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ABSTRACT

Autonomous agents operating in sequential decision-making tasks under uncer-
tainty can benefit from external action suggestions, which provide valuable guid-
ance but inherently vary in reliability. Existing methods for incorporating such
advice typically assume static and known suggester quality parameters, limiting
practical deployment. We introduce a framework that dynamically learns and adapts
to varying suggester reliability in partially observable environments. First, we in-
tegrate suggester quality directly into the agent’s belief representation, enabling
agents to infer and adjust their reliance on suggestions through Bayesian inference
over suggester types. Second, we introduce an explicit “ask” action allowing agents
to strategically request suggestions at critical moments, balancing informational
gains against acquisition costs. Experimental evaluation demonstrates robust per-
formance across varying suggester qualities, adaptation to changing reliability, and
strategic management of suggestion requests. This work provides a foundation
for adaptive human-agent collaboration by addressing suggestion uncertainty in
uncertain environments.

1 INTRODUCTION

Autonomous agents operating in uncertain environments can greatly benefit from external guidance
provided by humans or automated systems. For example, search and rescue robots might rely
on human operators who suggest promising search locations, while autonomous vehicles can use
passenger alerts about hazards not detected by onboard sensors. However, real-world suggestions vary
in reliability due to factors such as human fatigue, sensor degradation, or changing environmental
conditions. Thus, agents must dynamically learn how much trust to place in external suggestions and
strategically decide when to seek guidance.

Shared autonomy research has extensively explored human-agent collaboration, often focusing on
intent inference and control blending between agents and humans (Dragan & Srinivasa, 2013; Javdani
et al., 2018). Typically, these systems assume static or known reliability models, limiting their
adaptability to changing conditions (Losey & O’Malley, 2019). Recently, action suggestions have
been treated as environmental observations within partially observable Markov decision processes
(POMDPs), enabling principled incorporation of suggestions into agents’ belief updates (Asmar &
Kochenderfer, 2022). These approaches assume fixed parameters describing suggestion reliability, a
significant practical limitation as suggestion quality often varies unpredictably and dynamically.

Other research addresses uncertainty through agent-initiated information gathering. For instance,
agents actively query humans to clarify internal state or intent uncertainties (Sadigh et al., 2016; Cui
et al., 2023). Ren et al. (2023) recently demonstrated that robots strategically requesting assistance
based on uncertainty alignment significantly enhance decision quality and reduce human workload.
Earlier work on human–robot communication has also examined when to query humans for input
using value-of-information criteria (Kaupp et al., 2010), motivating the need for principled query
strategies in collaborative settings. However, existing methods have not yet explicitly integrated
dynamic inference of suggestion reliability with proactive suggestion requests.

Recent work has also emphasized two complementary directions. First, trust-aware planning explicitly
models and adapts to human trust as a latent variable, showing how calibrated trust can improve team
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performance (Chen et al., 2020). Second, language-grounded multi-agent reinforcement learning
aligns emergent communication protocols with natural language to enable more interpretable and
generalizable interaction (Li et al., 2025). Both directions highlight the importance of trust calibration
and interpretable communication in human–agent collaboration. Our focus is orthogonal: rather than
modeling trust directly or grounding communication, we treat suggester reliability as a hidden state
within the POMDP and provide an explicit ask mechanism for strategic information gathering.

Additionally, prior frameworks generally assume rational or nearly optimal suggesters, a simplification
that may not accurately represent practical human-agent interactions. Real-world scenarios frequently
involve heuristic, inconsistent, or partially informed suggesters whose guidance does not strictly
adhere to rational decision-making models. Thus, there is a clear need for frameworks capable of
robustly leveraging diverse suggestion sources, including heuristic or suboptimal guidance.

Our approach also relates to decision-support and explainability in human–robot teaming. Recent
work emphasizes justification mechanisms to make autonomous decision support more transparent
(Luebbers et al., 2023) and characterizes workload–understanding tradeoffs in explainable AI using an
information bottleneck perspective (Sanneman et al., 2024). While complementary, these directions
do not embed reliability inference and query management within a sequential decision-making
framework.

To address these challenges, we propose a unified POMDP-based framework capable of dynamically
inferring suggester reliability and strategically managing information acquisition. Our contributions
include: integrating suggester reliability into the agent’s belief state, enabling continuous inference
and adaptive trust calibration; and introducing an explicit ask action, allowing agents to proactively
solicit guidance at critical decision points. Experimental evaluations across multiple scenarios
demonstrate robust performance, adaptability to dynamically changing suggester reliability, and
effective strategic querying behavior. By overcoming previous methodological limitations, our
framework advances toward more realistic and practical collaborative scenarios, enhancing the
applicability and robustness of autonomous decision-making systems in uncertain environments.

2 BACKGROUND

Before presenting our contributions, we briefly review the relevant background on Partially Observ-
able Markov Decision Processes (POMDPs) and Mixed Observable Markov Decision Processes
(MOMDPs). These frameworks provide the foundation for our approach to dynamically incorporating
suggestion reliability into agent decision-making.

2.1 POMDP FORMULATION AND NOTATION

A Partially Observable Markov Decision Process (POMDP) provides a mathematical framework for
sequential decision-making under uncertainty where the true system state is not fully observable
(Kochenderfer et al., 2022). A POMDP is defined by the tuple (S,A,O, T,O,R, γ), where S is
the state space, A is the action space, and O is the observation space. The transition function
T (s, a, s′) defines state transition probabilities, while the observation function O(o, a, s′) specifies
the probability of receiving observation o after transitioning to state s′ with action a. The reward
function R(s, a) provides immediate rewards, and γ ∈ [0, 1) is the discount factor.

Agents maintain a belief b ∈ B, representing a probability distribution over possible states. Beliefs
are updated using Bayes’ rule b′(s′) = ηO(o, a, s′)

∑
s∈S T (s, a, s′)b(s), where η is a normalization

constant. A policy π : B → A maps beliefs to actions to maximize the expected cumulative
discounted reward.

2.2 MIXED OBSERVABLE MARKOV DECISION PROCESSES

A Mixed Observable Markov Decision Process (MOMDP) generalizes the POMDP framework
by decomposing the state space into fully observable (X ) and partially observable (Y) com-
ponents (Ong et al., 2009; Araya-López et al., 2010). A MOMDP is defined by the tuple
(X ,Y,A,O, Tx, Ty, O,R, γ), where transitions of observable states are governed by Tx(x, y, a, x

′)
and hidden states by Ty(x, y, a, x

′, y′).
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Beliefs in MOMDPs are represented as (x, by), where x ∈ X is observed directly and by ∈ ∆(Y)
is a belief over hidden states. This factorization significantly reduces computational complexity,
enhancing scalability when the fully observable component |X | is large compared to |Y|. This
computational efficiency makes MOMDPs particularly advantageous for modeling scenarios with
added complexity, such as incorporating hidden suggester reliability, without incurring intractable
computational costs.

3 INTEGRATING SUGGESTER TYPES

We consider a sequential decision-making problem under uncertainty modeled as a discrete-state
POMDP, involving two entities: an autonomous agent performing actions based on its policy, and
an external suggester providing intermittent action recommendations. The suggester observes the
environment independently but does not directly alter it, communicating exclusively through action
suggestions. Both entities share a common objective of maximizing cumulative discounted reward
but maintain separate beliefs due to distinct observations or capabilities.

The agent incorporates suggestions as observations into its belief updates, maintaining autonomy
while leveraging external guidance. Crucially, the suggester’s reliability is unknown and potentially
dynamic, requiring the agent to infer and adapt its level of trust over time. Furthermore, the agent
proactively decides when to seek suggestions, balancing informational value against query costs.

3.1 MODELING SUGGESTER RELIABILITY

A key limitation of previous approaches, including those described in earlier sections, is the as-
sumption of known and static suggester quality parameters. In practice, suggester reliability may be
uncertain or change dynamically. To address this, we explicitly model suggester quality as part of the
hidden state that must be inferred during interaction.

The integration of suggester types into the state space can be generalized for any suggestion model
p(σ | s), where σ ∈ A represents the received suggestion. For clarity, we apply our idea to the noisy
rational suggester model (Asmar & Kochenderfer, 2022), defined as p(σ | s, λ) ∝ exp(λQ(s, σ)),
where Q(s, σ) denotes the action-value at state s for action σ, and λ is the rationality coefficient
characterizing suggester quality.

We discretize suggester quality into a finite set of types T = {λ̂1, λ̂2, . . . , λ̂m}, with each type
λ̂i corresponding to a rationality coefficient. The parameter λ directly influences suggestion qual-
ity: lower values produce nearly random suggestions, while higher values produce deterministic
recommendations favoring optimal actions.

For instance, given a state with three actions and action-values Q(s, a1) = 5, Q(s, a2) = 4, and
Q(s, a3) = 3, a rationality coefficient λ = 0 yields equal probabilities 1/3 for each action. For
λ = 1, probabilities become approximately {0.67, 0.24, 0.09}, and for λ = 5, probabilities approach
deterministic selection. Discretizing into types such as T = {0, 1, 2, 5, 10} creates a computationally
manageable representation spanning random to highly rational suggesters.

The state space of a given problem is expanded to S × T . Assuming independence between agent
observations and suggestions, belief updates about both environmental states and suggester quality
are performed using Bayesian inference:

b′(s′, λ̂′) ∝ p(o | a, s′)p(σ | s′, λ̂′)
∑

s∈S,λ̂∈T

p(s′, λ̂′ | s, λ̂, a)b(s, λ̂) (1)

where λ̂ ∈ T denotes suggester type, b is the prior belief, b′ the updated belief, o the agent observa-
tion, and σt the received suggestion. The independence assumption permits separate modeling of
environmental observations and suggestions in belief updates.

While augmenting the state space with suggester types potentially increases computational demands,
these can be mitigated using a MOMDP formulation. By placing suggester types in the hidden
state component (Y × T ) and keeping directly observable states in X , computational complexity is
reduced, enabling efficient inference while dynamically adapting to suggester reliability.

3
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3.2 DYNAMIC SUGGESTERS

The joint transition model, p(s′, λ̂′ | s, λ̂, a), can often factor into conditionally independent processes
p(s′, λ̂′ | s, λ̂, a) = p(s′ | s, a)p(λ̂′ | s, λ̂, a), separating environmental dynamics and suggester-type
transitions. The simplest model assumes static suggester reliability, i.e., p(λ̂′ | s, λ̂, at) = 1 if λ̂′ = λ̂.

However, to reflect realistic conditions such as operator fatigue or changing environments, we propose
a dynamic suggester model allowing transitions between types with probability tp

p(λ̂′ | s, λ̂, a) = p(λ̂′ | λ̂) =

{
1− tp if λ̂′ = λ̂,

tp
|T |−1 otherwise.

(2)

Under this model, absent new suggestions, belief distributions over suggester types gradually converge
toward uniform uncertainty.

This dynamic model provides adaptability by enabling the agent to continuously reassess suggester
reliability, reducing overconfidence and enhancing robustness in changing environments. However,
it involves trade-offs; if the true suggester type remains static, beliefs may unnecessarily dilute
over time, potentially yielding suboptimal performance compared to a static reliability assumption.
When suggester type transitions have known structure, explicitly modeling these dynamics can
improve inference precision and overall performance. While our general adaptive model emphasizes
robustness to uncertainty, incorporating known or structured dynamics can enhance performance in
scenarios where such information is reliably available.

4 INCORPORATING AN ASK ACTION

Thus far, our formulation has assumed suggesters autonomously provide recommendations at times
of their choosing. Such passive recommendation strategies place timing entirely in the hands of the
suggester, who must continuously evaluate when suggestions are beneficial. To grant the agent greater
control over information gathering, we introduce an explicit ask action. This action allows agents
to proactively request suggestions at strategically valuable moments, analogous to sensor queries
common in partially observable domains like RockSample (Smith & Simmons, 2004).

4.1 DESCRIPTION OF THE ASK ACTION

We define the ask action aask ∈ A as an explicit information-gathering action whose sole purpose is to
elicit a suggestion. The precise dynamics following an ask action depend on the underlying problem
structure. For example, in RockSample, executing aask leaves the environment state unchanged,
allowing the agent to acquire information without altering its position. Conversely, in dynamic
scenarios such as the Tag domain (Pineau et al., 2003), the agent performing an ask action remains
stationary while external elements, such as target movement, continue evolving.

To implement the ask action, we expand the observation space to include suggestions corresponding
to each feasible action (excluding the ask action itself). When the agent executes aask, it receives
a suggestion σ ∈ A drawn from the suggester model p(σ | s, λ̂) and incurs an associated cost.
Computing this distribution requires known action-values Q(s, a) for the noisy rational model. We
address this through a two-stage approach: first solving the original POMDP without the ask action to
derive state-action values, then using these values to parameterize the suggestion observation model
p(σ | s, λ̂) ∝ exp(λ̂Q(s, σ)). This bootstrapping method enables the agent to reason effectively
about the value of received suggestions within its existing policy framework.

4.2 CONSTRAINING SUGGESTION REQUESTS

While the ask action provides strategic flexibility, unrestrained querying can burden suggesters,
particularly human collaborators, and potentially degrade the quality of subsequent recommendations.
To mitigate this, we propose two complementary constraints.

First, we impose a direct cost on executing the ask action, integrated into the agent’s reward func-
tion. By appropriately calibrating this cost, the agent is incentivized to request suggestions only

4
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Table 1: Comparison of different agents with different quality of suggesters.

Agent Type Tag RS(7, 8, 20, 0) RS(8, 4, 10,−1)

λ∗ = 1.0 λ∗ = 2.0 λ∗ = 5.0 λ∗ = 1.0 λ∗ = 2.0 λ∗ = 5.0 λ∗ = 1.0 λ∗ = 2.0 λ∗ = 5.0

Normal −10.7± 0.1 −10.7± 0.1 −10.7± 0.1 21.6± 0.1 21.6± 0.1 21.6± 0.1 10.2± 0.1 10.2± 0.1 10.2± 0.1
Perfect −2.3± 0.1 −2.3± 0.1 −2.3± 0.1 28.5± 0.1 28.5± 0.1 28.5± 0.1 16.7± 0.1 16.7± 0.1 16.7± 0.1
Naive

ν = 1.00 −13.7± 0.1 −7.7± 0.1 −3.3± 0.1 12.4± 0.1 21.1± 0.1 27.6± 0.1 3.2± 0.1 12.2± 0.1 16.3± 0.1
ν = 0.75 −13.2± 0.1 −8.9± 0.1 −5.0± 0.1 15.2± 0.1 20.8± 0.1 25.2± 0.1 5.2± 0.1 11.2± 0.1 14.4± 0.1
ν = 0.50 −12.7± 0.1 −10.4± 0.2 −8.0± 0.1 17.6± 0.1 20.8± 0.1 23.2± 0.1 7.3± 0.1 10.5± 0.1 12.4± 0.1

Noisy
λ = 5.00 −9.7± 0.1 −5.1± 0.1 −2.8± 0.1 15.0± 0.1 23.3± 0.1 27.9± 0.1 10.0± 0.1 14.8± 0.1 16.5± 0.1
λ = 2.00 −8.3± 0.1 −4.9± 0.1 −3.1± 0.1 21.8± 0.1 26.3± 0.1 27.7± 0.1 12.2± 0.1 15.7± 0.1 16.1± 0.1
λ = 1.00 −8.0± 0.1 −5.7± 0.1 −3.9± 0.1 23.6± 0.1 25.6± 0.1 26.9± 0.1 13.1± 0.1 15.2± 0.1 15.3± 0.1

T = {0, 1, 2, 5, 10}
tp = 0.00 −8.0± 0.1 −5.0± 0.1 −2.8± 0.1 23.6± 0.1 26.3± 0.1 27.8± 0.1 13.0± 0.1 15.6± 0.1 16.5± 0.1
tp = 0.05 −8.0± 0.1 −5.0± 0.1 −2.8± 0.1 23.3± 0.1 26.0± 0.1 27.8± 0.1 12.9± 0.1 15.5± 0.1 16.5± 0.1

when genuinely beneficial. Second, we explicitly limit the total allowable number of ask actions
by augmenting the visible state space X with a discrete counter state. The visible state becomes
X ×{0, 1, . . . , Nask}, with Nask representing the maximum number of ask actions permitted. Each ex-
ecution of aask decrements this counter, and when it reaches zero, the ask action becomes unavailable,
requiring strategic allocation of these limited queries.

Although this expanded state space increases computational requirements, the MOMDP structure
places the counter within the fully observable component (X ), mitigating computational complexity
compared to standard POMDP formulations, as computational cost primarily scales with the hidden
state dimension (Y).

5 EXPERIMENTAL EVALUATION

To evaluate our proposed integration of suggester types and the ask action, we conducted experi-
ments across the Tag (Pineau et al., 2003) and RockSample (Smith & Simmons, 2004) domains, as
previously described in Asmar & Kochenderfer (2022). Specifically, we used the slightly modified
transition dynamics for Tag, making the scenario marginally more challenging, and the standard
RockSample(7,8) problem without sensor costs and RockSample(8,4) with a sensor cost of −1. Both
domains were formulated as MOMDPs, enabling efficient belief maintenance and dynamic adaptation
to varying suggester quality. Policies were computed using the SARSOP algorithm (Kurniawati
et al., 2008) via the POMDPs.jl framework (Egorov et al., 2017). Experiments were conducted on a
MacBook Pro with an Apple M1 Max processor and 32 GB of memory.

To analyze belief adaptation and decision-making over extended periods, we employed a repeated-
reset approach rather than traditional terminal conditions. In RockSample, upon reaching the exit,
rock samples were reinitialized randomly, and the agent returned to its initial position. Similarly, in
Tag, after each successful tag, the agent and opponent were repositioned randomly without overlap.

Each simulation comprised multiple trials, where a trial lasted from initialization until a successful tag
(Tag) or environment exit (RockSample). Numerous simulations were conducted to ensure statistical
robustness. Unless noted otherwise, metrics are reported as per-trial averages across all trials and
simulations. For dynamic suggester evaluations, we also report trial-by-trial averages to highlight
temporal adaptation. All results include 95% confidence intervals.

5.1 PERFORMANCE WITH STATIC SUGGESTER TYPES

We first evaluated agent performance under static suggester conditions, employing noisy rational
suggesters characterized by various rationality coefficients (λ), with the true suggester rationality
denoted as λ∗. Agents received suggestions at every time step, updating their beliefs according to the
model described in Section 3 prior to action selection.

Quantitative results are summarized in Table 1. Consistent with prior findings, naive agents (those not
modeling suggester reliability) exhibited performance heavily dependent on suggester quality: higher
rationality coefficients led to improved performance, whereas lower-quality suggestions degraded
outcomes significantly. Agents explicitly modeling the correct rationality coefficient (λ∗) naturally
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achieved optimal performance, while discrepancies between assumed and actual suggester quality
notably reduced performance.

We further tested agents capable of maintaining beliefs over multiple discrete suggester rationalities,
specifically T = {0, 1, 2, 5, 10}. Evaluations considered two types of suggester type transition
models: static scenarios, where agents assumed no transitions in suggester type; and dynamic
scenarios, where transitions followed the dynamics described by eq. (2) with transition probability
parameter tp. Results demonstrated that agents maintaining beliefs over multiple suggester types
consistently achieved performance comparable to agents with accurate knowledge of the true suggester
quality. These outcomes highlight the adaptive robustness conferred by explicitly modeling multiple
suggester types.

5.2 PERFORMANCE WITH DYNAMIC SUGGESTERS

We next examined agent performance under dynamically changing suggester quality conditions.
Specifically, the true suggester rationality coefficient (λ∗) varied systematically over multiple trials
within simulations, transitioning between distinct rationality levels at predetermined intervals. Agent
performance, depicted in Figure 1a, shows mean rewards per trial averaged across multiple simulations
in the Tag domain. Vertical dashed lines mark transitions in λ∗, labeled explicitly for clarity. Baseline
results from perfect, normal, and fixed-rationality agents (Noisy λ = 1 and Noisy λ = 5) are provided
for reference.

Fixed-type noisy agents performed predictably: the Noisy λ = 5 agent excelled during periods of
high-quality suggestions (λ∗ ≥ 2) but significantly underperformed when suggestions were poor
(λ∗ = 0, 1). Conversely, the Noisy λ = 1 agent, less reliant on suggestions, exhibited more stable
performance overall. Multiple-type (MT) agents, capable of adapting beliefs regarding suggester
quality, demonstrated consistent robustness across varying conditions.

Two MT agents were evaluated: MT tp = 0.00 (static hypothesis scenario) and MT tp = 0.05
(dynamic hypothesis scenario), both initialized with identical belief distributions over suggester types
(0, 1, 2, 5, 10 with probabilities [0.1, 0.2, 0.4, 0.2, 0.1]). Initially comparable, their performances
diverged after transitions to lower-quality suggestions. The dynamic MT agent (tp = 0.05) rapidly
adjusted its beliefs, recovering near-optimal performance despite persistently poor suggestions. In
contrast, the static MT agent (tp = 0.00) adapted more slowly, resulting in prolonged suboptimal
outcomes.

The agents’ adaptability is further illustrated in fig. 1b, showing the mean expected suggester type
over trials, averaged across simulations. While these averages condense the full distribution into a
single value and do not reflect variance explicitly, they clearly indicate the speed and effectiveness
of belief adjustments following transitions in suggester quality. The dynamic MT agent (tp =
0.05) consistently adapted its expectations more promptly than the static MT agent (tp = 0.00),
underscoring the practical advantage of explicitly modeling dynamic transitions between suggester
types.
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Figure 1: Dynamic suggester evaluation in the Tag domain. Subfigure (a) shows the performance of
agents with a dynamic suggester, and subfigure (b) shows the expected suggester type for static and
dynamic MT agents across trials. Dashed lines indicate transitions in true suggester rationality (λ∗).
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Figure 2: Dynamic suggester evaluation in the Tag domain under a constraint of one ask action per
trial. Subfigure (a) shows the performance of agents, and subfigure (b) shows the expected suggester
type for MT agents.

Table 2: Performance on the Tag domain with unlimited number of asks.

Metric Agent Type λ∗ = 0 λ∗ = 1 λ∗ = 2 λ∗ = 5 λ∗ = 10

Reward per Trial

Normal −10.77± 0.02 −10.77± 0.02 −10.77± 0.02 −10.77± 0.02 −10.77± 0.02
Noisy λ = 1 −11.95± 0.03 −10.77± 0.04 −9.94± 0.04 −9.16± 0.04 −9.04± 0.04
Noisy λ = 2 −14.81± 0.03 −11.20± 0.03 −9.09± 0.03 −7.53± 0.03 −7.40± 0.03
Noisy λ = 5 −15.01± 0.03 −11.74± 0.04 −9.41± 0.03 −7.34± 0.03 −7.05± 0.03
MT tp = 0.00 −11.28± 0.04 −11.01± 0.03 −9.13± 0.03 −7.36± 0.03 −7.06± 0.03
MT tp = 0.05 −12.64± 0.03 −11.09± 0.03 −9.15± 0.03 −7.41± 0.03 −7.17± 0.03

Asks per Trial

Normal 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Noisy λ = 1 2.25± 0.01 1.70± 0.01 1.51± 0.01 1.27± 0.01 1.21± 0.01
Noisy λ = 2 20.26± 0.10 7.77± 0.04 4.92± 0.02 3.09± 0.01 2.85± 0.01
Noisy λ = 5 21.57± 0.11 9.17± 0.04 5.73± 0.03 3.53± 0.01 3.19± 0.01
MT tp = 0.00 0.33± 0.01 5.29± 0.02 4.53± 0.02 3.22± 0.01 3.01± 0.01
MT tp = 0.05 5.75± 0.03 6.37± 0.03 4.50± 0.02 3.04± 0.01 2.80± 0.01

Steps per Trial

Normal 35.48± 0.08 35.48± 0.08 35.48± 0.08 35.48± 0.08 35.48± 0.08
Noisy λ = 1 39.53± 0.16 35.49± 0.15 32.83± 0.14 30.59± 0.14 30.24± 0.14
Noisy λ = 2 80.39± 0.40 37.38± 0.16 27.20± 0.11 22.44± 0.08 22.14± 0.08
Noisy λ = 5 85.41± 0.43 42.30± 0.19 29.00± 0.11 21.95± 0.08 21.17± 0.08
MT tp = 0.00 37.83± 0.16 36.44± 0.15 27.74± 0.11 22.04± 0.08 21.24± 0.08
MT tp = 0.05 46.65± 0.20 36.93± 0.16 27.96± 0.11 22.33± 0.08 21.71± 0.08

5.3 ADAPTIVE USE AND CONSTRAINTS OF THE ASK ACTION

We next investigated the effectiveness of integrating an explicit ask action, enabling agents to
strategically request suggestions. Initially, we evaluated performance in the Tag domain without
constraints on suggestion requests. Results summarized in Table 2 include metrics such as average
reward per trial, steps per trial, and ask actions executed per trial, computed over 10, 000 simulations
consisting of 15 trials each.

These results indicate that multiple-type (MT) agents adaptively manage their suggestion requests
based on inferred suggester quality. MT agents effectively balanced the benefits of acquiring informa-
tive suggestions against the costs of unnecessary requests, closely approaching the performance of
agents with correct, known rationality coefficients. A clear illustration is the MT tp = 0.00 agent
interacting with a random suggester (λ∗ = 0.0), rapidly recognizing low suggestion quality and
reducing ask actions to an average of 0.33 ± 0.01 per trial, primarily querying only under initial
uncertainty.

In RockSample, we introduced a suggestion request cost equal to the standard sensor usage cost
(−1.0 per request). Table 3 shows the average number of ask actions per trial for various suggester
qualities. Agents typically refrained from requesting suggestions from low-quality suggesters (λ < 2)
due to insufficient informational value relative to the incurred cost. Even MT agents avoided querying
lower-quality suggesters unless their initial belief heavily favored higher-quality suggesters. This
rational behavior, highlighted in Table 4, underscores the agents’ strategic consideration of the
informational value against incurred costs.
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Table 3: Number of asks per trial on RockSample(8,4).

Agent λ∗ = 0 λ∗ = 1 λ∗ = 2 λ∗ = 5 λ∗ = 10

Noisy λ = 1 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
Noisy λ = 2 1.72± 0.02 1.33± 0.01 1.06± 0.01 1.00± 0.00 1.00± 0.00
Noisy λ = 5 2.54± 0.01 2.74± 0.02 2.78± 0.02 2.70± 0.01 2.65± 0.01
MT tp = 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
MT tp = 0.05 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 4: Reward per trial for selected agents on RockSample(8,4) with an unlimited number of asks.

Agent λ∗ = 0 λ∗ = 1 λ∗ = 2 λ∗ = 5 λ∗ = 10

Normal 10.2± 0.1 10.2± 0.1 10.2± 0.1 10.2± 0.1 10.2± 0.1
Noisy λ = 2 4.9± 0.1 8.9± 0.1 10.4± 0.1 10.8± 0.1 10.9± 0.1
Noisy λ = 5 3.2± 0.1 6.5± 0.1 9.5± 0.1 11.5± 0.1 11.8± 0.1

We further evaluated performance under constraints limiting the number of ask actions. With only
one allowed ask action per trial, agents achieved modest performance gains over the baseline but
remained below optimal. We examined a dynamic scenario with sequential transitions in suggester
quality (λ∗ = 5.0, 3.0, 1.0, 0.0, 10.0) at predetermined intervals (fig. 2a).

This scenario highlighted the adaptive strengths of MT agents relative to fixed-type agents under
strict information constraints. Initially, MT agents matched the performance of the Noisy λ = 5
agent during periods of high-quality suggestions. However, as suggester quality declined, MT agents
adapted better, though performance still fell below that of the Normal agent. The dynamic MT agent
(tp = 0.05) adjusted beliefs more quickly, outperforming the fixed-type agent, while the static MT
agent (tp = 0.00) improved more slowly over time.

The evolution of mean expected suggester type across trials (fig. 2b) provided further insight into
adaptability. This metric, computed as the average expectation of suggester types at the end of each
trial, revealed that the static MT agent initially approached accurate beliefs but adapted slowly after
quality transitions, gradually improving from trial 60 onward. Conversely, the dynamic MT agent
(tp = 0.05), due to modeling uniform suggester transitions, maintained beliefs closer to the stationary
distribution mean (3.6), showing swift adaptability in performance but dampened belief precision.

This observation aligns with theoretical mixing time concepts commonly studied in discrete Markov
chains (Levin & Peres, 2017). Mixing time quantifies how quickly a Markov process approaches
its stationary distribution from an arbitrary initial distribution. Given our transition probability
tp = 0.05, the mixing time to reach a total variation distance below 0.1 from the uniform stationary
distribution was approximately 33 steps, closely matching the average trial duration of 32 steps.
This rapid convergence explains the dampened belief precision observed for the dynamic MT agent.
Employing lower transition probabilities or more structured transition models could mitigate this rapid
convergence, enabling more precise belief maintenance and further improving adaptive performance.

5.4 EVALUATION WITH A HEURISTIC-BASED SUGGESTER

The previous experiments employed suggesters explicitly modeled using the noisy rational framework
with varying rationality coefficients (λ). To further assess our approach’s generalizability and
robustness, we evaluated agent performance using a heuristic-based suggester whose suggestion
generation mechanism diverged from our noisy rational assumptions.

We implemented a heuristic suggester in the Tag domain, simulating an external sensor with limited
sensing capability that is unavailable directly to the agent. Specifically, the heuristic provided
directional suggestions (north, west, or east) only when the target was within two grid cells of
the corresponding wall and the agent was positioned outside that region. When these conditions
were unmet, no suggestions were provided. This scenario realistically mirrors situations in which
human operators or external systems offer partial and localized guidance without complete situational
awareness.
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Table 5: Performance with heuristic-based suggestions on the Tag domain.

Agent Type Reward per Trial Asks per Trial

Noisy λ = 5 −7.53± 0.05 3.72± 0.03
Noisy λ = 1 −9.11± 0.06 1.11± 0.01
MT tp = 0.00 −7.46± 0.05 3.75± 0.03
MT tp = 0.05 −7.35± 0.05 3.10± 0.02

Results summarized in Table 5 indicate that incorporating heuristic-based suggestions within our
noisy rational modeling framework significantly improved agent performance compared to scenarios
lacking suggestions. This improvement underscores our framework’s ability to effectively leverage
information from heuristic suggestions, despite deviations from assumed rationality. The MT agent
employing dynamic type transitions (tp = 0.05) effectively balanced suggestion requests, achieving
superior performance with fewer average asks per trial compared to other agents. This outcome
highlights the MT framework’s adaptability, successfully interpreting heuristic suggestions without
explicit alignment with their underlying generative mechanism.

A naive agent dependent solely on heuristic suggestions would struggle due to insufficient directional
precision. However, our integrated approach robustly leverages partial, noisy guidance, demonstrating
considerable flexibility and robustness beyond the originally modeled noisy rational paradigm.

6 DISCUSSION

Effectively integrating external suggestions into autonomous decision-making remains a critical
challenge, especially under uncertainty and dynamically varying conditions. Our experiments show
that agents capable of maintaining multiple hypotheses regarding suggester reliability consistently
demonstrate greater adaptability across static and dynamic scenarios than those relying on fixed as-
sumptions. Explicitly modeling transitions between suggester types enhances the speed and accuracy
of belief recalibration, particularly valuable in uncertain or changing environments. Incorporating
the ask action further improves decision-making efficiency, allowing agents to selectively query
suggesters only when anticipated informational gains outweigh the costs.

These findings offer considerable practical implications, especially for real-world applications involv-
ing human-agent collaboration, multi-agent coordination, or networks with fluctuating reliability. The
adaptive framework developed here helps autonomous systems better manage uncertainty, reduces
their dependence on consistently reliable external guidance, and effectively leverages partial or inter-
mittent information. Consequently, this approach enhances system robustness and decision-making
quality in dynamic and uncertain environments commonly encountered in practical scenarios.

Nonetheless, our approach has several limitations related primarily to modeling assumptions. While
discretizing suggester reliability into finite types provided computational convenience and efficient
inference, the noisy rational model may not capture real-world suggestion processes. Our chosen
set of rationality coefficients (λ) spanned from completely random to highly rational based on the
computed policy, which, although practical for evaluation, might not accurately reflect real-world
suggester behavior. Although our heuristic-based suggester experiments demonstrated promising
robustness, additional research is needed to evaluate our approach with a broader range of non-
rational or heuristic suggestion mechanisms, including scenarios with explicit deviations from
modeled rationality assumptions.

Furthermore, the simplified uniform transition model employed for suggester reliability dynamics
may insufficiently reflect practical conditions, where changes in reliability often correlate with
specific identifiable events, such as environmental shifts, hardware modifications, or operator changes.
Future work could enhance our framework by explicitly associating suggester type transitions with
such events. Developing event-driven, context-sensitive models for suggester reliability would likely
improve belief accuracy, decision-making performance, and overall flexibility.
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A LLM USAGE

Large language models (LLMs) were used in a limited, assistive capacity during this project. Specifi-
cally:

• Writing and editing: LLMs were used to help refine wording, improve clarity, and reduce
redundancy in the paper’s text. All technical content, modeling decisions, and results are
original and authored by the listed authors.

• Coding assistance: LLMs were occasionally used to help debug implementation issues. The
modeling choices, algorithms, and experimental design were fully specified and implemented
by the authors.

No part of the research ideation, methodology, or results was generated by an LLM. The authors take
full responsibility for the content of this paper.

B REPRODUCIBILITY STATEMENT

Our experiments use standard benchmark domains (Tag and RockSample) with clearly specified
modifications (e.g., enabling the ask action, modeling suggester types, and defining priors). Policies
were computed with SARSOP via POMDPs.jl, and all solver settings, domain variants, and simulation
functions are included in the provided code. The supplementary materials contain the complete
repository with setup scripts, policy generators, and simulation functions for reproducing data for
the tables and figures in the paper. The accompanying README outlines the code structure and
provides detailed instructions on running the functions to perform the experiments. After review, we
will release this repository publicly to further support transparency and reproducibility.
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