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Abstract—In this article, the unsupervised domain adaptation
problem, where an approximate inference model is to be learned
from a labeled dataset and expected to generalize well on an
unlabeled dataset, is considered. Unlike the existing work, we
explicitly unveil the importance of the latent variables produced
by the feature extractor, that is, encoder, where contains the
most representative information about their input samples, for
the knowledge transfer. We argue that an estimator of the rep-
resentation of the two datasets can be used as an agent for
knowledge transfer. To be specific, a novel variational inference
approach is proposed to approximate a latent distribution from
the unlabeled dataset that can be used to accurately predict its
input samples. It is demonstrated that the discriminative knowl-
edge of the latent distribution that is learned from the labeled
dataset can be progressively transferred to that is learned from
the unlabeled dataset by simultaneously optimizing the estima-
tor via the variational inference and our proposed regularization
for shifting the mean of the estimator. The experiments on sev-
eral benchmark datasets demonstrate that the proposed method
consistently outperforms state-of-the-art methods for both object
classification and digit classification.

Index Terms—Computer vision, deep learning, domain
adaptation.

I. INTRODUCTION

ONE OF the core problems of supervised learning is
that its performance highly relies on a large amount

of labeled data. Previous studies have demonstrated that the
performance of an image classifier will drop significantly
when the input data distributions vary due to some fac-
tors, for example, the different angles of the camera, the
different noise conditions, the different background styles,
etc. [1]–[4]. Therefore, there is a strong demand to design
a learner that can produce domain-invariant representations,
which allows the data distributions from the different but
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related data domains to have heterogeneous features with dif-
ferent dimensionalities [5]. More specifically, such a learner
can transfer the knowledge learned from a labeled dataset
(source domain) to an unlabeled dataset (target domain). Due
to the lack of label information for the target input samples,
the latent distribution, which is learned from the target domain,
that can be used for predicting the categories of the target
input samples is difficult to compute. Unsupervised domain
adaptation (UDA) aims at solving the label-missing problem
by mitigating the domain shift and ensuring that the learned
classifier can generalize well to the target domain without
using its labels. In this work, we utilize variational inference
to efficiently approximate the latent representations of the tar-
get (label-missing) domain, which can be used to accurately
predict the missing labels.

The existing UDA approaches attempt to mitigate the
domain shift by regularizing the feature extractor to extract
the features from both domains to construct a domain-invariant
feature (latent) space. In their settings, a decision rule, which
can be applied to the target domain, is able to be learned
from the domain-invariant latent space with the support of
the labels of the source input samples. Deep UDA approaches
further improve the knowledge transferability and the model
generalization by leveraging the better feature-extraction abil-
ity of deep neural networks [6]–[12]. Most of these methods
quantify the domain shift between the source domain and the
target domain using the intermediate features that are induced
by classifiers, namely, the classifier-induced discrepancy, under
the guidance of the convergence learning bound [13]. The main
idea of these approaches is to minimize the classification error
of the source domain and the classifier-induced discrepancy
to capture both discriminative and domain-invariant repre-
sentations. Nevertheless, the work based on the convergence
learning bound does not explicitly consider the way to effec-
tively infer a good latent distribution from the target domain
for its classification task.

Deep generative models are widely applied to transform a
simple distribution with some mapping functions into a more
complicated one. An idea to achieve such transformation is
to use an encoder, which can also be regarded as a feature
extractor, to infer the latent variables that can be used to
predict and construct the data distribution. Variational autoen-
coder (VAE) [14] utilizes a Kullback–Leibler (KL)-divergence
penalty to impose a Gaussian distribution on the latent vari-
ables of the autoencoder such that the learning of the encoder’s
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parameters can be guided to infer a reasonable latent space
whose sampled vectors can be decoded back to the input
distribution. A similar work, called the importance weighted
autoencoder [15], is also proposed to learn richer latent space
representations using a strictly tighter log-likelihood lower
bound derived from importance weighting. Their works indi-
cate that the distribution transformation can be easily done by
optimizing the latent space to cover the sufficient representa-
tions. Like generative modeling, latent space inference is also
important for transferring knowledge across two data domains
as the latent space is typically shared by the two domains.
As the knowledge transfer itself is to regularize the feature
extractor to extract the domain-invariant features so that the
target input samples can make the best use of the discrimina-
tive features source features for the specific tasks in the target
domain, we can argue that inferring a good latent space shared
by the two data domains is of necessity for UDA.

In this article, we propose mutual variational inference
(MVI), which utilizes the concepts of variational inference
and mutual information (MI), to infer an estimator that can
be used as an agent for knowledge transfer. We demonstrate
that optimizing a variational approximation, which contains
the information from the two domains, can maximize the
variational lower bound for the knowledge transfer. We fur-
ther propose to maximize a lower bound of the MI between
the variational approximation and the target input samples to
retain more information about the target domain in the vari-
ational approximation. The process of maximizing the lower
bound of the MI shifts the mean of the variational approx-
imation from the source to the target, which produces a
more generalized model that benefits the knowledge transfer.
Experimental results on several benchmark datasets indicate
that MVI achieves state-of-the-art performance on different
UDA tasks.

II. RELATED WORK

A. Domain Adaptation

The cross-domain knowledge transfer requires the model
to learn the discriminative features from a labeled (source)
dataset and apply them to an unlabeled (target) dataset.
However, the variations between the source data distributions
and the target data distributions, that is, the domain shifts,
could significantly degrade the generalization of the model
trained on the labeled dataset and lead to poor performance
on predicting those unlabeled data samples. To solve this issue,
the UDA methods are proposed to mitigate the effect of the
data variations on the model generalization by transferring
the knowledge learned from the source domain to the target
domain [5], [16]. In general, UDA mitigates domain shifts by
extracting domain-invariant features from the two domains.

Adversarial UDAs are motivated by generative adversar-
ial nets (GANs) [17], which is a cornerstone work in the
generative model. The domain-adversarial neural network
(DANN) is proposed to train the feature extractor to confuse
the discriminative model, that is, the domain discriminator,
into believing that the features it extracts come from the

source domain [4]. Further introducing the adversarial learn-
ing strategies makes the training of the discriminative model
more difficult to converge, which results in the extracted
features being more domain invariant [18]. Joint distribu-
tion learning with GAN (JAN) further improves the existing
adversarial UDA methods by learning the joint distribu-
tion of the marginals and the conditionals from multiple
data domains [19]. Conditional adversarial domain adapta-
tion (CDAN) optimizes the cross-covariance between the
latent representations and their predictions, which improves
the model discriminability and transferability of the previous
adversarial UDA methods [20]. Lately, transferable adversar-
ial training (TAT) is proposed to improve the adaptability of
the source domain to improve the model transferability [21].
TAT could generate transferable features in the middle of the
source domain and the target domain to avoid the distortion
of the original feature distributions and the deterioration of
adaptability. Besides adversarial UDAs, researchers also pro-
pose to measure the domain divergence by some statistical
distances and minimize such distances to encourage the fea-
ture extractor to extract domain-invariant features [22], [23].
Instead of utilizing adversarial learning, correlation align-
ment evaluates the domain divergence by the difference of
the mean and covariance between the source dataset and
the target dataset [24], [25]. Methods based on maximum
mean discrepancy (MMD), which measures the difference
between the means of the two feature distributions, are also
proposed [26], [27]. The deep adaptation network (DAN) is
proposed to reduce the data bias and enhance the feature trans-
ferability by utilizing the task-specific layers [8]. Moreover,
stepwise adaptive feature norm (SAFN) unveils that the
domain divergence largely relies on some small-norm regions
that are induced by the image classifier, so that the knowledge
can be progressively transferred by putting features away from
these regions [12]. Research also refines the architectures of
DNN to improve the model transferability. Wang et al. [28]
replaced the traditional normalization techniques (e.g., batch
normalization) with transferable normalization (TransNorm) to
investigate the domain-specific features to improve the trans-
ferability. TransNorm can be easily plugged into the existing
domain adaption approaches and improve the classification
accuracy without introducing any extra parameters.

B. Autoencoders and Mutual Information

Deep learning-based generative models have succeeded in
modeling different data distributions. The denoising autoen-
coder (DAE) is proposed to extract robust features from the
input samples and, therefore, exclude any image noise when
reconstructing these data samples [29]. It is shown that min-
imizing the reconstruction error using an autoencoder can
maximize the lower bound of the MI between the input space
and its latent space, which can encourage the encoder to pro-
duce features that are robust to the variations of the input
distribution [30]. Similarly, the VAE is proposed to retain the
maximum amount of input information in their latent repre-
sentations [14]. The autoencoder-based approaches are also
applied in domain adaptation for better feature representation.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 18,2024 at 20:23:01 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: MVI: INDIRECT VARIATIONAL INFERENCE APPROACH FOR UDA 11493

The deep reconstruction-classification network (DRCN) intro-
duces an autoencoder-based architecture to reconstruct the
target input samples. DRCN maximizes the MI between the
target input space and its latent space to retain the maxi-
mum amount of the target information while transferring the
knowledge from the source domain [31].

C. Variational Inference

Variational inference is widely used to approximate a con-
ditional density of the latent variable in the Bayesian statistics
and becomes increasingly important to computer vision. Deep
learning-based variational inference methods can efficiently
infer a latent distribution for a set of input samples through
optimization [14]. Although variational inference underesti-
mates the variance of its approximation, it can explore the
model complexity efficiently. In this study, the task that we
are focusing on is to transfer the knowledge learned by the
source latent distribution to the target latent distribution instead
of using the variational approximation directly. Thus, the
underestimation of the variance would have less impact in
preventing our proposed work from achieving its objective of
knowledge transfer.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

1) Variational Inference: Considering the computation of
the conditional probability distribution of a latent variable z
given its observation x

p(z|x) = p(z)
p(x|z)
p(x)

. (1)

In the Bayesian models, the latent variable is drawn from
a prior distribution p(z) and the likelihood function is mod-
eled as ([p(x|z)]/[p(x)]). The inference of a Bayesian model
can be viewed as a process to compute the posterior p(z|x),
which is shown in (1). When the Bayesian model becomes
complex, the posterior can only be estimated by the inference
approximation.

Traditional approaches to approximate the inference are
based on the Markov Chain Monte Carlo (MCMC) whose
sampling process is not efficient when the dataset is large
or the model itself is complex [32]. In response to this, the
variational inference approaches are developed to approximate
the Bayesian inference efficiently by optimization instead of
sampling. With the rapid improvement of computing power,
VAE further extends the idea of variational inference to the
deep learning model, which can effectively optimize the latent
vectors to reproduce the input distributions.

Like VAE, we focus on the optimization of the latent space
of a deep neural-network model via variational inference in
this article. Defining a prior distribution q(z) on a set of distri-
bution densities Q. Under our settings, the goal of variational
inference is to find a member q∗(z) from the set Q that can
minimize the KL divergence between the prior distribution
q(z) and the latent distribution p(z|x)

q∗(z) = arg min
q∈Q

DKL(q(z)||p(z|x)) (2)

where the latent distribution p(z|x) is modeled by a deep
neural-network-based encoding function.

In this manner, the latent distribution p(z|x) can be esti-
mated by optimizing the model to find q∗(z) within the set of
distribution densities Q.

2) Mutual Information: MI is widely applied to quantify
the statistical dependencies between two random variables.
In comparison to correlation, the dependencies that MI cap-
tures are nonlinear and are regarded as the true dependence.
MI is a fundamental quantity that measures the amount of
information that one random variable is shared with other
random variables, and can be defined based on the Shannon
entropy as

I(X;Y) = H(X)− H(X|Y)

= H(Y)− H(Y|X) (3)

where I(·; ·) denotes the MI between two random variables,
H(·) denotes the marginal Shannon entropy, and H(·|·) denotes
the conditional Shannon entropy.

The marginal Shannon entropy of a random variable is
expressed as

H(X) = −
∑

x∈X

P(x) log P(x) (4)

and the conditional Shannon entropy H(X|Y) of the random
variable X given the random variable Y can be expressed as

H(X|Y) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)
. (5)

B. Problem Formulation

Under the settings of an UDA problem, we are given a
source domain DS = {(x(i)

s , y(i)
s )}ni=1 consisting of n labeled

images from the source input space {XS, YS}, where x(i)
s ∈ XS

represents an image sampled from the source input space
and y(i)

s ∈ YS is the label of this image. Likewise, a target
domain DT = {(x(j)

t )}mj=1 is provided with m unlabeled images
that are sampled from the target input space {XT , YT}. Note
that the probability distribution densities of the images across
the two data domains, which are labeled as the same cate-
gory, are significantly different. The statistical measurement
of these density variations between the two domains is called
the domain gap or the domain divergence, which should be
minimized during the process of knowledge transfer.

To be specific, the formulation of a UDA problem is given
as follows. The model should be trained to generalize well in
the target domain without access to the labels of the target
input samples. Due to the lack of correspondence between the
target input samples and their labels, the domain gap should
be statistically quantified and minimized during the training so
that the target input samples can utilize the knowledge learned
from the correspondence of the source domain for their own
classification tasks. In other words, a regularization has to be
explicitly designed to transfer the discriminative knowledge
learned from the labeled source domain to the target domain.
So, even without access to the target labels during the training,
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Fig. 1. (Best viewed in color.) Overall idea of the knowledge transfer via shifting the mean of the variational approximation. The variational approximation
is initialized as its mean vectors to be sampled from the source latent distribution plus some variances sampled from the target latent distribution, that is,
μi = μsi , μsi = zs, σi

2 = zt. The KL-divergence between the variational approximation and the target latent distribution and the MI between the variational
approximation and the target input space are optimized simultaneously to encourage the mean of the variational approximation to be shifted from the source
domain to the target domain. Moreover, we argue that the knowledge learned by the source latent distribution can be sufficiently transferred to the target
latent distribution when the variational approximation can retain the maximum information about the entire input sampling space. Note that the variational
approximation serves as an agent for knowledge transfer in our proposed framework, and will not be used for the classification tasks.

the objective function of the target-domain classification can
still be maximized during the phase of the testing

max δ
(
ŷt, yt

)
(6)

where ŷt denotes the predictions of the input samples from
the target domain and δ(·) represents the binary indicator that
outputs 1 if the prediction ŷt matches its label yt.

IV. METHODOLOGY

The key to solve the UDA problem is to obtain a good
latent (feature) space for both the source domain and the tar-
get domain. However, the existing methods that merely focus
on minimizing a narrowly defined classification error may not
effectively guide the learning of the transferable features. The
proposed MVI aims at optimizing an estimator that contains
the information about the two data domains, to guide the
process of knowledge transfer.

A. Overall Idea

The objective of UDA is to obtain a feature extractor G so
that an image classifier F can utilize its outputs, that is, latent
vectors, to accurately predict the unlabeled target samples. In
the absence of the target labels, the feature extraction of the
target domain is not guided, which makes the target features
not discriminative and meaningless to the target-domain spe-
cific classification tasks. Therefore, it is desirable to have an
alignment mechanism that can effectively reduce the diver-
gence between the source latent space and the target latent
space and extract the target features under the guidance of
the discriminative source features. To achieve this alignment,
a multivariate Gaussian distribution is utilized as an agent
to align the source latent distribution and the target latent
distribution. The multivariate Gaussian is initialized as a vari-
ational approximation with its mean vectors are sampled from
the source latent distribution and its log-variance vectors are
sampled from the target latent distribution, like VAE [14].
By reshaping the latent distribution of MVI to a multivariate
Gaussian, the features that are most important to the classifi-
cation tasks (lead to the highest classification score) will be

gathered to the mean of the multivariate Gaussian. Then, by
optimizing the model using VAE and shifting the mean around
the multivariate Gaussian from the source latent distribution
to the target latent distribution, the features that are extracted
from the target input samples will be guided by the discrimina-
tive source features gathering around the mean. As a result, the
target features will gradually move to the mean of the multi-
variate Gaussian; and those target features that are important to
the target-domain-specific classification tasks will be pushed to
the mean and, therefore, be extracted by the feature extractor.
To be specific, the mean shifting is achieved by maximizing
the lower bound of the MI between the target sampling space
and the space of the variational approximation. In this manner,
the knowledge learned by the source latent distribution can be
progressively transferred to the target latent distribution. The
overall idea to transfer the knowledge through optimizing the
variational approximation is shown in Fig. 1.

B. Knowledge Transfer by Optimization

As we have no access to the labels of the target input
samples, it is hard to directly infer a good latent distribu-
tion for the classifier to make predictions on the target input
samples. Recall that variational inference can estimate the con-
ditional probability density distribution of the latent variables
z given the observations x, that is, latent distribution, through
optimization [14], [32]. Unlike the existing work on variational
inference, which is used to solve a single-domain problem, we
utilize the variational approximation q(z∗) as an agent to indi-
rectly transfer the knowledge from one latent distribution to
another instead of using it to approximate these difficult-to-
compute probability densities. Moreover, under the setting of
UDA, the target latent distribution is supposed to be inferred
from the entire sampling space not just from the target sam-
pling space. Therefore, the optimization problem in our case
becomes minimizing

DKL
(
q
(
z∗

)||p(zt|x)
) = E

[
log q

(
z∗

)]− E
[
log p(zt|x)

]
(7)

where expectations are taken with respect to the variational
approximation z∗ and the target latent distribution zt, where
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z∗ ∼ q(z∗) = N(μ, σ 2) is applied with a reparameterization
trick, that is, z∗ = zs+ e

1
2 zt � η and η ∼ N(0, I). Note that zs

indicates the source latent distribution, and x is sampled from
the entire sampling space.

By further expanding the conditional probabilities in (7), we
have

DKL
(
q
(
z∗

)||p(zt|x)
)

= E
[
log q(z∗)

]− E
[
log p(zt, x)

]+ log p(x) (8)

where log p(x) is a constant as x is not conditioned on either z∗
or zt. Although we cannot directly optimize the KL-divergence
penalty shown in (7) due to the lack of the labels of the target
samples, we can differentiate and maximize a variational lower
bound B(p) to minimize (7)

B(p) = E
[
log p(zt, x)

]− E
[
log q(z∗)

]
. (9)

Theorem 1: Given {x|x ∈ X} = {xs|xs ∈ XS}∪ {xt|xt ∈ XT},
the following bound holds:

B(p) ≥ E
[
log(p(xt|zt))

]− DKL
(
q
(
z∗

)||p(zt)
)
.

Proof: Equation (4) can be rewritten as the difference
between the expected log likelihood of the reconstruction
conditioned on the samples from the target latent distribu-
tion and the KL-divergence penalty between the target latent
distribution p(zt) and the variational approximation q(z∗)

B(p) = E
[
log p(x, zt)

]− E
[
log q

(
z∗

)]

= E
[
log(p(zt)p(x|zt))

]− E
[
log q

(
z∗

)]

= E
[
log p(zt)

]+ E
[
log p(x|zt)

]− E
[
log q

(
z∗

)]

= E
[
log p(x|zt)

]− DKL
(
q
(
z∗

)||p(zt)
)

(10)

where −DKL(q(z∗)||p(zt)) is the negative KL-divergence
penalty between the marginal density of the variational approx-
imation q(z∗) and the marginal density of the target latent
distribution p(zt), which encourages the space of the vari-
ational approximation to be close to the latent space that
is important to the task of the target-domain classification.
Because of the lack of the correspondence between the sam-
ples from the target latent distribution and the samples from
the entire input space, we further expand E[ log p(x|zt)] from
the entire input space to the source domain and the tar-
get domain, and derive a new variational lower bound that
excludes the conditional density of xs given zt. Specifically,
given {x|x ∈ X} = {xs|xs ∈ XS} ∪ {xt|xt ∈ XT}, we have

E
[
log p(x ∈ X|zt)

]

= E
[
log p(xs ∈ XS ∪ xt ∈ XT |zt)

]

= E
[
log p(xs ∪ xt|zt)

]
(11)

then, expanding the conditional probability with union
evidence

E
[
log p(xs ∪ xt|zt)

]

= E

[
log

p((xs ∪ xt) ∩ zt)

p(zt)

]

= E

[
log

p(xs ∩ zt)+ p(xt ∩ zt)− p(xs ∩ xt ∩ zt)

p(zt)

]

= E
[
log(p(xs|zt)+ p(xt|zt)+ p(xs ∩ xt|zt))

]

≥ E
[
log(p(xs|zt)+ p(xt|zt))

]

≥ E
[
log p(xt|zt)

]
. (12)

Therefore, combining (10), (11), and (12), we have the new
variational lower bound

B(p) ≥ E
[
log(p(xt|zt))

]− DKL
(
q
(
z∗

)||p(zt)
)
. (13)

Therefore, according to Theorem 1, minimizing (7) is
equivalent to minimizing DKL(q(z∗)||p(zt)) while maximizing
E[ log(p(xt|zt))]

min DKL
(
q
(
z∗

)||p(zt|x)
)

= maxE
[
log(p(xt|zt))

]− DKL
(
q
(
z∗

)||p(zt)
)

(14)

where the maximization of E[ log p(xt|zt)] can encourage the
feature extractor G to configure the target latent space to still
represent the target sampling space while approaching the vari-
ational approximation. As indicated and proved in [30], the
maximization of E[ log(p(xt|zt))] can be achieved by min-
imizing the reconstruction loss using the formulation of an
autoencoder

maxE
[
log(p(xt|zt))

]⇒ min
∥∥xt, x̂t

∥∥ (15)

where x̂t is the reconstruction of a target input sample xt.

C. Mean Shifting by Mutual Information Maximization

Inferring a variational approximation using the reparame-
terization trick that is introduced in Section IV-B makes an
assumption that the mean of the variational approximation
z∗, that is, a multivariate Gaussian, totally depends on the
source latent distribution. Nevertheless, in the case of missing
labels for the target input samples, the mean of the variational
approximation is supposed to be shifted to a critical point that
could be a representation for both domains. In other words,
we expect the variational approximation z∗ to follow the info-
max criterion: a good representation should retain a significant
amount of input information [30], [33], [34]. Therefore, the
information regarding the target sampling space should also
be sufficiently retained in the variational approximation, that
is, the mean of the variational approximation should be shifted
from the source to the target. Specifically, this principle can
be expressed in information-theory terms as the maximization
of a lower bound of the MI between the target sampling space
XT and the space of the variational approximation Z∗, where
z∗ ∼ Z∗

max I
(
XT ;Z∗

) = max H(XT)− H
(
XT |Z∗

)
(16)

where I(·) denotes MI and H(·) denotes the entropy.
The maximization of the lower bound of the MI between the

two spaces is achieved by minimizing the L1-distance between
the target input samples xt and the decoded samples x̂∗ that
are reconstructed from the variational approximation z∗

�(xt, x̂∗) =
∥∥xt − x̂∗

∥∥ (17)

where xt ∈ XT , x̂∗ ∈ D(z∗ ∼ qφ(z∗)); ‖·‖ is the �1-norm.
The choice of the �1-norm is inspired by [35]. The authors
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empirically verified that minimizing the �1-norm between two
reconstructions that are decoded from two different latent dis-
tributions in an encoder–decoder setting will ultimately align
the two latent distributions.

Therefore, we argue that minimizing (17) can maximize the
lower bound of the MI between XT and Z∗

minEz∗∼qφ(z∗),xt∼XT

[
�

(
xt, D

(
z∗

))]⇒ max I
(
XT ;Z∗

)
(18)

which encourages the mean of the variational approximation
to be shifted from the source to the target; meanwhile, the
knowledge learned by the source latent distribution, which is
retained in the variational approximation, can be progressively
transferred to the target latent distribution.

Theorem 2: For any distribution p(xt|z∗), if there exists

Ez∗∼qφ(z∗)
[
log qφ

(
xt|z∗

)] ≥ Ez∗∼qφ(z∗)
[
log p

(
xt|z∗

)]

where DKL(qφ(xt|z∗)||p(xt|z∗)) ≥ 0. The following bound
holds:

∃k > 0 : I(XT ;Z∗) ≥
∑

xt∈X,x̂∗∈X∗
−1

k
·�(xt, x̂∗).

Proof: To shift the mean of the variational approximation
from the source to the target, we need to maximize the lower
bound of the MI between the target input space and the space
of the variational approximation. According to the infomax cri-
terion, this process can retain the maximum information about
the target domain in the space of the variational approximation
Z∗. Therefore, we restrict the variational approximation using
a conditional distribution qφ(xt|z∗; θ ′) that is parameterized
by the learning parameters θ ′ of the decoding network D. The
MI maximization in information theory described in (7) can
be expressed in terms of XT and Z∗

I(XT ;Z∗) = H(XT)− H(XT |Z∗) (19)

where H(XT) is a constant since the input space XT will
not be affected by the learning parameters θ of the encod-
ing network G. Hence, the MI maximization shown in (19)
can be simplified as

arg max
θ,θ ′,φ

I
(
XT ;Z∗

) = arg max
θ,θ ′,φ

H(XT)− H
(
XT |Z∗

)

= arg max
θ,θ ′,φ

−H
(
XT |Z∗

)

= arg max
θ,θ ′,φ

Ez∗∼qφ(z∗)
[
log qφ

(
xt|z∗

)]
.

(20)

Now, for any distribution p(xt|z∗)
Ez∗∼qφ(z∗)

[
log qφ

(
xt|z∗

)] ≥ E[ log p(xt|z∗)] (21)

where DKL(qφ(xt|z∗)||p(xt|z∗)) ≥ 0.
The right-hand side of (21) can be regarded as the lower

bound of the MI between the target input space and the
space of the variational approximation. Considering a para-
metric conditional distribution p(xt|z∗; θ ′), the lower bound
of I(XT ;Z∗) can be represented as

I
(
XT ;Z∗

) ≥ Ez∗∼qφ(z∗)
[
log p

(
xt|z∗; θ ′

)]
. (22)

Normally, the reconstructed sample x̂∗ = Dθ ′(z∗) is not
exactly the same as a corresponding target sample xt. However,
in probabilistic terms, the parameters of a distribution p(xt|x̂∗)
may produce xt with high probability as they share the
sufficient features for the same classification task [30]

p
(
xt|z∗

)⇒ p
(
xt|x̂∗ = Dθ ′

(
z∗

))
(23)

where p(xt|x̂∗ = Dθ ′(z∗)) results in the associated L1-error

�
(
xt, x̂∗

) ∝ − log p
(
xt|x̂∗

)

⇒ �
(
xt, x̂∗

) = −k · log p
(
xt|x̂∗

)
(24)

where k > 0 is a constant.
Substituting (23) into (24), we have

�(xt, x̂∗) = −k · log p(xt|z∗). (25)

Finally, combining (22) and (25), we have

I(XT ;Z∗) ≥
∑

xt∈X,x̂∗∈X∗
−1

k
·�(xt, x̂∗). (26)

Then, Corollary 1 can be derived.
Corollary 1: If there exists a set of learning parameters θ̂ ′,

such that

lim
θ ′→θ̂ ′

DKL

(
qφ

(
xt|z∗

)||p
(

xt|z∗; θ̂ ′
))
= 0.

The exact value of I(XT ;Z∗) can be maximized by minimizing
Ez∗∼qφ(z∗),xt∼XT [�(xt, D(z∗))].

Proof: According to Theorem 2, I(XT ;Z) can be
maximized by

max
θ,θ ′,φ

I
(
XT ;Z∗

)⇒ max
θ,θ ′

Ez∗∼qφ(z∗;θ)

[
log p

(
xt|z∗; θ ′

)]
. (27)

The exact value of the MI I(XT ;Z∗) can be maximized when

∃θ̂ ′: lim
θ ′→θ̂ ′

DKL(qφ(xt|z∗)||p(xt|z∗; θ̂ ′)) = 0. (28)

Then, rewriting (25) in Theorem 2 as the following
optimization:

max
θ,θ ′

Ez∗∼qφ(z∗;θ)

[
log p

(
xt|z∗; θ ′

)]

⇒ min
θ,θ ′,φ

Ez∗∼qφ(z∗;θ),xt∼XT

[
�

(
xt, D

(
z∗

))]
. (29)

Thus, combining (27) and (29), we have

max
θ,θ ′,φ

I
(
XT ;Z∗

)

⇒ min
θ,θ ′,φ

Ez∗∼qφ(z∗;θ),xt∼XT

[
�

(
xt, D

(
z∗

))]
. (30)

At this point, we conclude that minimizing the proposed
regularization for mean shifting in (18) can progressively shift
the mean of the variational approximation z∗ from the source
to the target.
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Fig. 2. Architectures of the proposed MVI. The red blocks are the model inputs and the dark-blue rectangles are the model outputs; the yellow-rounded
rectangles are the latent vectors learned from the inputs; the trapezoids are the deep neural networks for the different purposes, that is, encoding, decoding,
and classification; and the dashed-green rectangles are the objective functions to be optimized during the training.

D. Framework of MVI

Based on the theoretical deviations obtained in
Sections IV-B and IV-C, the knowledge learned by the
source latent distribution can be indirectly transferred
to the target latent distribution by simultaneously optimizing
the variational approximation via variational inference and the
proposed regularization for the mean shifting. In this section,
we present the implementation details of the proposed MVI.
Fig. 2 illustrates the framework of MVI. The discriminative
source latent vector zs is produced by the feature extractor G
under the support of the regularization of the classification
task. To be specific, the source latent vector zs is fed into the
image classifier F to make the prediction on the corresponding
input sample from the source domain, which is evaluated by
the cross-entropy loss Lcls

Lcls(XS, YS)

= −1

n

n∑

i=1

δ
(
σ ◦ F ◦ G

(
x(i)

s

)
, y(i)

s

)
log

[
σ ◦ F ◦ G

(
x(i)

s

)]

(31)

where σ(·) is the softmax activation that interprets the model
outputs as the non-negative probabilities that add up to 1, σ ◦
F◦G(·) is the mapping function, which is implemented by deep
neural networks, that maps an input sample to its prediction,
and δ(·, ·) is the binary indicator that outputs 1 if the model
prediction σ ◦ F ◦ G(x(i)

s ) matches the class label ys
(i) of the

corresponding input sample x(i)
s .

Then, the target latent vector zt is also produced by the fea-
ture extractor G with the same learning parameters without the
support of its label. The variational approximation z∗ is then
produced with regard to zs and zt. We utilize z∗ in threefolds:
1) the KL-divergence penalty Lkld between zt and z∗ is com-
puted to maximize the variational lower bound B∗(p); 2) the
reconstruction error Lrec about the target domain, which is
introduced by the variational inference, is minimized to pro-
duce the most representative zt; and 3) the lower bound of
the MI between the target sampling space and the space of
the variational approximation is maximized by minimizing the
L1-loss Lmut between the target sampling space XT and the

Algorithm 1: Derivation of MVI at the kth Iteration
Input: xs with n minibatch source samples, xt with n

minibatch target samples, ys with n minibatch
source labels, and the hyper-parameters κ and λ.

1 Initialize the network parameters θ and θ ′, and a
multivariate Gaussian distribution η ∼ N(0, I);

2 for xs ∈ XS, xt ∈ XT do
3 zs ← G(xs; θ), zt ← G(xt; θ);
4 ŷs ← F(zs);
5 Lcls = Lcls(XS, YS);

6 z∗ ← zs + η � e
1
2 zt ;

7 x̂∗ ← D(z∗; θ ′), x̂t ← D(zt; θ ′);
8 Lrec = 1

n

∑n
i=1(

∥∥∥x̂(i)
t − x(i)

t

∥∥∥);

9 Lmut = 1
n

∑n
i=1(

∥∥∥x̂∗(i) − x(i)
t

∥∥∥);

10 Lkld = −1.0× DKL(zt||z∗);
11 return Lcls + κ(Lrec + Lmut)+ λLkld;

decoded space D(Z∗) of the variational approximation. The
entire loss function is Lcls + κ(Lrec + Lmut)+ λLkld, and the
details of MVI at each iteration of the training is summarized
in Algorithm 1.

E. Computational Complexity Analysis

In our proposed framework, Lcls is the main objective to
evaluate the classification error on the labeled source domain.
In the meantime, the domain adaptation process happens when
we minimize the objective κ(Lmut + Lrec)+ λLkld. Note that
the process of F ◦G can be regarded as a standard classifica-
tion network. Denote the computational complexity of F ◦ G
as O(G + F). The decoding process D can be regarded as a
reverse process of G, which has the identical computational
complexity as the feature extractor: O(G) = O(D). Therefore,
the computational complexity of our proposed framework is:
O(G+D+F) = O(G+F), which is the same as F ◦G. Thus,
it can be said that our proposed framework can solve UDA
problems efficiently.
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V. EXPERIMENTS

This section presents the experimental results of the
proposed work. Our model is compared to state-of-the-art
UDA algorithms on several benchmark datasets.

A. Datasets

We evaluate the proposed model using both object recog-
nition datasets and digit recognition datasets for the task of
UDA.

1) Office-Home contains 15 500 images of everyday
objects [36]. It contains images from four different
domains with different traits and background styles and
each domain has 65 different object classes: a) Art (Ar);
b) Clipart (Cl); c) Product (Pr); and d) Real-World
(Rw).

2) ImageCLEF-DA is a dataset for the 2014 ImageCLEF
domain adaptation challenge, which contains 12 object
classes from three public datasets1: a) Caltech-256 (C);
b) ImageNet ILSVRC2012 (I); and c) Pascal VOC 2012
(P) and each domain contains 600 images with 50
images per class.

3) Office-31 is a standard benchmark dataset for evalu-
ating visual DA algorithms, which contains 31 object
classes with images related to office environment [37].
This dataset has three different domains: a) Amazon (A);
b) Webcam (W); and c) DSLR (D). Amazon consists of
2817 images from amazon.com. Webcam (795 images)
and DSLR (498 images) contain images captured by a
Web camera and a digital SLR camera, respectively.

4) SVHN-MNIST-USPS: The street view house numbers
(SVHNs) dataset consists of images of digits from 0 to
9 [38]. It has significant variations in background, con-
trast, rotation, blurred figures, scale, etc. Both MNIST
and USPS contain images of handwritten digits from 0
to 9 [39], [40].

All the datasets we used to evaluate the proposed MVI
are the benchmark datasets for UDA. To be specific, Office-
Home, ImageCELF-DA, and Office-31 are the benchmark
datasets for the cross-domain object recognition [6], [10], [41];
SVHN, MNIST, and USPS are the benchmark datasets for the
cross-domain digit recognition [9]. Some image examples for
object recognition datasets and digit recognition datasets are
presented in Figs. 3 and 4, respectively.

B. Implementation Details

In the experiments on Office-Home, ImageCLEF-DA, and
Office-31 datasets, we follow the standard evaluation proto-
cols for UDA as [6], [10], and [41] to utilize all labeled
source samples and unlabeled target samples. For fair com-
parisons, ResNet-50 is selected as our backbone network,
which is identical to the benchmark methods and is fine-tuned
from the ImageNet [43] pretrained model. We used the SGD
optimizer [44] with minibatch to train the model and repeat
each transfer task five times to report the average accuracy

1https://www.imageclef.org/2014/adaptation

Fig. 3. Example images for computer from the four different domains of
Office-Home. (a) Artistic. (b) Clipart. (c) Product. (d) Real World.

Fig. 4. Digits from the three different domains of digit recognition datasets.
(a) SVHN. (b) MNIST. (c) USPS.

as well as the standard deviation. We used unified hyper-
parameters for Office-Home, Office-31, and ImageCLEF-DA,
with κ = 0.1, λ = 0.1, learning rate at 1e-3, and batch size
at 32.

As for the experiments on SVHN-MNIST-USPS datasets,
we utilized the SGD optimizer with a minibatch size of 128
in all experiments. We trained the model with the learning rate
at 1e-2, λ at 0.1, and κ at 5e-2. We used the same network
architecture as that used in MCD [9] in these digit recognition
scenarios: two convolutional layers that are followed by max-
pooling layers are used for the feature extraction, and three
fully connected layers for calculating the classification scores
are placed behind.

In this work, we tuned hyperparameters through a grid
search. We essentially tune the three hyperparameters as fol-
lows: learning rate was tune from 1e-4 to 0.1, both κ and
λ were tuned from 1e-3 to 1. All experiments were imple-
mented on the Pytorch platform. Besides, we also minimize the
conditional entropy of the softmax predictions for the target
samples, which encourages the model to make more confident
prediction on the unlabeled target samples [45]

Lent = 1

|XT |
∑

xt∈XT

−F(G(xt)) log F(G(xt)). (32)
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TABLE I
ACCURACY(%) OF MVI ON THE Office-Home

TABLE II
ACCURACY(%) OF MVI ON ImageCLEF-DA

The evaluation metric used in this article is the average clas-
sification accuracy of all input samples of the target domain,
which is shown as follows:

1

m

m∑

i=1

δ
(
σ ◦ F ◦ G

(
x(i)

t

)
, y(i)

t

)
(33)

where δ(·, ·) is the binary indicator introduced in (31).

C. Result Analysis

In the following experiments, we compared the proposed
MVI to state-of-the-art methods on each dataset and reported
the results of state-of-the-art methods from their original paper
if similar performance could be replicated.

1) Office-Home: The evaluation results on Office-Home
are shown in Table I. Our proposed framework outperforms
the benchmark algorithms significantly in most transfer tasks
except the transfer tasks that use Clipart as the target domain.
The proposed framework also achieves the best average accu-
racy on the target-domain classification. The overall superior
performance of the proposed framework suggests the effec-
tiveness of the knowledge transfer via MVI. The reason for
the less advanced performance in the adaptation scenarios that
use Clipart as the target domain is due to the abstraction of
the Clipart images. The objects from the Clipart dataset are
intended for illustration, where far fewer features are included
in their images compared to real-world objects. Therefore,
maximizing the lower bound of the MI between two objects
that are not correlated would prohibit the proposed MVI to
retrieve sufficient information from the source domain for
superior performance. Moreover, we notice that the improve-
ment on Office-Home is more significant than that on other
datasets, which is because Office-Home has more challenging
transfer tasks by introducing the different object traits and the
complex background types. The significant improvement on
harder transfer tasks indicates the effectiveness of the proposed

TABLE III
TWO-SAMPLE T-TESTS FOR TRANSNORM AND MVI

MVI and suggests that our method can transfer knowledge
effectively despite the complexity of the adaptation scenario.

2) ImageCLEF-DA: The evaluation results on
ImageCLEF-DA are presented in Table II. As shown in
the table, our proposed framework outperforms all state-of-
the-art methods except the transfer task from Caltech-256 (C)
to Pascal VOC 2012 (P). Moreover, our proposed framework
also achieves the highest overall classification accuracy.
The significant improvement suggests the effectiveness of
the knowledge transfer via the proposed MVI. Notably, our
proposed framework significantly outperforms state-of-the-art
methods except the transfer tasks that utilize Caltech-256 (C)
as the source domain. This is because the label pollution issue
explained in [46]. Some image samples in Caltech-256 (C)
contain multiple objects (e.g., the images from the backpack
class also contain the objects within the laptop class), which
feeds the false-positive knowledge into the feature generator
and the classifier and affects the effectiveness of the proposed
MVI. Furthermore, as the average classification accuracies
obtained from TransNorm and MVI are close, statistical tests
are conducted and presented in Table III to further illustrate
the superior performance of MVI. As shown in Table III,
the two-sample t-test is conducted to determine whether the
population means of the results of TransNorm and MVI on
ImageCLEF-DA and Office-Home datasets are the same. The
results show that the p-value for the average performances of
MVI and TransNorm on Office-Home and ImageCLEF-DA
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TABLE IV
ACCURACY(%) OF MVI ON Office-31

TABLE V
ACCURACY(%) OF MVI ON DIGIT DATASETS

TABLE VI
DISTANCE BETWEEN LATENT SPACES

datasets are much lower than 0.05. Therefore, we can
conclude that the null hypothesis is rejected and the average
performances of MVI and TransNorm on both datasets are
significantly different. The advanced performance of MVI is
not obtained due to the random chance.

3) Office-31: The evaluation results on Office-31 is shown
in Table IV (the missing results were the adaptation scenar-
ios that were not reported by the original work). Overall,
our proposed framework achieves the highest classification
accuracy in average and outperforms the benchmark meth-
ods in each transfer tasks except the adaptation scenario
from Webcam to Amazon (W→A). The highest accuracy is
achieved in the adaptation scenarios from DSLR to Webcam
and from Webcam to DSLR (D↔W). This is because many
image samples in Webcam and DSLR are taken from the
same poses of the same object, which results in less signif-
icant domain gaps. The most significant improvements are
seen in the adaptation scenarios that use Amazon as their
source domain, which is because Amazon is a complex dataset
with more training samples. Thus, more support could be
obtained from the source domain by optimizing the proposed
MVI when transferring the knowledge. In comparison, the
adaptation scenarios that require transferring knowledge from
the less complex datasets to Amazon obtain less significant
improvements.

4) SVHN-MNIST-USPS: The evaluation results on digit
classification using the SVHN dataset, MNIST dataset, and
USPS dataset are shown in Table V (the missing results were
the adaptation scenarios that did not reported by the original
work). For the digit recognition tasks, we consider the domain
adaptation scenarios: MNIST↔ USPS and SVHN→MNIST.
Dataset∗ denotes only a part of the dataset is used during the
training phase, which follows the setting used in MCD [9]. The
results show that our proposed framework outperforms state-
of-the-art methods by a large margin in all transfer tasks, and
achieves the highest average classification accuracy. This sug-
gests the effectiveness of the proposed MVI in solving UDA
problems.

VI. ABLATION STUDY

In the ablation study, we utilize two domain adaptation sce-
narios MNIST↔ USPS as the performance indicators as they
should be consistent with other evaluation protocols.

A. Effectiveness of Mutual Variational Inference

Table VI presents the distance between the feature (latent)
spaces before (init) and after (opt) the training converges.
Z∗ denotes the space of the variational approximation. The
distance is calculated as the average �2 distance between
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Fig. 5. Ablation study for MVI. (a) MVI components. (b) Sensitivity of κ . (c) Sensitivity of λ.

TABLE VII
COMPUTING TIME (SECONDS)

the latent spaces that are induced from the training with all
source samples and target samples. The results show that
the distance between the source latent space (ZS) and the
target latent space (ZT ) is reduced significantly after train-
ing by MVI. This indicates that the knowledge learned by
the source latent distribution can be successfully transferred
to the target latent distribution after the training of MVI
converges. Note that the distance between the variational
approximation and the target latent distribution reduces more
significantly than the one between the variational approxi-
mation and the source latent distribution. This validates the
argument in Section IV-C that minimizing (17) can encour-
age the mean of the variational approximation to be shifted
from the source to the target through maximizing the lower
bound of the MI. Furthermore, the average distance among
all three distribution spaces reduces dramatically, which val-
idates our argument that knowledge transfer can be achieved
by optimizing the variational approximation. The computa-
tional complexity is compared as well in Table VII, where
the average computing time for MVI and the backbone
network is significantly different on both datasets, accord-
ing to two sample’s t-test. The results indicate that the
MVI requires around 1% more computing time than the
backbone network to achieve the performance improvement,
which is in accordance with the complexity analysis in
Section IV-E.

B. Component Analysis and Parameter Sensitivity

Fig. 5(a) presents the contribution of each component of
MVI: the reconstruction of the target input samples, that
is, x̂t, the reconstruction of variational approximation, that
is, x̂∗, and the KL-divergence penalty between z∗ and zt,
to the overall performance while keeping all hyperparam-
eters the same. For x ∈ {r, m, k, rm, mk, rk, rmk}, MVI-x
denotes the proposed model with only the components x
enabled. For this component analysis, r denotes the recon-
struction of the target input samples; m denotes the recon-
struction of variational approximation; and k denotes the

Fig. 6. Convergence of the subtraction of the likelihoods to the theoretical
lower bound.

minimization of the KL-divergence penalty. MVI-m performs
worst, suggesting that simply shifting the mean of variational
approximation without the optimization by variational infer-
ence cannot effectively transfer the knowledge from the source
domain to the target domain. MVI-r, MVI-k, and MVI-rk
improve the performance more significantly compared with
MVI-m, indicating that maximizing the lower bound (or part
of the lower bound) of the KL-divergence penalty between
the variational approximation and the target latent distribution
is useful for the knowledge transfer. The best performance
is achieved by jointly using all components of MVI, that is,
MVI-rmk. This suggests the importance of mean shifting (r)
to optimization using variational inference (rk). Fig. 5 (b) and
(c) illustrates the sensitivity of κ and λ, by varying κ from
0.001 to 0.1, and λ from 0.001 to 1. For parameter λ, the
classification accuracy first steadily increases with larger val-
ues of λ and then decreases sharply. As for parameter κ , the
accuracy stays almost the same as κ varies, which suggests
that MVI works consistently well with different values of κ .

C. Tightness of the Variational Lower Bound

To validate the tightness of the variational lower bound,
we conducted the ablation study on the adaptation scenarios
MNIST↔ USPS using an encoder with two convolutional lay-
ers with each followed by a max-pooling layer. There are 32
hidden units in the first convolutional layer and 48 hidden units
in the second convolutional layer. The decoder simply decon-
volves the encoder output to the input space. The architecture
is identical to the prior experiment on validating the general-
ization of the proposed method. Fig. 6 shows the change of
E[ log(p(xt|zt))]−DKL(q(z∗)||p(zt)) as the training progresses,
where E[ log(p(xt|zt))] is the likelihood of the conditional
density of target input samples given their latent variables,

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 18,2024 at 20:23:01 UTC from IEEE Xplore.  Restrictions apply. 



11502 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 11, NOVEMBER 2022

and DKL(q(z∗)||p(zt)) is the likelihood of the KL-divergence.
This subtraction of the likelihoods should converge to the
variational lower bound B(p) after training. The results show
that the subtraction of the likelihoods on the two adaptation
scenarios converges to their variational lower bounds after 300
training epochs, which is identical to the theoretical derivation
from Section IV-B.

VII. CONCLUSION

In this article, a novel method to indirectly transfer the
knowledge learned by the source latent distribution to the
target latent distribution via optimizing the variational approx-
imation was proposed. We demonstrated that maximizing the
lower bound of the MI between the target sampling space
and the space of the variational approximation could shift the
mean of the variational approximation from the source domain
to the target domain. Experimental results demonstrated the
importance of the proposed work.
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