean fit, essentially matching the predictive
performance of Stirn. Immer yields the best results in terms of probabilistic fit, with DDPN close
behind.

One note of interest is that although the β = 0.5 setting appears to yield slightly worse individual
DDPNs on COCO-People and Inventory, these models make for an excellent predictive ensem-
ble, achieving top scores across the board for Inventory, the best MAE for Reviews, and second
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COCO-People Inventory Reviews
MAE (↓) NLL (↓) MAE (↓) NLL (↓) MAE (↓) NLL (↓)

Si
ng
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rw
ar

d
Pa

ss Gaussian DNN 2.010 (0.03) 2.308 (0.02) 0.904 (0.01) 1.559 (0.01) 0.326 (0.01) 0.834 (0.09)
Poisson DNN 2.013 (0.14) 2.393 (0.08) 0.960 (0.02) 1.763 (0.00) 0.609 (0.04) 1.705 (0.00)

NB DNN 2.082 (0.30) 2.284 (0.04) 0.965 (0.01) 1.801 (0.03) 0.746 (0.09) 1.711 (0.00)
Stirn et al. (2023) 2.045 (0.20) 2.490 (0.08) 0.927 (0.03) 1.651 (0.02) 0.301 (0.00) 0.878 (0.02)

Seitzer et al. (2022) 2.279 (0.14) 2.450 (0.05) 0.907 (0.02) 1.610 (0.03) 0.307 (0.00) 0.940 (0.24)
Immer et al. (2024) 2.129 (0.26) 2.359 (0.09) 0.925 (0.02) 1.587 (0.02) 0.310 (0.00) 0.728 (0.01)

DDPN (ours) 2.148 (0.23) 2.251 (0.06) 0.900 (0.01) 1.555 (0.01) 0.311 (0.00) 0.800 (0.01)
β0.5-DDPN (ours) 2.300 (0.69) 2.395 (0.14) 0.902 (0.00) 1.625 (0.05) 0.302 (0.00) 1.531 (0.53)
β1.0-DDPN (ours) 1.962 (0.35) 2.517 (0.15) 0.900 (0.01) 1.560 (0.02) 0.302 (0.00) 1.027 (0.15)

D
ee

p
E

ns
em

bl
es

Gaussian DNN 1.941 2.195 0.873 1.511 0.306 0.726
Poisson DNN 1.875 2.141 0.924 1.754 0.600 1.702

NB DNN 1.849 2.073 0.902 1.790 0.750 1.707
DDPN (ours) 1.904 1.962 0.861 1.500 0.295 0.729

β0.5-DDPN (ours) 1.824 1.916 0.839 1.469 0.274 0.825
β1.0-DDPN (ours) 1.701 1.891 0.851 1.486 0.281 0.753

Table 3: Results on complex datasets: COCO-People (image), Inventory (point cloud), and Amazon
Reviews (language). We denote the best performer in bold and the second-best performer with an
underline.

place in MAE and NLL on COCO-People. One potential explanation is that β = 0.5 encourages a
greater diversity of learned models, which lends itself favorably to capturing epistemic uncertainty.
In general, we see superior results when ensembling DDPN variants as compared to other models.

4.4 OUT-OF-DISTRIBUTION BEHAVIOR

In this section, we compare the out-of-distribution (OOD) behavior of DDPNs to existing methods.
To assess OOD behavior, for each model that has been trained on Reviews, we feed it verses from
the King James Version of the Holy Bible, and compute the entropy (Shannon, 1948) of each of the
resultant predictive distributions; we call these OOD entropy values. We do the same with the test
split of Reviews, and call them in-distribution (ID) entropy values. We then compare the empirical
distributions of these entropy values (Amini et al., 2020) by performing a one-sided permutation test
(Good, 2013) on the difference of means. This procedure outputs a test statistic, ∆ = x̄OOD − x̄ID,
and a p-value (for more details see Appendix B.5). Higher entropy indicates higher uncertainty in a
model’s predictive distributions. Thus, we expect that the models most able to distinguish between
ID / OOD will have the larger ∆ since their mean entropy should be higher for OOD inputs than ID
inputs.

The results of our experiment are displayed in Figure 4. With statistical significance, DDPN shows
the greatest ability of all benchmarked regression models to differentiate between ID and OOD inputs,
as demonstrated by the largest ∆̄ (the average ∆ across trials). Existing count regression techniques
(NB DNN, Poisson DNN) fail to exhibit any separation between predictive entropy on ID and OOD
data. We note that only half of Gaussian regression approaches benchmarked (Immer et al., 2024;
Seitzer et al., 2022) achieve a significant gap between ID and OOD entropies. For a similar analysis
showing the supremacy of DDPN ensemble methods in terms of OOD behavior, see Figure 8 in the
Appendix. We provide a case study of OOD detection in Appendix C.2. In particular, Figure 12
highlights the effective OOD behavior of DDPN.

In Section 3.2 we discussed the motivation for β-DDPN as a mechanism to prioritize mean accuracy
over probabilistic calibration. Empirically, this hypothesis is generally supported by our experiments.
The β modification that is used to enhance mean fit appears to hurt a model’s recognition of OOD.
From all experiments, our general conclusion is the virtue of β-DDPN is highly accurate mean
prediction, while the advantage of standard DDPN is reliable calibration and effective OOD detection.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

0

2

4

6

8

De
ns

ity

 = 0.004
p = 0.400

NB DNN

 = 0.018
p = 0.201

Poisson DNN

 = 0.025
p = 0.204

Stirn et al. ('23)

 = 0.238
p = 0.201

Gaussian DNN

 = 0.153
p = 0.001

Seitzer et al. ('22)

 = 0.204
p = 0.001

Immer et al. ('24)

 = 0.134
p = 0.001

0.5-DDPN (Ours)

 = 0.193
p = 0.001

1.0-DDPN (Ours)

 = 0.460
p = 0.001

DDPN (Ours)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Entropy ID: Amazon Reviews
OOD: KJV Bible

Figure 4: In-distribution (ID) vs. out-of-distribution (OOD) behavior for regression models trained
on Amazon Reviews. We train each method five times, and plot the KDE-smoothed empirical
distributions of entropy values obtained from the ID (Amazon Reviews) and OOD (KJV Bible)
datasets. Additionally, we provide a box plot with an IQR of aggregated entropy values. We
perform a two-sample permutation test with the difference-of-means statistic (∆) and display, on the
corresponding KDE plot, the average statistic (∆̄) across all models, along with the average p-value
(p̄). A larger ∆̄ is desirable, as it corresponds to a greater amount of entropy on OOD than ID inputs.
Our DDPN model shows the greatest ability to distinguish between ID and OOD inputs.
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Figure 5: Demonstration of the effect of β on the convergence of a DDPN during training, inspired
by Fig. 2 of Stirn et al. (2023). Data was drawn from Y |X ∼ DP(⌈X sin(X) + 15⌉, 6− 0.03X2),
where X ∼ Uniform[3, 8], and was then concatenated with isolated points (1, ⌈sin(1) + 15⌉) and
(10, ⌈10 sin(10) + 15⌉). Dotted lines indicate g.t. values of µ and ϕ respectively, while solid lines
show the model’s learned distribution. Shaded regions illustrate training data coverage. With pure
Double Poisson NLL, poor mean fit on the rightmost isolated point is “explained away” via high
uncertainty (low values of ϕ), leading to subpar convergence to the true data-generating distribution.
Increasing the value of β changes training priorities and allows the network to adequately model the
mean without exploding uncertainty estimates. Higher values of β lead to faster convergence to the
mean; when β = 0.5, the mean is fit by epoch 800, but when β = 1.0, the mean is fit by epoch 600.

5 CONCLUSION

Overall, we conclude that DDPNs are well-suited for complicated count regression tasks. Our
main findings are that DDPNs 1) vastly outperform existing deep learning methods with discrete
predictive distributions; 2) match or exceed the performance of state-of-the-art heteroscedastic
regression techniques; 3) address pathologies with Gaussian-based heteroscedastic regressors applied
to discrete counts; and 4) provide superior out-of-distribution detection, compared to existing methods.
Moreover, DDPNs are general and can be applied to a variety of tasks and data modalities.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

6 ETHICS STATEMENT

We have reviewed the ICLR Code of Ethics and affirm our commitment to upholding it. We are not
aware of any violations of this code associated with our research.

7 REPRODUCIBILITY STATEMENT

We have made a sizeable effort to ensure reproducibility of our experimental results. These include
providing extensive architectural and computational details, hyperparameter specifications, and
optimizer configurations, along with an exact statement of the objective functions used to train our
DDPN models. We also provide a link to an anonymized repository in Footnote 2 with the source
code we used to obtain our results.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in neural information processing systems, 33:14927–14937, 2020.

Jonathan T Barron. A general and adaptive robust loss function. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4331–4339, 2019.

Joaquin Quinonero Candela, Carl Edward Rasmussen, Fabian H Sinz, Olivier Bousquet, and Bernhard
Schölkopf. Evaluating predictive uncertainty challenge. In MLCW, pp. 1–27, 2005.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In Eric P.
Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learn-
ing, volume 32 of Proceedings of Machine Learning Research, pp. 1683–1691, Bejing, China, 22–
24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/cheni14.html.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in
Neural Information Processing Systems, 34:3451–3465, 2021.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural safety,
31(2):105–112, 2009.

Victor Dheur and Souhaib Ben Taieb. A large-scale study of probabilistic calibration in neural
network regression. In International Conference on Machine Learning, pp. 7813–7836. PMLR,
2023.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pp. 1–15. Springer, 2000.

Bradley Efron. Double exponential families and their use in generalized linear regression. Journal of
the American Statistical Association, 81(395):709–721, 1986.

Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian Marx, Ludwig Fahrmeir, Thomas Kneib, Stefan
Lang, and Brian Marx. Regression models, chapter 5. Springer, 2013.

Nader Fallah, Hong Gu, Kazem Mohammad, Seyyed Ali Seyyedsalehi, Keramat Nourijelyani, and
Mohammad Reza Eshraghian. Nonlinear poisson regression using neural networks: A simulation
study. Neural Computing and Applications, 18:939–943, 2009.

Kai Fan, Jiayi Wang, Bo Li, Shiliang Zhang, Boxing Chen, Niyu Ge, and Zhijie Yan. Neural
zero-inflated quality estimation model for automatic speech recognition system. arXiv preprint
arXiv:1910.01289, 2019.

Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113–127, 2014.

United Kingdom Department for Transport. Road safety data, 2022.

12

https://proceedings.mlr.press/v32/cheni14.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape perspec-
tive. arXiv preprint arXiv:1912.02757, 2019.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589, 2023.

Phillip Good. Permutation tests: a practical guide to resampling methods for testing hypotheses.
Springer Science & Business Media, 2013.

Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

Theodore Hill. Conflations of probability distributions. Transactions of the American Mathematical
Society, 363(6):3351–3372, 2011.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Meng-Ru Hsieh, Yen-Liang Lin, and Winston H Hsu. Drone-based object counting by spatially
regularized regional proposal network. In Proceedings of the IEEE international conference on
computer vision, pp. 4145–4153, 2017.

Alexander Immer, Emanuele Palumbo, Alexander Marx, and Julia Vogt. Effective bayesian het-
eroscedastic regression with deep neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

Porter Jenkins, Hua Wei, J Stockton Jenkins, and Zhenhui Li. Bayesian model-based offline rein-
forcement learning for product allocation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 12531–12537, 2022.

Porter Jenkins, Kyle Armstrong, Stephen Nelson, Siddhesh Gotad, J Stockton Jenkins, Wade Wilkey,
and Tanner Watts. Countnet3d: A 3d computer vision approach to infer counts of occluded objects.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3008–3017, 2023.

Katie Kang, Amrith Setlur, Claire Tomlin, and Sergey Levine. Deep neural networks tend to
extrapolate predictably. arXiv preprint arXiv:2310.00873, 2023.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. CoRR, abs/1807.00263, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Shuang Li, Faliang Chang, Chunsheng Liu, and Nanjun Li. Vehicle counting and traffic flow parameter
estimation for dense traffic scenes. IET Intelligent Transport Systems, 14(12):1517–1523, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Dongze Lian, Jing Li, Jia Zheng, Weixin Luo, and Shenghua Gao. Density map regression guided
detection network for rgb-d crowd counting and localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1821–1830, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Wei Lin and Antoni B Chan. Optimal transport minimization: Crowd localization on density maps
for semi-supervised counting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21663–21673, 2023.

Chenghuan Liu, Du Q. Huynh, Yuchao Sun, Mark Reynolds, and Steve Atkinson. A vision-based
pipeline for vehicle counting, speed estimation, and classification. IEEE Transactions on Intelligent
Transportation Systems, 22(12):7547–7560, 2021. doi: 10.1109/TITS.2020.3004066.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ao Luo, Fan Yang, Xin Li, Dong Nie, Zhicheng Jiao, Shangchen Zhou, and Hong Cheng. Hybrid
graph neural networks for crowd counting. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 11693–11700, 2020.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. Ieee transactions on intelligent transportation systems,
16(2):865–873, 2014.

J Steve Marron and Matt P Wand. Exact mean integrated squared error. The Annals of Statistics, 20
(2):712–736, 1992.

Mark Marsden, Kevin McGuinness, Suzanne Little, Ciara E Keogh, and Noel E O’Connor. People,
penguins and petri dishes: Adapting object counting models to new visual domains and object
types without forgetting. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8070–8079, 2018.

Peter McCullagh. Generalized linear models. Routledge, 2019.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural
information processing systems, 20, 2007.

Kevin P Murphy. Probabilistic machine learning: Advanced topics, chapter 15. MIT press, 2023.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 ieee international conference on neural networks (ICNN’94),
volume 1, pp. 55–60. IEEE, 1994.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jun Qi, Jun Du, Sabato Marco Siniscalchi, Xiaoli Ma, and Chin-Hui Lee. On mean absolute error
for deep neural network based vector-to-vector regression. IEEE Signal Processing Letters, 27:
1485–1489, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls of het-
eroscedastic uncertainty estimation with probabilistic neural networks. In International Conference
on Learning Representations, April 2022. URL https://openreview.net/forum?id=
aPOpXlnV1T.

Burr Settles. Active learning literature survey. 2009.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Andrew Stirn, Harm Wessels, Megan Schertzer, Laura Pereira, Neville Sanjana, and David Knowles.
Faithful heteroscedastic regression with neural networks. In International Conference on Artificial
Intelligence and Statistics, pp. 5593–5613. PMLR, 2023.

Douglas Toledo, Cristiane Akemi Umetsu, Antonio Fernando Monteiro Camargo, and Idemauro
Antonio Rodrigues de Lara. Flexible models for non-equidispersed count data: comparative
performance of parametric models to deal with underdispersion. AStA Advances in Statistical
Analysis, 106(3):473–497, 2022.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision, 2020.

Shao-Ming Xie. A neural network extension for solving the pareto/negative binomial distribution
model. International Journal of Market Research, 64(3):420–439, 2022.

Jiaxuan You, Xiaocheng Li, Melvin Low, David Lobell, and Stefano Ermon. Deep gaussian process
for crop yield prediction based on remote sensing data. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Spencer Young and Porter Jenkins. On measuring calibration of discrete probabilistic neural networks,
2024.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Qi Zhang and Antoni B Chan. 3d crowd counting via multi-view fusion with 3d gaussian kernels. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 12837–12844, 2020.

Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd counting
via multi-column convolutional neural network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 589–597, 2016.

Fukang Zhu. Modeling time series of counts with com-poisson ingarch models. Mathematical and
Computer Modelling, 56(9-10):191–203, 2012.

Maxim Ziatdinov. Active learning with fully bayesian neural networks for discontinuous and
nonstationary data. arXiv preprint arXiv:2405.09817, 2024.

Yaotian Zou, Srinivas Reddy Geedipally, and Dominique Lord. Evaluating the double poisson
generalized linear model. Accident Analysis & Prevention, 59:497–505, 2013.

Zhikang Zou, Huiliang Shao, Xiaoye Qu, Wei Wei, and Pan Zhou. Enhanced 3d convolutional
networks for crowd counting. arXiv preprint arXiv:1908.04121, 2019.

15

https://openreview.net/forum?id=aPOpXlnV1T
https://openreview.net/forum?id=aPOpXlnV1T


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

0
0

10

20

30

40 MAE: 1.720
NLL: 1.841

NB DNN

0

MAE: 1.780
NLL: 1.790

DDPN (Ours)

0

MAE: 1.780
NLL: 1.802

0.5-DDPN (Ours)

0

MAE: 1.690
NLL: 1.826

1.0-DDPN (Ours)

Figure 6: Results of training a DDPN when the data-generating process is Negative Binomial. The
dark line depicts the mean of the model’s predictive distribution, while shaded regions indicate
the model’s learned aleatoric uncertainty, similar to Figure 2. DDPN (along with its β variants) is
able to recover the ground-truth distribution better than a NB DNN, even though it is technically
“misspecified”.

A DEEP DOUBLE POISSON NETWORKS (DDPNS)

A.1 LIMITATIONS

DDPNs are general, easy to implement, and can be applied to a variety of datasets. However, some
limitations do exist. One limitation that might arise is on count regression problems of very high
frequency (i.e., on the order of thousands or millions). In this paper, we don’t study the behavior
of DDPN relative to existing benchmarks on high counts. In this scenario, it is possible that the
choice of a Gaussian as the predictive distribution may offer a good approximation, even though the
regression targets are discrete.

We also note that the general approximations E[Z] ≈ µ and Var[Z] ≈ µ
ϕ for some Z ∼ DP(µ, ϕ) we

employ in this work have not been extensively studied. It is possible that there are edge cases where
these estimates diverge from the true moments of the distribution.

One difficulty that can sometimes arise when training a DDPN is poor convergence of the model
weights. In preliminary experiments for this research, we had trouble obtaining consistently high-
performing solutions with the SGD (Kiefer & Wolfowitz, 1952) and Adam (Kingma & Ba, 2014)
optimizers, thus AdamW (Loshchilov & Hutter, 2017) was used instead. Future researchers using the
DDPN technique should be wary of this behavior.

In this paper, we performed a single out-of-distribution (OOD) experiment on Amazon Reviews.
This experiment provided encouraging evidence of the efficacy of DDPN for OOD detection. However,
the conclusions drawn from this experiment may be somewhat limited in scope since the experiment
was performed on a single dataset and task. Future work should seek to build off of these results to
more fully explore the OOD properties of DDPN on other count regression tasks.

A.2 MISSPECIFICATION RECOVERY

Here we study how well DDPN can recover the true data generating function, even when the
data are drawn from a non-double poisson distribution. We simulate a dataset as follows: Let
X ∼ Uniform[−3, 3] and Y |X ∼ NegBinom(X2, 0.5). We train a NegBinom DNN (Xie, 2022), a
DDPN, a β0.5-DDPN, and a β1.0-DDPN each with the same MLP backbone (see Section B.1 of the
Appendix for specific architecture details). A depiction of the learned distributions can be seen in
Figure 6, with the MAE and NLL indicated in each panel. These results suggest that even when the
data-generating process is not strictly Double Poisson, the flexibility of DDPN allows it to recover
the ground-truth distribution anyway.
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Figure 7: Results of a grid search for DDPN models with differing values of β trained on COCO
People. The best-performing value of each metric is starred.

A.3 DERIVING THE DDPN OBJECTIVE

This loss function is obtained by first noting that

max
Θ

[
1

N

N∑
i=1

p(yi|fΘ(xi))

]
= max

Θ,µ,ϕ

[
1

N

N∑
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p(yi|µi, ϕi)

]
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[
− 1

N

N∑
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log(p(yi|µi, ϕi))

]
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N
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(
ϕ
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−ϕiµi

(
e−yiyyi
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yi!

)(
eµi
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)ϕiyi
)]

= min
Θ,µ,ϕ

[
− 1

N

N∑
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log

(
ϕ
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i e

−ϕiµi

(
eµi

yi

)ϕiyi
)]

= min
Θ,µ,ϕ

[
− 1

N

N∑
i=1

(
1

2
log ϕi − ϕiµi + ϕiyi(1 + log µi − log yi)

)]

Thus,

LDDPN (yi, µi, ϕi) =
1

N

N∑
i=1

(
−1

2
log ϕi + ϕiµi − ϕiyi(1 + log µi − log yi)

)
(6)

A.4 β GRID SEARCH ON COCO-PEOPLE

In addition to the intuition-building experiment we provide for the β-DDPN (see Figure 5), we also
run a grid search on COCO-People, varying the value of β along a mesh of values between 0 and 1.
Results of this grid search can be viewed in Figure 7.

A.5 DDPN ENSEMBLES

In Section 3.3 we describe how the ensembled predictive distribution is a uniform mixture of the M
members of the ensemble:

p(yi|xi) =
1

M

M∑
m=1

p(yi|fΘm(xi)) (7)
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Letting µm = E[yi|fΘm(xi)] and σ2
m = Var[yi|fΘm(xi)], we can get the mean and variance of the

predictive distribution as follows:

E[yi|xi] =
1

M

M∑
m=1

µm, Var[yi|xi] =

M∑
m=1

σ2
m + µ2

m

M
−

(
M∑

m=1

µm

M

)2

(8)

We note that this same technique can be applied to form an ensemble from any collection of neural
networks outputting a discrete distribution, regardless of the specific parametric form (Marron &
Wand, 1992).

B DETAILED DESCRIPTION OF EXPERIMENTS

In all experiments, instead of using the final set of weights achieved during training with a particular
technique, we selected the weights associated with the best mean absolute error (MAE) on a held-out
validation set. This can be viewed as a form of early stopping, since models were observed to
eventually overfit to the training data on almost every dataset we tested.

We note that when a point prediction was required, such as for computing the MAE of a model, we
took the mode of the posterior predictive distribution instead of the mean. When the mode was not an
integer (e.g. in the Gaussian case), we rounded to the nearest integer.

The ReLU (Fukushima, 1969) activation was exclusively used for all MLPs. No dropout or batch
normalization was applied.

B.1 SIMULATION EXPERIMENT

This dataset is generated with the following procedure: First, we sample x from a uniform distribution,
x ∼ Uniform(0, 2π). Next, we draw an initial proposal for y from a conflation (Hill, 2011) of
five identical Poissons, each with rate parameterized by λ(x) = 10 sin(x) + 10. We scale y by −1
and shift it by +30 to force high dispersion at low counts and under-dispersion at high counts while
maintaining nonnegativity.

Each MLP (with layers of width [128, 128, 128, 64]) was trained for 200 epochs on the
CPU of a 2021 MacBook Pro with a batch size of 32 using the AdamW optimizer (Loshchilov &
Hutter, 2017). The initial learning rate was set to 10−3 and annealed to 0 with a cosine schedule
(Loshchilov & Hutter, 2016), and weight decay was set to 10−5.

B.2 TABULAR DATASETS

B.2.1 BIKES

In this experiment, each regression head was placed on top of an MLP with layers of width [128,
128, 128, 64]. Models were trained for 100 epochs on the CPU of a 2021 MacBook Pro with
the AdamW optimizer, using a batch size of 128. The initial learning rate was 10−3, decayed to
0 following a cosine schedule. Weight decay was set to 10−5. For continuous features such as
temperature, model inputs were standardized to have a mean of 0 and a standard deviation of 1.
The season, mnth, and hr columns were transformed using a trigonometric encoding procedure.

Due to the higher counts in this dataset, and to facilitate a fairer comparison, for the Gaussian DNN,
Stirn, and Seitzer techniques, we reconfigured the model to output [log µ̂i, log σ̂

2
i ]

T instead of
[µ̂i, log σ̂

2
i ]

T . We observed a great performance boost with this adjustment.

We used the Bikes dataset under the Creative Commons Attribution 4.0 International (CCBY
4.0) license. The source URL is https://archive.ics.uci.edu/dataset/275/bike+
sharing+dataset.

18

https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

B.2.2 COLLISIONS

We formed the Collisions dataset by joining the “Casualties”, “Collisions”, and “Vehicles” tables
on the accident_reference column. Feature engineering included merging all associated data
from a specific collision into a single row (by creating columns for each feature of each vehicle
involved in the collision, for example) and one-hot encoding all categorical variables. The MLP
used for feature extraction had layer widths of [1630, 512, 256, 256, 128, 128, 128,
64]. Models were trained on a 2021 MacBook Pro CPU for 100 epochs with a batch size of 32. The
AdamW optimizer was used, with an initial learning rate of 10−5 and a cosine decay to 0.

The Collisions dataset is published by the United Kingdom’s Department for Transport, and
we used it under the Open Government Licence. The URL where this data is hosted is https:
//www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/
road-safety-data.

B.3 VISION DATASETS

B.3.1 COCO-PEOPLE

All networks were trained for 30 epochs (updating all weights, including the ViT backbone) using
the AdamW optimizer with an initial learning rate of 10−3 and weight decay of 10−5. The learning
rate was decayed to 0 with a cosine schedule. The regression head on top of the ViT backbone was a
two-layer MLP with layer widths [384, 256]. Models were trained in a distributed fashion across
4 Nvidia L4 Tensor Core GPUs on a Google Cloud Platform (GCP) VM instance, with an effective
batch size of 256. Images were normalized with the ImageNet (Deng et al., 2009) pixel means and
standard deviations and augmented during training with the AutoAugment transformation (Cubuk
et al., 2018). Training was done with BFloat 16 Mixed Precision.

The COCO dataset from which we formed the COCO-People subset is distributed via the CCBY
4.0 license. It can be accessed at https://cocodataset.org/#home.

B.3.2 INVENTORY

Networks were trained with the AdamW optimizer for 50 epochs with an initial learning rate of 10−3

and weight decay of 10−5. Cosine annealing was used to decay the learning rate to 0. An effective
batch size of 16 was used, split across an internal cluster of 4 NVIDIA GeForce RTX 2080 Ti GPUs.

The Inventory dataset was made available to us via an industry collaboration and is not publicly
accessible.

B.4 TEXT DATASET

B.4.1 AMAZON REVIEWS

All networks were trained for 10 epochs across 8 Nvidia L4 Tensor Core GPUs (on a GCP VM
instance) with an effective batch size of 2048. The AdamW optimizer was used for training, with
an initial learning rate of 10−4 (annealed to 0 with a cosine schedule) and weight decay of 10−5.
Training was done with BFloat 16 Mixed Precision. Both the feature extractor, DistilBERT (Sanh
et al., 2019), and the MLP regression head (with layer widths [384, 256]) were updated during
training.

Amazon Reviews is publicly available (with a citation, which we provide in the
body of the paper) at https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_
v2/. The “Patio, Lawn, and Garden” subset we employ in this work is ac-
cessible at https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_v2/
categoryFilesSmall/Patio_Lawn_and_Garden.csv.

B.5 OUT-OF-DISTRIBUTION BEHAVIOR

We run a one-sided, two-sample permutation test (Good, 2013) using the difference of means
as our test statistic. Given samples SID and SOOD with respective means x̄ID and x̄OOD, we
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Figure 8: In-distribution (ID) vs. out-of-distribution (OOD) behavior for ensembles of regression
models trained on Amazon Reviews. We plot the KDE-smoothed distributions of entropy values
obtained from the ID (Amazon Reviews) and OOD (KJV Bible) datasets (see Section 4.4 for
more details). We also perform a two-sample permutation test with the difference-of-means statistic
(∆) and display the statistic, along with the p-value from the test, on the corresponding plot for each
ensemble model. Just like in the individual case, ensembles of DDPN models exhibit the largest gap
in entropy between ID and OOD data.

Inventory Reviews
MAE (↓) NLL (↓) MAE (↓) NLL (↓)

1.013 (0.02) 1.591 (0.03) 0.293 (0.00) 0.680 (0.08)

Table 4: Multi-Class NN results on Inventory and Amazon Reviews. Compare with Table 3
in the main body of the paper.

define ∆ = x̄OOD − x̄ID. We then take n = 1500 permutations of SID and SOOD and compute
∆(i) = x̄

(i)
OOD − x̄

(i)
ID for each permutation i ∈ {1, 2, ..., n}. We take p = |{i | ∆(i)>∆}|

n to be the
proportion of permutations yielding a greater difference of means than ∆. In a formal sense, if we
define the null hypothesis H0 : ∆ ≤ 0 and the alternative hypothesis H1 : ∆ > 0, we may treat p as
an estimate of P (SID, SOOD|H0). Higher entropy indicates higher uncertainty / expected chaos in a
model’s predictive distributions. Thus, we expect that the models most able to distinguish between
ID / OOD will have the highest ∆ (since their mean entropy should be higher on OOD than on ID).

B.5.1 MODELING DISCRETE COUNTS WITH A MULTI-CLASS NETWORK

In certain special cases of count regression where the targets are assumed to live on a bounded
subset of Z≥0, it is possible to model the data via a multi-class neural network (trained with cross
entropy) as opposed to an unbounded discrete probability distribution. Two of the complex datasets
we benchmark in this paper can be seen as falling into this category: Inventory (since we expect
a finite number of products to be on a given shelf) and Reviews (since ratings live on a fixed scale
from 1 to 5). We provide metrics for a multi-class NN on these datasets in Table 4. The results
are somewhat nuanced. on Inventory, it appears that treating a finite, discrete response as a
count regression problem has clear advantages, as all models benchmarked in the main body of the
paper (see Table 3) achieve superior mean fit when compared to the multi-class NN, with many also
exhibiting better calibration. Meanwhile, on Reviews, we find the multi-class NN performs well,
though this is also somewhat of a mixed bag: since the cross-entropy approach does not account for
ordering, it yields occasional multi-modal pathologies wherein the model places high joint probability
on extreme values (i.e., 1 and 5). See Figure 9 for examples.

In general, we favor treating discrete count responses via the natural probabilistic interpretation with
an integer-valued random variable. Even in the case where the response is assumed to be finite, we
find that a well-fit model learns to decay probabilities for values past the lower and upper bounds (see
the case studies in C.2 for a practical example). Additionally, a multi-class model requires the set of
labels at train and test time to remain constant. However, in many counting tasks it is plausible that
the training data does not cover all possible values.
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Figure 9: Examples from Reviews where a multi-class neural network outputs bimodal distributions.
True value of the review is indicated with a star. The lack of a unimodal guarantee is one reason to
favor a probabilistic neural regressor over a cross-entropy-based approach.

C ADDITIONAL CASE STUDIES

C.1 CASE STUDIES ON COCO-PEOPLE

In this section we perform multiple case studies of the behavior of different heteroscedastic regressors
on COCO-People. In Figure 10 we display three examples from the COCO-People test set and
plot the corresponding predictive distributions produced by β1.0-DDPN. We see varying ranges of
predictive uncertainty, while in each case the ground truth count is contained within the predictive
HDI.

We next perform a side-by-side comparison of a variety of methods in Figure 11. We display a
number of both single forward pass and ensemble methods, plotting their predictive distributions on
example images from the test set.
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Figure 10: Example β1.0-DDPN predictive distributions on COCO-People. The network is able to
flexibly represent counts of different magnitudes with varying degrees of uncertainty, as desired.

C.2 CASE STUDIES ON AMAZON REVIEWS

In this section we perform a case study of each heteroscedastic method trained on Amazon
Reviews. We randomly sample four examples from the test split of Amazon Reviews. We
also sample four random verses from the English KJV Bible. Then, for each method, we plot the
predictive distribution of the respective regressor. See Figures 12,13,14,15,16, 17,18, 19, and 20.

A major insight we have from this case study is that, in addition to its strong quantitative performance
exhibited in Section 4.4, DDPN appears to provide the best qualitative OOD behavior. In Figure 12
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Figure 11: More example predictive distributions on COCO-People. The second column shows
distributions output by individual models, while the third column shows outputs from various
ensembling techniques. For the sake of visual clarity, for the Double Poisson and Gaussian models,
only the best-performing method is shown.

we observe that DDPN exhibits ideal behavior in-distribution with different predictive distributions
for reviews with varying valence. However, when fed verses from the KJV Bible, the resulting
predictive distributions are essentially the same: diffuse and uninformative across the domain of
reviews. In fact, this is evidence that DDPNs revert to the Optimal Constant Solution (OCS) identified
by Kang et al. (2023) better than existing methods.
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Figure 12: Predictive distributions produced by DDPN on four randomly sampled examples from
Amazon Reviews and the KJV Bible. DDPN exhibits ideal behavior in-distribution with different
predictive distributions for reviews with varying valence. For the KJV Bible, the resulting predictive
distributions are essentially the same across examples: diffuse and uninformative. This suggests that
DDPNs revert to the Optimal Constant Solution (OCS) identified by Kang et al. (2023) better than
existing methods.
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Figure 13: Predictive distributions produced by β0.5-DDPN on four randomly sampled examples
from Amazon Reviews and the KJV Bible.
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Figure 14: Predictive distributions produced by β1.0-DDPN on four randomly sampled examples
from Amazon Reviews and the KJV Bible.
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Figure 15: Predictive distributions produced by Stirn et al. (2023) on four randomly sampled examples
from Amazon Reviews and the KJV Bible.
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Figure 16: Predictive distributions produced by Immer et al. (2024) on four randomly sampled
examples from Amazon Reviews and the KJV Bible.
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Figure 17: Predictive distributions produced by Seitzer et al. (2022) on four randomly sampled
examples from Amazon Reviews and the KJV Bible.
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Figure 18: Predictive distributions produced by Gaussian DNN on four randomly sampled exam-
ples from Amazon Reviews and the KJV Bible.
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Figure 19: Predictive distributions produced by NB DNN on four randomly sampled examples from
Amazon Reviews and the KJV Bible.
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Figure 20: Predictive distributions produced by Poisson DNN on four randomly sampled examples
from Amazon Reviews and the KJV Bible.
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D EXAMPLE POINT CLOUD FROM INVENTORY

In Figure 21, we provide an example point cloud from the Inventory dataset used in the experi-
ments of Section 4.3. Further examples can be viewed in Jenkins et al. (2023).

Figure 21: Example point cloud from Inventory. Each green box represents an inventory slot
which is segmented into a point beam (see Jenkins et al. (2023) for details and further examples).
Models predict the product count within each point beam.
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COCO-People Inventory Amazon Bikes Collision

Si
ng

le
Fo

rw
ar

d
Pa

ss Gaussian DNN 0.371 (0.04) 0.704 (0.05) 7.753 (1.50) 0.55 (0.09) 5.424 (1.69)
Poisson DNN 0.388 (0.04) 0.252 (0.00) 0.205 (0.00) 6.98 (0.08) 0.871 (0.00)

NB DNN 0.283 (0.15) 0.235 (0.03) 0.205 (0.00) 1.23 (0.28) 0.802 (0.04)
Stirn et al. 0.312 (0.08) 1.073 (0.13) 8.789 (0.61) 2.13 (0.04) 1.789 (0.06)

Seitzer et al. 0.432 (0.16) 0.786 (0.04) 8.308 (0.97) 0.96 (0.13) 6.440 (0.36)
Immer et al. 0.292 (0.13) 0.700 (0.02) 6.671 (1.1) 0.56 (0.03) 6.759 (0.45)

DDPN (ours) 0.366 (0.24) 0.697 (0.04) 5.553 (0.30) 1.39 (0.07) 7.746 (2.30)
β-DDPN (ours) 0.785 (0.37) 0.745 (0.03) 8.515 (1.48) 1.14 (0.14) 8.343 (0.90)

D
ee

p
E

ns
em

bl
es

Gaussian DNN 0.274 0.643 6.515 0.44 4.323
Poisson DNN 0.278 0.244 0.205 3.97 0.863

NB DNN 0.124 0.225 0.205 0.93 0.799
DDPN (ours) 0.194 0.641 6.632 1.15 8.567
β-DDPN (ours) 0.296 0.664 11.30 0.92 18.228

Table 5: Median Precision (MP) across main experiments. We denote the highest value in bold
and the second-highest with an underline. Note that for the Bikes dataset, all MP values have been
multiplied by 103 to lie in a similar scale as other datasets.

E ADDITIONAL RESULTS FOR REVIEWER DISCUSSION PERIOD

E.1 ADDITIONAL METRICS FOR MAIN EXPERIMENTS

In this section we provide additional metrics for our main experiments presented in Table 2 and
Table 3. We report Median Precision (MP), which is calculated as the median of the precision
values, λi =

1

σ̂2
i
, across the evaluation set. This metric measures the sharpness of the predictive

distribution; higher values correspond to more concentrated probability mass. Median precision
values are reported in Table 5.

E.2 ADDITIONAL EXPERIMENTS WITH DEEP ENSEMBLES

We study the performance of ensembling both modern Gaussian regressors (Seitzer, Stirn and Immer)
and GLMs. We perform this experiment with all five data sets studied in the main body of the paper.
Results for complex data (image, point cloud, and text) are presented in Table 6, and results for
tabular data are shown in Table 7.

Inventory COCO-People Reviews
MAE NLL MP MAE NLL MP MAE NLL MP

Seitzer 0.847 1.492 0.802 2.185 2.337 0.135 0.283 0.717 8.609
Stirn 0.878 1.552 0.907 2.384 2.519 0.117 0.282 0.740 8.482

Immer 0.881 1.529 0.622 1.917 2.183 0.263 0.277 0.678 10.203

Table 6: Additional deep ensembles trained on complex data. GLMs are omitted because they cannot
be easily trained on image, point cloud or text data.

Bikes Collisions
MAE NLL MP MAE NLL MP

Seitzer 36.755 4.953 0.000 0.274 0.722 10.774
Stirn 26.485 4.782 0.001 0.271 1.014 1.662

Immer 30.686 4.939 0.000 0.272 0.891 2.811
Poisson GLM 109.430 9.724 0.007 0.289 1.186 0.801
NBinom GLM 190.026 10.772 0.613 0.290 1.188 0.804

DP GLM 189.663 7.247 0.000 0.270 0.671 7.142

Table 7: Additional deep ensembles trained on tabular data
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Bikes Collision
β∗ MAE (↓) NLL (↓) β∗ MAE (↓) NLL (↓)

Seitzer et al. (2022) 0.53 38.64 (0.80) 5.01 (0.05) 0.7 0.274 (0.00) 0.766 (0.09)
β-DDPN 0.7 28.07 (0.53) 4.67 (0.02) 0.9 0.269 (0.00) 0.717 (0.02)

Table 8: β tuning results on tabular datasets. We report the optimal value β∗, the Mean Absolute
Error (MAE), and Negative Log Likelihood (NLL) for each method, with standard errors on test
metrics derived from 5 separate training/evaluation runs.

Figure 22: Initialization Experiment 1: What if we initialize ϕ for a standard DDPN model to some
high value (via the initial bias in the output head)?

E.3 HOW DOES THE INITIALIZATION OF ϕ MEDIATE THE EFFECT OF β

E.3.1 EXPERIMENT 1

What if, for a standard DDPN, we initialize ϕ to some high value (via the initial bias in the output
head)? Perhaps this helps us avoid the trap of “explaining poor mean fit with high uncertainty” since
we’re forcing the model to start with low uncertainty values.

Results for this experiment are reported in Figure 22. We see that initializing ϕ to a high value at the
start of training actually hurts overall convergence to the true function. The best performance comes,
in fact, when log(ϕ) is initialized close to zero. Note that despite the high initialization, the point to
the far right of the data is still “explained” via low ϕ (high uncertainty).

E.3.2 EXPERIMENT 2

What is the effect of ϕ initialization when training with β? Does it affect the ability of β to steer the
model toward the true mean?

Results for this experiment are reported in Figure 23. In this experiment, we set β = 1. We then
initialize the bias on the log(ϕ) prediction layer to 1, 3, and 5, comparing convergence to whenlog(ϕ)
is chosen via the typical standard normal initialization. In contrast to experiment 1, even when we
throw the model off with a bad initialization, training with beta helps the model recover and eventually
fit the true mean in all but the most extreme cases (log(ϕ) = 5).

3Since β∗ matches the β used in the main experiments, the results have already been obtained and are simply
repeated here.
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Figure 23: Initialization Experiment 2: What is the effect of ϕ initialization when training with β?

E.4 SELECTING THE VALUE OF β

To facilitate a deeper comparison between methods which can be parametrized via a β value, we per-
form the following experiment for both the Bikes and Collision datasets: For β ∈ {0.1, 0.2, . . . , 1.0},
we train a Gaussian NN (Seitzer) and a β-DDPN model. We evaluate each model’s performance
on the validation split and identify the β value that achieves the lowest validation MAE. Using this
optimal β∗, we then train five models, evaluate their performance on the test split, and report the
mean and standard deviation of both MAE and NLL. Results are reported in Table 8.
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