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Abstract
Inverse reinforcement learning (IRL) is an on-
policy approach to imitation learning (IL) that
allows the learner to observe the consequences
of their actions at train-time. Accordingly, there
are two seemingly contradictory desiderata for
IRL algorithms: (a) preventing the compound-
ing errors that stymie offline approaches like be-
havioral cloning and (b) avoiding the worst-case
exploration complexity of reinforcement learn-
ing (RL). Prior work has been able to achieve
either (a) or (b) but not both simultaneously. In
our work, we first prove a negative result show-
ing that, without further assumptions, there are
no efficient IRL algorithms that avoid compound-
ing errors in the worst case. We then provide a
positive result: under a novel structural condition
we term reward-agnostic policy completeness, we
prove that efficient IRL algorithms do avoid com-
pounding errors, giving us the best of both worlds.
We also propose a principled method for using
sub-optimal data to further improve the sample-
efficiency of efficient IRL algorithms.

1. Introduction
Inverse reinforcement learning (IRL) is an on-policy ap-
proach to imitation learning that involves simultaneously
learning a reward function from expert demonstrations and
learning a policy that optimizes the learned reward (Ziebart
et al., 2008a). IRL has been applied to a diverse set of ap-
plications, including robotics (Ratliff et al., 2007; Abbeel
& Ng, 2008; Ratliff et al., 2009; Silver et al., 2010; Zucker
et al., 2011), autonomous driving (Bronstein et al., 2022; Igl
et al., 2022; Vinitsky et al., 2022), and route finding (Ziebart
et al., 2008a;b; Barnes et al., 2023).

Compared to offline imitation learning methods such as
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behavior cloning, IRL offers the following advantages. First,
IRL is more sample efficient, with respect to expert samples,
than behavior cloning (Swamy et al., 2021; 2022). Second,
IRL offers better error scaling, with respect to the horizon,
than behavior cloning (Ross & Bagnell, 2010; Swamy et al.,
2021; 2022). Unlike behavior cloning, IRL is capable of
avoiding quadratically compounding errors in the horizon
(Ross & Bagnell, 2010; Swamy et al., 2021).

However, the expert sample efficiency of traditional IRL
methods comes at the cost of environment interactions. Tra-
ditional IRL methods can require an exponential number of
environment interactions in the worst case (Swamy et al.,
2023). Because the reward function and policy are learned
simultaneously, IRL requires policy optimization to be per-
formed repeatedly, making it susceptible to RL’s worst-case
exploration complexity (Swamy et al., 2023). In order to fo-
cus the exploration on useful states, prior work has leveraged
the expert’s state distribution for learner resets, resulting in
an exponential speedup in interaction complexity (Swamy
et al., 2023).

Unfortunately, the improvement of efficient IRL’s interac-
tion efficiency sacrifices traditional IRL’s linear error scal-
ing. Swamy et al. (2023)’s Moment Matching by Dynamic
Programming (MMDP) and No-Regret Moment Matching
(NRMM) are exponentially faster than traditional IRL al-
gorithms, but they suffer from quadratically compounding
errors in the horizon.

Based on the prior work, it seems that two desiderata of
IRL – interaction efficiency and avoidance of compounding
errors – are contradictory, with algorithms only being able to
attain one or the other. Our key insight is that the commonly
imposed assumption of expert realizability (i.e. the expert
policy is within the learner’s policy class) is insufficient to
address both interaction efficiency and error scaling. In our
paper, we introduce a novel structural condition, reward-
agnostic policy completeness, under which IRL can both be
efficient and avoid compounding errors.

More explicitly, our contributions are as follows:

1. We first consider the agnostic setting, where no as-
sumptions are made about the MDP’s structure, and
present a lower bound that shows it is impossible to
learn a competitive policy with polynomial environment
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interaction complexity in the worst case. In other words,
efficient IRL is not possible without assuming additional
structure on the MDP.

2. We define a new structural condition, reward-agnostic
policy completeness, under which our efficient, reset-
based IRL algorithm is capable of avoiding quadrati-
cally compounding errors. Importantly, our analysis holds
for approximate policy completeness, and the optimal (i.e.
expert) policy does not have to be in the policy class.

3. We extend our algorithm to incorporate sub-optimal
data. We show that the benefits of incorporating sub-
optimal data are a function of the quantity of data and how
well the sub-optimal data covers the expert data. Our theo-
retical results are aligned in the intuition that suggests the
greater the overlap between sub-optimal and expert states,
the more beneficial to learning the sub-optimal data is.

2. Related Work
Prior work in reinforcement learning (RL) has examined
leveraging exploration distributions to improve learning
(Kakade & Langford, 2002; Bagnell et al., 2003; Ross et al.,
2011). We adapt the Policy Search via Dynamic Program-
ming (PSDP) algorithm of Bagnell et al. (2003) as our RL
solver and leverage its performance guarantees in our anal-
ysis. Our policy completeness error is inspired by Agar-
wal et al. (2019)’s adapted analysis of Kakade & Langford
(2002)’s Conservative Policy Iteration (CPI) algorithm. Our
paper also builds on work in agnostic RL. Jia et al. (2024)
analyze the conditions for which agnostic RL is statistically
tractable. We use Jia et al. (2024)’s lower bound on agnostic
RL with expert feedback to show why agnostic IRL is hard.

Our work examines the issue of distribution shift due to
compounding errors in IRL, which was introduced by Ross
& Bagnell (2010). Ross et al. (2011)’s DAgger algorithm
is capable of avoiding compounding errors but requires an
interactive expert, which we do not assume in our setting.

We incorporate Swamy et al. (2023)’s novel approach of
leveraging the expert’s state distribution for learner resets.
Our algorithm builds upon Swamy et al. (2023)’s MMDP
and NRMM algorithms by avoiding quadratically com-
pounding error in the horizon.

Our algorithm and results are not limited to the tabular
and linear MDP settings, differentiating from some prior
work in efficient imitation learning (Xu et al., 2023; Viano
et al., 2024). Our work also relates to (Shani et al., 2022),
who propose a mirror descent based no-regret algorithm
for online apprenticeship learning (OAL). We similarly use
a mirror descent based update to our reward function, but
differ from Shani et al. (2022)’s work by leveraging resets
to expert and sub-optimal data to improve the interaction

efficiency of our algorithm.

Poiani et al. (2024) propose a technique of incorporating sub-
optimal experts as a means of addressing the ambiguity in
IRL problems, specifically the lack of uniqueness in reward
functions that rationalize the observed behavior. Our work
contrasts Poiani et al. (2024)’s because we do not use sub-
optimal data in learning a reward function, instead using it
to improve policy optimization training.

3. Setup and Motivation
3.1. Problem Setup

Markov Decision Process We consider a
finite-horizon Markov Decision Process (MDP),
M = ⟨S,A, Ph, r

∗, H, µ⟩. S and A are the state space
and action space, respectively. P = {Ph}Hh=1 is the time-
dependent transition function, where Ph : S ×A → ∆(S).
r∗ : S × A → [0, 1] is the ground-truth reward function,
which is unknown. LetR be the class of reward functions,
such that r : S × A → [0, 1] for all r ∈ R. H is the
horizon, and µ ∈ ∆(S) is the starting state distribution.
Let Π = {π : S → ∆(A)} be the class of stationary
policies. Let the class of non-stationary policies be defined
by ΠH = {πh : S → ∆(A)}Hh=1. A trajectory is given
by τ = {(sh, ah, rh)}Hh=1, where sh ∈ S, ah ∈ A, and
rh = f(sh, ah) for some f ∈ R. The distribution over
trajectories formed by a policy is given by: ah ∼ π(· | sh),
rh = Rh(sh, ah), and sh+1 ∼ Ph(· | sh, ah), for
h = 1, . . . ,H . Let dπs0,h(s) = Pπ[sh = s | s0] and
dπs0(s) =

1
H

∑H
h=1 d

π
s0,h

(s). Overloading notation slightly,
we have dπµ = Es0∼µ d

π
s0 .

We index the value function by the reward func-
tion, such that for any π ∈ ΠH and r ∈ R,
V π
r,h(s) := Eτ∼π

[∑H
h′=h rh′ | sh = s

]
, and V π

r =

Eτ∼π

∑H
h=1 r(sh, ah). We do a corresponding indexing

for the advantage function. We will overload notation such
that a state-action pair can be sampled from the visitation
distributions, e.g. (s, a) ∼ dπµ and (s, a) ∼ ρE , as well as
a state, e.g. s ∼ dπµ and s ∼ ρE . Note that by definition of

dπµ, Eτ∼π

[∑H
h=1 r(st, at)

]
= H E(s,a)∼dπ

µ
[r(s, a)].

Expert Data There exists an expert policy πE , of which
a sample of its trajectories are known. The dataset of state-
action pairs sampled from the expert is DE = D1 ∪D2 ∪
. . . ∪ DH , where Dh = {sh, ah} ∼ dπE

µ,h and |DE | = N .
Let ρh be a uniform distribution over the samples in Dh,
and ρE be a uniform distribution over the samples in DE .

Goal of IRL We adopt the formulation of Swamy et al.
(2021), casting IRL as a Nash equilibrium problem. The
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goal is to find a policy π such that

min
π∈Π

max
r∈R

J(πE , r)− J(π, r),

where J(π, r) = Eτ∼π

[∑T
t=0 r(st, at)

]
.

3.2. IRL in the Agnostic Setting

We first consider IRL in the agnostic setting, where no
assumptions are made about the MDP’s structure, the policy
class, or the expert’s policy (i.e. we do not assume πE ∈
ΠH ). We restate Theorem 9 from Jia et al. (2024).

Theorem 3.1 (Lower Bound on Agnostic RL with Expert
Feedback (Jia et al., 2024)). For any H ∈ N and C ∈ [2H ],
there exists a policy class Π with |Π| = C, expert policy
πE ̸∈ Π, and a family of MDPsM with state space S of
size O(2H), binary action space, and horizon H such that
any algorithm that returns a 1/4-optimal policy must either
use Ω(C) queries to a generative model or Ω(C) queries
to the expert oracle Oexp : S × A → R, which returns
QπE (s, a) (i.e. the Q value of expert policy πE).

Theorem 3.1 presents a lower bound on agnostic RL with
expert feedback. Specifically, it assumes access to the true
reward function and an expert oracle, Oexp : S × A → R,
which returns QπE (s, a) for a given state-action pair (s, a).
The lower bound in Theorem 3.1 applies in the case where
the expert oracle is replaced with a weaker expert action
oracle (i.e. πE(s) : S → A) (Amortila et al., 2022; Jia
et al., 2024). In agnostic IRL, we consider the even weaker
setting of having a dataset of state-action pairs from the
expert policy πE . From Theorem 3.1, we can infer that
polynomial sample complexity in the agnostic IRL setting
is not possible in the worst case.

It should be noted that the classical importance sampling
(IS) algorithm (Kearns et al., 1999) can be employed to find
an approximately optimal policy in the agnostic setting, but
it requires an exponential number of interactions (Agarwal
et al., 2019; Jia et al., 2024).

4. Policy Complete Inverse Reinforcement
Learning

Theorem 3.1 establishes a lower bound in the agnostic set-
ting, where no assumptions are made about the MDP or
expert policy. It naturally motivates the question,

Under what conditions is it possible for efficient IRL
algorithms to avoid quadratically compounding errors?

Expert realizability was assumed by Swamy et al. (2023)’s
efficient IRL algorithms but fails to avoid compounding
errors.

We introduce reward-agnostic policy completeness error
to specify the conditions under which compounding errors
can be avoided efficiently. Policy completeness error can be
thought of as measuring the policy class’s ability to approx-
imate the maximum possible advantage over the expert’s
state distribution under any reward function in the reward
class.

Definition 4.1 (Reward-Indexed Policy Completeness Er-
ror). Given some expert state distribution ρE , MDPMwith
policy class Π and reward class R, learned policy πi, and
learned reward function ri, define the reward-indexed policy
completeness error ofM to be

ϵπi,ri
Π := E

s∼ρE

[
max
a∈A

Aπi
ri (s, a)

]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[
Aπi

ri (s, a)
]
.

We first present the reward-indexed policy completeness
error in Definition 4.1, where πi and ri represent the learned
policy and reward, respectively, from iteration i of a generic
IRL algorithm. Our definition of reward-indexed policy
completeness error is inspired by one used in Agarwal et al.
(2019)’s adapted analysis of CPI, extended to the IRL setting.
Notably, our definition is distinct in using the expert’s state
distribution rather than the learner’s.

The reward-indexed policy completeness error measures
how well the policy class can approximate the advantage
of optimal actions over policy πi under reward ri. Be-
cause there do not exist strong guarantees on how closely
ri will resemble the true reward r∗ during early iterations
of an IRL algorithm, the expert policy may not be optimal
under ri. We consider a maximum over all actions to de-
termine the maximum possible advantage over policy πi,
i.e. maxa∈A Aπi

ri (s, a). In the worst case, where the policy
class is poorly restricted under the expert’s state distribution,
then ϵΠ = H , due to the bound on the reward function.

In order to extend the definition to other policies and reward
functions learned at separate iterations, we pessimistically
consider the worst case over all possible policies and re-
wards, leading to Definition 4.2. Note that 0 ≤ ϵπi,ri

Π ≤
ϵΠ ≤ H for any πi ∈ Π, ri ∈ R.

Definition 4.2 (Reward-Agnostic Policy Completeness Er-
ror). Given some expert state distribution ρE and MDPM
with policy class Π and reward classR, define the reward-
agnostic policy completeness error ofM to be

ϵΠ := max
π∈Π,r∈R

ϵπ,rΠ

= max
π∈Π,r∈R

(
E

s∼ρE

[
max
a∈A

Aπ
r (s, a)

]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[Aπ
r (s, a)]

)
.
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Algorithm 1 Policy Search Via Dynamic Programming
(Bagnell et al., 2003)

Input: H , expert state distribution ρE and its time in-
dexed components, reward function ri, and policy class
Π
Output: Trained policy π
for h = H,H − 1, . . . , 1 do

Optimize

πh ← argmax
π′∈Π

E
s∼ρE,h

E
a∼π′(·|s)

Aπh+1,...,πH
ri (s, a)

end for
Return π = {πh}Hh=1

4.1. Efficient IRL Under Approximate Policy
Completeness

We present MMDP-SR (Moment Matching by Dynamic Pro-
gramming: Sub-optimal Reset), an efficient IRL algorithm
that can be considered a variant of Swamy et al. (2023)’s
MMDP algorithm. MMDP-SR can incorporate sub-optimal
data resets, which we describe in Section 5. We analyze its
sample complexity in the approximate policy completeness
setting.

Following Swamy et al. (2021)’s classification of IRL al-
gorithms, we propose an efficient dual variant algorithm,
where the discriminator is updated via a no-regret step, and
the policy is updated via a best-response step. We employ
online mirror descent for the discriminator update, such that
our reward function is updated via

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1),

where ∆R is the Bregman divergence with respect to the
negative entropy function R. L̂(π, r) is the loss, defined by

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a),

with respect to the distribution of expert samples, ρE . Im-
portantly, for our analysis, we assume that the ground-truth
reward function is realizable such that r∗ ∈ R. An interest-
ing direction of future work is extending our analysis to the
case of a non-realizable reward.

We employ Bagnell et al. (2003)’s PSDP algorithm, shown
in Algorithm 1, for the policy update step. We use the
distribution of expert samples, ρE , as the distribution for
resets. The IRL procedure is outlined in Algorithm 2.

4.2. Analysis in the Infinite-Sample Regime

Theorem 4.3 (Sample Complexity of Algorithm 2). Con-
sider the case of infinite expert data samples. If

Algorithm 2 MMDP-SR (Moment Matching by Dynamic
Programming: Sub-optimal Reset)

Input: Expert state visitation distributions ρE , policy
class Π, reward classR
Output: Trained policy π
Set π0 ∈ Π
for i = 1 to N do

Let

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)

Optimize

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1).

Optimize
πi ← PSDP(ri)

end for
Return πi with lowest validation error

πi = (πi,1, πi,2, . . . , πi,H) is the policy returned by ϵ-
approximate PSDP at iteration i ∈ [n] of Algorithm 2 and
ρE = dπE

µ , then

V πE − V π ≤ H2ϵ+HϵΠ +H

√
ln |R|
n

,

where H is the horizon, n is the number of outer-loop itera-
tions of the algorithm, and π is the average of the learned
policies, πi at each iteration i ∈ [n].

The sample complexity of Algorithm 2 in the infinite expert
sample regime is given in Theorem 4.3. The error is com-
prised of three terms. The first term, H2ϵ, stems from the
policy optimization error of PSDP. It can be mitigated be
improving the accuracy parameter ϵ of PSDP. Set to ϵ = 1

H ,
the term is reduced to linear error in the horizon H . This
error can be interpreted as representing a tradeoff between
environment interactions (i.e. computation) and error.

The second term, HϵΠ, stems from the richness of the pol-
icy class. In the worst case where the policy class cannot
approximate the maximum advantage, ϵΠ = H , resulting
in quadratically compounding errors. Unlike the policy op-
timization error, the policy completeness error cannot be
reduced with more environment interactions. Instead, it rep-
resents a fixed error that is a property of the MDP, the policy
class, and the reward class. Under the approximate policy
completeness setting, we assume ϵΠ = O(1), reducing the
error to linear in the horizon.

Finally, the last term H
√

ln |R|
n stems from the regret of

the online mirror descent update to the reward function.
Assuming approximate policy completeness, such that ϵΠ =
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O(1), Theorem 4.3 shows that quadratically compounding
errors in the horizon can be avoided by setting a small
accuracy parameter ϵ in the PSDP procedure. The finite
sample analysis of Algorithm 2 is provided in Section 5,
where we also incorporate sub-optimal data.

5. Leveraging Sub-Optimal Data in IRL
5.1. Resetting to Sub-Optimal Data

In addition to the expert dataset, we also consider the case
where we have an offline dataset Doff = {si, ai}Mi=1, where
(s, a) ∼ dπb

µ and πb is some behavior policy that is not nec-
essarily as a high-quality as the expert πE . We measure the
overlap of πb to the expert πE using the standard concen-
trability coefficient: Cb =

∥∥∥d
πE
µ

d
πb
µ

∥∥∥
∞

. We will show that we
can gain benefit of using Doff as long as Cb < ∞ and the
number of offline data points M is large.

Let us define Dmix = DE ∪ Doff and ρmix as the uniform
distribution over Dmix. We will use ρmix as the reset distri-
bution for policy optimization. Let

ν =
N

N +M
dπE
µ +

M

N +M
dπb
µ .

We only incorporate sub-optimal data for the policy opti-
mization step. Using sub-optimal data for the reward update
may lead to learning a reward function that values sub-
optimal behavior as optimal, so the reward update remains
the same as (2). Instead, we incorporate the sub-optimal
for the policy optimization step, specifically resetting to the
mixture of sub-optimal and expert states. Our replacement
for policy optimization step (1) becomes

πh ← argmax
π′∈Π

E
s∼ρmix,h

E
a∼π′(·|s)

Aπh+1,...,πH
ri (s, a).

5.2. Analysis in the Finite-Sample Regime

Lemma 5.1 (Advantage Bound). Suppose that ϵ = 0 and
reward function ri are the input parameters to PSDP, and
πi = (πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then,

with probability at least 1− δ,

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,

Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number
of expert state-action pairs, M is the number of offline state-
action pairs, and C0 = 2 ln |Π||R|

δ .
Theorem 5.2 (Sample Complexity of Algorithm 2). Sup-
pose that PSDP’s accuracy parameter is set to ϵ = 0, mean-
ing we assume access to infinite computations of PSDP.

Then, upon termination of Algorithm 2 with policy optimiza-
tion step (5.1), with probability at least 1− δ, we have

V πE − V π ≤ Hmin

{
ϵΠ + ϵΠ

√
C0

N
,

Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}

+H

√
C

N
+H

√
C1

n
,

where H is the horizon, N is the number of expert state-
action pairs, M is the number of offline state-action pairs,
n is the number of reward updates, C0 = 2 ln |Π||R|

δ , C =

ln 2|R|
δ , C1 = 2 ln |R|, and Cb =

∥∥∥d
πE
µ

d
πb
µ

∥∥∥
∞

.

Lemma 5.1 upper bounds the advantage over the distribution
induced by the expert policy. Theorem 5.2 upper bounds
the sample complexity of Algorithm 2 with policy optimiza-
tion step (5.1). The error consists of three terms. The first
term stems from the policy completeness error. The sec-
ond term stems from the statistical error of estimating the
expert policy’s state distribution dπE

µ with the distribution
over samples ρE . The third term stems from the regret of
the reward update. Unlike Theorem 4.3, which considers
ϵ-approximate PSDP, Theorem 5.2 examines the case of
infinite computations of PSDP such that ϵ = 0, resulting in
a vanishing policy optimization error term. Importantly, the
assumption of ϵ = 0 is not necessary but rather convenient
in simplifying the analysis. Moreover, the ϵ > 0 case was
presented in Theorem 4.3.

From Theorem 5.2, we observe the condition under which
sub-optimal data benefits learning is when

ϵΠ + ϵΠ

√
C0

N
≤
∥∥∥∥dπE

µ

dπb
µ

∥∥∥∥
∞

(
ϵΠ + ϵΠ

√
C0

N +M

)
.

When the sub-optimal data covers the expert data well, Cb =∥∥∥d
πE
µ

d
πb
µ

∥∥∥
∞

is small, so the sub-optimal data may be beneficial.
Considering the special case where the “sub-optimal” data is
collected from the expert policy πE , then Cb =

∥∥∥d
πE
µ

d
πE
µ

∥∥∥
∞

=

1. The advantage bound becomes equivalent to the case of
having N +M number of expert data samples. However,
because we only use the expert data for the reward update,
rather than the sub-optimal data, the reward error terms
remain the same.

6. Discussion
We address the seemingly contradictory goals of preventing
compounding errors in IRL and avoiding the worst-case
exploration complexity of RL. We introduce a novel struc-
tural condition, reward-agnostic policy completeness, under
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which both compounding errors can be avoided efficiently.
We then present a reset-based IRL algorithm and perform
a finite-sample analysis. Finally, we identify the condi-
tions under which sub-optimal data can be beneficial to the
sample-efficiency of the algorithm.

One direction for future work is extending our analysis to
RL solvers beyond PSDP, such as replacing CPI’s reset
distribution by the expert and sub-optimal data distributions.
This can also include generalizing our analysis to abstracted
RL procedures. Another approach may be to empirically
demonstrate the tradeoff between the coverage and amount
of sub-optimal data in terms of IRL performance.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Vinitsky, E., Lichtlé, N., Yang, X., Amos, B., and Foerster,
J. Nocturne: a scalable driving benchmark for bringing
multi-agent learning one step closer to the real world.
Advances in Neural Information Processing Systems, 35:
3962–3974, 2022.

Xu, T., Li, Z., Yu, Y., and Luo, Z.-Q. Provably efficient
adversarial imitation learning with unknown transitions.
In Uncertainty in Artificial Intelligence, pp. 2367–2378.
PMLR, 2023.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K.,
et al. Maximum entropy inverse reinforcement learning.
In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA,
2008a.

Ziebart, B. D., Maas, A. L., Dey, A. K., and Bagnell, J. A.
Navigate like a cabbie: Probabilistic reasoning from ob-
served context-aware behavior. In Proceedings of the
10th international conference on Ubiquitous computing,
pp. 322–331, 2008b.

Zucker, M., Ratliff, N., Stolle, M., Chestnutt, J., Bagnell,
J. A., Atkeson, C. G., and Kuffner, J. Optimization and
learning for rough terrain legged locomotion. The Inter-
national Journal of Robotics Research, 30(2):175–191,
2011.

7



Efficient IRL without Compounding Errors

A. Proofs of Section 4
A.1. Proof of Theorem 4.3

Proof. We consider the imitation gap of the expert and the average of the learned policies π,

V πE − V π =
1

n

n∑
i=1

(
E

ζ∼πE

H∑
h=1

r∗(s, a)− E
ζ∼πi

H∑
h=1

r∗(s, a)

)

= H
1

n

n∑
i=1

(
E

(s,a)∼d
πE
µ

r∗(s, a)− E
(s,a)∼d

πi
µ

r∗(s, a)

)

= H
1

n

n∑
i=1

L(πi, r
∗)

≤ H
1

n
max
r∈R

n∑
i=1

L(πi, r)

≤ H
1

n
max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri) + L(πi, ri)

= H
1

n
L(πi, ri) +H

1

n
max
r∈R

n∑
i=1

L(πi, r)− L(πi, ri)

Applying the regret bound of Online Mirror Descent (Theorem C.2), we have

V πE − V π ≤ H
1

n

n∑
i=1

L(πi, ri) +H

√
ln |R|
n

= H
1

n

n∑
i=1

(
1

H

H∑
h=1

E
(sh,ah)∼d

πE
h

ri(sh, ah)−
1

H

H∑
h=1

E
(sh,ah)∼d

πi
h

ri(sh, ah)

)
+H

√
ln |R|
n

=
1

n

n∑
i=1

(
E

s∼µ
V πE
ri − E

s∼µ
V πi
ri

)
+H

√
ln |R|
n

=
1

n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

Focusing on the interior summation, we have

H−1∑
h=0

E
(sh,ah)∼d

πE
h

Aπi

h (sh, ah) ≤
H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)

=

H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)− ϵΠ,h + ϵΠ,h

=

H−1∑
h=0

max
π′∈Π

E
sh∼d

πE
h

E
a∼π′(·|s)

Aπi

h (sh, a) + ϵΠ,h

≤ H2ϵ+HϵΠ,h

where the last line holds by PSDP’s performance guarantee (Bagnell et al., 2003).
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Applying (A.1) to (A.1), we have

V πE − V π ≤ 1

n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h
(sh, ah)

)
+H

√
ln |R|
n

≤ 1

n

n∑
i=1

(
H2ϵ+HϵΠ,h

)
+H

√
ln |R|
n

≤ H2ϵ+HϵΠ +H

√
ln |R|
n

which completes the proof.

B. Proofs of Section 5
B.1. Lemmas of Theorem 5.2

Lemma B.1 (Reward Regret Bound). Recall that

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a).

Suppose that we update the reward via the online mirror descent (ascent) algorithm. Since 0 ≤ r(s, a) ≤ 1 for all s, a, then
supπ∈Π,r∈R L̂(π, r) ≤ 1. Applying Theorem C.2 with B = 1, the regret is given by

Regn = sup
r∈R

1

n

n∑
i=1

L̂(πi, r)−
1

n

n∑
i=1

L̂(πi, ri)

≤
√

2 ln |R|
n

=

√
C1

n
,

where C1 = 2 ln |R| and n is the number of updates.

Lemma B.2 (Statistical Difference of Losses). With probability at least 1− δ,

L(π, r) ≤ L̂(π, r) +

√
C

N
,

where C = ln 2|R|
δ and N is the number of state-action pairs from the expert.

Proof. By definition of L and L̂, for any π ∈ Π and r ∈ R, we have∣∣∣L(π, r)− L̂(π, r)
∣∣∣ = ∣∣∣∣∣ E

(s,a)∼d
πE
µ

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)−

(
E

(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)

)∣∣∣∣∣
=

∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− E
(s,a)∼ρE

r(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− 1

N

N∑
(si,ai)∈DE

r(si, ai)

∣∣∣∣∣∣
≤
√

1

2N
ln

2|R|
δ

≤
√

C

N
,
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where C = 4 ln 2|R|
δ . The fourth line holds by Hoeffding’s inequality and a union bound. Specifically, we apply Corollary

C.1 with c = 1, since all rewards are bounded by 0 and 1. We take a union bound over all reward functions in the reward
class R. Note that the terms involving π cancel out, so the union bound only applies to the reward function class R.
Rearranging terms gives the desired bound.

Lemma B.3 (Loss Bound). Suppose that ϵ = 0 and reward function ri are the input parameters to PSDP, and πi =
(πi

1, π
i
2, . . . , π

i
H) is the output learned policy. Then, with probability at least 1− δ,

L̂(πi, ri) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

N
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the number of offline state-action

pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

Proof. By Lemma B.2, we have

L̂(πi, ri) ≤ L(πi, ri) +

√
C

N

= E
(s,a)∼d

πE
µ

[ri(s, a)]− E
(s,a)∼d

πi
µ

[ri(s, a)] +

√
C

N

=
1

H

(
V πE
ri − V πi

ri

)
+

√
C

N

=
1

H

(
H∑

h=1

E
(sh,ah)∼d

πE
h

Aπi

ri,h
(sh, ah)

)
+

√
C

N

≤ 1

H

(
H∑

h=1

E
sh∼d

πE
h

max
a∈A

Aπi

ri,h
(sh, a)

)
+

√
C

N

=
1

H

(
H E

s∼dπE

max
a∈A

Aπi
ri (s, a)

)
+

√
C

N

where C = ln 2|R|
δ . The second line holds by the definition of L(πi, ri), and the third line holds by the definition of the

reward-indexed value function. The fourth line holds by the Performance Difference Lemma (PDL). Applying Lemma 5.1,
we have

L̂(πi, ri) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

MN
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the number of offline state-action

pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

B.2. Proof of Lemma 5.1

Proof. Suppose that ϵ = 0 is the input accuracy parameter to PSDP, and the advantages are computed under reward function
ri. PSDP is guaranteed to terminate and output a policy πi = (πi

1, π
i
2, . . . , π

i
H), such that

Hϵ ≥ max
π′∈Π

E
sh∼ρmix,h

E
a∼π′(·|s)

Aπi

h (sh, a)

for all h ∈ [H] (Bagnell et al., 2003). Consequently, we have

Hϵ ≥ max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a)

= max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a) + ϵΠ,ri − ϵΠ,ri

= E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ,ri
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By definition, 0 ≤ ϵΠ,ri ≤ ϵΠ, so for any x ∈ R, x− ϵΠ,ri ≥ x− ϵΠ, so

Hϵ ≥ E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ.

Rearranging the terms gives us

E
s∼ρmix

max
a∈A

Aπi(s, a) ≤ Hϵ+ ϵΠ

= ϵΠ,

where the last line holds by our assumption that ϵ = 0.

Case 1: Jettison Offline Data We will first consider the case where offline data is useless, in which case we will focus on
the expert data.

Note that maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and h ∈ [H]. Applying the definition of ρmix,

E
s∼ρmix

max
a∈A

Aπi(s, a) = E
s∼ρE

max
a∈A

Aπi(s, a) + E
s∼ρb

max
a∈A

Aπi(s, a).

Consequently, we know that

ϵΠ ≥ E
s∼ρE

max
a∈A

Aπi(s, a)

=
1

N

N∑
si∈DE

max
a∈A

Aπi(si, a)

Because maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and a ∈ A, we know maxa∈A Aπi(si, a) ≤ ϵΠ for all si ∈ DE . We ap-
ply Hoeffding’s inequality (Corollary C.1) with c = ϵΠ

2 to bound the difference between Es∼dπE maxa∈A Aπi(s, a)
and Es∼ρE

maxa∈A Aπi(s, a). We apply a union bound on the policy and reward function. As stated previously,
maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality, with probability 1− δ, we have∣∣∣∣∣ E

s∼d
πE
µ

max
a∈A

Aπi(s, a)− E
s∼ρE

max
a∈A

Aπi(s, a)

∣∣∣∣∣ =
∣∣∣∣∣ E
s∼d

πE
µ

max
a∈A

Aπi(s, a)− 1

N

N∑
si∈DE

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤
√

ϵ2Π
1

2N
ln
|Π||R|

δ

≤ ϵΠ

√
C0

N
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible policies is upper bounded

by the cardinalities of the policy and reward classes. Rearranging the terms and applying (B.2) yields

E
s∼d

πE
µ

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N
.

Case 2: Leverage Offline Data Next, we consider the case where offline data is useful, specifically where there is good
coverage of the expert data.

Next, we apply Hoeffding’s inequality (Corollary C.1) to bound the difference between Es∼ν maxa∈A Aπi(s, a) and
Es∼ρmix maxa∈A Aπi(s, a). We apply a union bound on the policy and reward function. We use c = ϵ2Π for a similar
argument to the one used in Case 1. As stated previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality,
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with probability 1− δ, we have

∣∣∣∣ Es∼ν
max
a∈A

Aπi(s, a)− E
s∼ρmix

max
a∈A

Aπi(s, a)

∣∣∣∣ =
∣∣∣∣∣ Es∼ν

max
a∈A

Aπi(s, a)− 1

N +M

N+M∑
si∈Dmix

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤

√
ϵΠ

1

2(N +M)
ln
|Π||R|

δ

≤ ϵΠ

√
C0

N +M
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible policies is upper bounded

by the cardinalities of the policy and reward classes. Rearranging the terms and applying (B.2) yields

E
s∼ν

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N +M
.

By linearity of expectation, and using the fact that 1 ≤ Cb <∞, we have

E
s∼dπE

max
a∈A

Aπi(s, a) =
N

N +M
E

s∼dπE

max
a∈A

Aπi(s, a) +
M

N +M
E

s∼dπE

max
a∈A

Aπi(s, a)

≤ N

N +M
E

s∼dπE

max
a∈A

Aπi(s, a) + Cb
M

N +M
E

s∼dπb

max
a∈A

Aπi(s, a)

≤ Cb
N

N +M
E

s∼dπE

max
a∈A

Aπi(s, a) + Cb
M

N +M
E

s∼dπb

max
a∈A

Aπi(s, a)

= Cb

(
N

N +M
E

s∼dπE

max
a∈A

Aπi(s, a) +
M

N +M
E

s∼dπb

max
a∈A

Aπi(s, a)

)
≤ Cb E

s∼ν
max
a∈A

Aπi(s, a).

Applying (B.2) to (B.2), we have

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ Cb E
s∼ν

max
a∈A

Aπi(s, a)

≤ Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)

Final Result Using the bounds from Case 1 and Case 2, we know that

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min

{
ϵΠ + ϵΠ

√
C0

N
,Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the number of offline state-action

pairs, and C0 = 2 ln |Π||R|
δ .
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B.3. Proof of Theorem 5.2

Proof. We consider the imitation gap of the expert and the averaged learned policies, π,

V πE − V π =
1

n

n∑
i=0

(
E

ζ∼πE

[
H∑

h=1

r∗(sh, ah)

]
− E

ζ∼πi

[
H∑

h=1

r∗(sh, ah)

])

=
1

n
H

n∑
i=0

(
E

(s,a)∼d
πE
µ

[r∗(s, a)]− E
(s,a)∼d

πi
µ

[r∗(s, a)]

)

=
1

n
H

n∑
i=0

L(πi, r
∗)

≤ 1

n
Hmax

r∈R

n∑
i=0

L(πi, r)

where n is the number of updates to the reward function. The second line holds by definition of dπµ. The third line holds by
definition of L. Applying the Statistical Difference of Losses (Lemma B.2), we have

V πE − V π ≤ 1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r) +

√
C

N

)

=
1

n
Hmax

r∈R

n∑
i=0

(
L̂(πi, r)− L̂(πi, ri) + L̂(πi, ri) +

√
C

N

)

where C = ln 2|R|
δ and M is the number of state-action pairs from the expert. Applying the Reward Regret Bound (Lemma

B.1), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
L̂(πi, ri) +

√
C

N

)
+H

√
C1

n

where C1 = 2 ln |R|. Applying the Loss Bound (Lemma B.3), we have

V πE − V π ≤ 1

n
H

n∑
i=0

(
min

{
ϵΠ + ϵΠ

√
C0

N
,Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+

√
C

N
,

)
+H

√
C1

n
,

which simplifies to

V πE − V π ≤ Hmin

{
ϵΠ + ϵΠ

√
C0

N
,Cb

(
ϵΠ + ϵΠ

√
C0

N +M

)}
+H

√
C

N
,+H

√
C1

n
,

where Cb =
∥∥∥d

πE
µ

d
πb
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the number of offline state-action

pairs, n is the number of reward updates, C0 = 2 ln |Π||R|
δ , C = ln 2|R|

δ , and C1 = 2 ln |R|.

C. Useful Lemmas
Theorem C.1 (Hoeffding’s Inequality). If Z1, . . . , ZM are independent with P (a ≤ Zi ≤ b) = 1 and common mean µ,
then, with probability at least 1− δ,

|ZM − µ| ≤
√

c

2M
ln

2

δ

where c = 1
M

∑M
i=1(bi − ai)

2.

Lemma C.2 (Online Mirror Descent Regret). Regret is defined as

RegN =
1

N

N∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1

N

N∑
t=1

ℓ(f , zt).
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Given F = ∆(F ′) and ⟨f ,∇t⟩ = Ef ′∼f [ℓ(f
′, (xt, yt))], where sup∇∈D∥∇∥∞ ≤ B, let R be any 1-strongly convex

function. If we use the Mirror descent algorithm with η =

√
2 supf∈F R(f)

NB2 , then,

Regn ≤
√

2B2 supf∈F R(f)

N
.

If R is the negative entropy function, then supf∈F R(f) ≤ log |F ′|.
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