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Abstract

Disentanglement of visual features of primi-001
tives (i.e., attributes and objects) has shown ex-002
ceptional results in Compositional Zero-shot003
Learning (CZSL). However, due to the fea-004
ture divergence of an attribute (resp. object)005
when combined with different objects (resp. at-006
tributes), it is challenging to learn disentangled007
primitive features that are general across dif-008
ferent compositions. To this end, we propose009
the solution of cross-composition feature dis-010
entanglement, which takes multiple primitive-011
sharing compositions as inputs and constrains012
the disentangled primitive features to be gen-013
eral across these compositions. More specif-014
ically, we leverage a compositional graph to015
define the overall primitive-sharing relation-016
ships between compositions, and build a task-017
specific architecture upon the recently success-018
ful large pre-trained vision-language model019
(VLM) CLIP, with dual cross-composition dis-020
entangling adapters (called L-Adapter and V-021
Adapter) inserted into CLIP’s frozen text and022
image encoders, respectively. Evaluation on023
three popular CZSL benchmarks shows that024
our proposed solution significantly improves025
the performance of CZSL, and its components026
have been verified by solid ablation studies.027
Our code and data are available at: https://028
anonymous.4open.science/r/DCDA-0BF7.029

1 Introduction030

Compositional Zero-shot Learning (CZSL) aims to031

recognize novel attribute-object compositions by032

disentangling visual primitives from seen combina-033

tions, a capability crucial for scaling visual recog-034

nition systems (Misra et al., 2017). For instance,035

a model trained on red tomato and green apple036

should infer green tomato through primitive recom-037

bination, despite never encountering this specific038

composition. This paradigm not only enables zero-039

shot generalization to exponentially many combina-040

tions (Chen et al., 2023), but also advances vision-041

red tomato red winered rose mashed	tomatored	tomato sliced	tomato

red-sharing	compositions tomato-sharing	 compositions

Figure 1: Examples of divergent visual features of a
primitive (e.g., an attribute red or an object tomato)
across different compositions.

language understanding by requiring precise fea- 042

ture decomposition aligned with textual semantics 043

(Chen et al., 2024). 044

Early CZSL approaches establish shared em- 045

bedding spaces to compare image features with 046

composition embeddings (Wei et al., 2019; Naeem 047

et al., 2021; Mancini et al., 2022). Recent ad- 048

vances leverage CLIP’s visual-semantic alignment 049

from large-scale pretraining (Radford et al., 2021; 050

Nayak et al., 2023), yet face inherent challenges: 051

Attribute-object primitives exhibit strong visual en- 052

tanglement—consider how red permeates all pixels 053

of a red tomato. This entanglement hinders both 054

primitive alignment and novel composition gener- 055

alization. Current CLIP-based solutions address 056

this through either disentangled text prompts (Lu 057

et al., 2023; Wang et al., 2023a) or vision adapters 058

(Zheng et al., 2024; Huang et al., 2024; Li et al., 059

2024), but crucially overlook the diversity of prim- 060

itive manifestations across compositions. As Fig- 061

ure 1 illustrates, the visual realization of red varies 062

significantly when combined with different objects 063

(e.g., tomato vs. wine), exhibiting divergent color 064

tones and spatial distributions. 065

To quantify this challenge, we conduct feature- 066

space analysis on MIT-States (Isola et al., 2015) 067

using CAILA (Zheng et al., 2024), the current 068

SOTA method. As visualized in Figure 2 (left), 069

disentangled attributes like broken (purple circles) 070

exhibit two critical limitations: (1) Features from 071

the same attribute scatter widely with overlapping 072

clusters (e.g., broken intermixed with cooked and 073
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Figure 2: t-SNE visualizations of disentangled attribute representations of images in the test set of MIT-States,
learned by CAILA (Zheng et al., 2024) and our DCDA. Solid and hollow circles represent images of seen and
unseen compositions, respectively. Best viewed in color.

mossy), indicating poor intra-class consistency;074

(2) This dispersion directly impacts generaliza-075

tion—compositions containing unseen broken ob-076

jects become indistinguishable due to the attribute’s077

non-discriminative embeddings.078

To overcome these limitations, we propose cross-079

composition feature aggregation through graph-080

guided learning. Our key insight is that ef-081

fective primitive disentanglement requires cross-082

composition feature aggregation. Drawing in-083

spiration from compositional graphs (Naeem084

et al., 2021), we construct a tripartite graph085

(Figure 3a) connecting attributes, objects, and086

their compositions. This graph enables our Dual087

Cross-composition Feature Decomposing Adapters088

(DCDA), which enhance CLIP’s text and image089

encoders through complementary strategies: (1)090

L-Adapter propagates textual features across com-091

positionally related nodes via GNNs, consolidating092

attribute/object semantics from multiple contexts.093

(2) V-Adapter employs cross-attention between094

primitive-sharing images (e.g., red tomato and095

red wine) to extract invariant visual patterns, aug-096

mented by a novel sampling strategy that weight-097

edly selects compositions according to the at-098

tribute/object co-occurrence degrees (derived from099

our graph). When integrating L-Adapters and V-100

Adapters into multiple layers of CLIP’s text and101

image encoders, we retain the original parameters102

of CLIP to avoid overfitting, but inject the task-103

specific knowledge. Our contributions can be sum-104

marized below:105

• DCDA is the first systematic approach for106

cross-composition feature disentanglement in107

CLIP-based CZSL, explicitly addressing primi- 108

tive diversity. 109

• Dual adapter architecture leveraging compo- 110

sitional graphs for text-side aggregation and 111

vision-side contrastive attention, enabling dis- 112

criminative yet generalizable primitive repre- 113

sentations. 114

• DCDA achieves great performance on MIT- 115

States and UT-Zappos (closed/open world), 116

with 5.1%/7.3% gains over CAILA method1. 117

2 Related Work 118

Conventional CZSL methods are roughly divided 119

into two groups. One is classifier-based which first 120

trains two separate classifiers to predict an input 121

image’s attribute and object labels, respectively, 122

and then combines them to predict the composi- 123

tional labels (Misra et al., 2017; Nagarajan and 124

Grauman, 2018). The subsequent works further 125

enhance the dependence of the attribute and ob- 126

ject in a composition (Li et al., 2020, 2022; Wang 127

et al., 2023b). The other group is embedding-based 128

which jointly represents attributes and objects to 129

capture the dependence, and then aligns them with 130

the images in a shared embedding space (Wei et al., 131

2019; Karthik et al., 2022). In particular, (Naeem 132

et al., 2021) learn the joint representation through 133

graph convolutional networks. There are also some 134

works concerning the disentanglement of attribute 135

and object features in the visual space (Saini et al., 136

1Visualizations confirm tighter clustering of disentangled
attributes (Figure 2, right), with extended object analyses in
Appendix C.
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2022; Hao et al., 2023; Kim et al., 2023). How-137

ever, all these methods have to learn the alignment138

between image features and text embeddings from139

scratch and are prone to overfit to the seen composi-140

tions. It is expected to derive pre-trained alignment141

knowledge from VLMs.142

CLIP-based CZSL. After pre-training using 400143

million image-text pairs, CLIP can be applied to144

any visual classification task without fine-tuning145

by setting prompts like “a photo of [class]”, where146

“[class]” is filled with the name of the class to be147

recognized. (Nayak et al., 2023) then had the first148

attempt to design prompt “a photo of [attribute]149

[object]” for CZSL, where “[attribute] [object]” are150

tunable tokens to teach CLIP how to compose at-151

tributes and objects.152

To stress the roles of individual primitives,153

(Wang et al., 2023a) additionally set an attribute154

and an object prompt with only “[attribute]” or155

“[object]” tunable; (Lu et al., 2023) make the whole156

prompt trainable and fuses the decomposed text157

features with the encoded (entangled) image fea-158

tures through a cross-modal fusion module. Dif-159

ferent from these works focusing on optimizing160

the prompts, (Zheng et al., 2024) propose to insert161

trainable adapters inside the frozen transformer lay-162

ers to decompose and recompose the attribute and163

object features. With disentangled primitive fea-164

tures, (Huang et al., 2024) establish three prediction165

branches and pulls a static class prompt to its dy-166

namic images via a cross-modal traction module.167

(Li et al., 2024) investigate the relative specificity168

of attributes when paired with different objects. In169

contrast to these methods, our method DCDA is170

more generalizable, with cross-composition knowl-171

edge injected and dual adapters inserted in CLIP’s172

image and text encoders.173

3 Methodology174

CZSL Task Formulation. Let Dtr = {(x, c)|x ∈175

Xs, c ∈ Cs} be the training set, where Xs contains176

the training images and Cs is a set of seen com-177

positional labels that are available during training.178

Each label is a tuple c = (a, o) of an attribute class179

a ∈ A and an object class o ∈ O. After training,180

the CZSL model can predict images of a set of181

new compositions Cu that are unseen during train-182

ing, with Cu ∩ Cs = ∅. Following previous works,183

we study generalized CZSL (Purushwalkam et al.,184

2019), where images of seen and unseen composi-185

tions are both tested and the candidate label space186

includes both seen and unseen labels. The test set 187

is thus denoted as Dte = {(x, c)|x ∈ Xte, c ∈ Cte}, 188

where Xte = Xu ∪ X ′
s with X ′

s ∩ Xs = ∅, and 189

Cte = Cu ∪ Cs. Notably, Cs and Cu share the same 190

attribute set A and object set O, CZSL assumes 191

that each a and o has been trained before testing 192

and only the composition (a, o) ∈ Cu is novel. 193

Overview. In the following, we will first intro- 194

duce the details of L-Adapters for the language 195

side and V-Adapters for the vision side, and then 196

introduce how to integrate them into the frozen 197

CLIP encoders for CZSL. As shown in Figure 3(c), 198

the adapters are inserted into CLIP’s intermediate 199

computational units such as self-attention layers 200

or feed-forward layers. This means the input of 201

each adapter is the output of CLIP’s one compu- 202

tational unit, and its output is the input of CLIP’s 203

next computational unit. We use Ht ∈ Rl×d and 204

Hv ∈ Rl′×d′ to denote the output of CLIP’s one 205

specific computational unit in the text and image 206

encoders, respectively, where l (resp. l′) is the 207

length of a tokenized input text (resp. image), d 208

and d′ is the hidden state size of each token. 209

3.1 The design of L-Adapter 210

Each L-Adapter is built upon a compositional graph 211

for representing the global compositional relation- 212

ships among attributes, objects and compositions, 213

and a GNN module for propagating and aggre- 214

gating features among them to realize the cross- 215

composition learning of textual primitive features. 216

We first define the compositional graph. It con- 217

sists of N = |A| + |O| + |C′| nodes, including 218

all the attributes, all the objects, and the compo- 219

sitions in the current computation (i.e., C′ = Cs 220

for training and C′ = Cte for testing). Given these 221

nodes, for each c = (a, o), we connect (a, o), (a, c) 222

and (o, c) to form a triangle in the graph, as shown 223

in Figure 3(a). For simplicity and efficiency, we 224

keep all graph edges unweighted and undirected 225

as in (Naeem et al., 2021) and obtain a symmetric 226

adjacency matrix A ∈ RN×N to store the graph 227

structure, Aij = 1 if there is a connection between 228

node i and j otherwise Aij = 0. 229

To obtain the initial representations of graph 230

nodes, we first define individual prompts for at- 231

tributes and objects as “a photo of [attribute] object” 232

and “a photo of [object]” besides the composition 233

prompts “a photo of [attribute] [object]”, then for 234

each c = (a, o), we feed three prompts into CLIP’s 235

text encoder to output three hidden states Ht
a, Ht

o 236

and Ht
c for a, o, c, respectively, and finally extract 237

3



𝑥(",$)

th
e	
𝑘-
th

G
N
N

la
ye

r

x	K

𝑥("&,$)𝑥(",$&)

𝑯(𝒂,𝒐)
𝒗 𝑯("&,$)

*𝑯(",$&)
*

Attribute
Cross-Attention

𝑄, 𝐾,𝑉

𝑯(𝒂,𝒐)→𝑨
𝒗𝑯(𝒂,𝒐&)→𝑨

𝒗 𝑯(𝒂,𝒐)→𝑶
𝒗 𝑯(𝒂),𝒐)→𝑶

𝒗

Fusion

𝑄,𝐾, 𝑉

𝑯 𝒂,𝒐
𝒗'

“	a	photo	of	red	tomato”	…
“	a	photo	of	red object	” … “	a	photo	of	tomato ”	…

prompts

𝑄 𝐾 𝑉𝐾 𝑉 𝑄

𝑯(𝒂,𝒐)
𝒗 𝑯(*),+)

,

Object
Cross-Attention

A	detailed	 introduction	to	disentangle	attribute	feature,	
similar	 to	object	feature.

𝒂-./
(0) 𝒐 1+2*

1+(0)

𝒄-./	1+2*1+
(0)

𝒂!"##$
(&)

𝒄!"##$ 	)*+,)*
(&)

𝒄"#- 	,../#
(&)

𝒄"#- 	01$#
(&)

𝒄"#- 	"*2#
(&)

𝒐"*2#
(&)

𝒐01$#
(&)

𝒐,../#
(&)

red tom
ato

red	tomato

green

green	tomato

red	apple

red	wine

red	rose

rose

wine
apple

wine

red

tom
ato

green

rose

apple

attribute-relevance	
graph

red
tom

ato

green

rose

wine
apple

object-relevance	graph

red	winered	rose

red	apple
target	image:
red	tomato

red	leaf

red-sharing	compositions
[ALL	except	red	tomato]

auxiliary	attribute-sharing	
image:	red apple

auxiliary	object-sharing	
image:	green	tomato

top-1 least	
relevant

(a)	 (b)	

Self-Attention

Feed	Forward

Layer	Norm

Layer	Norm

Adapter③

Adapter①

Adapter②

(c)	

filter	using	𝐴-$."-$
/01

compositional	graph

AGG	(										)	&	CON

0.2

0.2

top-1most	relevant

filter	using 𝐴234566

0.5

0.1

Figure 3: Overview of DCDA during training: (a) The L-Adapter built upon the composition graph and GNN module; (b)
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candidate position for inserting adapters in a transformer block. We take the learning of red tomato as an example.

the embeddings of the special token [EOT] in the238

prompts as the initial features {ht
i}Ni=1 of graph239

nodes, with ht
i = Ht

i,[EOT] and ht
i ∈ Rd. In this240

way, the text feature of each primitive is naturally241

disentangled from the composition one.242
Next, we exploit multiple GNN layers to prop-243

agate features among graph nodes following the244
graph structure defined in A. Formally, as Fig-245
ure 3(a)’s top shows, for each c = (a, o), three246
identical AGG functions are parallelly applied to247
aggregate neighborhood features for nodes a, o, c248
at the k-th GNN layer, k ∈ {0, ...,K − 1}, as:249

a
(k)
Na

= AGG(k)({c(k)i |ci ∈ N c
a}, {o

(k)
i |oi ∈ N o

a }) (1)250

o
(k)
No

= AGG(k)({c(k)j |cj ∈ N c
o }, {a

(k)
j |aj ∈ N a

o }) (2)251

c
(k)

c=(a,o) = AGG(k)(a(k),o(k)) (3)252

where N c
a (resp. N c

o ) denotes the composition253

neighbor set of a (resp. o) on the graph, and N o
a254

(resp. N a
o ) includes the objects (resp. attributes)255

that compose the compositions in N c
a (resp. N c

o )256

together with a (resp. o). Considering the exam-257

ple in Figure 3(a) where c = (a, o) is red tomato,258

N c
a includes compositions like red apple and N o

a259

includes objects like apple. While the neighbor set260

of each c only contains its primitives a and o. a(k)261

is the input feature of a at the k-th layer, and is up-262

dated using CON function to obtain the k-th-layer263

output as a(k+1) = CON(a
(k)
Na

,a(k)), similar for o264

and c with outputs o(k+1) and c(k+1). The input265

feature of a, o, c at the first layer of GNN is the266

initialized node feature, e.g., c(0) = ht
c. The out-267

put features of a, o after K GNN layers a(K),o(K),268

which have already fused their neighboring compo-269

sitions’ features, and c’s output feature c(K), which270

has aggregated the updated features of a and o, are271

the final output of one L-Adapter, and will be in-272

putted into the next computation unit of CLIP for273

the latter computation.274

3.2 The design of V-Adapter 275

Since attributes and objects are highly entangled 276

within the input image, we cannot build the same 277

computational graph in V-Adapters as that in L- 278

Adapters. Targeting this, we leverage the cross- 279

attention over primitive-sharing image pairs to ex- 280

tract cross-composition-sharing primitive features, 281

and design a primitive relevance-guided sampling 282

strategy to introduce more valid primitive-sharing 283

compositions. We take disentangling attribute fea- 284

tures from an input image as an example, object 285

features are processed similarly. 286
Specifically, as shown in Figure 3(b), given a 287

target image x(a,o) to predict, which is labeled by 288

c = (a, o), we first randomly sample an auxiliary 289
composition that shares the same attribute as x(a,o) 290

but has different object o′, and select one of its 291
images x(a,o′) as an auxiliary image. Then, we 292

feed these two images into CLIP to output two 293
hidden states Hv

(a,o) and Hv
(a,o′) and compute the 294

cross-attention as, with Hv
(a,o′) as the query and 295

Hv
(a,o) as the key and value: 296

CrossAttention(Q,K,V ) = softmax(QKT
√
d′

)V (4) 297

Q = Hv
(a,o′)WQ,K = Hv

(a,o)WK ,V = Hv
(a,o)WV

(5)
298

where W{Q,K,V } ∈ Rd′×d′ are three linear trans- 299

formation matrices for flexible computation. We 300

can see that every output embedding is a weighted 301

sum of the value embeddings, and the weights are 302

calculated by the similarity of the query and the 303

key. By setting query as Hv
(a,o′), we can refine 304

Hv
(a,o) to keep features that are more specific to a, 305

as well as attribute features that are general across 306

these two compositions. We also swap the query 307

and the value (also key) to refine Hv
(a,o′). The out- 308

put of cross-attention is thus denoted as Hv
(a,o)→A 309
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and Hv
(a,o′)→A. A feed-forward layer is also added310

after the cross-attention.311

Notably, the above cross-attention can only pro-312

cess two attribute-sharing compositions at one time.313

To introduce more compositions to learn more314

general attribute features, the model relies on the315

batched data and random sampling to switch the316

auxiliary composition. However, when an attribute317

is diverse with extensive composition neighbors,318

e.g., red or broken, which also means extensive can-319

didate auxiliary compositions, the model requires320

more switches to traverse them, leading to inferior321

overall performance as shown in Table 1. To bal-322

ance the switch times of attributes with different323

numbers of neighbors, we propose to select some324

representative compositions instead of all the com-325

positions as the candidates, and for a target image326

x(a,o), the top-n objects that are most and least327

relevant to the target object o are paired with the328

target attribute a to serve as the representative aux-329

iliary compositions, while the relevance between330

two objects can be determined by the number of331

common attributes that co-occur in their associated332

compositions in the training set; for example, if333

there are compositions red tomato and red apple in334

the training set, red is a common attribute of the335

objects tomato and apple.336

To this end, we refer to the attribute-object edges337

in the training compositional graph to first create338

an att-obj graph with structure matrix Aatt-obj ∈339

R|A|×|O|, where A
att-obj
i,j = 1 means attribute i and340

object j form a valid seen composition while 0341

not. Then, an object relevance graph can be cre-342

ated and its structure matrix is found as Aobj =343

(Aatt-obj)TAatt-obj with size |O| × |O|, where A
obj
i,j344

represents the number of common attributes be-345

tween i-th and j-th objects, large numbers mean346

higher relevance. With this relevance graph, for347

target image x(a,o), and all of its a-sharing com-348

positions besides (a, o), denoted as {(a, o′)}, we349

next refer to A
obj
o to obtain the relevance scores350

of objects in {o′} w.r.t o, and select the compo-351

sitions whose objects have top-n maximum and352

top-n minimum non-zero scores as the representa-353

tive compositions. Figure 3(b) presents a running354

example of this procedure. Finally, we perform a355

weighted random sampling over these representa-356

tive compositions, i.e., the probability for selecting357

(a, o′) is determined by the normalized relevance358

score between o′ and o, more details are attached359

in Appendix A.1.360

The same applies to the output of the object 361

cross-attention Hv
(a,o)→O, which is learned from 362

a set of representative o-sharing compositions se- 363

lected by referring to the attribute relevance matrix 364

Aatt = Aatt-obj(Aatt-obj)T and its row value Aatt
a . In 365

this way, we learn the cross-composition-sharing 366

primitive features of an input image, and have the 367

updated image features: H̃v
(a,o) = Hv

(a,o)→A + 368

Hv
(a,o)→O, which will be the final output of one 369

V-Adapter together with Hv
(a,o)→A and Hv

(a,o)→O. 370

3.3 Integrating Adapters into CLIP 371

Given a single L-Adapter and V-Adapter, we next 372

present how to insert them into two connected com- 373

putation units in CLIP. Inspired by ViT (Dosovit- 374

skiy et al., 2020) which tends to learn general fea- 375

tures at lower layers and learn specific features at 376

higher layers, we add our adapters starting from the 377

top transformer blocks. After preliminary valida- 378

tions on MIT-States (see our Ablation Study results 379

for more), we decided to i) insert adapters at the 380

last three transformer blocks of both text and im- 381

age encoders, and ii) add L-Adapters behind the 382

self-attention layer and feed-forward layer in each 383

language transformer block (i.e., the positions ③ 384

and ② in Figure 3(c)), and attach V-Adapters after 385

the whole vision transformer block (i.e., the posi- 386

tion ① in Figure 3(c)). Moreover, we build a skip 387

connection between the input and the output of 388

each adapter before inputting it into the next com- 389

putation unit of CLIP. We use CLIP’s pre-trained 390

word embeddings to initialize each word in our 391

prompts, including the prefix words “a photo of”, 392

and keep these word embeddings trainable for cap- 393

turing more task-specific knowledge. 394

3.4 Training and Inference 395

At the last transformer blocks, we obtain the output 396

of L-Adapter and V-Adapter after skip connection, 397

denoted as Ĥv and Ĥt, based on this, we extract 398

the embeddings of [EOT] token, i.e., ĥv(= Ĥv
[EOT]) 399

and ĥt(= Ĥt
[EOT]), to measure the compatibility of 400

visual and textual features. Formally, for an input 401

image xi and a training composition ci = (ai, oi), 402

we compute the compatibility score as: 403

s(xi, ci = (ai, oi)) = α [ĥv
i · ĥt

ci ] + β [ĥv
i→A · ĥt

ai
]

+γ [ĥv
i→O · ĥt

oi ]
(6) 404

where we also measure the individual primitive 405

compatibility via the second and the third items as 406

if one image belongs to an attribute-object pair, its 407
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disentangled attribute and object features also be-408

long to the corresponding primitive labels. We use409

three learnable parameters α, β, γ to balance the410

overall score. · denotes the dot-product similarity.411

We optimize these adapters and trainable token412

embeddings by minimizing the cross-entropy loss413

on the training set Dtr with seen compositions from414

Cs, with τ as the temperature widely used in CLIP,415

and ci = (ai, oi) as the ground-truth label:416

L = − 1

|Dtr|
∑

xi∈Dtr

log
e[s(xi,ci=(ai,oi))/τ ]∑

cj∈Cs
e[s(xi,cj=(aj ,oj)/τ)]

(7)417

During inference, for each testing image xt, we418

estimate the compatibility score between xt and419

each testing composition c = (a, o) from Cte as420

Equation 6. The composition that has the highest421

compatibility score is the predicted label. Besides,422

since we have no idea about the attribute and ob-423

ject labeled for xt, we take itself as the primitive-424

sharing images to compute Hv
t→A and Hv

t→O.425

4 Experiments426

4.1 Experimental Settings427

Datasets and Metrics. We experiment with three428

popular benchmarks for CZSL: MIT-States (Isola429

et al., 2015), UT-Zappos (Yu and Grauman, 2014)430

and C-GQA (Naeem et al., 2021), and follow (Pu-431

rushwalkam et al., 2019; Naeem et al., 2021) to432

split the data for training, validation and testing.433

For each dataset, we compute the prediction accu-434

racy of seen and unseen compositions, and report435

four metrics: the best Seen (S) and Unseen (U)436

accuracy, the best harmonic mean (H), and the437

Area Under the accuracy Curve (AUC). Among438

them, AUC is the most comprehensive one and439

is widely adopted as the core metric by previous440

works (Purushwalkam et al., 2019; Zheng et al.,441

2024). Please see Appendix B for more datasets442

and metrics details.443

Closed World and Open World Settings. Given444

the attribute set A and object set O, the complete445

compositional label set C should be the Cartesian446

product of A and O, i.e., C = A × O with size447

|A| × |O|. However, current benchmarks often448

operate in a closed world setting where unseen449

compositions Cu in Cte are a small subset of C \ Cs450

and are assumed to be known. For example, MIT-451

States contains 28,175 possible compositions with452

115 attributes and 245 objects, but the label space453

for testing is limited to 1,962 compositions (1,262454

seen and 700 unseen), covering less than 7% of455

the complete set. Thus, we follow (Mancini et al., 456

2021) to evaluate our model in the open world set- 457

ting, where the testing images remain unchanged 458

but the testing label space is all possible combina- 459

tions, i.e., Cte = C and Cu = C \ Cs, which is more 460

challenging as the models have to generalize from a 461

small set of seen to a very large set of unseen com- 462

positions. Notably, not all the combinations are 463

feasible, such as eroded cat, for this, we apply post- 464

training calibration (Nayak et al., 2023; Xu et al., 465

2024) to filter out unreasonable compositions. 466

Baselines and Model Variants. We mainly com- 467

pare our DCDA with the existing CLIP-based 468

CZSL methods, including the vanilla CLIP without 469

fine-tuning, CSP (Nayak et al., 2023), HPL (Wang 470

et al., 2023a), DFSP (Lu et al., 2023), CAILA 471

(Zheng et al., 2024), and Troika (Huang et al., 472

2024). We also include two non-CLIP-based base- 473

lines that are most similar to us, namely CGE 474

(Naeem et al., 2021) and ADE (Hao et al., 2023). 475

In V-Adapters, we propose a novel primitive- 476

relevance guided (PRG) sampling method to 477

select representative auxiliary compositions to 478

sample rather than performing purely random 479

(RD) sampling over all neighboring compositions. 480

For detailed comparisons, we develop a vari- 481

ant DCDA[RD] and denote the vanilla model as 482

DCDA[PRG]. With the imbalanced sample dis- 483

tribution, we also focus on the tail compositions 484

in the neighbor set, and sample them according 485

to the reciprocal of their image numbers (N) to 486

supply DCDA[PRG], leading to a new variant 487

DCDA[PRG+N], these two sampling strategies are 488

switched batch by batch. Please see Appendix B.3 489

for more implementation details. 490

4.2 Main Results 491

Closed-world Performance. As shown in Table 1 492

(top), our DCDA variants achieve state-of-the-art 493

performance across benchmarks. On MIT-States, 494

both DCDA[PRG] and DCDA[PRG+N] surpass 495

previous methods with over 3% improvements 496

in AUC and harmonic mean (H), and over 6% 497

gains in seen accuracy compared to CAILA. For 498

UT-Zappos, DCDA[PRG+N] is the best on three 499

metrics and achieves substantial AUC improve- 500

ments over CGE despite the inferior result on H. 501

The initial experiments showed suboptimal perfor- 502

mance on C-GQA due to its low-quality images, 503

unfreezing CLIP’s image encoder eventually en- 504

abled DCDA to achieve competitive second-place 505

results, see Appendix B.4 for more. 506

6



Setting Methods MIT-States UT-Zappos C-GQA
S U H AUC S U H AUC S U H AUC

Closed World

CGE 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
ADE – – – – – – – – 35.0 17.7 18.0 5.2
CLIP 30.2 46.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
CSP 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33.0 28.8 26.8 20.5 6.2
HPL 47.5 50.6 37.3 20.2 63.0 68.8 48.2 35.0 30.8 28.4 22.4 7.2
DFSP 46.9 52.0 37.3 20.6 66.7 71.7 47.2 36.0 37.3 26.1 23.5 8.2
CAILA 51.0 53.9 39.9 23.4 67.8 74.0 57.0 44.1 40.4 28.6 26.1 9.9
Troika 49.0 53.0 39.3 22.1 66.8 73.8 54.6 41.7 38.0 28.4 25.3 9.2
DCDA[RD] 42.2 46.7 32.8 16.2 64.7 71.5 54.5 40.1 39.8 25.3 23.9 8.5
DCDA[PRG] 57.3 55.1 43.2 26.9 68.7 72.4 56.5 43.0 39.1 26.7 24.5 8.9
DCDA[PRG+N] 57.1 55.5 43.1 27.0 69.1 74.1 57.2 44.2 38.5 28.8 25.3 9.4

Open World

CGE 32.4 5.1 6.0 1.0 61.7 47.7 39.0 23.1 32.1 1.8 2.9 0.47
ADE – – – – – – – – 35.1 4.8 7.6 1.42
CLIP 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
CSP 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20
HPL 46.4 18.9 19.8 6.9 63.4 48.1 40.2 24.6 30.1 5.8 7.5 1.37
DFSP 47.5 18.5 19.3 6.8 66.8 60.0 44.0 30.3 35.0 4.9 7.3 1.42
CAILA 51.0 20.2 21.6 8.2 67.8 59.7 49.4 32.8 40.4 6.6 9.6 2.26
Troika 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33.0 37.4 4.5 6.0 1.11
DCDA[PRG] 54.6 27.3 25.8 11.5 68.6 56.4 51.2 33.8 35.5 4.4 6.7 1.30
DCDA[PRG+N] 55.0 27.7 26.7 12.0 67.8 62.5 51.4 35.8 35.3 6.4 8.5 1.76

Table 1: Overall Results (%) on three benchmarks. In each setting, the best results are in bold and the second best are underlined.
We report DFSP in its t2i setting. Numbers in italics mean the results implemented with CLIP-base, others are with CLIP-large.

Model Variants Analyses. The significant mar-507

gin between DCDA[PRG] and DCDA[RD] on all508

datasets validates our primitive-relevance guided509

sampling strategy. Especially, the improvement on510

MIT-States is promising, since the number of com-511

positions surrounding its each primitive is more512

imbalanced than that of UT-Zappos. Moreover,513

in contrast to the slight performance gap between514

DCDA[PRG+N] and DCDA[PRG] on MIT-States515

and C-GQA, DCDA[PRG+N] shows great superior-516

ity on UT-Zappos, demonstrating superior handling517

of class imbalance (sample size std: UT-Zappos’s518

465 vs. MIT-States’ 12 vs. C-GQA’s 22).519

Cross-method Insights. Among CLIP-based520

methods, CAILA, Troika, and DCDA form the top521

tier by injecting adapters for visual disentangle-522

ment. Our approach outperforms both competi-523

tors on both the general dataset MIT-States and524

the domain-specific dataset UT-Zappos with fewer525

trainable parameters through partial-layer adapter526

insertion (our last-3 layers vs. full layers in CAILA527

and Troika), demonstrating superior cross-domain528

adaptability, and preserving CLIP’s generalization529

as evidenced by open-world results (Table 1, bot-530

tom). The comparable results on C-GQA also531

motivate us to develop more advanced learning532

paradigms in the future.533

4.3 Effectiveness of Adapters534

The whole Adapters. We evaluate the contribu-535

tion of L-Adapter and V-Adapter by analyzing the536

performance drop when one of them is removed.537

Models S U H AUC
Full Model (e.g., DCDA[PRG]) 57.3 55.1 43.2 26.9
w/o L-Adapters 55.9 54.7 42.2 26.1
w/o V-Adapters 44.9 46.9 33.8 17.1
L-Adapter w/o other compositions 57.5 54.6 43.0 26.7
V-Adapter w/o other compositions 44.5 46.2 33.7 17.0
L&V-Adapter w/o other compositions 44.2 46.1 33.6 16.7

Table 2: Adapter Analysis on MIT-States in closed world.

Notably, when all L-Adapters (reps. V-Adapters) 538

are removed, the text (resp. image) encoder will 539

act like CLIP’s default frozen encoders to output 540

an entangled representation for each input prompt 541

(resp. image). We conduct experiments on MIT- 542

States dataset under the closed world setting, the 543

results are shown in the second and third lines of 544

Table 2. We can see that the performance both 545

declines when L-Adapters or V-Adapters are re- 546

moved, indicating that they two both have a positive 547

contribution to the DCDA model and are comple- 548

mentary to each other. We also observe that the 549

performance decrease of removing V-Adapters is 550

greater than that of removing L-Adapters, which 551

is consistent with our statement: textual primitive 552

features are less entangled than visual ones, and the 553

independent textual primitive features can still be 554

captured by setting individual primitive prompts. 555

Cross-composition Information in Adapters. We 556

further validate the effectiveness of introducing 557

primitive-sharing compositions for each target com- 558

position by deleting the compositional graph in 559

L-Adapters and/or auxiliary compositions in V- 560
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Figure 4: Performance (AUC, S and U) of increasing the number of transformer layers with adapters on MIT-States.

Adapters. Concretely, we merely keep the prompts’561

token embeddings trainable in L-Adapters; and/or562

replace the two auxiliary images with the target im-563

age itself in V-Adapters, which thus turns into the564

self-attention on the input image, but still projects565

the primitive features into different subspaces with566

different attention networks. The results on MIT-567

States are shown in the last three lines of Table 2.568

The performance drop indicates the superiority of569

introducing primitive-sharing compositions in both570

text and image encoders. In particular, we find that571

V-Adapters without primitive-sharing compositions572

even perform worse than removing the whole V-573

Adapters, illustrating that these compositions play574

a considerable role in constraining the learning of575

primitive features in different subspaces. In con-576

trast, L-Adapters without neighboring (primitive-577

sharing) compositions perform better than remov-578

ing the whole L-Adapters. However, the perfor-579

mance gap is slight, which may be attributed to580

that we also set the embeddings of tokens in the581

prompts tunable, the cross-composition primitive582

features can be implicitly captured by optimizing583

the token embeddings with multiple samples.584

4.4 Ablation Studies585

Insertion Location of Adapters. There are two586

choices for inserting adapters into a transformer587

block, i.e., inside or outside. Therefore, we ex-588

periment with four configurations where every L-589

Adapter and V-Adapter are added inside or outside590

a transformer block, as shown in Table 3. No-591

tably, the inside insertion includes adding after the592

self-attention and feed-forward layers in a block,593

i.e., the positions ③ and ② in Figure 3(c). From594

Table 3, it can be seen that adding V-Adapters out-595

side transformer layers often achieves better per-596

formance no matter where L-Adapters are located,597

while there is no significant difference when shift-598

ing L-Adapters at different positions. This may599

be because when adding a V-Adapter inside the600

transform layer, there is no nonlinear transforma-601

L-Adapters V-Adapters MIT-States
I O I O S U H AUC
✓ ✓ 53.5 53.4 40.6 24.0
✓ ✓ 57.3 55.1 43.2 26.9

✓ ✓ 53.1 53.0 41.0 24.0
✓ ✓ 56.0 55.5 43.2 26.7

Table 3: Ablation Study on Adapters’ Insertion Locations,
i.e., inside (I) or outside (O) one transformer block.

tion like Feed-Forward layer between two attention 602

operations for extracting more informative features. 603

Regarding the better performance with inside L- 604

Adapters and outside V-Adapters, we finally apply 605

this configuration to three benchmarks. 606

Insertion Depth of Adapters. We further show 607

the performance change when we increase the num- 608

ber of transformer blocks with trainable adapters in 609

Figure 4. As mentioned earlier, we start from the 610

top transformer layers. It is clear that the best per- 611

formance is achieved with the last 3 layers, while 612

the last 6 layers may overfit the training data, with 613

less generalization knowledge from our adapters. 614

5 Conclusions and Outlook 615

We present DCDA, a graph-guided framework that 616

enhances CLIP for compositional zero-shot learn- 617

ing through dual adapters. Our key innovations 618

include: 1) L-Adapters that aggregate textual prim- 619

itives via compositional graph propagation, ad- 620

dressing label-side entanglement; 2) V-Adapters 621

that extract invariant visual patterns through cross- 622

attention and primitive-relevance guided sampling, 623

effectively mitigating image feature entanglement. 624

Experiments across three benchmarks validate that 625

DCDA learns more discriminative and generaliz- 626

able primitive representations. This underscores 627

the critical role of visual disentanglement in CZSL, 628

as visual primitives exhibit stronger composition- 629

dependent entanglement than textual counterparts. 630

In the future, it is expected to apply our dual 631

adapters in other vision-language tasks and develop 632

dynamic graph construction mechanisms to handle 633

open-vocabulary primitive discovery. 634
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Limitations635

While our proposed DCDA demonstrates strong636

performance in compositional zero-shot learning637

(CZSL), several limitations warrant discussion as638

follows: (1) the computational overhead of con-639

structing and updating the compositional graph640

grows with the scale of attributes and objects,641

which may pose challenges for applications re-642

quiring real-time inference on large combinatorial643

spaces. (2) while our primitive-relevance guided644

sampling mitigates data imbalance, extreme long-645

tailed distributions of attributes or objects (e.g., rare646

primitives with few compositions) may still lead647

to suboptimal disentanglement due to insufficient648

cross-composition supervision. Addressing these649

limitations could further enhance the robustness650

and scalability of our framework.651
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A Supplementary Methodology Details 800

A.1 Computing the Sampling Probability 801

To sample the top-n most and least relevant compo-
sitions according to the top-n maximum and mini-
mum primitive relevance scores, we take two ways
to compute the sampling probabilities. More specif-
ically, the probability for selecting the top-n most
relevant compositions, e.g., (a, o′i), is computed as:

P (o′ = o′i) =
A

obj
o,o′i∑

o′k∈{o′}
A

obj
o,o′k

,

where A
obj
o,o′i

means the relevance score between
objects o′i and o, while the probability for selecting
the top-n least relevant compositions, e.g., (a, o′j),
is computed as:

P (o′ = o′j) = −
A

obj
o,o′j∑

o′k∈{o′}
A

obj
o,o′k

.

The difference is that the n normalized minimum 802

scores are multiplied by −1 to ensure that the top-1 803

least relevant composition has the highest proba- 804

bility of being sampled among the n least relevant 805

compositions. Consider the example in Figure 3(b), 806

red wine, red rose and red leaf are top-3 least rele- 807

vant compositions for red tomato, with top-3 nor- 808

malized minimum object-relevance scores: 0.1, 0.2 809

and 0.2, respectively, while red wine is the top-1 810

least relevant composition with the highest sam- 811

pling probability among these three compositions. 812

To avoid being confused by the positive and neg- 813

ative sampling probabilities, we divide the repre- 814

sentative compositions into two groups and sample 815

over the top-n most and least relevant compositions 816

independently. To be more specific, we switch 817

them batch by batch. 818

B Supplementary Experiment Details 819

B.1 Dataset 820

MIT-States contains 53,753 real-world images, an- 821

notated by a variety of classes with 245 objects 822

and their 115 attributes in the general domain. In 823

closed world, it provides 1,962 compositions in 824

total, 1,262 of which are seen used for training, and 825

700 are unseen with 300 for validation and 400 826

for testing. UT-Zappos is a more domain-specific 827

dataset, containing 50,025 images of shoes paired 828

10
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with their material attributes. In total, it has 16 at-829

tributes and 12 objects, yielding 83 seen and 33 un-830

seen compositions under the closed world setting.831

C-GQA, derived from of Stanford GQA dataset832

(Hudson and Manning, 2019), is the most exten-833

sive dataset for CZSL, containing 7,767 composi-834

tions (5,592/2,175 as seen/unseen), 413 attribute835

classes, 674 object classes, and 39,298 images in836

total. Table 4 summarizes the statistics of these837

three datasets in the closed world setting, the open838

world has the same set of testing images, i.e., Xte,839

but larger candidate label set, i.e., all possible com-840

positions C obtained by the Cartesian product of A841

and O.842

Datasets Composition Train Validation Test
|A| / |O| |Cs| |Xs| |Cs| / |Cu| |Xval| |Cs| / |Cu| |Xte|

MIT-States 115 / 245 1,262 30,338 300 / 300 10,420 400 / 400 12,995
UT-Zappos 16 / 12 83 22,998 15 / 15 3,214 18 / 18 2,914

C-GQA 413 / 674 5,592 26,920 1,040 / 1,252 7,280 888 / 923 5,098

Table 4: Statistics of Datasets for CZSL. |Cu| here is
the number of unseen compositions in the closed world
setting.

B.2 Evaluation Metrics843

We compute the prediction accuracy for recogniz-844

ing seen and unseen compositions, i.e., the general-845

ized CZSL, in both closed world and open world846

scenarios. Specifically, due to the inherent bias to-847

wards seen classes, we follow the current standard848

(Purushwalkam et al., 2019; Nayak et al., 2023)849

to add a scalar bias to the prediction scores of un-850

seen classes and vary the bias from −∞ to +∞851

to get a seen-unseen accuracy curve, which indi-852

cates the seen accuracy on the x-axis and unseen853

accuracy on the y-axis. Correspondingly, we can854

report the best seen accuracy (S), where the bias855

is set to −∞ and the models only predict on the856

seen labels, and report the best unseen accuracy857

(U), where the bias is set to +∞ and the models858

only predict on the unseen labels. Also, we calcu-859

late the best harmonic mean (H), where a harmonic860

mean value is first computed for each point on the861

curve to balance the seen accuracy (accs) and un-862

seen accuracy (accu) as (2×accs×accu)/(accs+863

accu), and then the highest value across all the se-864

lected points is reported. Finally, we compute the865

Area Under the accuracy Curve (AUC) as a com-866

prehensive metric.867

B.3 Implementation Details868

We implement our models with PyTorch and use869

Adam as the optimizer, with the learning rate set to870

5e-5, 5e-5, 1e-5, and the batch size set to 32, 32, 16 871

for MIT-States, UT-Zappos, C-GQA, respectively, 872

the weight decay is set to 5e-5 for all datasets. The 873

GNN module is implemented as GCN with K = 2. 874

n for selecting the representative auxiliary compo- 875

sitions is set to 5. The initialized value of α, β, γ 876

are all set to 1, and later optimized together with 877

other parameters. The optimum configurations w.r.t 878

these hyper-parameters are determined by AUC on 879

the validation set. All the experiments are run on a 880

single NVIDIA Tesla A100 GPU with 40GB mem- 881

ory. 882

B.4 Experiments on C-GQA 883

To deal with the low-resolution and small-size im- 884

ages in C-GQA, we tried to add more trainable pa- 885

rameters, such as inserting more adapters in CLIP’s 886

image encoder or fully fine-tuning the whole im- 887

age encoder, to adapt CLIP to this kind of image. 888

More specifically, we add a downsample-upsample 889

style adapter, which is similar to the adapter used 890

in CAILA and Troika, after the self-attention layer 891

and feed-forward layer in each vision transformer 892

block (i.e., the positions ③ and ② in Figure 3(c)), 893

except for the last three transformer blocks where 894

our V-Adapters have already been there. In ad- 895

dition, we also try to unfreeze the whole image 896

encoder to fully update its parameters, where our 897

V-Adapters are added in the last three layers for 898

feature disentanglement. The results are presented 899

in the second and third lines of Table 5, respec- 900

tively. Moreover, since a single A100 GPU with 901

40GB memory can not afford these extra adapters 902

or fully fine-tuned parameters with CLIP-large that 903

contains 24 vision transformer (ViT) layers, we 904

instead use CLIP-base with ViT-B/32 as its image 905

encoder, and re-run baselines for a fair comparison. 906

Regarding that some baselines with CLIP-large still 907

perform worse than our methods with CLIP-base, 908

we omit re-implementing them to save computation 909

costs. 910

From Table 5, we can see that introducing more 911

trainable parameters indeed achieves superior per- 912

formance, in comparison with the vanilla models 913

that only include 3 V-Adapters in the last three lay- 914

ers of the frozen image encoder. Especially, the 915

fine-tuning method performs better. As a result, we 916

implement our DCDA[PRG] and DCDA[PRG+N] 917

with the whole image encoder fully tunable, the 918

resulting models together with our V-Adapters 919

achieve very competitive performance on C-GQA 920

compared with the SOTA CAILA. Moreover, we 921
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Models S U H AUC
Frozen Encoder + 3 V-Adapters (default) 34.8 23.4 21.6 6.9
Extra Adapters + 3 V-Adapters 38.8 26.6 23.8 8.7
Full Fine-Tuning + 3 V-Adapters 38.5 28.8 25.3 9.4
Full Fine-Tuning + 1 V-Adapters 38.9 26.4 24.6 8.8
Full Fine-Tuning + 2 V-Adapters 39.2 27.3 24.9 9.0
Full Fine-Tuning + 4 V-Adapters 38.8 25.6 24.2 8.5
Full Fine-Tuning + 6 V-Adapters 31.9 13.7 14.1 3.5

Table 5: Ablation on adding more trainable parameters
in the vision encoder on C-GQA in closed world. All the
results are tested with the “[PRG+N]” sampling method.

also vary the number of transformer layers with922

V-Adapters inserted, starting from the top trans-923

former layers, the results are as shown in the last924

four lines of Table 5. From Table 5, we have simi-925

lar observations as in Figure 4, i.e., too few (e.g.,926

only one) V-Adapter is not enough to disentangle927

the primitive features, while too many (e.g., 6) V-928

Adapters may overfit to disentangle the training929

data, resulting in poor generalization. To sum up,930

the fine-tuned image encoder and three V-adapters931

lead to a balance between adapting CLIP to the C-932

GQA dataset and disentangling its image features.933

C Supplementary Case Studies934

We use examples from MIT-States to analyze the935

disentanglement of primitive features learned by936

CAILA and our DCDA (e.g., DCDA[PRG]), es-937

pecially those visual ones. Specifically, we first938

randomly sample a set of seen and unseen com-939

positions from the test set of MIT-States whose940

annotated attributes or objects have high diversity.941

Here, we use the number of associated objects (resp.942

attributes) to roughly measure the diversity of an943

attribute (resp. object) as a wider range of objects944

(resp. attributes) would lead to more diverse appear-945

ances of attributes (resp. objects). For example, in946

Figure 2, attribute broken describes 40 objects in947

the training set ranging from car, drum to furniture948

with different damaged states; similar to the object949

knife in Figure 5, which is paired with 9 attributes950

in the training set. In addition, we also manually951

select 2 ∼ 3 attributes (resp. objects) whose as-952

sociated objects (resp. attributes) are fewer but953

look greatly different, e.g., the attribute worn in954

Figure 2.955

Then, for each sampled composition, we ran-956

domly extract at least 3 testing images and visual-957

ize their visually disentangled attribute and object958

representations learned by our DCDA and CAILA959

in Figure 2 and Figure 5, respectively, where dif-960

ferent colors indicate different attribute or object961
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Figure 5: t-SNE visualizations of disentangled object
representations of images in the test set of MIT-States,
learned by CAILA and our DCDA. Solid and hollow
circles represent images of seen and unseen composi-
tions, respectively. Best viewed in color.

labels. More specifically, for DCDA, we extract 962

the features learned by our V-Adapters, i.e., Hv
∗→A 963

and Hv
∗→O; while for CAILA, we save the features 964

learned by its attribute and object-specific vision 965

encoding blocks. 966

From Figure 2 and Figure 5, it can be seen 967

that the attribute embeddings or object embeddings 968

learned by our model are clustered into different 969

groups w.r.t different attributes or objects in each 970

vector space. For example, in Figure 2, broken car, 971

broken drum and broken furniture are in the same 972

cluster in the attribute space, i.e., their learned at- 973

tribute features are similar even though they show 974

different broken state w.r.t different objects, similar 975

to curved knife and large knife in Figure 5. Also, 976

broken car is a seen composition, while broken 977

drum and broken furniture are two unseen compo- 978

sitions. However, the attribute embeddings as well 979

as object embeddings learned by CAILA scatter 980

in the attribute and object space, respectively. All 981

of these illustrate that our DCDA captured similar 982

visual features specific to each primitive, which is 983

discriminative and generalizable. 984

Moreover, we also find that the attribute and 985

object embeddings of the same composition are 986

divided into different clusters with different neigh- 987

bors in two spaces, for example, large knife and 988

dull knife are two neighbors from the cluster of 989

knife in the object space, while they fall into the 990

clusters of large and dull in the attribute space 991

with neighbors large building and dull brass, re- 992

spectively. This indicates that our method indeed 993

disentangles the attribute and object features into 994

different representation spaces. 995
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