
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNSUPERVISED GRAPH NEURAL NETWORKS FOR
SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS
BY ITERATIVE SOLUTION REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial optimization (CO) problems are crucial in various scientific and
industrial applications. Graph Neural Networks (GNNs) have recently emerged
as a scalable, high-performance framework for tackling NP-hard CO problems,
demonstrating high performance and nearly linear scalability. Current approaches
utilize GNNs to directly predict solutions based on standard node features. This
often leads to overfitting and convergence to poor local minima, limiting solu-
tion quality. We introduce a novel optimization method leveraging the power of
GNNs to efficiently process CO problems with Quadratic Unconstrained Binary
Optimization (QUBO) formulation. Rather than predicting a solution from fixed
features, our model iteratively refines its output by feeding predictions from each
step back as dynamic node inputs. We further enhance performance by modifying
the GNN architecture and incorporating informative static features. We evaluate
our approach on canonical CO benchmarks including Max-Cut, Graph Color-
ing, and Maximum Independent Set. Our method significantly outperforms prior
learning-based approaches and matches state-of-the-art heuristics, while scaling
more efficiently to large instances.

1 INTRODUCTION

Combinatorial Optimization (CO) is a well-known subject in computer science, bridging operations
research, discrete mathematics and optimization. Informally, given some ground set, the CO problem
is to select the combination of its elements, such that it lies on the problem’s feasible domain and
the cost of this combination is minimized. A significant amount of CO problems are known to be
NP-hard, meaning that they are computationally intractable under “P ̸= NP ” conjecture and the
scope of application for exact algorithms to solve them is very narrow. Therefore, the development
of heuristic methods that provide high-accuracy solutions in acceptable amount of time is a crucial
challenge in the field Boussaïd et al. (2013).

Many CO problems naturally arise on graph-structured data, where solutions correspond to selected
subsets of nodes or edges. Implicit regularities and patterns often arise in graph structure and
features, making the use of machine learning and especially graph neural networks (GNNs) very
promising Cappart et al. (2023). Researchers from Amazon Schuetz et al. (2022a;b); Wang et al.
(2023) propose to apply GNN for solving CO problems with Quadratic Unconstrained Binary
Optimization (QUBO) formulation in unsupervised manner. Their approach (PI-GNN) minimizes a
differentiable continuous relaxation of the QUBO objective, enabling gradient-based training without
labels. Since no training data is required, the GNN is trained end-to-end on each problem instance,
effectively acting as an autonomous learned heuristic. Ichikawa (2024) proposed the annealing penalty
term improving the PI-GNN performance. A key advantage of this framework is its ability to handle
massive graphs with millions of nodes while outperforming traditional heuristics in computational
efficiency. However, its effectiveness in producing high-quality solutions has been questioned, with
studies showing that even simple greedy algorithms can outperform it Boettcher (2023); Angelini
and Ricci-Tersenghi (2023). In addition, existing analyses indicate that GNNs have a tendency to get
stuck in local optima when trained for particular problem instances Wang and Li (2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we propose a novel GNN-based framework for solving CO problems
formulated as QUBO, leveraging the strengths of unsupervised training. In previous approaches,
training is based on a scenario where GNNs have to predict a solution to an input set of properties
within a single step. In contrast, we introduce an iterative refinement mechanism, where the GNN
incrementally improves the solution until a termination criterion is met. At each step, predictions
from the previous iteration are fed back as dynamic node features. Experiments on the canonical
benchmark datasets show the advantage of this approach for GNNs of different types. To further
improve the quality, we optimized the GNN architecture and selected a set of additional vertex
properties. Thus, the main contribution of our work are as follows:

• We propose a new GNN-based framework for solving QUBO-formulated CO problems via
iterative refinement, where the GNN receives signal from previous steps to improve the
current solution.

• We show that this design significantly improves performance across various GNN types.
• We study the effect of architectural choices and static node features on solution quality and

identify an optimal configuration—referred to as QIGNN (QUBO-based Iterative GNN)
that outperforms state-of-the-art learning-based methods on Max-Cut, Graph Coloring,
and Maximum Independent Set. QIGNN also matches or surpasses classical heuristics in
solution quality, while offering superior scalability on large graphs.

2 PRELIMINARIES

2.1 QUBO PROBLEM

One notable CO problem is the Quadratic Unconstrained Binary Optimization (QUBO), which seeks
to minimize a pseudo-Boolean polynomial F(x) of degree two Hammer and Rudeanu (1969); Boros
and Hammer (1991):

min
x∈{0,1}n

F(x) =
n∑

i=1

n∑
j=1

Aijxixj +

n∑
i=1

cixi = xTQx, (1)

where A ∈ Rn×n is a symmetric matrix of coefficients, and c ∈ Rn represents the linear terms of
the objective function. The vector x = (x1, x2, . . . , xn)

T denotes the binary variables, with each
xi ∈ {0, 1}. The matrix Q ∈ Rn×n is defined as Q = A + diag(c), where diag(c) represents the
diagonal matrix with entries from the vector c. The equivalence in Equation 1 holds because x2

i = xi

for all i, which allows the quadratic form to be expressed in terms of the matrix Q.

Despite the QUBO problem has been studied for a very long time Hammer and Rubin (1970), it has
recently attracted much attention as a way to formulate other CO problems Glover et al. (2022);
Lucas (2014), mainly due to the emerging interest in the development of quantum computational
devices Boixo et al. (2013); Wang et al. (2013). By applying simple reformulation techniques, such
as constraint penalization Smith et al. (1997), a huge number of CO problems can be formulated as
QUBO, which makes algorithms for its solution especially valuable in practice.

2.2 GRAPH NEURAL NETWORKS FOR COMBINATORIAL OPTIMIZATION

Graph neural networks are capable to learn complex graph-structured data by capturing relational
information. During training process, each of the nodes is associated with a vector which is updated
based on the information from neighboring nodes.

Let us consider an undirected graph G = (V,E) with a vertex set V = {1, . . . , n} and an edge set
E = {(i, j) : i, j ∈ V }. Let hl

i ∈ Rml be a feature vector for a node i and hl
j ∈ Rml a vector for a

node j at the l-th convolution layer and let e = (i, j) be an edge between nodes i and j.

In this paper, we consider GNNs that are based on the message passing protocol to exchange
information between nodes. This protocol consists of the two main parts: message accumulation and
message aggregation. Message accumulation computes a message ml+1

e for an edge e using a function
ϕ, which determines how information will be collected. Message passing includes aggregation of
collected messages from a node i neighbors by function ρ and then an update of a feature vector hl

i

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The example of algorithm work on a toy graph of 10 vertices and 12 edges on the Max-Cut
problem. The Max-Cut involves partitioning of graph’s nodes into two sets such that the number of
edges between sets is maximized. At each iteration, the rounded (discretized) solution is shown: red
color refers to xi = 0, green to xi = 1. Using intermediate states, the algorithm aims to reclassify
each node to the opposite class of the majority of its nearest neighbors at each iteration, thereby
optimizing the cut.

for the node i by applying function f with trainable weights W l. So the whole process is described
as follows:

ml+1
e = ϕ

(
hl
i, h

l
j

)
,

hl+1
i = f

(
hl
i, ρ
(
{ml+1

e : (i, j) ∈ E}
))

. (2)

There are a variety of approaches how to define input features h0
i for the node i. It could consist of

a one-hot encoding vector of a node label, a random or shared dummy vector Cui et al. (2022), a
pagerank Brin and Page (1998) or a degree of a node. It is also possible to use a trainable embedding
layer before graph convolutions Schuetz et al. (2022a).

To solve a particular CO problem, Schuetz et al. (2022a) proposed to use the continuous relaxation
of the QUBO formulation as a loss function for GNNs, introducing their physics-inspired GNN
(PI-GNN). Let Φθ : G 7→ [0, 1]n denote a GNN whose parameters θ are shared across all nodes, i.e.,
parameters associated with ϕ, f and ρ. In our case the same function f is used across layers, but the
weights are layer-specific. After the final Nl-th convolution the network applies a sigmoid/softmax,
yielding the relaxed probability vector pθ(Φ) =

(
p1(θ), . . . , pn(θ)

)
∈ [0, 1]n. We treat pθ as a

continuous surrogate for the binary decision vector x ∈ {0, 1}n. Substituting it into the QUBO
objective F(x) = x⊤Qx therefore gives the differentiable instance-wise loss function:

L(θ; Φ) = pθ(Φ)
⊤ Qpθ(Φ). (3)

Learning proceeds by gradient descent on equation 3, without any ground-truth labels. After the
final Nl-th convolution layer a softmax or sigmoid activation function is applied to compress the
final vector hNl into probabilities pθ. As a result of training, GNN obtains the continuous solution
pi(θ) for each node. In order to obtain a solution of the original discrete problem, pi(θ) has to be
converted into the discrete variable xi. The simplest approach is to apply an indicator function Ipi>p∗

with a threshold p∗, as we use in our setup. Alternatively, sampling discrete variables from Bernouli
distribution, or greedy methods can be employed Wang et al. (2022).

3 METHOD AND TRAINING DESIGN

This section introduces our iterative refinement framework for unsupervised GNN-based combinato-
rial optimization. We also provide a detailed description of the developed GNN architecture and a
selected set of static features.

3.1 ITERATIVE FRAMEWORK

Motivation. Existing GNNs often rely solely on the static node features, which can lead to significant
limitations. When applying GNNs to solve a specific problem instance, this standard approach can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

cause the model to become biased towards these features and face node ambiguity issues, resulting in
unsupervised GNNs frequently getting trapped in local extrema during training Wang and Li (2023).

Another intuition comes from the structure of the QUBO objective equation 3, which sums interactions
over all pairs of active variables. As a result, the optimal decision for a node i i.e., whether xi = 0 or
xi = 1 depends strongly on the current states of its neighbors. This suggests that solution quality can
be improved by allowing each node to adapt based on the evolving state of the graph.

Based on these two observations, we propose an iterative GNN framework that augments static
features with dynamic feedback: each node receives its own predicted probability(state) from the
previous iteration as an additional feature. This enables the model to reason over the current solution
state via message passing and refine its predictions accordingly. The process defines an iterative
optimization loop, where the GNN progressively minimizes equation 3 by adjusting node assignments
in response to neighbor updates.

This process is illustrated in Figure 1, which shows the step-by-step work of the algorithm on a toy
instance for the maximum cut optimization problem. The algorithm iteratively updates each node’s
classification, assigning it to the opposite group of the majority of its neighboring nodes, effectively
improving the quality of the cut with each step. For this graph, the algorithm is able to achieve the
optimal solution in just a few iterations, while previous approaches (e.g., PI-GNN) require∼ 50 times
more iterations. Details of the computational experiment on this graph can be found in Appendix A.

Problem graph Con�nuous solu�on

Sta�c Features

 Features

Feature Fusion

SAGEConv mean

SAGEConv mean

SAGEConv pool

+

GNN
QUBO Loss

Figure 2: The QIGNN architecture. Firstly, the problem graph is associated with the initial QUBO
problem, and the node static features are extracted. Then the dynamic features from the previous
iteration is concatenated with the static features. Finally, these fused input vectors along with the
graph data pass through the graph neural network to update probabilities pi in Eq. 3.

Iterative design. Let us now formalize the described intuition into an algorithm. We consider an
undirected graph G(V,E) with predefined static features of vertices ai. At the zero step state vectors
of predictions are initialized with zeros or random numbers. Together with vectors ai they constitute
initial vectors h0,0

i , where upper indices now correspond to the current optimization step and the
number of a GNN layer. In the proposed approach, at each iteration t + 1 the output state vector
ht,Nl

i of the node i from previous iteration t is used as a dynamic node feature.

Thus, the combination of static ai and dynamic features is treated as input of the graph neural network
(line 5 in Algorithm 1). The resulting vectors ht+1,0

i for each node i then engage in convolutions of
GNN (line 7-12). Model weights are updated according to the loss function at each iteration t, so the
matrix of parameters W t+1,l of GNN layer l is dependent on the previous state ht,Nl

i (line 13-14).
It is also possible to use the probabilities (Equation 3 and line 16 in Algorithm 1) as the dynamic
part, but we chose the output state vectors ht,Nl

i motivated by the difference in quality of solutions
in the experiments. The symbol σ refers to the activation function used in the output layer to get
probabilities. This is a sigmoid for binary prediction tasks (Max-Cut and MIS), and a softmax for
multi-class prediction (Graph Coloring).

In this design, the time sequence of states is limited only by the number of iterations and convergence
criteria, and optimization is performed for the current distribution of node states. The neural network
predicts next states of vertices within an update, taking into account the relative distribution of states
of neighbouring vertices obtained at iteration t and the initial static features of nodes. The proposed
method allows to change the current state of a node closer to the optimal one and to explore the state
space widely due to the dynamic part of feature vectors.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 ARCHITECTURE AND TRAINING PIPELINE

Algorithm 1 Incorporation of the predicted solution
into the iterative optimization process

1: Input: Graph G(V,E), features {ai,∀i ∈ V }
2: Output: Class probabilities {pi,∀i ∈ V }
3: for t ∈ {0, . . . , Nt − 1} do
4: for i ∈ V do
5: ht+1,0

i ←
[
ai, h

t,Nl

i

]
6: end for
7: for l ∈ {0, . . . , Nl − 1} do
8: for i ∈ V do
9: ht+1,l+1

N(i) ← ρ
({

ht+1,l
j ,∀j ∈ N(i)

})
10: ht+1,l+1

i ← f
(
W t,l

[
ht+1,l
i ht+1,l+1

N(i)

])
11: end for
12: end for
13: L ← L

[
σ
({

ht+1,Nl

i ,∀i ∈ V
})]

14: W t+1,l ←W t,l − γ∇θlL, ∀l
15: end for
16: {pi ← σ(hNt,Nl

i),∀i ∈ V }

The proposed framework admits the use of
different graph convolution layers. In this
work, three options were explored, namely
GATv2 Brody et al. (2021), GCN Kipf and
Welling (2017) and SAGE Hamilton et al.
(2017) convolutional layers. We have shown
that results were improved in all cases, but
the SAGE convolution attained better perfor-
mance and was therefore chosen for the main
experiments (please see the ablation study 5
for more details).

To improve the representative power of GNNs,
we suggest the use of parallel layers, which
represents multi-level feature extraction simi-
lar to Inception module from computer vision
field by Szegedy et al. (2015). Final architec-
ture consists of three SAGE convolutions with
different types of aggregation (see Figure 2
and detailed description in Appendix A).

Mean and pooling aggregation functions were
chosen for two parallel intermediate SAGE
layers, and the mean aggregation function was
chosen for the last SAGE layer. The pool ag-
gregation allows to determine the occurrence
of certain classes among features of neighboring nodes. The mean aggregation shows the ratio of the
number of different classes in the neighborhood of the considered node. This architecture configura-
tion with a small number of successive layers allows to store information about local neighborhoods
without much over-smoothing Rusch et al. (2023), and its advantages are supported by the ablation
study in Appendix B. Hereafter, the method based on QUBO loss minimization by iterative solution
refinement using the GNN with the described architecture will be referred to as QIGNN.

As mentioned above, there are several methods how to generate static input features ai, which then
go through a neural network. In this work, we create a static feature vector as a composite vector
of a random part, shared vector Cui et al. (2022) and pagerank Brin and Page (1998). At the first
iteration, the probability vector h0,0

i is initialized with zeros. Another way involves one-hot encoding
for each node and then training a special embedding layer as in the PI-GNN Schuetz et al. (2022a)
architecture. It allows the neural network itself to learn the most representative features. However, we
do not use an embedding layer, since it requires additional computational resources and has shown
no benefit over artificial features within the framework of conducted experiments (see Appendix B).

4 NUMERICAL EXPERIMENTS

We evaluate QIGNN on three canonical combinatorial optimization problems: Max-Cut, Maximum
Independent Set (MIS), and Graph Coloring. In each section, we provide a QUBO formulation of the
problem, details of the experiments, and computational results. The selected benchmarks include
synthetic random graphs and real-world instances of varying structure. We compare QIGNN against
state-of-the-art learning methods and classical heuristics selected per problem.

We found that, unlike PI-GNN, QIGNN does not require per-instance hyperparameter tuning to
outperform prior GNNs. While tuning may yield marginal gains, we fix most parameters across
experiments: we vary only the hidden layer size and iteration count, as some problems converge with
fewer steps. Since QIGNN is sensitive to initialization, we run multiple seeds and report the best
result. Full experimental setup details are provided in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 MAXIMUM CUT

QUBO Formulation. The Max-Cut problem involves partitioning the vertices V into two subsets
such that the number of edges with endpoints in different subsets is maximized (or the total weight of
such edges in the case of a weighted graph). Its QUBO objective function is as follows:

F(x) =
∑
i<j

Aij(2xixj − xi − xj), ∀i ∈ V (4)

where A is an adjacency matrix of G. The decision variable xi = 1 indicates that vertex i is in
one subset, while xi = 0 indicates that it belongs to another one. In this paper we consider only
unweighted graphs with Aij = 1, ∀(i, j) ∈ E.

Experimental Setup and Numerical Results. We compare QIGNN against operations research (OR)
methods, unsupervised learning algorithms (UL) and heuristics (H) on BA graphs with 4 attaching
edges Barabási and Albert (1999), random regular graphs and the Gset benchmark Ye (2003). We
evaluate the performance, the inference time and report the mean value of the number of cuts and the
approximation ratio relative to the best-performing non-ML solver Gurobi, following Zhang et al.
(2023) (see Table 1).

Table 1: Max-Cut results on small (|V | between 200 and 300) and large (|V | between 800 and
1200) BA graphs sets. Column "SIZE" corresponds to the average number of cuts, "DROP" shows
performance drop ratio in comparison with the Gurobi method, and inference time is shown in the
form of hour:minute:second or minute:second.

METHOD TYPE
BA-[200-300] BA-[800-1200]

SIZE ↑ DROP ↓ TIME ↓ SIZE ↑ DROP ↓ TIME ↓
GUROBI OR 732.47 0.00% 13:04 2915.29 0.00% 1:05:29
SDP OR 700.36 4.38% 35:47 2786.00 4.43% 10:00:00

GREEDY H 688.31 6.03% 0:13 2761.06 5.29% 3:07
MFA H 704.03 3.88% 1:36 2833.86 2.79% 7:16

ERDOS UL 693.45 5.33% 0:46 2870.34 1.54% 2:49
ANNEAL UL 696.73 4.88% 0:45 2863.23 1.79% 2:48
GFLOWNET UL 704.30 3.85% 2:57 2864.61 1.74% 21:20
QIGNN UL 732.2 0.04% 8:12 2965.85 -1.71% 15:10

The results are averaged across 500 random BA graphs for each category, i.e. the small graph set with
number of vertices between 200 and 300 and large graph set with number of vertices between 800
and 1200. As can be seen, on the large-graph set, QIGNN outperforms all the approaches considered
while being several times faster than the gold standard, Gurobi. On the small-graph set, QIGNN is
comparable in quality to Gurobi and also shows better performance than the others. The results for
random regular graphs can be found in Appendix A.3, where the advantage of the proposed algorithm
is also demonstrated on various sets of random graphs.

Table 2 compares QIGNN with PI-GNN, RUN-CSP, EO, and two state-of-the-art heuristics: Breakout
Local Search (BLS) by Benlic and Hao (2013) and the Hybrid Evolutionary Algorithm (TSHEA)
by Wu et al. (2015). We reimplemented the τ -EO heuristic based on Boettcher and Percus (2001)
(details in Appendix A). QIGNN, BLS, and TSHEA were each run 20 times per graph; for RUN-CSP,
the best of 64 runs was selected. PI-GNN results were obtained using graph-specific hyperparameter
tuning as described in Schuetz et al. (2022a). Our QIGNN outperforms both neural methods and the
EO heuristic. While BLS and TSHEA perform better on smaller instances, QIGNN achieves the best
cut on the largest graph (G70) in ∼1000 seconds—an order of magnitude faster than BLS (∼11,000s)
and TSHEA (∼7000s) Benlic and Hao (2013); Wu et al. (2015).

4.2 GRAPH COLORING

QUBO Formulation. We consider two variants of the graph coloring problem. In the first, the graph
G = (V,E) must be colored using colors k to minimize violations, that is, adjacent nodes that share
the same color. The second formulation seeks the smallest k for which a valid coloring exists. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Number of cut edges for benchmark instances from Gset Ye (2003) with the number of
nodes |V | and the number of edges |E|. QIGNN outperforms all other GNN-based approaches and
the EO heuristic, while being comparable to SOTA heuristics.

GRAPH |V | |E| HEURISTICS UNSUPERVISED LEARNING

BLS TSHEA EO PI-GNN RUN-CSP QIGNN

G14 800 4694 3064 3064 3058 3026 2943 3058
G15 800 4661 3050 3050 3046 2990 2928 3049
G22 2000 19990 13359 13359 13323 13181 13028 13340
G49 3000 6000 6000 6000 6000 5918 6000 6000
G50 3000 6000 5880 5880 5878 5820 5880 5880
G55 5000 12468 10294 10299 10212 10138 10116 10282
G70 10000 9999 9541 9548 9433 9421 9319 9559

QUBO objective in both problems is formulated as follows:

F(x) =
∑
i

(
1−

∑
c

xi,c

)2

+
∑

(i,j)∈E

∑
c

xi,cxj,c, ∀i ∈ V, ∀c ∈ {1, . . . , k},

where k is the number of colors the graph has to be colored. In the second variant, k is not fixed
and is part of the optimization. The loss function can be reduced to the second term of the objective
in order to train GNN, because the softmax output enforces that each node selects a unique color,
implicitly satisfying the first constraint.

Experimental Setup and Results. We evaluate QIGNN on synthetic graphs from the COLOR
dataset Trick (2002) and three real-world citation graphs: Cora, Citeseer, and Pubmed Li et al. (2022).
The synthetic graphs contain 25–561 nodes, while citation graphs scale up to 20,000. Full graph
specifications are in Appendix A.4. We compare QIGNN against GNN baselines PI-GNN by Schuetz
et al. (2022b), GNN-1N by Wang et al. (2023), GDN by Li et al. (2022) and RUN-CSP by Tönshoff J
and M (2021), and the SOTA heuristics HybridEA by Galinier and Hao (1999). HybridEA results
were obtained using the implementation 1 based on Lewis (2021). We performed up to 10 runs for
select instances; most graphs required only one. Table 3 shows the best result of algorithms for
coloring a graph with a chromatic number of colors. A violation is counted when adjacent nodes share
the same color. QIGNN achieves the best results on all instances, outperforming SOTA HybridEA
on several graphs. Table 4 shows the number of colors that the algorithm needs to color the graph
without violations. As GNN-1N and GDN do not report results for this formulation, we omit them

Table 3: The number of violations when color-
ing the graph with chromatic number of colors
by HybridEA (HEA) heuristics and GNN-based
methods GNN-1N, PI-GNN, GDN and QIGNN
for citation graphs and graphs from the COLOR
dataset.

GRAPH
HEUR UNSUPERVISED LEARNING

HEA GNN-1N PI-GNN GDN QIGNN

HOMER 0 0 0 0 0
MYCIEL6 0 0 0 0 0
QUEEN5-5 0 0 0 0 0
QUEEN6-6 0 0 0 0 0
QUEEN7-7 0 0 0 9 0
QUEEN8-8 0 1 1 - 0
QUEEN9-9 0 1 1 - 0
QUEEN8-12 0 0 0 0 0
QUEEN11-11 14 13 17 21 7
QUEEN13-13 18 15 26 33 15

CORA 0 1 0 0 0
CITESEER 0 0 0 0 0
PUBMED 0 - 17 21 0

Table 4: The number of color needed for coloring
without violations by HybridEA (HEA) heuristics
and GNN-based methods PI-GNN, RUN-CSP and
QIGNN on citation graphs and graphs from the
COLOR dataset. Here χ is a known chromatic
number.

GRAPH χ
HEUR UNSUPERVISED LEARNING

HEA PI-GNN RUN-CSP QIGNN

HOMER 13 13 13 17 13
MYCIEL6 7 7 7 8 7
QUEEN5-5 5 5 5 5 5
QUEEN6-6 7 7 7 8 7
QUEEN7-7 7 7 7 10 7
QUEEN8-8 9 9 10 11 9
QUEEN9-9 10 10 11 17 10
QUEEN8-12 12 12 12 17 12
QUEEN11-11 11 12 14 >17 12
QUEEN13-13 13 14 17 >17 15

CORA 5 5 5 - 5
CITESEER 6 6 6 - 6
PUMBED 6 8 9 - 8

1http://rhydlewis.eu/gcol/

7

http://rhydlewis.eu/gcol/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and include RUN-CSP for comparison. For QIGNN, we successively increased the number of colors
to find the optimal one. In this setting, QIGNN outperforms all GNN baselines and is outscored by
HybridEA on only one instance.

4.3 MAXIMUM INDEPENDENT SET

QUBO Formulation. For a given graph G = (V,E) the Maximum Independent Set (MIS) problem
is to find a subset S ⊂ V of pair-wise nonadjacent nodes of the maximum size |S|. The QUBO cost
function of MIS is:

F(x) = −
∑
i∈V

xi + P
∑

(i,j)∈E

xixj ∀i ∈ V. (5)

where xi = 1 if node i ∈ S and P is a penalty coefficient for violating the independence condition,
which ensures that no two adjacent nodes are both included in the independent set. Unlike the
previously considered problems, this formulation contains a penalty term, raising the question of
which value of P should be chosen. In our algorithm an adaptive coefficient was applied. For more
details, please see Appendix A.

Experimental Setup and Numerical Results. For MIS, we conduct experiments
on randomly generated graphs of different structures. Table 5 compares QIGNN
with state-of-the-art learning-based methods on two Erdos–Rényi (ER) graph sets:
500 instances each with 700–800 and 9000–11,000 nodes Erdos and Rényi (1984).

Table 5: Comparison of average found MIS sizes and
runtime for QIGNN, learning-based methods and the
SOTA heuristics KaMIS on sets of 500 Erdos-Renyi
random graphs with a different number of nodes.

METHOD TYPE
ER-[700-800] ER-[9000-11000]

SIZE TIME SIZE TIME

KAMIS HEUR 44.87 52:13 374.57 7:37:21

INTEL SL 34.86 6:04 284.63 5:02
DIFUSCO SL 40.35 32:98 - -
T2TCO SL 41.37 29:44 - -
LWD RL 41.17 6:33 345.88 1:02:29
DIMES RL 42.06 12:01 332.8 12:31
GFLOWNETS UL 41.14 2:55 349.42 1:49:43
CRA UL 41.64 47.30 360.71 1:03:00

QIGNN UL 42.45 3:46 375.44 10:32

We compare QIGNN to state-of-the-art
supervised methods: Intel by Li et al.
(2018), Difusco by Sun and Yang (2023)
and T2TCO by Li et al. (2023); LwD
by Ahn et al. (2020) and DIMES by Qiu
et al. (2022) are recent Reinforement Learn-
ing (RL) methods, GflowNets by Zhang
et al. (2023) We also include the classical
MIS solver KaMIS (ReduMIS) Lamm et al.
(2017) as the strongest non-learning baseline.
When multiple decoding strategies (e.g.,
greedy or sampling) are reported in sources,
we select the variant with the best average
MIS size. Difusco and T2TCO could not
scale to the ER-9000–11000 dataset Zhang
et al. (2023), and are therefore omitted. As
shown in Table 5, QIGNN outperforms all

learning-based baselines. The gap is most pronounced on large graphs, where QIGNN even surpasses
KaMIS while running significantly faster.

Following Tönshoff J and M (2021), we also evaluate on RB-model graphs Xu and Li (2006), which
are hard instances with hidden optima (Table 6). On this benchmark, QIGNN outperforms RUN-CSP
and greedy baselines, and comes close to KaMIS.

Table 6: MIS results of QIGNN, GNN-based method RUN-CSP, greedy and SOTA KaMIS heuristics
on RB Model graphs. We report average MIS sizes over 5 runs with standard deviations.

GRAPH |V | |E| HEURISTICS UNSUPERVISED LEARNING

KAMIS GREEDY RUN-CSP QIGNN

FRB30-15 450 18K 30 ± 0.0 24.6 ±0.5 25.8 ± 0.8 28.4 ± 0.4
FRB40-19 790 41K 39.4 ± 0.5 33.0 ±1.2 33.6 ± 0.5 36.8 ± 0.7
FRB50-23 1150 80K 48.8 ± 0.4 42.2 ±0.8 42.2 ± 0.4 45 ± 0.6
FRB59-26 1478 126K 57.4 ± 0.9 48.0 ± 0.7 49.4 ± 0.5 54.6 ± 1

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

SAGE (QIGNN) GATv2 GCN

Figure 3: Distribution of the results over 20 runs of GNNs with different convolutional layers with
(left) and without (right) the iterative approach on several instances from Gset. Horizontal lines mean
maximum, median and minimum values.

5 IMPACT OF THE ITERATIVE REFINEMENT ON GNNS PERFORMANCE.

We have investigated how the iterative refinement of distribution of vertex class membership affects
performance of GNN architectures with different types of convolutions, namely GCN Kipf and
Welling (2017) and GATv2 Brody et al. (2021) in addition to the default architecture of QIGNN with
SAGE convolutions. For this purpose, we constructed GNNs from two consecutive convolutions of a
given type. The sizes of hidden states were the same for all networks and coincided with the sizes
of the described default QIGNN architecture. We performed 20 calculations with different seeds
for graphs from Gset to solve the Max-Cut problem. Figure 3 shows that the iterative refinement
proposed in this paper greatly improves the maximum cut found for all types of convolutions. At the
same time, the default QIGNN shows better results compared to other architectures.

6 RELATED WORK

Graph neural networks are rapidly gaining popularity as a powerful tool for solving CO problems
Cappart et al. (2023). Supervised learning based approaches are commonly applied Prates et al.
(2019); Gasse et al. (2019); Li et al. (2018); Sun and Yang (2023); Li et al. (2023). However, the
need to collect labeled training instances into representative and unbiased dataset is a limitation of
supervised algorithms, and often face challenges with generalization to new and unseen problem
instances. Reinforcement learning presents an alternative by generating iterative solutions Khalil et al.
(2017); Kool et al. (2019); Qiu et al. (2022); Darvariu et al. (2024). RL methods may experience
difficulties when facing large scale problems due to the vastness of the state space, and the need of
a large number of samplings. The unsupervised learning paradigm, where solvers do not require a
training set of pre-solved problems, has the potential to overcome these limitations. Tönshoff J and M
(2021) proposed RUN-CSP as a recurrent GNN to solve maximum constraint satisfaction. Amizadeh
et al. (2018) developed GNN to solve SAT and CircuitSAT. Karalias and Loukas (2020) train GNN to
obtain a distribution of nodes corresponding to the candidate solution and Sun et al. (2023) provided
an annealed version of it. Wang et al. (2022) study entry-wise concave relaxations of CO objectives.
Schuetz et al. (2022a); Ichikawa (2024) apply relaxed QUBO as instance specific GNN loss, Schuetz
et al. (2022b); Wang et al. (2023) extend it for solving graph coloring problem.

7 CONCLUSION

In this work, we propose the novel iterative approach for solving combinatorial optimization problems
using graph neural networks in unsupervised mode. We show that this method significantly enhances
the performance of all types of GNN convolutions considered. We also suggest the design of the GNN
architecture, a set of necessary features of the graph vertices, and reveal the quality in experiments
on the well-known maximum cut, graph coloring and maximum independent set problems. The
results of our comparative analysis demonstrate that the proposed algorithm drastically outperforms
all learning-based baselines, including SOTA supervised, unsupervised, and reinforcement learning
methods. Moreover, we show that it competes with the best classical heuristics for the problems
addressed while showing a distinct advantage in computational time on large graphs. For the future
work, we consider the algorithm superior performance and scalability promising to be extended to
other CO problem formulated as QUBO, thus highlighting its potential in the field of combinatorial
optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimization metaheuristics. In-
formation Sciences, 237:82–117, 2013. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.
2013.02.041. URL https://www.sciencedirect.com/science/article/pii/
S0020025513001588. Prediction, Control and Diagnosis using Advanced Neural Compu-
tations.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar Veličković.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learn-
ing Research, 24(130):1–61, 2023. URL http://jmlr.org/papers/v24/21-0449.
html.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimiza-
tion with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377,
April 2022a. doi: 10.1038/s42256-022-00468-6. URL https://doi.org/10.1038/
s42256-022-00468-6.

Martin J. A. Schuetz, J. Kyle Brubaker, Zhihuai Zhu, and Helmut G. Katzgraber. Graph col-
oring with physics-inspired graph neural networks. Phys. Rev. Res., 4:043131, Nov 2022b.
doi: 10.1103/PhysRevResearch.4.043131. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.4.043131.

Xiangyu Wang, Xueming Yan, and Yaochu Jin. A graph neural network with negative message
passing for graph coloring, 2023.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=ykACV1IhjD.

Stefan Boettcher. Inability of a graph neural network heuristic to outperform greedy algorithms
in solving combinatorial optimization problems. Nature Machine Intelligence, 5(1):24–25,
January 2023. doi: 10.1038/s42256-022-00587-0. URL https://doi.org/10.1038/
s42256-022-00587-0.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse
than classical greedy algorithms in solving combinatorial optimization problems like maxi-
mum independent set. Nature Machine Intelligence, 5(1):29–31, January 2023. doi: 10.1038/
s42256-022-00589-y. URL https://doi.org/10.1038/s42256-022-00589-y.

Haoyu Peter Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta
learning. 2023. URL https://openreview.net/forum?id=-ENYHCE8zBp.

Peter L. Hammer and Sergiu Rudeanu. Pseudo-boolean programming. Operations Research, 17
(2):233–261, 1969. ISSN 0030364X, 15265463. URL http://www.jstor.org/stable/
168831.

Endre Boros and Peter L. Hammer. The max-cut problem and quadratic 0–1 optimization; polyhedral
aspects, relaxations and bounds. Annals of Operations Research, 33:151–180, 1991.

Peter L. Hammer and Abraham A. Rubin. Some remarks on quadratic programming with 0-1
variables. 1970. URL https://api.semanticscholar.org/CorpusID:53617855.

Fred Glover, Gary Kochenberger, Rick Hennig, and Yu Du. Quantum bridge analytics i: a tu-
torial on formulating and using QUBO models. Annals of Operations Research, 314(1):141–
183, April 2022. doi: 10.1007/s10479-022-04634-2. URL https://doi.org/10.1007/
s10479-022-04634-2.

Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2, 2014. doi:
10.3389/fphy.2014.00005. URL https://doi.org/10.3389/fphy.2014.00005.

Sergio Boixo, Tameem Albash, Federico M. Spedalieri, Nicholas Chancellor, and Daniel A. Lidar.
Experimental signature of programmable quantum annealing. Nature Communications, 4(1), June
2013. ISSN 2041-1723. doi: 10.1038/ncomms3067. URL http://dx.doi.org/10.1038/
ncomms3067.

10

https://www.sciencedirect.com/science/article/pii/S0020025513001588
https://www.sciencedirect.com/science/article/pii/S0020025513001588
http://jmlr.org/papers/v24/21-0449.html
http://jmlr.org/papers/v24/21-0449.html
https://doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1038/s42256-022-00468-6
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043131
https://link.aps.org/doi/10.1103/PhysRevResearch.4.043131
https://openreview.net/forum?id=ykACV1IhjD
https://openreview.net/forum?id=ykACV1IhjD
https://doi.org/10.1038/s42256-022-00587-0
https://doi.org/10.1038/s42256-022-00587-0
https://doi.org/10.1038/s42256-022-00589-y
https://openreview.net/forum?id=-ENYHCE8zBp
http://www.jstor.org/stable/168831
http://www.jstor.org/stable/168831
https://api.semanticscholar.org/CorpusID:53617855
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1038/ncomms3067
http://dx.doi.org/10.1038/ncomms3067

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhe Wang, Alireza Marandi, Kai Wen, Robert L. Byer, and Yoshihisa Yamamoto. Coherent ising
machine based on degenerate optical parametric oscillators. Phys. Rev. A, 88:063853, Dec
2013. doi: 10.1103/PhysRevA.88.063853. URL https://link.aps.org/doi/10.1103/
PhysRevA.88.063853.

Alice E Smith, David W Coit, Thomas Baeck, David Fogel, and Zbigniew Michalewicz. Penalty
functions. Handbook of evolutionary computation, 97(1):C5, 1997.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neural
networks on non-attributed graphs. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, CIKM ’22, page 3898–3902, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392365. doi: 10.1145/3511808.3557661.
URL https://doi.org/10.1145/3511808.3557661.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1):107–117, 1998. ISSN 0169-7552. doi: https:
//doi.org/10.1016/S0169-7552(98)00110-X. URL https://www.sciencedirect.com/
science/article/pii/S016975529800110X. Proceedings of the Seventh International
World Wide Web Conference.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning
for combinatorial optimization with principled objective relaxation. 2022. URL https:
//openreview.net/forum?id=HjNn9oD_v47.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015. doi:
10.1109/CVPR.2015.7298594.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on over-
smoothing in graph neural networks. ArXiv, abs/2303.10993, 2023. URL https://api.
semanticscholar.org/CorpusID:257632346.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Y. Ye. The G-set dataset, 2003. URL https://web.stanford.edu/~yyye/yyye/Gset/.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=sTjW3JHs2V.

Una Benlic and Jin-Kao Hao. Breakout local search for the max-cutproblem. Engineering Appli-
cations of Artificial Intelligence, 26(3):1162–1173, 2013. ISSN 0952-1976. doi: https://doi.org/
10.1016/j.engappai.2012.09.001. URL https://www.sciencedirect.com/science/
article/pii/S0952197612002175.

Qinghua Wu, Yang Wang, and Zhipeng Lü. A tabu search based hybrid evolutionary algorithm for the
max-cut problem. Applied Soft Computing, 34:827–837, 2015. ISSN 1568-4946. doi: https://doi.
org/10.1016/j.asoc.2015.04.033. URL https://www.sciencedirect.com/science/
article/pii/S1568494615002604.

11

https://link.aps.org/doi/10.1103/PhysRevA.88.063853
https://link.aps.org/doi/10.1103/PhysRevA.88.063853
https://doi.org/10.1145/3511808.3557661
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://openreview.net/forum?id=HjNn9oD_v47
https://openreview.net/forum?id=HjNn9oD_v47
https://api.semanticscholar.org/CorpusID:257632346
https://api.semanticscholar.org/CorpusID:257632346
https://web.stanford.edu/~yyye/yyye/Gset/
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V
https://www.sciencedirect.com/science/article/pii/S0952197612002175
https://www.sciencedirect.com/science/article/pii/S0952197612002175
https://www.sciencedirect.com/science/article/pii/S1568494615002604
https://www.sciencedirect.com/science/article/pii/S1568494615002604

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stefan Boettcher and Allon G. Percus. Optimization with extremal dynamics. Physical Review
Letters, 86(23):5211–5214, June 2001. doi: 10.1103/physrevlett.86.5211. URL https://doi.
org/10.1103/physrevlett.86.5211.

M. Trick. Color dataset, 2002. URL https://mat.tepper.cmu.edu/COLOR02/.

Wei Li, Ruxuan Li, Yuzhe Ma, Siu On Chan, David Pan, and Bei Yu. Rethinking graph neural
networks for the graph coloring problem. ArXiv, abs/2208.06975, 2022.

Wolf H Tönshoff J, Ritzert M and Grohe M. Graph neural networks for maximum constraint
satisfaction. Frontiers in Artificial Intelligence, 3, 2021. doi: 10.3389/frai.2020.580607. URL
https://doi.org/10.3389/frai.2020.580607.

Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3:379–397, 01 1999. doi: 10.1023/A:1009823419804.

R. Lewis. Guide to Graph Colouring: Algorithms and Applications. 01 2021. ISBN 978-3-030-
81053-5. doi: 10.1007/978-3-030-81054-2.

Paul L. Erdos and Alfréd Rényi. On the evolution of random graphs. Transactions of the American
Mathematical Society, 286:257–257, 1984. URL https://api.semanticscholar.org/
CorpusID:6829589.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In Neural Information Processing Systems, 2018. URL https:
//api.semanticscholar.org/CorpusID:53027872.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=JtF0ugNMv2.

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Find-
ing near-optimal independent sets at scale. Journal of Heuristics, 23(4):207–229, May 2017.
ISSN 1572-9397. doi: 10.1007/s10732-017-9337-x. URL http://dx.doi.org/10.1007/
s10732-017-9337-x.

Ke Xu and Wei Li. Many hard examples in exact phase transitions. Theoretical Computer Science, 355
(3):291–302, 2006. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2006.01.001. URL https:
//www.sciencedirect.com/science/article/pii/S0304397506000181.

Marcelo Prates, Pedro H. C. Avelar, Henrique Lemos, Luis C. Lamb, and Moshe Y. Vardi. Learning
to solve np-complete problems: A graph neural network for decision tsp. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):4731–4738, Jul. 2019. doi: 10.1609/aaai.v33i01.
33014731. URL https://ojs.aaai.org/index.php/AAAI/article/view/4399.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combina-
torial optimization with graph convolutional neural networks. In Advances in Neural Information
Processing Systems 32, 2019.

12

https://doi.org/10.1103/physrevlett.86.5211
https://doi.org/10.1103/physrevlett.86.5211
https://mat.tepper.cmu.edu/COLOR02/
https://doi.org/10.3389/frai.2020.580607
https://api.semanticscholar.org/CorpusID:6829589
https://api.semanticscholar.org/CorpusID:6829589
https://api.semanticscholar.org/CorpusID:53027872
https://api.semanticscholar.org/CorpusID:53027872
https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2
http://dx.doi.org/10.1007/s10732-017-9337-x
http://dx.doi.org/10.1007/s10732-017-9337-x
https://www.sciencedirect.com/science/article/pii/S0304397506000181
https://www.sciencedirect.com/science/article/pii/S0304397506000181
https://ojs.aaai.org/index.php/AAAI/article/view/4399

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combina-
torial optimization algorithms over graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
6348–6358, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Graph reinforcement learning
for combinatorial optimization: A survey and unifying perspective. Transactions on Machine
Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?
id=HduK51xNtS. Survey Certification.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018. URL https://api.semanticscholar.org/CorpusID:53544639.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6659–
6672. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf.

Haoran Sun, Etash Kumar Guha, and Hanjun Dai. Annealed training for combinatorial optimization
on graphs, 2023. URL https://openreview.net/forum?id=YHCR6CFAK6v.

Weichi Yao, Afonso S. Bandeira, and Soledad Villar. Experimental performance of graph neural
networks on random instances of max-cut. In Dimitri Van De Ville, Manos Papadakis, and Yue M.
Lu, editors, Wavelets and Sparsity XVIII, volume 11138, page 111380S. International Society for
Optics and Photonics, SPIE, 2019. doi: 10.1117/12.2529608. URL https://doi.org/10.
1117/12.2529608.

S. Boettcher. Numerical results for ground states of spin glasses on Bethe lattices. The European Phys-
ical Journal B - Condensed Matter, 31(1):29–39, January 2003. doi: 10.1140/epjb/e2003-00005-y.
URL https://doi.org/10.1140/epjb/e2003-00005-y.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Reply to: Inability of a graph neu-
ral network heuristic to outperform greedy algorithms in solving combinatorial optimization prob-
lems. Nature Machine Intelligence, 5(1):26–28, January 2023. doi: 10.1038/s42256-022-00588-z.
URL https://doi.org/10.1038/s42256-022-00588-z.

13

https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=HduK51xNtS
https://openreview.net/forum?id=HduK51xNtS
https://api.semanticscholar.org/CorpusID:53544639
https://proceedings.neurips.cc/paper_files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/49f85a9ed090b20c8bed85a5923c669f-Paper.pdf
https://openreview.net/forum?id=YHCR6CFAK6v
https://doi.org/10.1117/12.2529608
https://doi.org/10.1117/12.2529608
https://doi.org/10.1140/epjb/e2003-00005-y
https://doi.org/10.1038/s42256-022-00588-z

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TECHNICAL DETAILS AND CONVERGENCE

A.1 GENERAL EXPERIMENTAL SETUP

All random graphs in this work were generated by the NetworkX2 package. To implement the
QIGNN architecture the DGL library3 was used. The pseudocode of one iteration with the QIGNN
architecture is presented in the Algorithm 2. We used the Adam optimizer without a learning rate
schedule. The learning rate was set empirically to 0.014, the rest of the optimizer parameters remained
set by default. Gradients were clipped at values 2 of the Euclidean norm.

We limited the number of iterations to 5× 104 for random regular graphs and 105 for all the other
graphs, but in some cases convergence was reached much earlier. If the value of the loss function
at the last 500 iterations had differed by less than 10−5 it was decided that the convergence was
achieved and the training was stopped. In the case of the graph coloring problem, an additional
stopping criterion was used and the solution was considered to be found when the absolute value of
the loss function becomes less than 10−3.

The dropout was set to 0.5. The dimension of the random part of input vectors was equal to 10, the
size of hidden layers was fixed at 50 for Max-Cut and at 140 for graph coloring.

Due to the stochasticity of the algorithm, it is preferable to do multiple runs with different seeds to
find the best result. One can do separate runs in parallel possibly utilizing several GPUs. If the device
has enough memory, the RUN-CSP scheme by Tönshoff J and M (2021) can be used. In this case,
one composite graph with duplicates of the original one is created for the input. We trained the model
in parallel on the NVIDIA Tesla V100 GPU. Conventional heuristics were launched on the machine
with two Intel Xeon E5-2670 v3 @ 2.30GHz.

We tested three ways to recursively utilize the probability data. Specifically, we passed raw probability
data taken before the sigmoid layer, data after the sigmoid layer or concatenated both of these options.
Different iterative dynamic features led to a minor improvement on some graphs, while at the
same time slightly worsening the results on other graphs. In this work we presented results for the
concatenated data.

Algorithm 2 Forward propagation of the QIGNN algorithm at iteration t

1: Input: Graph G(V,E), static nodes features {ai,∀i ∈ V }
2: Output: Probability pi, hidden state ht

i,∀i ∈ V

3: ht,0
i ←

[
ai h

t−1
i

]
, ∀i ∈ V

4: for i ∈ V do
5: ht,1

N(i) ← ρmean

({
ht,0
j ,∀j ∈ N(i)

})
6: ht,1

i ← f
(
W 1
[
ht,0
i ht,1

N(i)

])
7: ht,2

N(i) ← ρpool

({
ht,0
j ,∀j ∈ N(i)

})
8: ht,2

i ← f
(
W 2
[
ht,0
i ht,2

N(i)

])
9: end for

10: {ht,1
i } ← BNγ1,β1({ht,1

i ,∀i ∈ V })
11: {ht,2

i } ← BNγ2,β2({ht,2
i ,∀i ∈ V })

12: for i ∈ V do
13: ht,12

i ← f(ht,1
i + ht,2

i)

14: ht,12
i ← Dropout(ht,12

i)

15: ht,out
N(i) ← ρmean

({
ht,12
j ,∀j ∈ N(i)

})
16: ht,out

i ← f
(
W out

[
ht,12
i ht,out

N(i)

])
17: end for
18: pi, h

t
i ← σ(ht,out

i), ht,out
i , ∀i ∈ V

2https://networkx.org/
3https://www.dgl.ai/

14

https://networkx.org/
https://www.dgl.ai/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 CONVERGENCE

a
5× 104 105 5× 105 106

Number of nodes

103

6× 102

2× 103

3× 103
4× 103

R
u

nt
im

e,
s

b
103 104 105

Number of nodes

20000

30000

40000

50000

E
p

oc
h

s

0.720

0.725

0.730

0.735

P
-v
a
lu
e

Figure 4: a) The computation time of 5× 104 iterations of QIGNN on random regular graphs with
d = 5 in the sparse format depending on the number of nodes. b) The iteration number averaged over
20 graphs at which the algorithm found the best solution during the training process (green) and the
mean P-value for 1 run (orange).

The number of runs and iterations in experiments were not optimal and were chosen for a more fair
comparison with other algorithms. More runs and iterations can lead to better results. We conducted
additional experiments on 20 random regular graphs with d = 5 and up to one million nodes. One
run was made for each graph and the number of iterations was limited to 5× 104. The training time
for large graphs in sparse format on single GPU is shown in Figure 4a. We also analyzed how the
number of iterations can affect the quality of the solution. As the number of vertices increases, the
iteration at which the last found best solution was saved moves closer to the specified boundary (see
Figure 4b). Meanwhile, the average P-value of one run drops from 0.735 to 0.722 and one of the
reasons for this may include the limited duration of training. If, for example, we train QIGNN for
105 iterations on graphs with n = 5× 104 nodes, the average P-value will increase from 0.726 to
0.728, while on small graphs with n = 500 we do not observe such an effect. Thus, it is difficult
to talk about the convergence of the algorithm on large instances under the given constraint. The
recommendation is to follow the latest best solution updates and terminate the algorithm if it does not
change for a sufficiently large (> 104) number of iterations.

In order to study the robustness of the algorithm with respect to changes in hyperparameters, we
run the default QIGNN architecture with two parallel layers on graphs from the Gset dataset for the
Max-Cut problem. All hyperparameters except the learning rate were chosen as described in Section
4. As can be seen from Figure 5, small values of the learning rate do not allow to achieve convergence
in 105 iterations. For the learning rate greater than 0.01 the results become relatively stable and the
best number of cuts is achieved for values from 0.01 to 0.02.

A.3 MAX-CUT

For synthetic instances, the number of cut edges serves as the evaluation metric. For random regular
graphs with the number of vertices n→∞, there exists a theoretical estimate of the maximum cut
size that depends on n, vertex degree d and a universal constant P∗ ≃ 0.7632. Such asymptotics

motivated the metric P-value =
√

4
d

(
z
n − d

4

)
, where z corresponds to the obtained cut size (see Yao

et al. (2019)). Higher P-values indicate better cuts, with P∗ serving as an upper bound on optimality.

Table 7 reports average P-values over 200 random d-regular graphs with n = 500 for QIGNN,
RUN-CSP, and extremal optimization (EO) Boettcher (2003) baselines. For QIGNN and PI-GNN, we
report the best result out of 5 runs. PI-GNN uses the GCN-based setup from Schuetz et al. (2022a) for
d > 5; other values are from the original source. EO and RUN-CSP results are taken from Tönshoff J
and M (2021), where RUN-CSP was evaluated using 64 runs per instance. QIGNN consistently
outperforms both RUN-CSP and PI-GNN, and achieves the best performance overall for d ≥ 5. With
15 runs, QIGNN also surpasses all baselines on d = 3 graphs, reaching a P-value of 0.727.

In Table 7 results of EO and RUN-CSP were taken from Tönshoff J and M (2021), where P-value was
averaged over 1000 graphs. RUN-CSP was allowed to make 64 runs for each graph and in the case of
EO the best of two runs was chosen Yao et al. (2019). P-values of PI-GNN depend on the particular

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.001 0.002 0.005 0.01 0.014 0.02 0.04

2804

2867

2931

2994

3058

n
u

m
b

er
of

cu
ts

G14

0.001 0.002 0.005 0.01 0.014 0.02 0.04

5652

5709

5766

5823

5880

G50

0.001 0.002 0.005 0.01 0.014 0.02 0.04

9116

9226

9337

9448

9559

G70

0.001 0.002 0.005 0.01 0.014 0.02 0.04

learning rate

2867

2912

2958

3003

3049

n
u

m
b

er
of

cu
ts

G15

0.001 0.002 0.005 0.01 0.014 0.02 0.04

learning rate

9867

9970

10074

10178

10282

G55

0.001 0.002 0.005 0.01 0.014 0.02 0.04

learning rate

12470

12687

12905

13122

13340

G22

Figure 5: Results distribution for 20 runs of the default QIGNN architecture depending on the learning
rate for the Max-Cut problem on several instances from Gset. The number of iterations in all cases
was fixed at 105. Horizontal lines mean maximum, median and minimum values.

Table 7: P-value of EO, PI-GNN, RUN-CSP and QIGNN for d-regular graphs with 500 nodes and
different degree d averaged over 200 randomly generated instances.

d HEUR UNSUPERVISED LEARNING

EO PI-GNN RUN-CSP QIGNN

3 0.727 0.612 0.714 0.725
5 0.737 0.608 0.726 0.738
10 0.735 0.658 0.710 0.737
15 0.736 0.644 0.697 0.739
20 0.732 0.640 0.685 0.735

architecture. Results for graphs with a degree 3 and 5 were published in Schuetz et al. (2022a) for the
architecture with GCN layer, and it corresponds to the value in the column for PI-GNN. The cut size
was bootstrap-averaged over 20 random graph instances and PI-GNN took up to 5 shots. In the paper
by Schuetz et al. (2023) the authors considered another option with the SAGE layer and showed that
in this case the results for graphs with a degree 3 can be improved by 10.78%. However, we did not
notice an improvement over the GCN architecture on graphs with a higher degree.

To make the evaluation more informative, we implemented τ -EO heuristic from Boettcher and Percus
(2001). As suggested by authors, we set τ = 1.3 and the number of single spin updates was limited
by 107. For small graphs τ -EO can find a high-quality solution, but with increase of the graph size the
accuracy of the algorithm degrades due to the limited number of updates. This behavior is expected
by the authors, who suggested optimal scaling for number of updates as ∼O(|V |3). However, it is
computationally expensive to carry out the required number of iterations. We performed 20 runs
of EO with different initializations to partially compensate for this. Within the given limit, the EO
algorithm took ∼6800 seconds per run to obtain a solution for the relatively large graph G70.

QIGNN as well as BLS and TSHEA was run 20 times on each graph. The best attempt out of 64
was chosen for RUN-CSP in original papers. In order to obtain the results of PI-GNN, the authors
applied hyperparameter optimization for each graph. The results of RUN-CSP for the G70 graph was
obtained by running the code4 with parameters reported in Tönshoff J and M (2021).

4https://github.com/toenshoff/RUN-CSP

16

https://github.com/toenshoff/RUN-CSP

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 COLORING

To find the number of colors required to color the graph without violations, we successively increased
the number of colors in each new run until the correct coloring was found among 10 seeds. The
number of nodes and edges of the investigated graphs is presented in Table 9. To evaluate the results
of QIGNN, we did up to 10 runs for some graphs, although most of them required only one run. The
convergence time for PI-GNN and QIGNN is shown in Table 8.

Results for graphs anna, david, games120, muciel5, huck and jean were omitted in the main tables
because all algorithms find optimal solutions without violations. Results of GNN-1N for citation
graphs were obtained by implementing the algorithm from the original paper. Since there was no
instruction how to optimize hyperparameters, we took them close to PI-GNN and chose the best
among 10 runs.

The number of iterations for convergence of QIGNN on citation graphs was no more than 6000 and
varied for the COLOR dataset from ∼200 to 9 × 104. The estimated runtime for QIGNN turned
out to be significantly less than for PI-GNN, and in some cases the difference reaches more than
three orders of magnitude. This is due to the fact that QIGNN does not require exhaustive tuning of
hyperparameters for each instance in contrast to PI-GNN Schuetz et al. (2022b).

A.5 MIS

In our experiments, we found that setting a small P leads to the fact that the solutions found by the
algorithm for a given number of iterations contain too many violations. A large P value can cause
the algorithm to quickly converge to a trivial solution with zero set size. To circumvent the problem
of adjusting P for different types of graphs, we propose in this paper to linearly increase the penalty
value from 0.01 to 2 throughout all the iterations. This allows the algorithm to start the search in the
space of large sets with violations while gradually narrowing the search space towards sets without
violations.

A.6 TOY EXAMPLE OF A MAX-CUT PROBLEM

We provide a toy example of a Max-Cut problem to illustrate the performance of our proposed
QIGNN method compared to the PI-GNN approach. The problem instance consists of a graph with
12 edges and 10 nodes, as shown in Figure 1.

An experimental setup for the QIGNN architecture is set by default similar to the description in
section 4. The PI-GNN architecture consists of a trainable embedding layer and one hidden layer, the
sizes of which are set similarly to QIGNN and equal to 50.

For the considered problem, QIGNN finds the optimal solution (cut = 12) in an average of 10.96
iterations, while PI-GNN requires 532.1 iterations on average. These results are based on 100 runs
with different random seeds.

Table 8: Approximate runtime in seconds for PI-GNN and QIGNN training on a single GPU on
instances from the COLOR dataset and citation graphs.

Graph |V | |E| PI−GNN,×103s QIGNN,×103s

COLOR 25-561 160-3328 3.6 ÷ 28.8 0.002 ÷1

CORA 2708 5429 0.3 0.06
CITESEER 3327 4732 2.4 0.018
PUBMED 19717 44338 24 0.156

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Number of Vertices and Edges in coloring graphs.

Graph |V | |E|
ANNA 138 493
DAVID 87 406
GAMES120 120 638
HOMER 561 1629
HUCK 74 301
JEAN 80 254
MYCIEL5 47 236
MYCIEL6 95 755
QUEEN5-5 25 160
QUEEN6-6 36 290
QUEEN7-7 49 476
QUEEN8-8 64 728
QUEEN9-9 81 1056
QUEEN8-12 96 1368
QUEEN11-11 121 1980
QUEEN13-13 169 3328

CORA 2708 5429
CITESEER 3327 4732
PUBMED 19717 44338

B ABLATION FOR QIGNN COMPONENTS

We analyzed which components of QIGNN make the greatest contribution to its performance on the
example of Max-Cut problem-solving. The default architecture includes two intermediate SAGEConv
layers and the iterative dynamic feature. The most dramatic drop in quality occurs if the iterative part
is excluded (see Figure 7).

Throwing out one of the intermediate convolutional layer does not result in such a strong downgrade
(see Figure 8). However, the absence of the convolutional layer with a pool aggregation function
leads to a decrease in the median result, upper bound, and an increase in the results dispersion for
almost all graphs. Discarding the layer with a mean aggregation function can increase the median
cut and even decrease the variance in some cases, but upper bounds either stay the same or decrease,
even if we double the number of parameters in the remaining hidden layer (see Figure 8). Further
ablation on random regular graphs shows that the absence of any convolutional layer leads to a worse
result(see Figure 9). Table 10 with average results for one seed and the best of the five seeds also
confirms the advantage of using a combination of two layers.

In this work, we settled on combining a random vector, shared vector Cui et al. (2022) and pagerank
Brin and Page (1998) for the input feature vector by default. Fig. 6 shows the results when one of the
parts (random vectors or the pagerank of nodes) was removed. In some cases, the median improves
after dropping features, but the upper bound tends to only go down as the number of input features
decreases. Using an embedding layer does not show any benefit over the default version.

Table 10: The first row contains the average P-value over 200 random regular graphs with d = 5 for
1 run of QIGNN with same configurations as in Figures 8 and 9. The second row shows the average
P-value over 200 graphs when the best cut out of 5 runs is taken.

Runs Default no SAGEConv (mean) no SAGEConv (pool)

1 0.734 0.732 0.725
5 0.738 0.737 0.734

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

3033

3039

3045

3051

3058

nu
m

b
er

of
cu

ts

G14

5780

5805

5830

5855

5880
G50

9480

9499

9519

9539

9559
G70

3014

3022

3031

3040

3049

nu
m

b
er

of
cu

ts

G15

10207

10225

10244

10263

10282
G55

13128

13181

13234

13287

13340
G22

default no pagerank no random input embedding layer

Figure 6: Results distribution for 20 runs of QIGNN with the default architecture on several instances
from Gset. Input feature vectors varied as follows: the default choice corresponds to the blue color;
the exclusion of the pagerank component corresponds to the green color; the exclusion of the random
part corresponds to the red color. The use of a trainable embedding layer instead of artificial features
is indicated in yellow.

2933

2964

2995

3026

3058

nu
m

b
er

of
cu

ts

G14

5430

5542

5655

5767

5880
G50

8720

8929

9139

9349

9559
G70

2909

2944

2979

3014

3049

nu
m

b
er

of
cu

ts

G15

9524

9713

9903

10092

10282
G55

12815

12946

13077

13208

13340
G22

default no recurrence

Figure 7: Results distribution for 20 runs of QIGNN with (blue) and without (green) the iterative
connection on several instances from Gset. Horizontal lines mean maximum, median and minimum
values.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2918

2953

2988

3023

3058
nu

m
b

er
of

cu
ts

G14

5776

5802

5828

5854

5880
G50

9242

9321

9400

9479

9559
G70

2883

2924

2966

3007

3049

nu
m

b
er

of
cu

ts

G15

10176

10202

10229

10255

10282
G55

12639

12814

12989

13164

13340
G22

default

no SAGEConv (mean)

no SAGEConv (pool)

SAGEConv (pool) 2× hid dim

Figure 8: Results distribution for 20 runs of QIGNN of the default architecture (blue), with the
absence of one SAGE layer with a mean aggregation function (green) or the SAGE layer with a pool
aggregation function (red). Horizontal lines mean maximum, median and minimum values.

1025

1030

1035

1040

1045

nu
m

b
er

of
cu

ts

default

no SAGEConv (mean)

no SAGEConv (pool)

Figure 9: Results distribution for the mean of 5 runs on 200 random regular graphs with d = 5 and
500 nodes. QIGNN had the same configurations as in the Fig. 8.

20

	Introduction
	Preliminaries
	QUBO problem
	Graph Neural Networks for Combinatorial Optimization

	Method and training design
	Iterative Framework
	Architecture and Training Pipeline

	Numerical experiments
	Maximum Cut
	Graph Coloring
	Maximum Independent Set

	Impact of the Iterative Refinement on GNNs performance.
	Related work
	Conclusion
	Technical Details and Convergence
	General experimental setup
	Convergence
	Max-Cut
	Coloring
	MIS
	Toy example of a Max-Cut problem

	Ablation for QIGNN Components

