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Abstract

Recent methods for aligning large language models (LLMs) with human feedback
predominantly rely on a single reference model, which limits diversity, model
overfitting, and underutilizes the wide range of available pre-trained models. Incor-
porating multiple reference models has the potential to address these limitations
by broadening perspectives, reducing bias, and leveraging the strengths of diverse
open-source LLMs. However, integrating multiple reference models into rein-
forcement learning with human feedback (RLHF) frameworks poses significant
theoretical challenges, where achieving exact solutions has remained an open
problem. This paper presents the first exact solution to the multiple reference
model problem in reverse KL-regularized RLHF. We introduce a comprehen-
sive theoretical framework that includes rigorous statistical analysis and provides
sample complexity guarantees. Additionally, we extend our analysis to forward
KL-regularized RLHF, offering new insights into sample complexity requirements
in multiple reference scenarios. Our contributions lay the foundation for more
advanced and adaptable LLM alignment techniques, enabling the effective use of
multiple reference models. This work paves the way for developing alignment
frameworks that are both theoretically sound and better suited to the challenges of
modern AI ecosystems.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing (NLP) by demon-
strating remarkable capabilities in understanding and generating human language. Powered by vast
datasets and advanced neural architectures, these models have set new benchmarks across various
NLP tasks, including machine translation and conversational agents. Despite these advancements,
aligning LLMs with human values and preferences remains a critical challenge. Such misalignment
can lead to undesirable behaviors, including the generation of biased or inappropriate content, which
undermines the reliability and safety of these models [Gehman et al., 2020].

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal framework for
addressing alignment challenges in LLMs. By fine-tuning LLMs based on human feedback, RLHF
steers models towards more human-aligned behaviors, enhancing truthfulness, helpfulness, and
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harmlessness while maintaining their ability to generate accurate and high-probability outputs [Wirth
et al., 2017, Christiano et al., 2017]. In RLHF, reward-based methods use a trained reward model to
evaluate (prompt, response) pairs. These methods treat the language model as a policy that takes a
prompt x and generates a response y conditioned on x, optimizing this policy to generate responses
with maximum reward. Typically, a reference policy (usually the pretrained model before fine-tuning)
is used as a baseline to regularize training, preventing excessive deviation from the original behavior.

An inherent limitation of most works on LLM alignment is their reliance on a single reference model
[Wang et al., 2024b]. First, this restricts the diversity of linguistic patterns and inductive biases
available during training. In that, it is over restrictive - potentially leading to a model that inherits the
limitations or cultural biases of a single pretrained source. Second, such an approach is inefficient in
utilizing the wealth of pre-trained models available in modern AI ecosystems, which excel in different
domains and capture unique nuances, leaving valuable collective intelligence untapped. Therefore,
incorporating multiple LLMs as reference models produces a model that reflects the characteristics of
all reference models while satisfying human preferences. This approach is particularly relevant as
the open-source community continues to release diverse pre-trained and fine-tuned LLMs of varying
scales, trained on a wide range of datasets [Jiang et al., 2023, Penedo et al., 2023].

A solution is to extend the RLHF training to utilize multiple reference models. While RLHF
with multiple reference models has demonstrated practical utility [Le et al., 2024], its theoretical
underpinnings remain largely unexplored. A critical gap in current understanding is the lack of an
exact solution for reverse KL-regularized RLHF when incorporating multiple reference models. This
theoretical limitation has prevented the study of sample complexity of bounds on both optimality and
sub-optimality gaps in the reverse KL-regularized framework. Addressing this problem is crucial
for advancing the alignment of LLMs with human preferences in increasingly complex and diverse
settings.

In this work, we provide the solutions for RLHF with multiple reference models when regularized via
Reverse KL divergence (RKL) or forward KL divergence (FKL). In addition, we provide a statistical
analysis of these scenarios. Our main contributions are as follows:

• We propose a comprehensive mathematical framework for reverse KL-regularized RLHF
with multiple reference models and provide the exact solution for this problem and calculate
the maximum objective value.

• We provide theoretical guarantees for the proposed multiple reference models scenario
under reverse KL-regularization. In particular, we study the sample complexity2 of reverse
KL-regularized RLHF under multiple reference models.

• We also study the multiple reference models scenario under forward KL-regularized RLHF
and analyze its sample complexity.

2 Related Works

Multiple References: Inspired by model soups [Wortsman et al., 2022], Chegini et al. [2024]
propose a reference soup policy, achieved by averaging two independently trained supervised fine-
tuned models, including the reference model. However, their approach lacks theoretical guarantees,
particularly regarding its applicability to alignment tasks. More recently, Le et al. [2024] introduced
the concept of multiple reference models for alignment. Due to the challenges in deriving a closed-
form solution for the RLHF objective under multiple referencing constraints, the authors proposed a
lower-bound approximation. In this work, we address this gap by deriving the closed-form solution
for the multiple reference model scenario under reverse KL-regularization.

Theoretical Foundation of RLHF: Several works have studied the theoretical underpinnings of
reverse KL-regularized RLHF, particularly in terms of sample complexity [Zhao et al., 2024, Xiong
et al., 2024, Song et al., 2024, Zhan et al., 2023, Ye et al., 2024]. Among these, Zhao et al. [2024]
analyze reverse KL-regularized RLHF, demonstrating the effect of reverse KL-regularization and
establishing an upper bound on sub-optimality gap with O(1/n) sample complexity (convergence
rate) where n represents the size of preference dataset. More detailed comparison with these works is
provided in Section 7. However, to the best of our knowledge, the RLHF framework incorporating
multiple reference models has not yet been studied.

2The sample complexity provides insight into how quickly bounds converge as the dataset size increases.
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Forward KL-regularization and Alignment: The forward KL-regularization for Direct Preference
Optimization (DPO) proposed by Wang et al. [2024a]. The application of forward KL-regularization
for alignment from demonstrations is shown in [Sun and van der Schaar, 2024]. The forward KL-
regularization in stochastic decision problems is also studied by Cohen [2017]. To the best of our
knowledge, the forward KL-regularized RLHF is not studied from a theoretical perspective.

3 Preliminaries

Notations: Upper-case letters denote random variables (e.g., Z), lower-case letters denote the
realizations of random variables (e.g., z), and calligraphic letters denote sets (e.g., Z). All logarithms
are in the natural base. The set of probability distributions (measures) over a space X with finite
variance is denoted by P(X ). The KL-divergence between two probability distributions on Rd with
densities p(x) and q(x), so that q(x) > 0 when p(x) > 0, is KL(p∥q) :=

∫
Rd p(x) log(p(x)/q(x))dx

(with 0/0 := 0). The entropy of a distribution p(x) is denoted by H(p) = −
∫
Rd p(x) log(p(x)).

We define the Escort and Generalized Escort distributions [Bercher, 2012] (a.k.a. normalized
geometric transformation).
Definition 3.1 (Escort and Generalized Escort Distributions). Given a discrete probability measure
P defined on a set A, and any λ ≥ 0, we define the escort distribution (P )λ for all a ∈ A as

(P )λ(a) :=
(P (a))λ∑
x∈A(P (x))λ

.

Given two discrete probability measures P and Q defined on a set A, and any λ ∈ [0, 1], we define
the generalized escort distribution (P,Q)λ as the following tilted distribution:

(P,Q)λ(a) :=
Pλ(a)Q1−λ(a)∑

x∈A Pλ(x)Q1−λ(x)
.

Next, we introduce the functional derivative, see Cardaliaguet et al. [2019].
Definition 3.2. [Cardaliaguet et al., 2019] A functional U : P(Rn) → R admits a functional
derivative if there is a map δU

δm : P(Rn) × Rn → R which is continuous on P(Rn) and, for all
m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mλ, a) (m

′ −m)(da) dλ,

where mλ = m+ λ(m′ −m).

We also define the sensitivity of a policy πr(y|x), which is a function of reward function r(x, y),
with respect to the reward function as

∂π

∂r
(r) := lim

∆r→0

πr(y|x)− πr+∆r(y|x)
∆r

. (1)

4 Problem Formulation

Following prior works [Ye et al., 2024, Zhao et al., 2024], we consider the problem of aligning a
policy π with human preferences. Given an input (prompt) x ∈ X which is samples from ρ(x), is
the finite space of input texts, the policy π ∈ Π, where Π is the set of policies, models a conditional
probability distribution π(y|x) over the finite space of output texts y ∈ Y . From a given π and x, we
can sample an output (response) y ∼ π(·|x).
Preference Dataset: Preference data is generated by sampling two outputs (y, y′)|x from πref as the
reference policy (model), and presenting them to an agent, typically a human, for rating to indicate
which one is preferred. For example, y ≻ y′ denotes that y is preferred to y′. A preference dataset is
then denoted as D = {ywi , yli, xi}ni=1, where n is the number of data points, yw and yl denote the
preferred (chosen) and dispreferred (rejected) outputs, respectively.

We assume that there exists a true model of the agent’s preference p∗(y ≻ y′|x), which assigns the
probability of y being preferred to y′ given x based on the latent reward model which is unknown.
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4.1 RLHF from One Reference Model

Using the datasetD, our goal is to find a policy π that maximizes the expected preference while being
close to a reference policy πref . In this approach, Bradley–Terry model Bradley and Terry [1952] is
employed as the preference model, p

(
y ≻ y′|x

)
= σ

(
rθ
(
x, y
)
− rθ

(
x, y′

))
,

where σ denotes the sigmoid function and rθ : X × Y → R is a reward model parameterized by θ,
which assigns a scalar score to indicate the suitability of output y for input x. In Christiano et al.
[2017], the reward model is trained on D to maximize the log-likelihood (MLE) estimator:

LR(θ,D) =

n∑
i=1

1

n
log σ

(
rθ
(
xi, y

i
w

)
− rθ

(
xi, y

i
l

))
. (2)

Given a trained reward model rθ̂(x, y) where θ̂ = argmaxθ∈Θ LR(θ,D), we can consider the
regularized optimization objective which is regularized via reverse KL-regularized or forward KL-
regularized.

Reverse KL-regularized RLHF: A crucial component of RLHF is the use of a reference model to
compute a Reverse Kullback-Leibler (KL) divergence penalty. This penalty ensures that the process
does not deviate excessively from the original model, mitigating the risk of generating nonsensical
responses [Ziegler et al., 2019]. The reverse KL-regularized optimization objective for (γ > 0) can
represented as:

max
π

EY∼π(·|x)
[
rθ̂
(
x, Y

)]
− 1

γ
KL
(
π(·|x)

∥∥πref(·|x)
)
, (3)

Note that the solution of (3) is,

πγ

θ̂
(y|x) :=

πref(y|x) exp(γrθ̂(x, y))
Z(x)

, (4)

where Z(x) = EY∼πref(·|x)
[exp(γrθ̂(x, Y ))] is the normalization factor. Similarly, we can define

πγ
θ⋆(y|x) using rθ⋆(x, y) instead of rθ̂(x, y) in (4). This RLHF objective is employed to train LLMs

such as Instruct-GPT Ouyang et al. [2022] using PPO Schulman et al. [2017].

We define J(πθ⋆(·|x)) = EY∼πθ⋆ (·|x)[rθ⋆(x, Y )] (a.k.a. value function3) and provide an upper bound
on optimal gap,

J (πγ
θ⋆(·|x), πγ

θ̂
(·|x)) := J(πγ

θ⋆(·|x))− J(πγ

θ̂
(·|x)). (5)

Furthermore, inspired by [Song et al., 2024, Zhao et al., 2024], we consider the following RLHF
objective function based on the true reward function,

Jγ(πref(·|x), πθ(·|x)) := EY∼πθ(·|x)[rθ⋆(Y, x)]− 1

γ
KL(πθ(·|x)∥πref(·|x)). (6)

As studied by Zhao et al. [2024], Song et al. [2024], Zhan et al. [2023], we also aim to study the
following sub-optimality gap,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x)) := Jγ(πref(·|x), πγ

θ⋆(·|x))− Jγ(πref(·|x), πγ

θ̂
(·|x)). (7)

Forward KL-regularized RLHF: Inspired by [Wang et al., 2024a], we can consider the forward
KL-regularized optimization objective as,

max
π

EY∼π(·|x)

[
rθ̂
(
x, Y

)]
− 1

γ
KL
(
πref(·|x)∥π(·|x)

)
, (8)

As discussed in [Wang et al., 2024a], this optimization problem has an implicit solution given by:

π̃γ

θ̂
(y|x) := πref(y|x)

γ(Z̃θ̂(x)− rθ̂(x, y))
(9)

3We can also consider EX∼ρ(·)[J(π(·|X))]. All of our results also holds for expected version of value
function.
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where Z̃θ̂(x) is normalization constant ensuring that
∫
Y πγ

θ (y|x)dy = 1. Some properties of Z̃θ̂(x)
are discussed in App. E.

Similar to (5) and (7), for forward KL-regularized RLHF, we can define,

J̃γ(πref(·|x), πθ(·|x)) := EY∼πθ(·|x)[rθ⋆(Y, x)]− 1

γ
KL(πref(·|x)∥πθ(·|x)), (10)

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) := J̃γ(πref(·|x), π̃γ

θ⋆(·|x))− J̃γ(πref(·|x), π̃γ

θ̂
(·|x)). (11)

4.2 Assumptions

For our analysis, the following assumptions are needed.
Assumption 4.1 (Bounded Reward). We assume that the true and parametrized reward functions,
rθ⋆(x, y) and rθ̂(x, y), are non-negative functions and bounded by Rmax.

Assumption 4.2 (Finite Class). We assume that the reward function class,R, is finite, |R| <∞.

The assumption of bounded rewards (Assumption 4.1) and Finite class (Assumption 4.2) are common
in the literature [Song et al., 2024, Zhan et al., 2023, Zhao et al., 2024, Chang et al., 2024, Xiong
et al., 2024]. More discussion regarding these assumptions are provided in App. C.

Coverage conditions play a fundamental role in understanding the theoretical guarantees of RLHF
algorithms. We first introduce the most stringent coverage requirement, known as global coverage
[Munos and Szepesvári, 2008]:

Assumption 4.3 (Global Coverage). For all policies π, we require maxx,y:ρ(x)>0
π(y|x)

π̂ref (y|x) ≤ CGC,

where π̂ref denotes the reference model and CGC ∈ R+ is a finite constant.

A key implication of Assumption 4.3 is that it requires substantial coverage: specifically, for any
prompt x and token sequence y in the support of ρ, we must have π̂ref(y|x) ≥ 1

CGC
.

While global coverage has been extensively studied in the offline RL literature [Uehara and Sun, 2021,
Zhan et al., 2022], it imposes strong requirements that may be unnecessarily restrictive for RLHF. A
key insight from recent work [Zhao et al., 2024, Song et al., 2024] is that RLHF algorithms inherently
employ reverse KL-regularization, which ensures learned policies remain within a neighborhood of
the reference model. This observation motivates a more refined coverage condition:
Assumption 4.4 (Local Reverse KL-ball Coverage). Consider εrkl <∞ and any policy π satisfying
Ex∼ρ[KL(π(·|x)∥π̂ref(·|x))] ≤ εrkl, we require maxx,y:ρ(x)>0

π(y|x)
π̂ref (y|x) ≤ Cεrkl , where Cεrkl ∈ R+

depends on the KL threshold εrkl.

Similar to Assumption 4.4, we consider the forward KL-ball coverage assumption.
Assumption 4.5 (Local Forward KL-ball Coverage). Consider εfkl <∞ and any policy π satisfying
Ex∼ρ[KL(π̂ref(·|x)∥π(·|x))] ≤ εfkl, we require maxx,y:ρ(x)>0

π(y|x)
π̂ref (y|x) ≤ Cεfkl , where Cεfkl ∈ R+

depends on the KL threshold εfkl.

The local reverse or forward KL-ball coverage condition offers several advantages. Focusing only
on policies within a reverse KL-ball of the reference model provides sharper theoretical guarantees
while imposing weaker requirements. This localization aligns naturally with RLHF algorithms,
which explicitly constrain the learned policy’s divergence from the reference model. For any fixed
reference model πref , the reverse or forward KL local coverage constant is always bounded by the
global coverage constant: max(Cεrkl , Cεfkl) ≤ CGC. This follows from the fact that KL-constrained
policies form a subset of all possible policies.

5 RLHF from Multiple Reference Models via Reverse KL divergence

In this section, inspired by Le et al. [2024], we are focused on situations involving K reference

policies
{
πref,i

}K

i=1
where the latent reward model among all reference policies is the same. All

proof details are deferred to Appendix D.
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5.1 Exact Solution of RLHF under multiple reference models via RKL

Inspired by [Le et al., 2024], our objective can be formulated as a multiple reference models RLHF
objective,

max
π

E
Y∼π(·|x)

[
r
(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))
, (12)

where αi are weighting coefficients for each reference policy and
∑K

i=1 αi = 1. This objective was
explored in previous studies, leading to enhancements in pure RL problems Le et al. [2022].

However, addressing this optimization problem in LLMs through reward learning and RL finetuning
pose similar challenges to (3). Our goal is to derive a closed-form solution for the multi-reference
RLHF objective in (12). Note that in [Le et al., 2024, Proposition 1], a lower bound on RLHF
objective in (12) is proposed, and the solution for this surrogate objective function is derived as
follows,

πL

(
y|x
)
=

π̃ref

(
y|x
)

Ẑl(x)
exp

(
γr
(
x, y
))

, (13)

where π̃ref(y|x) =
(∑K

i=1
αi

πref,i(y|x)

)−1

and Ẑl(x) =
∑

y π̃ref(y|x) exp
(
γr(x, y)

)
.

In contrast, in the following theorem, we provide the exact solution of the objective function for the
multiple reference model (12).
Theorem 5.1. Consider the following objective function for RLHF with multiple reference models,

max
π

{
E

Y∼π(·|x)

[
rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))}
,

where
∑K

i=1 αi = 1 and αi ∈ (0, 1) for i ∈ [K]. Then, the exact solution of the multiple reference
model objective function for RLHF is,

πγ
θ⋆

(
y|x
)
=

π̂ααα,ref

(
y|x
)

Ẑ(x)
exp

(
γrθ⋆(x, y)

)
, (14)

where

π̂ααα,ref(y|x) =
∏K

i=1 π
αi

ref,i(y|x)
Fααα(x)

, Fααα(x) =
∑
y∈Y

K∏
i=1

παi

ref,i(y|x), (15)

and Ẑ(x) =
∑

y π̂ααα,ref(y|x) exp
(
γrθ⋆(x, y)

)
. The maximum objective value is

1
γ log

(∑
y

∏K
i=1 π

αi

ref,i(y|x) exp (γr(x, y))
)
.

Note that this result does not rely on the assumptions stated in Subsection 4.2 and in fact holds in
greater generality. Using Theorem 5.1, we can consider the following optimization problem for the
multiple reference models scenario.

EY∼π(·|x)
[
rθ⋆(x, Y )

]
− 1

γ
KL
(
π(·|x)∥π̂ααα,ref(·|x)

)
, (16)

where π̂ααα,ref(y|x) is defined in (15) as generalized escort reference policy. The algorithm of reverse
KL-regularized RLHF with two reference models is presented in App. A.

5.2 Main Results for RLHF via RKL

In this section, we provide our main theoretical results for the RLHF algorithm with multiple reference
models based on reverse KL-regularization. Using the convexity of reverse KL divergence, we can
provide an upper bound on the sub-optimality gap. Furthermore, we assume that Assumption 4.4
holds under π̂ααα,ref(·|x) as reference policy with Cααα,εrkl . First, we can derive the following upper
bound on the sub-optimality gap of the RLHF algorithm with multiple reference models.
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Theorem 5.2. Under Assumption 4.1, 4.2 and 4.4, the following upper bound holds on the sub-
optimality gap with probability at least (1− δ) for δ ∈ (0, 1/2),

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x)) ≤ γCααα,εrkl128e

4RmaxR2
max

log(|R|/δ)
n

. (17)

Using Theorem 5.2, we can provide the upper bound on the optimal gap under the RLHF algorithm.
Theorem 5.3. Under Assumption 4.1, 4.2 and 4.4, there exists constant C > 0 such that the following
upper bound holds on optimality gap of reverse KL-regularized RLHF with probability at least (1−δ)
for δ ∈ (0, 1/2),

J (πγ
θ⋆(·|x), πγ

θ̂
(·|x)) ≤ γCααα,εrkl128e

4RmaxR2
max

log(|R|/δ)
n

+ C8Rmaxe
2Rmax

√
2Cααα,εrkl log(|R|/δ)

n
.

Remark 5.4 (Sample Complexity). We can observe sample complexity of O(1/n) for the sub-
optimality gap and O(1/

√
n) for the optimality gap from Theorem 5.2 and Theorem 5.3, respectively.

6 RLHF from Multiple Reference Models via Forward KL Divergence

In this section, inspired by [Wang et al., 2024a], we extend the RLHF from multiple reference
models based on reverse KL-regularization Le et al. [2024] to forward KL-regularization. Similar, to

Section 5, we are focused on situations involving K reference policies
{
πref,i

}K

i=1
where the latent

reward model among all reference policies is the same. All proof details are deferred to Appendix E.

6.1 Solution of RLHF under multiple reference models via FKL

Inspired by [Le et al., 2024, Wang et al., 2024a], our objective can be formulated as a multiple
reference models RLHF objective,

max
π

E
Y∼π(·|x)

[
r
(
x, Y

)]
− 1

γ

( K∑
i=1

βiKL
(
πref,i(·|x)∥π(·|x)

))
, (18)

where βi are weighting coefficients for each reference policy and
∑K

i=1 βi = 1. This objective was
explored in previous studies, leading to enhancements in pure RL problems Le et al. [2022]. However,
addressing this optimization problem in LLMs through reward learning and RL finetuning poses
similar challenges to (3). Our goal is to derive a closed-form solution for the multi-reference RLHF
objective in (18).

We now provide the implicit solution of the RLHF with multiple references.
Theorem 6.1. Consider the following objective function for RLHF with multiple reference models,

max
π

E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

βiKL
(
πref,i(·|x)∥π(·|x)

))
,

where
∑K

i=1 βi = 1 and βi ∈ (0, 1) for i ∈ [K]. Then, the implicit solution of the multiple reference
models objective function for RLHF is,

π̃γ
θ⋆

(
y|x
)
=

π̄βββ,ref

(
y|x
)

γ
(
Z̃(x)− rθ⋆(x, y)

) , (19)

where π̄βββ,ref(y|x) =
∑K

i=1 βiπref,i(y|x), and Z̃(x) is the solution to
∫
y∈Y π̃γ

θ⋆

(
y|x
)
= 1 for a given

x ∈ X .

Using Theorem 6.1, we can consider the following optimization problem for forward KL-regularized
RLHF under multiple reference model scenario,

EY∼π(·|x)
[
rθ⋆(x, Y )

]
− 1

γ
KL
(
π̄βββ,ref(·|x)∥π(·|x)

)
, (20)

where π̄βββ,ref(y|x) is defined in Theorem 6.1 as weighted reference policy. The algorithm of forward
KL-regularized RLHF with two reference models is presented in App. A.
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Table 1: Comparison of Various Works in Theoretical Foundation of RLHF: Key features include
support for RKL sub-optimality gap, RKL optimality gap, FKL sub-optimality gap, and FKL
optimality gap and their Sample Complexities for each scenario.

Work RKL Sub-optimality Gap
(Sample Complexity)

RKL Optimality Gap
(Sample Complexity)

FKL Sub-optimality Gap
(Sample Complexity)

FKL Optimality Gap
(Sample Complexity)

Song et al. [2024] ✓
O(1/

√
n)

✗ ✗ ✗

Zhao et al. [2024] ✓
O(1/n)

✗ ✗ ✗

Chang et al. [2024] ✗
✓

O(1/
√
n)

✗ ✗

Xiong et al. [2024] ✓
O(1/

√
n)

✗ ✗ ✗

Our Work ✓
O(1/n)

✓
O(1/

√
n)

✓
O(1/

√
n)

✓
O(1/

√
n)

6.2 Main Results for RLHF with FKL

This section presents our core theoretical analysis of forward KL-regularized RLHF under the
multiple reference model setting. We begin by leveraging KL divergence’s convex properties
to establish an upper bound on the sub-optimality gap. Throughout this section, we consider
π̃γ

θ̂
(y|x) =

π̄βββ,ref (y|x)
γ(Z̃

θ̂
(x)−r

θ̂
(x,y))

and π̃γ
θ⋆(y|x) =

π̄βββ,ref (y|x)
γ(Z̃θ⋆ (x)−rθ⋆ (x,y))

. Furthermore, we assume that

Assumption 4.5 holds under π̄βββ,ref(y|x) as reference policy with Cβββ,εrkl . First, we derive an upper
bound for the sub-optimality gap in the multiple reference forward KL-regularized RLHF setting.
Theorem 6.2. Under Assumption 4.1, 4.2 and 4.4, the following upper bound holds on the sub-
optimality gap with probability at least (1− δ) for δ ∈ (0, 1),

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤ 16Cβββ,εfkle

2RmaxRmax

√
log(|R|/δ)

n
. (21)

Using Theorem 6.2, we can provide the upper bound on the optimal gap under the multiple reference
forward KL-regularized RLHF setting.
Theorem 6.3. Under Assumption 4.1, 4.2 and 4.4, the following upper bound holds on optimality gap
of the multiple reference forward KL-regularized RLHF algorithm with probability at least (1− δ)
for δ ∈ (0, 1),

J̃ (π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤ 16Cβββ,εfkle

2RmaxRmax

√
log(|R|/δ)

n
+

max
(
| log(Cβββ,εfkl)|, log(γRmax + 1)

)
γ

.

Remark 6.4 (Sample Complexity). Choosing γ = n, we have sample complexity O(1/
√
n) on

optimality gap from Theorem 6.3. We can also observe the sample complexity of O(1/
√
n) for the

sub-optimality gap.

7 Discussion

In this section we provide theoretical comparison with single reference model in terms of sample
complexity, Rmax and coverage constant. We also extend our framework to DPO. Further discussion,
e.g., coverage assumption and comparison of RKL with FKL, are provided in App. G.

Theoretical Comparison with Single-Reference Models: Our theoretical results extend to the
single-reference model setting, enabling comparison with existing work in this domain. The RKL-
regularized RLHF framework and its sub-optimality gap have been investigated by Song et al. [2024]
and Zhao et al. [2024], who established sample complexity bounds. Song et al. [2024] derived a
sub-optimality gap sample complexity of O(1/

√
n), which Zhao et al. [2024] later improved to

O(1/n), demonstrating the effectiveness of RKL regularization. Note that, in [Zhao et al., 2024], it is
shown that when the error tolerance ϵ is sufficiently small, the sample complexity follows an O(1/ϵ)
relationship. This corresponds to O(1/n), where n represents the dataset size. In comparison with
[Zhao et al., 2024], we proposed an approach based on functional derivative and convexity of KL

8



(a) Mean and 95% CI for pass@1 performance on
GSM8K using policy gradient algorithms.

(b) Mean normalized reward and 95% CI on the
UltraFeedback dataset, using offline RLHF.

Figure 1: In both online and offline RL, our analytical RKL objective outperforms both the MRPO
approximation and single reference objective (α = 0).

divergence. Our approach is more general and can be applied to the forward KL-regularized RLHF
framework. There are also some works on similar algorithms to RLHF. Additionally, Chang et al.
[2024] proposed an algorithm integrating offline and online preference datasets in RLHF, analyzing
its optimality gap sample complexity under RKL regularization. The general reverse KL-regularized
RLHF framework under general preference models is studied by Xiong et al. [2024] and a sample
complexity of O(1/

√
n) for sub-optimality gap is derived. To the best of our knowledge, the sample

complexity of the optimality gap and sub-optimality gap for forward KL-regularization have not been
studied in the literature. Furthermore, in [Huang et al., 2024], KL-divergence and χ2-divergence are
considered as regularizers, and the sample complexity on optimality gap for χ2-DPO are studied. We
summarized our comparison with different works related to the theoretical study of RLHF in Table 1.

Comparison in terms of Rmax and coverage constant: In Table 1, we compared different methods
in terms of their sample complexity bounds. Regarding the dependency on Rmax, we observe that
all existing bounds for RLHF with RKL regularization scale as O(exp(Rmax)) [Song et al., 2024,
Zhao et al., 2024, Chang et al., 2024, Xiong et al., 2024]. This exponential dependency arises directly
from Lemma B.1, reflecting the inherent non-linearity introduced by the sigmoid function in the
Bradley–Terry model. Additionally, concerning the coverage constant, the upper bounds under RKL
regularization scale as O(Cααα,εrkl), highlighting the significant impact of coverage parameters on
optimal and suboptimal regret bounds.

Extension to DPO: Our current results for reverse KL-regularized RLHF and forward KL-regularized
RLHF can be extended to the DPO framework [Rafailov et al., 2023]. In particular, we can derive the
following DPO function for reverse KL-regularized under multiple reference models scenario using
Theorem 5.1,

πRKL
DPO,θ̂

= argmax
πθ∈Π

n∑
i=1

log
[
σ
( 1
γ
log(

πθ(y
w
i |xi)

πααα,ref(ywi |xi)
)− 1

γ
log(

πθ(y
l
i|xi)

πααα,ref(yli|xi)
)
)]

. (22)

For forward KL-regularized DPO, we can combine Theorem 6.1 with the approach outlined in [Wang
et al., 2024a], to derive the DPO function,

πFKL
DPO,θ̂

= argmax
πθ∈Π

n∑
i=1

log
[
σ
( 1
γ

πβββ,ref(y
l
i|xi)

πθ(yli|xi)
− 1

γ

πβββ,ref(y
w
i |xi)

πθ(ywi |xi)

)]
. (23)

Furthermore, we derive optimality gap under bounded implicit reward assumptions in App. F.

8 Experiments
To support our theoretical findings, we conducted two sets of experiments: one using an online policy
gradient algorithm, and another using an offline RLHF algorithm. Together, these experiments are
designed to cover the primary use cases of KL-constrained RL optimization in the LLM post-training
setting. Our experiments address two goals:

1. Evaluating the benefits of using multiple reference models versus a single reference.
2. Comparing our exact analytical solution to the approximation proposed by Le et al. [2024].
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Online RL. Since our theory applies to general KL-constrained RL - not only to settings with learned
reward models, as in standard RLHF - we ran an experiment on the GSM8K dataset [Cobbe et al.,
2021] using GRPO [Shao et al., 2024], a policy gradient method. This setup uses a solution verifier
as the reward model, avoiding complications from learned rewards and letting us focus on the effect
of multiple reference models during training. We trained the instruction-tuned 0.5B model from
the Qwen 2.5 family [Yang et al., 2024], and used the 1.5B math-specialized model from the same
family as a second reference. For each value of α ∈ {0.0, 0.3, 0.5, 0.7, 1.0}, for FKL we consider
β = α, we trained models using the following regularization: (1) Normalized geometric mean as in
our multi-reference RKL objective, (2) Arithmetic mean as an approximation of our multi-reference
FKL objective, and (3) MRPO approximation [Le et al., 2024] of the multi-reference RKL objective.

Offline RL. This experiment compares our exact analytical solution to MRPO [Le et al., 2024] in an
offline RLHF setting. We trained the instruction-tuned 0.5B Qwen 2.5 model using the UltraFeedback
dataset [Cui et al., 2023], with the 1.5B Qwen 2.5 model as the second reference. This can be seen as
a combination of knowledge distillation [Gu et al., 2023] and RLHF. Evaluation was performed using
the Skywork-Reward-Llama-3.1-8B-v0.2 reward model [Liu et al., 2024]. Here again we compared
three training algorithms: (1) DPO [Rafailov et al., 2023] using the normalized geometric mean of
reference policies, (2) DPO based on FKL divergence as proposed by [Wang et al., 2024a] using the
arithmetic mean, and (3) MRPO version of DPO [Le et al., 2024].

To validate that our algorithm works at a larger scale, we also applied it to the Qwen 2.5 7B model.
We trained this model on the UltraFeedback Cui et al. [2023] dataset, and evaluated the trained
model’s win rate against the preferred answer using GPT-4o as LLM-as-a-Judge. We follow the
standard protocol of first performing SFT on the dataset before the DPO step. As a second reference,
we used Qwen 2.5 14B Instruct. Due to the increased compute demands, we only experimented with
α = 0.5.

Table 2: Win rate against the preferred answer from the Ultrafeedback dataset. Combining both
references leads to a substantial gain in performance.

Model Win rate
Base model (Qwen 2.5 7B) 8.6%
SFT model 43.4%
DPO (single reference – SFT model) 56.4%
DPO (single reference – 14B model) 59.8%
Ours (DPO with both references) 66.1%

For more details on the experimental setting and discussion on the computational aspects of using
multi-reference, see Appendix H.

9 Conclusion and Future Works

This work develops theoretical foundations for two Reinforcement Learning from Human Feedback
(RLHF) frameworks: reverse KL-regularized and forward KL-regularized RLHF. We derive solutions
for both frameworks under multiple reference scenarios and establish their sample complexity bounds.
Our analysis reveals that while both algorithms share identical sample complexity for the optimality
gap, the reverse KL-regularized RLHF achieves superior sample complexity for the sub-optimality
gap.

The main limitation of our work lies in the assumption of bounded reward functions where some
solutions are proposed to solve this limitation in App C. Promising directions for future work include:
(a) extending our analysis to multiple-reference, KL-regularized RLHF with unbounded rewards or
sub-Gaussian reward functions; (b) following [Wang et al., 2024a], investigating multiple-reference
RLHF regularized by general f -divergences; (c) following [Sharifnassab et al., 2024], extending the
analysis to preference models beyond the Bradley–Terry (BT) model; (d) following [Xu et al., 2025],
combining our approach with doubly robust preference-optimization algorithms to mitigate model
misspecification; and (e) extending inference-time algorithms (e.g., [Mroueh, 2024, Beirami et al.,
2024, Aminian et al., 2025]) to the multiple-reference setting using our approach.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1 and Abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Conclusion and future works section (Section 9).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: All necessary details are listed in Appendix H.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the training algorithms are detailed in the paper and all the necessary
information is discolosed.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments include 95% CI,

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explicitly mentioned the type and amount of compute that was required for
our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the Code of Ethics and made sure we conform to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our main contribution is theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our main contribution is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all code that was used in this work was mentioned and cited appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:[NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithms

The RLHF algorithm with two reference models is shown in Algorithm 1. Furthermore, the forward
KL-regularized RLHF algorithm with two reference models is shown in Algorithm 2.

Algorithm 1 Reverse KL-regularized RLHF with Two Reference Models

Require: γ, α, πref,1, πref,2 Θ
1: for i = 1, . . . ,m do
2: Sample prompt x̃i ∼ ρ and 2 responses with their preference ỹwi , ỹ

l
i ∼ π̂α,ref(·|x) ∝

πα
ref,1(·|x̃i)π

1−α
ref,2(·|x̃i).

3: end for
4: Compute the MLE estimator of the reward function based on Dn = {(x̃i, ỹ

w
i , ỹ

l
i)}ni=1:

θ̂ ← argmax
θ
L(θ,Dn),

5: Compute the RLHF output based on (16): πγ

θ̂
(·|·) ∝ π̂α,ref(·|x) exp(γrθ̂(·, ·)).

Algorithm 2 Forward KL-regularized RLHF with Two Reference Models

Require: γ, β, πref,1, πref,2 Θ
1: for i = 1, . . . ,m do
2: Sample prompt x̃i ∼ ρ and 2 responses with their preference

ỹwi , ỹ
l
i ∼ π̄β,ref(·|x) = βπref,1(·|x̃i) + (1− β)πref,2(·|x̃i).

3: end for
4: Compute the MLE estimator of the reward function based on Dn = {(x̃i, ỹ

w
i , ỹ

l
i)}ni=1:

θ̂ ← argmax
θ
L(θ,Dn)

5: Compute the RLHF output based on (20).

B Technical Tools

In this section, we introduce the following technical tools and Lemmata.
Lemma B.1 (Lemma C.2 from [Chang et al., 2024]). Under Assumptions 4.1 and 4.2, we have with
probability at least 1− δ that

EY l,Y w∼πref ,πref

[(
rθ⋆(x, Y l)− rθ⋆(x, Y w)− rθ̂(x, Y

l) + rθ̂(x, Y
w)
)2]

≤ 128R2
max exp(4Rmax) log(|R|/δ)

n
.

(24)

Lemma B.2 ([Boucheron et al., 2013]). Assume that function f(x) ∈ [0, B] is bounded. Then, we
have,

Ep(X)[f(X)]− Eq(X)[f(X)] ≤ B

√
KL(p(X)∥q(X))

2
. (25)

Lemma B.3. Assume that π̃r(y|x) ∝ πref(y|x) exp(γr(x, y)). Then, π̃r+∆(y|x) = π̃r(y|x), where
∆ is constant.

Proof.

π̃r+∆(y|x) =
πref(y|x) exp(γ(r(x, y) + ∆))

EY∼πref (Y |x)
[
exp(γ(r(x, y) + ∆))

]
=

πref(y|x) exp(γr(x, y))
EY∼πref (Y |x)

[
exp(γr(x, y))

] . (26)
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C Assumption 4.1 and Assumption 4.2 Discussion

These Assumptions are common literature are common in the literature [Song et al., 2024, Zhan
et al., 2023, Zhao et al., 2024, Chang et al., 2024, Xiong et al., 2024]. In particular, Assumption 4.1
is primarily to enable the use of concentration inequalities like Freedman’s inequality [Boucheron
et al., 2013], which require bounded differences (as in Lemma B.1). However, this assumption can be
relaxed under certain growth conditions, as discussed in [Freedman, 1975]. Moreover, even when the
original reward function is unbounded or sub-Gaussian—as is often the case in human preference
modeling—it is possible to apply a monotonic, bounded transformation to the rewards. For instance,
one can use the cumulative distribution function (CDF) of the reward under a reference model to
normalize the rewards into a bounded range, as proposed in [Balashankar et al., 2025]. This approach
also retains the essential ordering of preferences and supports handling sub-Gaussian behavior in the
transformed space. Regarding finite class, we can apply covering number and relax this assumption
as utilized in [Zhao et al., 2024]

D Proofs and Details of Section 5

Lemma D.1. Let αi ∈ [0, 1] for all i ∈ [k] and
∑k

i=1 αi = 1. For any distributions Qi for
all i ∈ [k] and P over the space X , such that P ≪ Qi, we have

k∑
i=1

αiKL(P∥Qi) = KL
(
P∥({Qi}ki=1)

ααα
)
− log

(∑
x∈A

Πk
i=1Q

αi
i (x)

)
.

Proof. We have

k∑
i=1

αiKL(P∥Qi) =

k∑
i=1

αi

(∑
x∈A

P (x) log

(
P (x)

Qi(x)

))

=
∑
x∈A

k∑
i=1

P (x) log

(
Pαi(x)

Qαi
i (x)

)

=
∑
x∈A

P (x) log

(
P (x)∏k

i=1 Q
αi
i (x)

)

= KL
(
P
∥∥({Qi}ki=1)

ααα
)
− log

(∑
x∈A

Πk
i=1Q

αi
i (x)

)
.

Lemma D.2. Let A be an arbitrary set and function f : A → R be such that∫
x∈A

exp

(
−f(x)

λ

)
QX(x)dx <∞.

Then for any PX defined on A such that X ∼ PX , we have

E[f(X)]+λKL(PX∥QX) = λKL
(
PX

∥∥PGibbs
X

)
−λ log

(∫
x∈A

exp

(
−f(x)

λ

)
QX(x)dx

)
,

where

PGibbs
X (x) :=

exp
(
− f(x)

λ

)
QX(x)∫

x∈A exp
(
− f(x)

λ

)
QX(x)dx

, x ∈ A,

is the Gibbs–Boltzmann distribution.
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Proof. We have

E[f(X)] + λKL(PX∥QX) =

∫
f(x)PX(x)dx+ λ

∫
PX(x) log

(
PX(x)

QX(x)

)

= λ

∫
PX(x) log

 PX(x)

exp
(
− f(x)

λ

)
QX(x)


= λKL

(
PX

∥∥PGibbs
X

)
− λ log

(∫
x∈A

exp

(
−f(x)

λ

)
QX(x)dx

)
.

Theorem 5.1. Consider the following objective function for RLHF with multiple reference
models,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

)) ,

where
∑K

i=1 αi = 1 and αi ∈ (0, 1) for i ∈ [K]. Then, the exact solution of the multiple
reference models objective function for RLHF is,

πγ
θ⋆

(
y|x
)
=

π̂ααα,ref

(
y|x
)

Ẑ(x)
exp

(
γrθ⋆(x, y)

)
, (27)

where

π̂ααα,ref(y|x) =
∏K

i=1 π
αi

ref,i(y|x)
Fααα(x)

,

Fααα(x) =
∑
y∈Y

K∏
i=1

παi

ref,i(y|x),

and
Ẑ(x) =

∑
y

π̂ααα,ref(y|x) exp
(
γr(x, y)

)
.

The maximum objective value is

1

γ
log

(∑
y

K∏
i=1

παi

ref,i(y|x) exp (γr(x, y))

)
.
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Proof. We can write

E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))

=
1

γ

γ E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
−
( K∑

i=1

αiKL
(
π(·|x)∥πref,i(·|x)

)) (28)

=
1

γ

γ E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
−KL(π(·|x)∥π̂ααα,ref(y|x)) + logFααα(x)

 (29)

=
1

γ

(
−KL(π(·|x)∥πγ

θ⋆

(
y|x
)
) + log Ẑ(x) + logFααα(x)

)
(30)

=
1

γ

(
−KL(π(·|x)∥πγ

θ⋆

(
y|x
)
) + log

(∑
y

K∏
i=1

παi

ref,i(y|x) exp (γr(x, y))

))
, (31)

where (29) follows from Lemma D.1 and (30) follows from Lemma D.2. Clearly, the
right side of (31) is maximized when the KL divergence is set to zero. Thus, the max-
imizing distribution π(·|x) is identical to πγ

θ⋆

(
y|x
)
, and the maximum objective value is

1
γ log

(∑
y

∏K
i=1 π

αi

ref,i(y|x) exp (γr(x, y))
)

.

Corollary D.3. Weighted multiple single reverse KL-regularized RLHF problem is an upper
bound on multiple references reverse KL-regularized RLHF problem, i.e.,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))
≤

K∑
i=1

αimax
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

(
KL
(
π(·|x)∥πref,i(·|x)

)) .

(32)

Proof. It can be shown that the maximum of objective function in Theorem 5.1 is,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))
=

1

γ
log
(
EY∼π̂ααα,ref (y|x)[exp

(
γrθ⋆

(
x, Y

))
]
)
+

1

γ
logFααα(x)

=
1

γ
log
(∑

y

K∏
i=1

παi

ref,i(y|x) exp
(
αiγrθ⋆

(
x, y
)))

≤
K∑
i=1

αi

γ
log
(∑

y

πref,i(y|x) exp
(
γrθ⋆

(
x, y
)))

,

(33)

where the last inequality follows from Hölder’s inequality. Note that,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

(
KL
(
π(·|x)∥πref,i(·|x)

))
=

1

γ
log
(∑

y

πref,i(y|x) exp
(
γrθ⋆

(
x, Y

)))
. (34)
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Then, we have,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

αiKL
(
π(·|x)∥πref,i(·|x)

))
≤

K∑
i=1

αimax
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

(
KL
(
π(·|x)∥πref,i(·|x)

))
.


(35)

Therefore, multiple single RLHF problem is an upper bound on multiple reference models RLHF
problem.

Remark D.4 (Choosing ααα). The optimum ααα for a given x, can be derived from the following
optimization problem,

max
ααα

1

γ
log
(∑

y

K∏
i=1

παi

ref,i(y|x) exp
(
αiγrθ⋆

(
x, y
)))

. (36)

Proposition D.5. For a given response, x ∈ X , the following upper bound holds,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x)) ≤

∫
Y
(rθ⋆(x, y)− rθ̂(x, y))(π

γ
θ⋆(y|x)− πγ

θ̂
(y|x))(dy).

Proof. Note that KL(π(·|x)∥π̂ααα,ref(·|x)) is a convex function with respect to π(·|x). Therefore,
Jγ(π̂ααα,ref(·|x), π(·|x)) is a concave function with respect to π(·|x). First, we compute the functional
derivative of Jγ(π̂ααα,ref(·|x), π(·|x)) with respect to π(·|x),

δJγ(π̂ααα,ref(·|x), π(·|x))
δπ

= rθ⋆(x, y)− 1

γ
log(π(·|x)/π̂ααα,ref(·|x)) +

1

γ
. (37)

Therefore, we have,
J γ(πγ

θ⋆(·|x), πγ

θ̂
(·|x)) =

Jγ(π̂ααα,ref(·|x), πγ
θ⋆(·|x))− Jγ(π̂ααα,ref(·|x), πγ

θ̂
(·|x))

≤
∫
Y

δJγ(π̂ααα,ref(·|x), πγ

θ̂
(y|x))

δπ
(πγ

θ⋆(y|x)− πγ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− 1

γ
log(πγ

θ̂
(y|x)/π̂ααα,ref(·|x)) +

1

γ

)
(πγ

θ⋆(y|x)− πγ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y) +

1

γ
log(Z(x))

)
(πγ

θ⋆(y|x)− πγ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)

)
(πγ

θ⋆(y|x)− πγ

θ̂
(y|x))(dy).

(38)

It completes the proof.

Lemma D.6. Consider the softmax policy, πγ
r (y|x) ∝ π̂ααα,ref(y|x) exp(γr(x, y)). Then, the

sensitivity of the policy with respect to reward function is,

∂πγ
r

∂r
(r) = γπγ

r (y|x)(1− πγ
r (y|x)).

Proof. We have πγ
r (y|x) =

π̂ααα,ref (y|x) exp(γr(x,y))
EY ∼π̂ααα,ref (·|x)[exp(γr(x,Y ))] . Using Chain rule, we have,

∂πγ
r

∂r
(r) = γ

π̂ααα,ref(y|x) exp(γr(x, y))
EY∼π̂ααα,ref (·|x)[exp(γr(x, Y ))]

− γπ̂ααα,ref(y|x)2 exp(2γr(x, y))
EY∼π̂ααα,ref (·|x)[exp(γr(x, Y ))]2

= γπγ
r (y|x)(1− πγ

r (y|x)).
(39)
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Theorem 5.2. Under Assumption 4.1, 4.2 and 4.4, the following upper bound holds on the
sub-optimality gap with probability at least (1− δ) for δ ∈ (0, 1/2),

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x))

≤ γCααα,εrkl128e
4RmaxR2

max

log(|R|/δ)
n

.

Proof. Using Proposition D.5, we have,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x))

≤
∫
Y
(rθ⋆(x, y)− rθ̂(x, y))(π

γ
θ⋆(y|x)− πγ

θ̂
(y|x))(dy).

(40)

Note that, as the integral in (40) is over Y , therefore, we have,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x))

≤
∫
Y
(rθ⋆(x, y)− rθ̂(x, y)− h(x))(πγ

θ⋆(y|x)− πγ

θ̂
(y|x))(dy),

(41)

where h(x) is an arbitrary function over X . Note that πγ
θ⋆(y|x) and πγ

θ̂
(y|x) are function of rθ⋆(x, y)

and rθ̂(x, y), respectively. Furthermore, softmax policies are shift invariant, Lemma B.3, i.e.,
πγ
θ⋆(y|x) ∝ π̂ααα,ref(·|x) exp(γ(r⋆θ(x, y)−h(x))) where h(x) is a function dependent on x. Therefore,

we can apply the mean-value theorem to (πγ
θ⋆(y|x)− πγ

θ̂
(y|x))(dy) with respect to reward function

r(x, y). Therefore, we have for a given h(x),

(πγ
θ⋆(y|x)− πγ

θ̂
(y|x)) = ∂π(·|x)

∂r
(rλ)(rθ⋆(x, y)− rθ̂(x, y)− h(x))

= γπrλ(·|x)(1− πrλ(·|x)(rθ⋆(x, y)− rθ̂(x, y)− h(x)),
(42)

where rλ = λ(rθ⋆(x, y) − h(x)) + (1 − λ)rθ̂(x, y) for some λ ∈ [0, 1] and πrλ(·|x) ∝
π̂ααα,ref(·|x) exp(γrλ(x, y)). Applying (42) in (41), we have,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x))

≤ γ

∫
Y
(rθ⋆(x, y)− rθ̂(x, y))

2πrλ(·|x)(1− πrλ(·|x))(dy)

≤ γ

∫
Y
(rθ⋆(x, y)− rθ̂(x, y))

2πrλ(·|x)(dy)

≤ Cααα,εrklγ

∫
Y
(rθ⋆(x, y)− rθ̂(x, y)− h(x))2π̂ααα,ref(·|x)(dy).

(43)

Choosing h(x) = EY l∼π̂ααα,ref (·|x)[rθ⋆(x, Y l)−rθ̂(x, Y
l)], applying Jensen inequality and Lemma B.1,

we have,

J γ(πγ
θ⋆(·|x), πγ

θ̂
(·|x))

≤ Cααα,εrklγ

∫
Y
(rθ⋆(x, yw)− rθ̂(x, y

w)− rθ⋆(x, yl) + rθ̂(x, y
l))2π̂ααα,ref(·|x)(dyl)π̂ααα,ref(·|x)(dyw)

≤ γCααα,εrkl128e
4RmaxR2

max

log(|R|/δ)
n

.

(44)

This completes the proof.
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Theorem 5.3. Under Assumption 4.1, 4.2 and 4.4, there exists constant C > 0 such that the
following upper bound holds on the optimality gap of the reverse KL-regularized RLHF with
probability at least (1− δ) for δ ∈ (0, 1/2),

J (πγ
θ⋆(·|x), πγ

θ̂
(·|x)) ≤ γCααα,εrkl128e

4RmaxR2
max

log(|R|/δ)
n

+ C8Rmaxe
2Rmax

√
2Cααα,εrkl log(|R|/δ)

n
.

Proof. We have the following decomposition of the optimality gap,

J (πγ
θ⋆(·|x), πγ

θ̂
(·|x)) = J γ(πγ

θ⋆(·|x), πγ

θ̂
(·|x))+

KL(πγ
θ⋆(·|x)∥π̂ααα,ref(·|x))−KL(πγ

θ̂
(·|x)∥π̂ααα,ref(·|x))

γ
.

(45)
Now, we provide an upper bound on the second term using Lemma D.6 and a similar approach for
choosing h(x) in the proof of Theorem 5.2, we have for some λ ∈ [0, 1],

KL(πγ
θ⋆(·|x)∥π̂ααα,ref(·|x))−KL(πγ

θ̂
(·|x)∥π̂ααα,ref(·|x))

=

∫
Y

∂π

∂r
(rλ)

(
log
( πrλ(·|x)
π̂ααα,ref(·|x)

)
+ 1
)
(rθ⋆(x, y)− rθ̂(x, y)− h(x))(dy)

= γ

∫
Y
πrλ(·|x)(1− πrλ(·|x))

(
log
( πrλ(·|x)
π̂ααα,ref(·|x)

)
+ 1
)
(rθ⋆(x, y)− rθ̂(x, y)− h(x))(dy)

≤ γ

√∫
Y
(1− πrλ(·|x))2

(
log
( πrλ(·|x)
π̂ααα,ref(·|x)

)
+ 1
)2

(dy)

×

√∫
Y
πrλ(·|x)2(rθ⋆(x, y)− rθ̂(x, y)− h(x))2(dy),

(46)

where, in the last inequality, we applied the Cauchy–Schwarz inequality. Using the fact that πrλ ∝
π̂ααα,ref(·|x) exp(γrλ) and Lemma B.1, we have,

KL(πγ

θ̂
(·|x)∥π̂ααα,ref(·|x))−KL(πγ

θ⋆(·|x)∥π̂ααα,ref(·|x))

≤ γ8
(
2γRmax + 1

)
Rmax exp(2Rmax)

√
2Cααα,εrkl log(|R|/δ)

n
.

(47)

The final result holds by applying the union bound.

In the following, we compare the RLHF objective function under the multiple reference model policy,
π̂ααα,ref(·|x), with i-th reference model, πref,i(·|x). For this purpose, we bound the difference between
these two RLHF objective functions in different scenarios.

Proposition D.7. Under Assumption 4.1, the following upper bound holds,

J̃γ(πααα,ref , π
γ
θ⋆)− J̃γ(πref,i, π

γ
θ⋆,i) ≤

exp(γRmax)− 1

γ
√
2

√
KL(πααα,ref(·|x)∥πref,i(·|x)).

Proof. Note that, for a policy πref we have,

J̃γ(πref , π
γ
θ⋆) =

1

γ
log
[
Eπref

[exp(γrθ⋆(x, y))]
]
. (48)
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Therefore, using the functional derivative, we have,

J̃γ(πααα,ref , π
γ
θ⋆)− J̃γ(πref,i, π

γ
θ⋆,i)

=
1

γ
log
[
Eπααα,ref

[exp(γrθ⋆(x, y))]
]
− 1

γ
log
[
Eπref,i

[exp(γrθ⋆(x, y))]
]

=
1

γ

∫ 1

0

∫
Y

exp(γrθ⋆(x, y))

Eπref,λ
[exp(γrθ⋆(x, y))]

(
πααα,ref − πref,i

)
(dy)dλ

=
1

γ

∫ 1

0

1

Eπref,λ
[exp(γrθ⋆(x, y))]

∫
Y
exp(γrθ⋆(x, y))

(
πααα,ref − πref,i

)
(dy)dλ

≤ exp(γRmax)− 1

γ

√
KL(πααα,ref(·|x)∥πref,i(·|x))

2
,

(49)

where πref,λ = πref,i + λ
(
πααα,ref − πref,i

)
and the last inequality holds due to Lemma B.2.
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E Proofs and Details of Section 6

Lemma E.1. Let βi ∈ [0, 1] for all i ∈ [k] and
∑k

i=1 βi = 1. For any distributions Qi for
all i ∈ [k] and R such that Qi ≪ P , we have

k∑
i=1

βiKL(Qi∥P ) = H
( k∑

i=1

βiQi

)
−

k∑
i=1

βiH(Qi) + KL
( k∑

i=1

βiQi∥P
)
.

Proof. We have,

k∑
i=1

βiKL(Qi∥P ) (50)

=

k∑
i=1

βiQi log(Qi)− βiQi log(P )

= −
k∑

i=1

βiH(Qi) +
( k∑
i=1

βiQi

)
log
( k∑
i=1

βiQi

)
−
( k∑
i=1

βiQi

)
log
( k∑
i=1

βiQi

)
−
( k∑
i=1

βiQi

)
log(P )

(51)

= H
( k∑

i=1

βiQi

)
−

k∑
i=1

βiH(Qi) +
( k∑
i=1

βiQi

)
log(

k∑
i=1

βiQi)− (

k∑
i=1

βiQi) log(P ) (52)

= H
( k∑

i=1

βiQi

)
−

k∑
i=1

βiH(Qi) + KL
( k∑

i=1

βiQi∥P
)
. (53)

Theorem 6.1. Consider the following objective function for RLHF with multiple reference
models,

max
π

E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

βiKL
(
πref,i(·|x)∥π(·|x)

))
,

where
∑K

i=1 βi = 1 and βi ∈ (0, 1) for i ∈ [K]. Then, the implicit solution of the multiple
reference models objective function for RLHF is,

π̃γ
θ⋆

(
y|x
)
=

π̄βββ,ref

(
y|x
)

γ
(
Z̃θ⋆(x)− rθ⋆(x, y)

) ,
where

π̄βββ,ref(y|x) =
K∑
i=1

βiπref,i(y|x),

and Z̃θ⋆(x) is the solution to
∫
y∈Y π̃γ

θ⋆

(
y|x
)
= 1 for a given x ∈ X .

Proof. Using Lemma E.1, the objective function of forward KL-regularization under multiple refer-
ence model can be represented as,

max
π

E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ
KL
(
π̄βββ,ref(·|x)∥π(·|x)

)
,

where π̄βββ,ref(y|x) =
∑K

i=1 βiπref,i(y|x). As the function is a concave function with respect to π(·|x),
we can compute the derivative with respect to π(·|x). Therefore, using the functional derivative
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under the constraint that π(·|x) is a probability measure with Lagrange multiplier, Z̃θ⋆(x), we have
at optimal solution that,

rθ⋆

(
x, y
)
+

1

γ

π̄βββ,ref(y|x)
π̃γ
θ⋆(y|x)

− Z̃θ⋆(x) = 0. (54)

Solving (54) results in the final solution, π̃γ
θ⋆(y|x).

Corollary E.2. Weighted multiple single forward KL-regularized RLHF problem is an upper bound
on multiple references forward KL-regularized RLHF problem, i.e.,

max
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

( K∑
i=1

βiKL
(
πref,i(·|x)∥π(·|x)

))
≤

K∑
i=1

βimax
π

 E
Y∼π

(
·|x
)[rθ⋆

(
x, Y

)]
− 1

γ

(
KL
(
πref,i(·|x)∥π(·|x)

)) .

(55)

Proof. It holds due to maximum function property.

Assuming,

π̃γ
θ⋆

(
y|x
)
=

π̄βββ,ref

(
y|x
)

γ
(
Z̃θ⋆(x)− rθ⋆(x, y)

) ,
we can provide the following property of Z̃θ⋆(x), inspired by [Cohen, 2017].

Lemma E.3. The following property holds for Z̃θ⋆(x),

• For any x ∈ X where ρ(x) > 0, we have supy∈Y rθ⋆(x, y) ≤ Z̃θ⋆(x).

• Under Assumption 4.1, we have supx∈X Z̃θ⋆(x) ≤ Rmax +
1
γ .

Proof. Using the following representation,

π̃γ
θ⋆

(
y|x
)
=

π̄βββ,ref

(
y|x
)

γ
(
Z̃θ⋆(x)− rθ⋆(x, y)

) ,
we can conclude that for a given x ∈ X , supy∈Y rθ⋆(x, y) ≤ Z̃θ⋆(x). Otherwise, π̃γ

θ⋆

(
y|x
)

will be
negative.

For the second part, let’s proceed by contradiction. Suppose there exists some x ∈ X such that:
Z̃θ⋆(x) > sup y ∈ Yrθ⋆(x, y) + 1

γ

Under this assumption, we can show that:∫
y

π̃γ
θ⋆(y|x)(dy) < 1.

This contradicts the fundamental requirement that

π̃γ
θ⋆(y|x),

must be a probability distribution. Therefore, our initial assumption must be false. Consequently, for
all x ∈ X , we must have:

Z̃θ⋆(x) ≤ sup
y∈Y

rθ⋆(x, y) +
1

γ
.

Taking the supremum of both sides with respect to x completes the proof.
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Proposition E.4. For a given response, x ∈ X , the following upper bound holds,

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤∫

Y
(rθ⋆(x, y)− rθ̂(x, y))(π̃

γ
θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy).

Proof. The proof is similar to Proposition D.5. Note that KL(π̄βββ,ref(·|x)∥π(·|x)) is a convex function
with respect π(·|x). Therefore, J̃γ(π̄βββ,ref(·|x), π(·|x)) is a concave function with respect to π(·|x).
First, we compute the functional derivative of J̃γ(π̄βββ,ref(·|x), π(·|x)) with respect to π(·|x),

δJ̃γ(π̄βββ,ref(·|x), π(·|x))
δπ

= rθ⋆(x, y) +
1

γ

π̄βββ,ref(·|x)
π(·|x)

. (56)

Therefore, we have,

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤

∫
Y

(
rθ⋆(x, y) +

1

γ

π̄βββ,ref(y|x)
π̃γ

θ̂
(y|x)

)
(π̃γ

θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy), (57)

Using the fact that π̃γ

θ̂
(y|x) = π̄βββ,ref (y|x)

γ(Z̃(x)−r
θ̂
(x,y))

,

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y) + Z̃(x)

)
(π̃γ

θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)

)
(π̃γ

θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy),

(58)

where the last equality follows from the fact that Z̃(x) is just dependent on x.

Theorem 6.2. Under Assumption 4.1, 4.2 and 4.4, the following upper bound holds on the
sub-optimality gap with probability at least (1− δ) for δ ∈ (0, 1),

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤ 16Cβββ,εfkle

2RmaxRmax

√
log(|R|/δ)

n
.

Proof. From Proposition E.4, we have,

J̃ γ(π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)

)
(π̃γ

θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)− h(x)

)
(π̃γ

θ⋆(y|x)− π̃γ

θ̂
(y|x))(dy)

=

∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)− h(x)

)
π̄βββ,ref(y|x)

(π̃γ
θ⋆(y|x)− π̃γ

θ̂
(y|x))

π̄βββ,ref(y|x)
(dy)

≤

√∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)− h(x)

)2
(π̄βββ,ref(y|x))2(dy)

√∫
Y

(π̃γ
θ⋆(y|x)− π̃γ

θ̂
(y|x))2

(π̄βββ,ref(y|x))2
(dy)

≤

√∫
Y

(
rθ⋆(x, y)− rθ̂(x, y)− h(x)

)2
π̄βββ,ref(y|x)(dy)

√∫
Y

(π̃γ
θ⋆(y|x)− π̃γ

θ̂
(y|x))2

(π̄βββ,ref(y|x))2
(dy)

≤ 16Cβββ,εfkle
2RmaxRmax

√
log(|R|/δ)

n
,

(59)

where the first, second, and last inequalities follow from the Cauchy–Schwarz inequality,
(π̄βββ,ref(y|x))2 ≤ π̄βββ,ref(y|x) and using Assumption 4.5 and Lemma B.1, respectively.
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Theorem 6.3. Under Assumption 4.1, 4.2 and 4.4, there exists constant D > 0 such that
the following upper bound holds on optimality gap of the multiple reference forward KL-
regularized RLHF algorithm with probability at least (1− δ) for δ ∈ (0, 1),

J̃ (π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x))

≤ 16Cβββ,εfkle
2RmaxRmax

√
log(|R|/δ)

n
+

max
(
| log(Cβββ,εfkl)|, log(γRmax + 1)

)
γ

Proof. We have the following decomposition of the optimality gap,

J̃ (π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) = J̃ γ(π̃γ

θ⋆(·|x), π̃γ

θ̂
(·|x))

+
KL(π̄βββ,ref(·|x)∥π̃γ

θ̂
(·|x))−KL(π̄βββ,ref(·|x)∥π̃γ

θ⋆(·|x))
γ

.
(60)

For second term, using the fact that, π̃γ

θ̂
(y|x) = π̄βββ,ref (y|x)

γ(Z̃
θ̂
(x)−r

θ̂
(x,y))

and π̃γ
θ⋆(y|x) = π̄βββ,ref (y|x)

γ(Z̃θ⋆ (x)−rθ⋆ (x,y))
,

we have,

KL(π̄βββ,ref(·|x)∥π̃γ

θ̂
(·|x))−KL(π̄βββ,ref(·|x)∥π̃γ

θ⋆(·|x))
γ

=
EY∼π̄βββ,ref (·|x)[log(γ(Z̃θ̂(x)− rθ̂(x, y)))]− EY∼π̄βββ,ref (·|x)[log(γ(Z̃θ⋆(x)− rθ⋆(x, y)))]

γ

≤
∣∣EY∼π̄βββ,ref (·|x)[log(γ(Z̃θ̂(x)− rθ̂(x, y)))]

∣∣+ ∣∣EY∼π̄βββ,ref (·|x)[log(γ(Z̃θ⋆(x)− rθ⋆(x, y)))]
∣∣

γ

≤
max

(
| log(Cε,fkl)|, log(γRmax + 1)

)
γ

,

(61)

where the last inequality follows from Lemma E.3. The final result holds by combining Theorem 6.2
with (61).
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F Extension to DPO

As discussed in [Song et al., 2024], DPO can not guarantee any performance under some conditions.
In particular, The reverse KL-regularized case can fail under partial coverage conditions, necessitating
the Global Coverage Assumption (Assumption 4.3). The forward KL-regularized case requires an
even stronger condition: the ratio of reference to policy must be bounded from below away from zero.
Specifically, we should have 0 < inf(x,y),ρ(x)>0

πβββ,ref (y|x)
πθ(y|x) which is a stronger assumption. For this

purpose, we consider the implicit bounded reward assumptions.

Our theoretical results for reverse KL-regularized RLHF and forward KL-regularized RLHF can be
applied DPO problems (22) and (23) under the following assumptions.

Assumption F.1 ((Bounded implicit RKL reward). For all yw, yl ∈ Y and x ∈ X , there exists a
constant Bmax such that,∣∣∣ 1

γ
log(

πθ(y
w|x)

πααα,ref(yw|x)
)− 1

γ
log(

πθ(y
l|x)

πααα,ref(yl|x)
)
∣∣∣ ≤ Bmax. (62)

Assumption F.2 ((Bounded implicit FKL reward). For all yw, yl ∈ Y and x ∈ X , there exists a
constant Dmax such that, ∣∣∣ 1

γ

πβββ,ref(y
l
i|xi)

πθ(yli|xi)
− 1

γ

πβββ,ref(y
w
i |xi)

πθ(ywi |xi)

∣∣∣ ≤ Dmax. (63)

Lemma F.3 (Lemma E.5 from [Huang et al., 2024]). Under Assumptions 4.1, F.1 and 4.2, we have
with probability at least 1− δ that

EY l,Y w∼πref ,πref

[(
rθ⋆(x, Y l)− rθ⋆(x, Y w)− rθ̂(x, Y

l) + rθ̂(x, Y
w)
)2]

≤ 128B2
max exp(4Rmax) log(|R|/δ)

n
.

(64)

The same results also holds under Assumption F.2.

Theorem F.4. Under Assumptions F.1, 4.1, 4.2 and 4.4, there exists constant C > 0 such
that the following upper bound holds on the optimality gap of DPO based on reverse KL-
regularization with probability at least (1− δ) for δ ∈ (0, 1/2),

J (πγ
θ⋆(·|x), πγ

θ̂
(·|x)) ≤ γCααα,εrkl128e

4RmaxB2
max

log(|R|/δ)
n

+ C8Bmaxe
2Rmax

√
2Cααα,εrkl log(|R|/δ)

n
.

Proof. The proof is similar to Theorem 5.3 using Lemma F.3.

Theorem F.5. Under Assumptions F.2, 4.1, 4.2 and 4.4, the following upper bound holds on
optimality gap of DPO based on forward KL-regularization with probability at least (1− δ)
for δ ∈ (0, 1),

J̃ (π̃γ
θ⋆(·|x), π̃γ

θ̂
(·|x)) ≤ 16Cβββ,εfkle

2RmaxDmax

√
log(|R|/δ)

n

+
max

(
| log(Cε,fkl)|, log(γRmax + 1)

)
γ

Proof. The proof is similar to Theorem 6.3 by using Lemma F.3.
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G Further Discussion

Coverage Assumption Discussion: The coverage assumptions for multiple references can differ from
the single reference scenario. For the reverse KL-regularized case with reference policy π̂ααα,ref(·|x),
we have:

π(y|x)
π̂ααα,ref(·|x)

= Fααα(x)

K∏
i=1

( π(y|x)
πref,i(y|x)

)αi

, (65)

where Fααα(x) is defined in (15). Therefore, we have
∏K

i=1 C
αi

ref,i as the global coverage assumption,
where Cref,i < ∞ is the global coverage with respect to the i-th reference. Note that, using
Hölder’s inequality, we can show that Fααα(x) ≤ 1. A similar discussion applies to the forward
KL-regularization scenario with reference policy π̄βββ,ref(y|x). Regarding the local reverse KL-ball
coverage assumptions (Assumption 4.4), as π̂ααα,ref(·|x) is defined on common support among all
reference models, then the set of policies with bounded

Ex∼ρ[KL(π(·|x)∥π̂ααα,ref(·|x))] ≤ εααα,rkl, (66)

is smaller than each reference model separately. Similarly to global coverage, we can assume that
Cααα,εrkl =

∏K
i=1 C

αi

ref,i,εrkl
.

Comparison of RKL with FKL: The RKL and FKL exhibit fundamentally different characteristics
in their optimization behavior. RKL between the reference model and target policy, defined as
Eπθ⋆

[log(πθ⋆/πref)], demonstrates mode-seeking behavior during optimization. When πθ⋆ represents
the output policy of RLHF for language model alignment, it may assign zero probability to regions
where πref is positive. Conversely, FKL, expressed as Eπref

[log(πref/πθ⋆)], exhibits mass-covering
properties. Its mathematical formulation requires πθ⋆ to maintain non-zero probability wherever πref

is positive. This constraint naturally leads FKL to produce distributions that cover the full support of
the reference model, thereby promoting diverse outputs.

Reference policy in multiple reference model scenario under FKL and RKL: In the multiple
reference model setting, the generalized escort distribution under reverse KL-regularization covers the
intersection of the supports of all reference models. Specifically, responses receive zero probability
if they lack positive probability in any single reference model. This leads the generalized escort
distribution to assign non-zero probabilities only to responses supported by all reference models
simultaneously. In contrast, when using the average distribution as the reference model in the forward
KL scenario, the resulting distribution covers the union of supports across all reference models,
encompassing a broader range of possible responses.
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H Experiment Details

Implementation code is provided at https://github.com/idanshen/multi_ref.

To ensure fair comparison across algorithms, we began by conducting an independent hyperparameter
search for each method. For the GRPO experiment, we explored learning rates of {1e-3, 1e-4, 1e-5}
and KL coefficients of {0.05, 0.1, 0.2}. For the DPO experiments, we explored learning rates of
{1e-6, 1e-7, 1e-8}. We also tried different γ values but found that the default one works the best in
all cases. After selecting the best configuration for each algorithm, we trained each setup three times
with different random seeds to estimate variability and compute confidence intervals.

In the case of GRPO, using the full FKL objective would require sampling from the reference model,
which roughly doubles training time. To reduce this cost, we instead approximated the FKL term by
sampling from the trained model and computing a per-token objective—striking a balance between
efficiency and fidelity to the theoretical objective.

Our data splits were chosen to reflect standard practice where possible. For GSM8K, we used the
official train-test split. Since UltraFeedback does not provide an official split, we randomly withheld
10% of the dataset and used the corresponding prompts for evaluation.

All experiments were conducted on A100 GPUs. Offline RLHF training used a single GPU, while
online training required two. Although multi-reference RL introduces some additional computational
requirements—specifically, evaluating logits from another policy—the cost is modest. In offline
settings such as DPO, reference model logits can be precomputed and stored, avoiding memory
overhead during training. In online settings like GRPO, the reference policy must reside in memory,
but placing it on a separate GPU resulted in only a 10% slowdown.
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