
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFSELECT: EFFICIENT FEATURE VALUE SELECTION
FOR DEEP RECOMMENDER SYSTEMS WITH MINI-
BATCH TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Features are critical to the performance of deep recommender systems, where
they are typically represented as low-dimensional embeddings and fed into deep
networks for prediction. However, a major challenge remains unaddressed: the
sparsity and long-tail distribution in feature data result in a large number of non-
informative feature values. These redundant values significantly increase memory
usage and introduce noise, thereby impairing model performance. Most feature
selection or pruning methods operate at a coarse granularity, either selecting entire
features or fields, while finer-grained methods require a large number of additional
learnable parameters. These methods struggle to effectively handle pervasive
redundant features. To address these issues, we introduce EffSelect, a novel
framework for finer-grained selection method at the level of feature values. Unlike
previous methods, EffSelect directly quantifies the contribution to the prediction
loss of each feature value as its importance. Specifically, we propose a mini-batch
pre-training strategy that requires only 5% of the data for rapid warm-up, enabling
real-time adaptation. Using the trained model, we introduce an efficient and robust
gradient-based mechanism to evaluate feature value contribution, discarding those
features with low scores. EffSelect is theoretically guaranteed and achieves superior
performance without introducing any additional learnable parameters to the base
model. Extensive experiments on benchmark datasets validate the efficiency and
effectiveness of EffSelect. Code is available at https://anonymous.4open.
science/r/EffSelect_ICLR/.

1 INTRODUCTION

Modeling the features of given data is crucial for practical recommendation tasks (Wang et al., 2025b;
Wu et al., 2024; Du et al., 2024). With the development of deep models, researchers recognize the
vast potential of deep models in capturing complex features and their interactions, leading to the
design of advanced Deep Recommender Systems (DRSs) (Cheng et al., 2016; Guo et al., 2017). In
these deep networks, features from each field (a feature column, e.g., "Gender" or "Age") are typically
encoded and transformed into low-dimensional vectors before being fed into subsequent layers (Zhao
et al., 2021; Zhaok et al., 2021). Many pioneers have focused on improving network architectures,
such as the CrossNet paradigm proposed by DCN (Wang et al., 2017) and the integration of a feature
weighting module in MaskNet (Wang et al., 2021). However, despite the extensive research on
model architecture optimization, automatic feature-level optimization remains partially explored.
One important issue is feature redundancy which can hamper the model’s ability to learn interaction
patterns and impact performance (Chen et al., 2016; Zhu et al., 2022; Wang et al., 2025a), as the
redundancy kept in the embedding table (Jia et al., 2024; Wang et al., 2025c).

To reduce feature redundancy, feature selection methods are proposed and generally categorized
into two types based on selection granularity. The coarse-granularity type is feature field selection,
traditional methods (e.g., XGBoost/RFE), and other field-level selection frameworks (Wang et al.,
2022) inspired by Neural Architecture Search (NAS) typically remove entire redundant feature fields.
These methods fail to distinguish the heterogeneous importance of distinct feature values (e.g., "Male"
and "Female") within the same field (e.g., "Gender"), often leading to collateral selection errors. In
such cases, critical features may be discarded alongside irrelevant ones, or vice versa.

1

https://anonymous.4open.science/r/EffSelect_ICLR/
https://anonymous.4open.science/r/EffSelect_ICLR/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In contrast, the fine-granularity Feature value selection methods (Liu et al., 2021) like OptFS (Lyu
et al., 2023) go beyond field-level constraints. They assign trainable gates for each feature value
and remove values with small weights after training. They are limited by initialization dependencies
based on the Lottery Ticket Hypothesis (Malach et al., 2020) 1, which restricts retraining flexibility.
Moreover, assigning independent learnable parameters to each feature or value increases compu-
tational overhead, conflicting with the dynamic nature of real-world recommender systems that
require frequent data updates. More fundamentally, the joint optimization of gating mechanisms and
embedding representations often results in competing training objectives and impairs the model’s
convergence because the gating regularization tends to learn small weights and create a bottleneck
for embedding utilization.

In summary, we identify two main issues with existing feature selection methods: 1) Low efficiency.
These methods require extensive pretraining, and the selection results heavily depend on pre-trained
embeddings or gates, which do not meet the needs of recommender systems that require fast iteration
and quick estimation of feature importance. 2) Bad robustness. Gate-based feature value selection
methods are highly sensitive to hyperparameters, lacking robust performance guarantees. What’s
worse, the learning of gates and the updating of embedding tables are interdependent, which amplify
gradient errors and excessively relying on the training set. An intuitive approach is to set the
embedding corresponding to each feature value to zero or a random value, and observe the impact on
the prediction or loss to assess their contribution one by one. However, the number of feature values
in recommender systems can reach tens of millions, making this approach impractical. Therefore, it
is necessary to directly obtain the actual contribution of each feature value.

To address the aforementioned challenges, we propose EffSelect, an efficient and effective feature
value selection framework. To efficiently determine the importance of feature values, we select
mini-batches that cover most features while preserving the feature distribution to pre-train the model
and embedding table. This approach eliminates the need for gate-based methods or the stringent
requirements of fine-grained learning typically associated with pre-training, allowing for obtaining
feature importance with only a small amount of training data. Subsequently, we propose the FeatIS
module, which provides a reference starting point for non-informative features and calculates the
contribution of each feature value to the final loss based on the gradient. To obtain more accurate
estimates, we extend FeatIS by using integral approximation to provide a more precise estimation of
feature value contributions. All feature values are then sorted in descending order of importance, and
only the top ones are selected. In summary, our contributions are as followed:

• For efficiency, we propose a batch selection scheme based on feature value coverage
maximization. This approach ensures consistency with the original data distribution during
sampling while achieving broad coverage of feature values, thereby enabling rapid pre-
training of the embedding table and reduce the parameters of re-trained model.

• For robustness, we compute the loss term based on the fundamental theorem of calculus and
map the contribution of the loss term to each feature value using a divide-and-approximate
method. This approach is grounded in more solid theoretical foundations and requires only
backpropagation on the validation dataset, without any additional learnable parameters.

• Extensive experiments on four benchmark datasets demonstrate the efficiency of our method
in importance computation and its robustness in feature value estimation.

2 RELATED WORK

2.1 FEATURE SELECTION IN DRSS

2 For effective feature selection, many works learn feature field importance through sensitivity
or gates. Permutation Feature Importance (PFI) (Fisher et al., 2019) is a simple method based on
performance sensitivity. It requires a well-trained model and then, for each batch, shuffles each
field and observes the impact on prediction performance. This change (e.g., ∆AUC) is considered
the importance of the field. With the rise of Neural Architecture Search (NAS) (Zoph & Le, 2022),
researchers have attempted to simulate the process of field selection using search techniques. For

1Further details can be found in Appendix A.2.
2For more detail of the background on feature field and feature value, please refer to Appendix A.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

① Sampling from dataset

1. MFCS

sample

② Select the batches with maximum coverage

… …

… … …

2. FeatIS

Selected

Feature Values

…

…Top-α

update update

LL

N gradients

'

1

'

2

'

3

'

4

'

i

* =

·E
1v

17v202v

val
1v

2v

iv

1v

2v

iv

1v

2v

iv

'

5

'

27

'

14

'

15

'

51

'

27

'

34

'

17

'

8

'

* *

x, y

Selected

Batches

1v 2v
iv



Figure 1: The main framework legend for EffSelect. EffSelect consists of two main parts: MFCS
and FeatIS. On the left, mini-batches are selected for network and embedding warm-up, while on the
right, the importance of different feature values is analyzed on the validation set.

example, AutoField (Wang et al., 2022) uses a graph with select or not nodes to learn field importance.
Beyond it, many autoencoder-based feature selection methods are proposed to learn a gate or network
to obtain the feature importance from different granularity (Balın et al., 2019; Nilsson et al., 2024;
Chen et al., 2018). To achieve stronger adaptability, AdaFS (Lin et al., 2022) designs a controller that
learns weights for each sample’s fields, instead of sharing the same importance across all samples.
MvFS (Lee et al., 2023) improves AdaFS by setting multiple controllers from different views. Despite
improvements, these methods still operate at the feature field level. Existing works on feature
value (Liu et al., 2021) optimization have some pioneering contributions, but their practical use
remains limited. For example, OptFS (Lyu et al., 2023) designs learnable gates and functions for each
feature value. It introduces a large number of additional learnable gates and hyperparameters to tune,
making the application sensitive to prior settings. Therefore, the ideal method is one that minimizes
the introduction of extra learnable parameters for efficient training, reduces hyperparameters to
enhance robustness, and provides better guarantees in performance, which is the goal of the proposed
method in this paper.

2.2 MINI-BATCH SELECTION

Mini-batch training uses a small fraction (e.g., ρ) of the total dataset to train the model, speeding
up the training process. The selected data, S ′, is a subset of the full dataset, S, where the ratio of
selected to total data is at most ρ (|S

′|
|S| ≤ ρ). Previous works (Kirsch et al., 2019; Mirzasoleiman

et al., 2020; Yang et al., 2024) on mini-batch training focus on achieving performance similar to that
of full-batch training using a small amount of data. Given a data distribution P and a loss function L,
the goal is to minimize the loss on the model ΘS′ trained with the mini-batch S ′, as:

min
S′⊂S:

|S′|
|S| ≤ρ

Ex,y∼PL(y, ŷ; ΘS′), (1)

where x represents the input features, y represents the true labels, and ŷ represents the predicted
labels from the model.

However, previous approaches require training on the complete dataset followed by retraining on
selected data subsets. In our paper, we propose a training-free selection method, with maximum
feature value coverage on S ′, meaning that as many feature values as possible are trained during the
process. The goal is to:

max
S′⊂S:

|S′|
|S| ≤ρ

(
|F(S ′)|
|F(S)|

)
, (2)

where F(·) means feature values for the given data. The iteration process terminates when |S′|
|S| ≤ ρ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 FRAMEWORK

The logic of the EffSelect framework is to first train (or pre-warm) the embedding table and models
using mini-batch data, and then analyze the impact of embedding table features, sorting those that
activate larger gradients with respect to the prediction. In this section, we first describe how to
train the base model in a mini-batch setting. Then is followed by how to obtain the feature value
importance using the mini-batch data trained model.

3.1 MAXIMIZING FEATURE COVERAGE SAMPLING (MFCS)

To train the embedding table effectively with a few batches, we hold that mini batches should satisfy
the following two basic properties:
Proposition 1. Distribution Consistency. The samples forming a mini-batch should not distort the
data distribution. The distribution PS′ of the mini-batch data set S ′ should match the distribution
PS of the entire data set S, as PS′ = PS . The consistency can be confirmed with ρ suggested in
Appendix C.2.
Proposition 2. Feature Coverage Maximum. As shown in Equation 2, with the dataset ratio ρ, the
feature value coverage should be maximized.

We design a greedy algorithm to achieve maximum feature value coverage. To comply with Proposi-
tion 1, We first perform a sampling without replacement on the total dataset S in batches, where the
batch size is B. The total number of batches is

⌈
|S|
B

⌉
, as S ′b ∼ PS , b = 1, 2, . . . ,

⌈
|S|
B

⌉
. Since it is

sampling without replacement, we have:

S ′i ∩ S ′j = ∅, ∀i ̸= j. (3)

Thus the data within these batches are guaranteed to maintain consistency with the original distribution.
Based on this, to further achieve Proposition 2, we precompute the feature values in each batch and
select the batch that contains the most feature values. Let the current selected feature values set be
denoted as V∗, with the initial condition V∗ = ∅. Then the selected batch index can be formulated as:

max
b
|F(S ′b) ∪ V∗|, b = 1, 2, . . . ,

⌈
|S|
B

⌉
. (4)

Based on the feature values in the b-th batch, we update the current feature values set as: V∗ ←
F(S ′b) ∪ V∗. Then, according to the scheme in Equation 4, batches are iteratively selected that can
bring the most additional features compared to the current feature values set. The final selected data
samples form the union of all ∪S ′i (a.k.a. S ′). In fact, this indicates that F is a submodular function.
The relevant proof and its theoretical upper bound are provided in Appendix C.

For MFCS, the process of selecting the batch containing the most feature values involves two linear
steps: one for calculating the additional feature values of the current batch relative to V∗, and the
other for selecting the batch that yields the most additional feature values. The latter incurs minimal
time cost, as the total number of batches is small, but the calculation of additional feature values often
involves higher costs. Since the feature values of each batch remain unchanged during the selection
process, and the preprocessed and encoded feature values are discretized, MFCS can be optimized
using bitmap.

A bitmap is a {0, 1}N , where N represents its length, and the 0/1 at each position indicates the
presence or absence of the corresponding feature value. For each feature field in every batch, we use
a bitmap of length equal to the maximum feature value index to represent which features are included
in the current batch. Additionally, the features in the currently selected batch, V∗, are also maintained
using a bitmap. This way, when evaluating the number of additional feature values, there is no
need to use a set for maintenance. The whole step of MFCS is shown in Algorithm 1.

The iteration process terminates when |S′|
|S| > ρ. With the selected batch data S′, the base model (e.g.,

DCN, MaskNet) is trained using the cross-entropy loss function. This process aims to train the model
parameters and the embedding table as much as possible, preparing for the next step of the feature
value scoring process in the embedding latent space.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

min
ΘS′

1

|S ′|
∑

x,y∈S′

LCE(y, ŷ; ΘS′), (5)

where LCE is:
LCE(y, ŷ; ΘS′) = − [y log(ŷ) + (1− y) log(1− ŷ)] , (6)

and the ŷ is predicted by the model parameterized with ΘS′ .

3.2 FEATURE VALUE IMPORTANCE SCORER (FEATIS)

3.2.1 IMPORTANCE DESIGN

With the well-trained ΘS′ including the embedding table, we expect to measure the contribution of
each feature value. An intuitive approach is to sequentially mask each feature value’s embedding
while keeping others unchanged, then measure the resulting validation loss difference. For a feature
value v ∈ V , this can be formulated as:

∆L(E) = L(E − Iv ⊙ E)− L(E), (7)

where we let L (indeed is LSval on the validation dataset) is the function of embedding table E here3,
E is formed by concatenating Ev for v ∈ V∗, and Iv is an indicator vector (or a vector consisting of
1’s and 0’s). This operation eventually sets the embedding corresponding to the feature value v to
0, while keeping the other positions unchanged. Though feasible, it is impractical to calculate the
importance of each feature value individually for large datasets with hundreds of thousands or even
millions of feature values.

If the loss term is viewed as a multivariate function of each feature value, the contribution of each
value can be measured using a Taylor expansion. Mathematically, from the perspective of Taylor
expansion, the contribution of the embedding Ev of each feature value v to the loss can be expressed
as:

L(E) =L(E∗)︸ ︷︷ ︸
identical

+
∑
v

∇Ev
L(E∗) · (Ev − E∗

v)︸ ︷︷ ︸
different

+O(|Ev − E∗
v |2) (8)

where E∗
v is the starting point embedding for the feature value v, and E∗ is concatenated by each E∗

v .
In the Taylor expansion, it is the starting point of the expansion. From Equation 8, we could find that
for each feature value v, the term L(E∗) is identical, therefore, the 1-st term of Taylor Expansion
essentially describes the contribution of feature value v:

Iv = |∇Ev
L(E∗) · (Ev − E∗

v)| . (9)

However, the limitation of this measurement lies in its neglect of higher-order terms in Equation 8
with respect to the feature value v. These higher-order terms are computationally unfriendly, as
their consideration would involve higher-order joint gradients between feature values vi and vj ,
which would escalate the time complexity from linear (for a single gradient backpropagation) to
polynomial. In practice, this approach is infeasible due to the typically large size of |V∗| in real-world
data. Therefore, a more precise measurement is needed to attribute contributions to individual feature
values, ensuring that the contribution of each feature value can be computed within a single gradient
backpropagation, and the error upper bound is both controllable and tractable.

Revisiting the ∆L term in Equation 7, if we interpret the function L as the antiderivative in calculus,
and consider the impact of each feature value v on the loss, then according to the Newton-Leibniz
formula, we know that:

L(E)− L(E∗) =

∫ E

E∗
∇XL(X) · dX. (10)

Based on this, we only need to compute the value on the right-hand side of the equation and attribute
it to each feature value v. Inspired by Sundararajan et al. (2017), we innovatively adopt numerical
integration (Morokoff & Caflisch, 1995) to the right-hand side, as:

3From this section of importance calculation, the loss function L is calculated on the validation dataset,
which is different from the previous training stage.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

∫ E

E∗
∇XL(X) · dX ≈

N−1∑
k=0

∇XL(Xtk) ·
(
Xtk+1

−Xtk

)
, (11)

where X(m)
tk

is the value of the m-th path at discrete point tk,∇XL(X(m)
tk

) is the gradient of the loss
function L at X(m)

tk
, M is the total number of random paths, and N is the number of discrete points

on each path.

In this way, we can transfer the Taylor expansion error with the integration error. However, directly
solving using Equation 11 is computationally expensive. To simplify the process, we choose the
linear path from E∗ to E, and compute the original integral using a divide-and-approximate method,
which makes the loss term become:

L(E)− L(E∗) ≈
N∑

k=1

∇XL
(
E∗ +

k

N
(E − E∗)

)
· E − E∗

N
. (12)

For the importance of each feature value, we take the corresponding term for v in the above equation.
The final importance is defined as:

Iv =

N∑
k=1

∣∣∣∣∇EvL
(
E∗ +

k

N
(E − E∗)

)
· Ev − E∗

v

N

∣∣∣∣ . (13)

where related symbols have been explained in Equation 11. Together with Equation 9, these form
two variants of our method. Specifically, when N = 1, Equation 13 degrades to Equation 9. In
Appendix B.1, we formally prove why it can maintain a lower approximation error and theoretically
demonstrate why this approach may perform better compared to Equation 7.

3.2.2 THE CHOICE OF E∗

As discussed in previous subsections, the role of E∗ is to serve as a “starting point" for measuring the
importance of feature values. For each feature value v, there is an E∗

v in E∗. It should contain the
least information to highlight the importance of each feature value. A simple approach is to choose
an embedding like zerolike(Ev) as E∗

v .

75 50 25 0 25 50 75
t-SNE component 1

60

40

20

0

20

40

60

t-S
NE

 c
om

po
ne

nt
 2

t-SNE visualization of Embedding Fields

C17
C20
app_domain

Figure 2: Embeddings t-SNE of fea-
ture values after pre-training with
Avazu on Wide & Deep.

However, a potential issue is that the global zerolike E∗ may
not necessarily contain the least information, as it could still
influence predictions (e.g., towards positive or negative records).
As shown in Figure 2, the embeddings for each v after pre-
training exhibit distribution differences. The distributions of
C17 and C20 are similar, while app_domain is more widely
spread compared to the previous two.

Based on this observation, we propose using the field-wise
mean value as the non-informative embedding for each feature
v. According to the principle of maximum entropy, the most
reasonable probability distribution under known constraints is
the one with the highest entropy. The mean value, being the
first moment, represents the central location of the data. In the
absence of additional information, using the mean as a reference
can be viewed as a “zero-order approximation," assuming that

the data are symmetrically distributed around the mean, which aligns with the “unbiased assumption"
in the maximum entropy principle.

Specifically, the field-wise mean value is the average embedding of all values corresponding to a
feature field. Formally, we let Fv be all feature values belonging to the same feature field, then E∗

v
can be represented as:

E∗
v =

1

|Fv|
∑

vi∈Fv

Evi , (14)

which means that the starting point embeddings E∗
v of values within the same feature field are

identical.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2.3 SORTING WITH Iv

Based on the obtained scores Iv for each feature value v, we combine all feature values from different
fields, sort them in descending order of their scores, and select the top for model learning. This
approach is justified by the fact that the importance we design is directly related to the final loss,
which ensures that the importance across different fields is on the same scale.

3.3 ALGORITHM COMPLEXITY ANALYSIS

The time complexity of EffSelect consists of two main parts. Let l represent the total number of
feature values in the complete training set. Since a bitmap is used, an l-length vector can mark
the presence or absence of each feature in a mini-batch. In the MFCS phase, a total of ρ

⌈
|S|
B

⌉
batches need to be selected. For each selection, the contribution of all batches is computed, and then

sorted to pick the one with the highest contribution. Therefore, the total complexity is ρ
⌈
|S|
B

⌉2
l.

In the importance score calculation phase, ρ fraction of samples are used for training, and gradient
backpropagation is performed N times on the validation set. The time complexity is ρTtrain +NTval.
The total time complexity is the sum of these two parts. Since the computation of the N segments
can be parallelized, the actual process can be also optimized.

4 EXPERIMENT

4.1 SETTING UP

Table 1: Statistics of four datasets used for evaluation.

Dataset #Fields #Training #Validation #Test Positive%
iPinYou 16 13,195,935 2,199,323 4,100,716 0.08%
Ali-CCP 23 42,299,905 21,508,307 21,508,307 3.89%
Avazu 24 32,343,172 4,042,897 4,042,898 16.98%
Criteo 39 36,672,493 4,584,062 4,584,062 25.62%

For feature field selection meth-
ods, due to their inability to per-
form feature selection at the fine-
grained level like feature value se-
lection methods, we adopt different
approaches. To ensure a fair com-
parison with baselines, for methods
such as RF, XGBoost, RFE, and PFI,

we select the feature fields corresponding to the point where the cumulative feature importance first
exceeds 10% based on the feature field importance ranking. In the case of AdaFS and MvFS, we retain
the most important 10% of features for each sample. For feature value selection methods, we select
the top 10% of the most important feature values for training and evaluation. The hyperparameter
config can be found in Appendix D.3, and the detailed introduction of these methods can be found at
Appendix D.2. We evaluate the effectiveness of the proposed methods using two classic base models
in real recommender system scenarios: DCN (Wang et al., 2017) and MaskNet (Wang et al., 2021).
Due to the space limitation, the comparision with autoencoder-based feature selection methods is
shown in Appendix E.1.

4.1.1 DATASET

As shown in Table 1, we select four benchmark datasets to evaluate the effectiveness of EffSelect.
They are iPinyou, Ali-CCP, Avazu, and Criteo. The brief situation of the datasets is shown in the
table, and the details can be found in Appendix D.1. Note that since the iPinYou dataset only provides
the training and test sets by default, to ensure the reliability of the results, we additionally split 1/7 of
the training data as a validation set. For all datasets, the low-frequency filter threshold is set to 2.

4.2 MAIN RESULTS

In this section, we examine the impact of different feature selection methods on the results under the
condition of 10% features or fields. This setting is significant for inference on small edge devices and
helps evaluate the effectiveness of feature selection methods when resources are extremely limited.

As shown in Table 2, EffSelect achieves the best performance in most cases. Although the difference
from the Base Model results is relatively large on the Avazu dataset, it outperforms the baseline on
the other three datasets. Specifically, traditional feature field selection methods struggle to select truly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison with different feature field and feature value selection method.

Model Dataset Metrics Base Field Selection Value Selection
RF XGBoost RFE PFI AdaFS MvFS OptFS EffSelectZ EffSelectM

DCN

Criteo AUC 0.8090 0.7879 0.7793 0.8058 0.8034 0.7998 0.7996 0.8077 0.8102 0.8102
Logloss 0.4427 0.4610 0.4674 0.4457 0.4478 0.4514 0.4525 0.4439 0.4418 0.4417

Avazu AUC 0.7908 0.7076 0.7500 0.7717 0.7634 0.7823 0.7836 0.7877 0.7744 0.7737
Logloss 0.3735 0.4134 0.3953 0.3843 0.3880 0.3829 0.3830 0.3760 0.3829 0.3829

iPinYou AUC 0.7642 0.7383 0.7635 0.7319 0.7572 0.7391 0.7270 0.7624 0.7683 0.7699
Logloss 0.5630 0.5766 0.5656 0.5894 0.5662 0.5821 0.5988 0.5623 0.5620 0.5607

Ali-CCP AUC 0.5956 0.5762 0.5834 0.5743 0.5939 0.6004 0.6009 0.5979 0.6000 0.6021
Logloss 0.1639 0.1631 0.1630 0.1640 0.1631 0.1656 0.1656 0.1644 0.1622 0.1621

MaskNet

Criteo AUC 0.8098 0.7880 0.7722 0.8062 0.8009 0.7999 0.7999 0.8086 0.8110 0.8111
Logloss 0.4420 0.4609 0.4728 0.4453 0.4501 0.4509 0.4511 0.4431 0.4408 0.4407

Avazu AUC 0.7914 0.7129 0.7506 0.7724 0.7646 0.7834 0.7849 0.7900 0.7757 0.7766
Logloss 0.3731 0.4390 0.3950 0.3848 0.3876 0.3816 0.3808 0.3741 0.3824 0.3816

iPinYou AUC 0.7674 0.7242 0.7666 0.7534 0.7563 0.7580 0.7653 0.7570 0.7683 0.7699
Logloss 0.5608 0.5726 0.5628 0.5624 0.5646 0.5684 0.5629 0.5622 0.5598 0.5581

Ali-CCP AUC 0.6056 0.5739 0.5815 0.5733 0.5986 0.6020 0.5992 0.6005 0.6010 0.6109
Logloss 0.1637 0.1636 0.1630 0.1641 0.1660 0.1651 0.1661 0.1650 0.1624 0.1619

Since the loss on the iPinYou dataset is small, we use Logloss% instead of Logloss here. Base means using all feature
values to train the model, EffSelectZ means using zero-like starting point embedding to get the feature value importance, and
EffSelectM means using field-wise mean value as the starting point. The best results are in bold and the second is underlined.

useful subsets of feature values. This is understandable, as embedding tables gained popularity with
the rise of deep learning, and earlier methods like XGBoost could only perform selection field-wise,
without accounting for the contribution of different feature fields. AdaFS and MvFS yield relatively
strong results, but these may largely depend on the model parameters from the pre-training stage,
which contrasts with our method that independently retrains the model. Additionally, OptFS achieves
relatively good performance with a masking mechanism, but its effectiveness is highly dependent on
hyperparameter tuning. Overall, EffSelect achieves state-of-the-art performance in most cases.

4.3 EFFICIENCY

RFE

RF

XgBoost

EffSelect-Gradient

EffSelect-Pretraining

EffSelect-MFCS

OptFS-Pretraining

Full Training

Figure 3: Time consumption. For tradi-
tional methods, it shows the total time.

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t0

10

20

30

40

50

Nu
m

be
r o

f P
ar

am
et

er
s (

M
illi

on
s) 45.37M

6.07M 5.29M
7.07M 8.03M

45.37M 45.42M

5.42M 5.42M

Parameter Counts of Different Methods for Criteo on DCN

Figure 4: Parameter counts for different
methods.

The advantage of EffSelect is clear: it can estimate fea-
ture importance using only a small number of batches.
Meanwhile, both the time cost of each stage and the pa-
rameter count during re-training are also important. In
this paper, we compute the total parameter count, since
even zero-masked networks still participate in training
structurally.

In Figure 3, there are significant differences in time cost
among various methods. For other methods, it shows
the time consumption per epoch. XGBoost is the fastest,
while RF and RFE are much slower, though none of
these achieve optimal performance. For EffSelect, on
the iPinYou dataset, it uses very little time for batch se-
lection and achieves much faster pre-training compared
to full training. This shows a clear advantage over the
gate-based approach used by OptFS.

As for parameter count (Figure 4), our method uses only
about 12% of the original model’s memory on the Criteo
dataset with DCN. For XGBoost, its retraining footprint
is slightly smaller than EffSelect, but its prediction per-
formance is much lower. The method most similar to
ours is OptFS, which is a strong baseline. It achieves
good performance with the same parameter count as
ours, although still worse. In contrast, AdaFS and MvFS
generally require more parameters, as both rely on ad-
ditional controllers that increase memory use and may
slow down training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Ratio

0.809

0.809

0.810

0.442

0.443

0.443

Criteo on DCN
AUC Logloss

Figure 5: Ratio α in-
fluence with Criteo on
DCN.

0.2 0.4 0.6 0.80.6100

0.6125

0.6150

0.6175

0.6200

AU
C

Ali-CCP on DCN

N = 1
N = 5
N = 10

Figure 6: Ratio α influ-
ence with Ali-CCP on
DCN with various N .

S1 S2 S3 EffSelect
Ablation Study Situations

0.65

0.70

0.75

0.80

AU
C

0.6646

0.7452
0.7701 0.7737

Avazu on DCN

Figure 7: Ablation
Study with Avazu on
DCN.

S1 S2 S3 EffSelect
Ablation Study Situations

0.76

0.78

0.80

0.82

AU
C 0.7861

0.8030 0.8072 0.8111
Criteo on MaskNet

Figure 8: Ablation
Study with Criteo on
MaskNet.

4.4 HYPERPARAMETER ANALYSIS

EffSelect involves three main hyperparameters: the proportion of the pretraining training set, ρ, the
number of discrete points, N , and the ratio of selected feature values, α. In each part of the study, we
fix the settings of the other two. Unless otherwise specified, the default values are ρ = 0.05, α = 0.1,
and N = 5. The impact of α on the results is the largest. The dashed line in Figure 5 represents the
AUC and Logloss using all feature values. On Criteo, using approximately 10% of the feature values
achieves better prediction results than using all features. On Ali-CCP, with 60% feature values can
bring 4.37% relative AUC improvement. This demonstrates great redundancy in the embedding table.
However, the trend of overall performance trend varies significantly across different datasets. On
Criteo, performance peaks at small α values and then shows a general downward trend. In contrast,
on Ali-CCP, performance gradually increases and only shows significant degradation at large α values.
This indicates that different datasets have different noise characteristics. Moreover, Figure 6 also
shows that, as α changes, the segmentation number N = 5 generally performs better than N = 1.
While N = 10 may have a minor advantage, the additional overhead makes it not worthwhile.

Since the impact of the other hyperparameter (ρ) on the results is smaller than that of α, we have put
it to Appendix E.2 to save space.

4.5 ABLATION STUDY

The ablation study of EffSelect consists of three main parts. S1: We randomly select 10% of the
feature values for training. S2: We use the 5% selected by MCFS for pre-training, and the results are
directly used as the final output. S3: We directly use the backpropagated gradients without multiplying
by the change in embedding E compared to E∗. These three parts evaluate the contribution of each
component to the final result. EffSelect also uses 10% feature values in this experiment.

The influence of these three components on the final performance is evident. S1 randomly selects
10% of the feature values and yields the worst performance, even when re-training with the full set of
batches. This highlights the overall importance of EffSelect. For S2, using only the selected mini-
batches is insufficient for the model to capture complex user history interactions. These mini-batches
merely enable fast pre-training of the embedding layer. Optimal performance is achieved only when
feature value selection is conducted on top of this and followed by full-data re-training. S3 adopts
an alternative strategy to measure feature importance, but its performance falls short of EffSelect.
This is because it does not take loss sensitivity into account. Similar performance trends are observed
across both datasets and both models.

5 CONCLUSION

Selecting a critical subset of feature values is essential for the performance and resource efficiency
of recommender systems. Existing feature field and value selection methods either have coarse
granularity or rely on gating mechanisms with low learning efficiency and robustness. To address
these issues, we propose EffSelect, a framework that trains with mini-batches and uses the contribution
of feature values to the loss function as a measure of feature value importance. This approach provides
an efficient means for identifying and removing non-informative feature values. Experiments were
conducted on four benchmark datasets using two base models, demonstrating that our method
achieves optimal prediction performance in most cases. In addition, efficiency tests in terms of time
and memory highlight the practical deployment advantages of EffSelect. Our work offers insightful
ideas for selecting informative feature values with solid theoretical guarantee.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that our work adheres to the ICLR Code of Ethics 4. Our study does not involve human
subjects, nor does it raise any concerns related to privacy, security, or discrimination. The dataset used
in this research is publicly available and has been properly credited. We have ensured compliance with
all relevant legal and ethical guidelines, and there are no conflicts of interest related to sponsorship
or affiliations. Our findings are presented with integrity, with all results accurately reported. If any
ethical concerns arise during the review process, we are open to further discussion and clarification.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All datasets used in the experiments
are publicly available, and the data processing steps are described in detail. For the models and
algorithms introduced, we provide a link to the source code 5, which is the same link provided in the
Abstract.

REFERENCES

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable
feature selection and reconstruction. In International conference on machine learning, pp. 444–453.
PMLR, 2019.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An information-
theoretic perspective on model interpretation. In International conference on machine learning, pp.
883–892. PMLR, 2018.

Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, and Xian-Sheng Hua. Deep ctr prediction in display
advertising. In Proceedings of the 24th ACM international conference on Multimedia, pp. 811–820,
2016.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Xue-wen Chen and Jong Cheol Jeong. Enhanced recursive feature elimination. In Sixth international
conference on machine learning and applications (ICMLA 2007), pp. 429–435. IEEE, 2007.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep learning for recommender systems, pp. 7–10,
2016.

Zhaocheng Du, Chuhan Wu, Qinglin Jia, Jieming Zhu, and Xu Chen. A tutorial on feature interpre-
tation in recommender systems. In Proceedings of the 18th ACM Conference on Recommender
Systems, pp. 1281–1282, 2024.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simultaneously.
Journal of Machine Learning Research, 20(177):1–81, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

4https://iclr.cc/public/CodeOfEthics
5https://anonymous.4open.science/r/EffSelect_ICLR/

10

https://iclr.cc/public/CodeOfEthics
https://anonymous.4open.science/r/EffSelect_ICLR/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-
machine based neural network for CTR prediction. In Carles Sierra (ed.), Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pp. 1725–1731. ijcai.org, 2017. doi: 10.24963/ijcai.2017/239.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer
classification using support vector machines. Machine learning, 46:389–422, 2002.

Pengyue Jia, Yejing Wang, Zhaocheng Du, Xiangyu Zhao, Yichao Wang, Bo Chen, Wanyu Wang,
Huifeng Guo, and Ruiming Tang. Erase: Benchmarking feature selection methods for deep
recommender systems. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5194–5205, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32, 2019.

Youngjune Lee, Yeongjong Jeong, Keunchan Park, and SeongKu Kang. Mvfs: Multi-view feature
selection for recommender system. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, pp. 4048–4052, 2023.

Weilin Lin, Xiangyu Zhao, Yejing Wang, Tong Xu, and Xian Wu. Adafs: Adaptive feature selection
in deep recommender system. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3309–3317, 2022.

Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. Learnable embedding sizes for
recommender systems. In International Conference on Learning Representations, 2021.

Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xiuqiang He, and Xue Liu. Optimizing feature
set for click-through rate prediction. ArXiv preprint, abs/2301.10909, 2023.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp.
6682–6691. PMLR, 2020.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

William J Morokoff and Russel E Caflisch. Quasi-monte carlo integration. Journal of computational
physics, 122(2):218–230, 1995.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.

Alfred Nilsson, Klas Wijk, Erik Englesson, Alexandra Hotti, Carlo Saccardi, Oskar Kviman, Jens
Lagergren, Ricardo Vinuesa, Hossein Azizpour, et al. Indirectly parameterized concrete autoen-
coders. arXiv preprint arXiv:2403.00563, 2024.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

Xianquan Wang, Zhaocheng Du, Jieming Zhu, Chuhan Wu, Qinglin Jia, and Zhenhua Dong. Tayfcs:
Towards light feature combination selection for deep recommender systems. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 5007–5017,
2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xianquan Wang, Likang Wu, Zhi Li, Haitao Yuan, Shuanghong Shen, Huibo Xu, Yu Su, and
Chenyi Lei. Mitigating redundancy in deep recommender systems: A field importance distribution
perspective. KDD ’25, pp. 1515–1526, 2025b. doi: 10.1145/3690624.3709275.

Xianquan Wang, Likang Wu, Zhi Li, Haitao Yuan, Shuanghong Shen, Huibo Xu, Yu Su, and
Chenyi Lei. Mitigating redundancy in deep recommender systems: A field importance distribution
perspective. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V. 1, pp. 1515–1526, 2025c.

Yejing Wang, Xiangyu Zhao, Tong Xu, and Xian Wu. Autofield: Automating feature selection in
deep recommender systems. In Proceedings of the ACM Web Conference 2022, pp. 1977–1986,
2022.

Zhiqiang Wang, Qingyun She, and Junlin Zhang. Masknet: Introducing feature-wise multiplication
to ctr ranking models by instance-guided mask. 2021.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. World
Wide Web, 27(5):60, 2024.

Shuo Yang, Zhe Cao, Sheng Guo, Ruiheng Zhang, Ping Luo, Shengping Zhang, and Liqiang Nie.
Mind the boundary: Coreset selection via reconstructing the decision boundary. In Forty-first
International Conference on Machine Learning, 2024.

Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao,
and Bo Long. Autodim: Field-aware embedding dimension searchin recommender systems. In
Proceedings of the Web Conference 2021, pp. 3015–3022, 2021.

Xiangyu Zhaok, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang, Ming Chen, Xudong
Zheng, Xiaobing Liu, and Xiwang Yang. Autoemb: Automated embedding dimensionality search
in streaming recommendations. In 2021 IEEE International Conference on Data Mining (ICDM),
pp. 896–905. IEEE, 2021.

Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui
Zhang. Bars: Towards open benchmarking for recommender systems. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
2912–2923, 2022.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BACKGROUND

A.1 FEATURE FIELD AND FEATURE VALUE

In DRSs, feature selection consists of two parts: feature field selection and feature value selection.
The main difference between them lies in the granularity of selection.

The former treats a feature field column as the unit of selection, where all feature values within the
same field are either selected or dropped together. For example, the field occupation contains feature
values like teacher, doctor, etc. Regardless of their individual contributions to model prediction,
they are treated identically. On the other hand, feature value selection focuses on a finer granularity,
considering each value of occupation individually for selection. Dropped feature values and any new
feature values observed in validation or test sets are treated as [OOV] word and projected into an
embedding.

A.2 LOTTERY TICKET HYPOTHESIS

The lottery ticket hypothesis, proposed by Frankle and Carbin in 2018, states that: A randomly-
initialized, dense neural network contains a subnetwork that is initialized such that — when trained
in isolation — it can match the test accuracy of the original network after training for at most the
same number of iterations.

According to (Malach et al., 2020), in mathematical terms, let N be a randomly-initialized neural
network with weights W . There exists a subnetwork Ns of N with a subset of weights Ws ⊆ W
such that if we train Ns independently, the test accuracy of Ns, denoted as Acc(Ns), is comparable
to the test accuracy of N , denoted as Acc(N), after at most the same number of training iterations.
That is:

Acc(Ns) ≈ Acc(N)

where the approximation is in terms of the performance on a given test dataset.

This hypothesis has significant implications. If true, it suggests that the process of training large
neural networks can be made more efficient. Instead of training an entire large network, one could
potentially find a good small subnetwork within it and then train only that subnetwork. However,
finding such a "winning-ticket" subnetwork is non-trivial. Our proposed EffSelect does not rely on
such assumptions or the tedious task of finding a subnetwork as kept feature values. It only requires
5% of the training data to distinguish informative features.

B PROOF FOR FEATIS CONVERGENCE AND ERROR UPPER BOUND

The convergence and convergence rate of a method are crucial for its performance. The numerical
integration method used in this paper can actually be implemented using the right endpoint rule or
the composite midpoint rule. These two methods differ in convergence rates, and the former already
yields good results in practice. Below, we will conduct an error analysis for both approaches.

B.1 ERROR ANALYSIS OF THE RIGHT ENDPOINT RULE

Given a loss function L(E) with an embedding table E = (Ev)v∈V , we compare two estimators.
The first is the Taylor expansion at the starting point E∗, which is expressed as:

L(E) = L(E∗) +
∑
v

∇Ev
L(E∗) · (Ev − E∗

v) +O(∥E − E∗∥2), (15)

where the first-order term accounts for the gradient of the loss function evaluated at E∗, and the
second term represents the error of the approximation, which is of order O(∥E − E∗∥2).
The second method we adopt as in Equation 13, the numerical integration with N segments. The
integral for the gradient Iv is given by:

Iv =

N∑
k=1

∣∣∣∣∇Ev
L
(
E∗ +

k

N
∆E

)
· ∆Ev

N

∣∣∣∣ , ∆E := E − E∗. (16)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Next, we aim to prove that the error upper bound of Iv is smaller. We begin by assuming that
the gradient of the loss function is Lipschitz continuous with respect to each specific feature value
embedding. This assumption is reasonable because, during training, the computation from the
embedding vector v to the loss L typically involves a sequence of continuous and differentiable
operations (e.g., matrix multiplication, addition, ReLU, Sigmoid, Softmax, etc.). Although ReLU is
not differentiable at zero, it is piecewise linear, and its gradient is practically tractable. Therefore,
assume that the gradient∇L is Lipschitz continuous with constant L. That is, for any two embedding
vectors E1 and E2, we have:

∥∇L(E1)−∇L(E2)∥ ≤ L · ∥E1 − E2∥. (17)

Then, consider the interval from E∗ + tk−1∆E to E∗ + tk∆E, where tk = k
N and the step size is

∆t = 1
N . The difference between the two points is:

∥(E∗ + tk∆E)− (E∗ + tk−1∆E)∥ = ∥∆E∥ · (tk − tk−1) =
1

N
∥∆E∥. (18)

According to the Lipschitz condition, the change in gradient is bounded by:

∥∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)∥ ≤ L · 1
N
∥∆E∥. (19)

Numerical integration approximates the integral in each interval using the gradient at the right
endpoint. The approximation error arises from the variation of the gradient within the interval. For
the k-th interval, the error term is:∣∣∣∣[∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)] · ∆E

N

∣∣∣∣ . (20)

By the Cauchy–Schwarz inequality, the absolute value of the dot product is bounded by the product
of their norms:

∥∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)∥ · ∥∆E∥
N

. (21)

Returning to Equation 20, the error upper bound is given by

L · ∥∆E∥
N

· ∥∆E∥
N

=
L∥∆E∥2

N2
. (22)

The error in each subinterval is on the order of O
(

∥∆E∥2

N2

)
, and there are N subintervals in total.

Therefore, the total error is:

Total Error ≤ N · L∥∆E∥2

N2
=

L∥∆E∥2

N
. (23)

This shows that the error of the numerical integration is O
(

∥∆E∥2

N

)
. This shows that, in our

application, we can theoretically reduce the error bound by increasing N , leading to more accurate
estimates of feature value importance.

B.2 ERROR ANALYSIS OF THE COMPOSITE MIDPOINT RULE

In practice, with the same number of segments N , the computational complexity remains the same.
However, using the midpoint rule for integration gives a smaller error bound. We will prove that for a
sufficiently smooth function L, the error bound for the composite midpoint rule is:

∣∣L(E)− L(E∗)− IMid
∣∣ ≤ K ∥∆E∥3

24N2
= O

(
1

N2

)
(24)

where the constant K originates from the bound on the third derivative of the function L.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This requires a stronger assumption as followed. We need to assume that the functionL is continuously
differentiable enough and that its third-order derivative tensor is bounded. That is, there exists a
constant K > 0 such that for all X: ∥∥∇3L(X)

∥∥ ≤ K.

This assumption ensures that the rate of change of the Hessian matrix is bounded.

To prove this, first, we convert to a one-dimensional integral. We parameterize the path as X(s) =
E∗ + s∆E, where s ∈ [0, 1], and convert the line integral into a standard one-dimensional integral.
Let the step size be h = 1/N , then

L(E)− L(E∗) =

∫ 1

0

∇L(X(s)) ·∆E ds. (25)

We define the scalar function g(s) := ∇L(X(s)) · ∆E. The problem is thus transformed into
calculating the approximation error for

∫ 1

0
g(s)ds. Then, consider the k-th interval [sk−1, sk], which

has a width of h and a midpoint of s(k). The local error ϵk on this interval is:

ϵk =

∫ sk

sk−1

g(s) ds− h · g(s(k)). (26)

We expand g(s) in a Taylor series around the midpoint s(k) (using the Lagrange remainder form):

g(s) = g(s(k)) + g′(s(k))(s− s(k)) +
g′′(ξk)

2
(s− s(k))2, (27)

where ξk is a point between s and s(k). Substituting this expansion into the expression for ϵk and
integrating, the linear term vanishes due to symmetry, leaving only the integral of the remainder term:

ϵk =

∫ sk

sk−1

g′′(ξk)

2
(s− s(k))2 ds. (28)

According to the Mean Value Theorem for Integrals, because (s − s(k))2 ≥ 0, there exists an
ηk ∈ [sk−1, sk] such that:

ϵk =
g′′(ηk)

2

∫ sk

sk−1

(s− s(k))2 ds, (29)

and the integral of the quadratic term yields:∫ sk

sk−1

(s− s(k))2 ds =
h3

12
. (30)

Therefore, the local error is:

ϵk =
g′′(ηk)

2
· h

3

12
=

g′′(ηk)h
3

24
. (31)

The total error is the sum of all local errors. We take its absolute upper bound and let Gmax be the
maximum value of |g′′(s)| on [0, 1], as:

Total Error =

∣∣∣∣∣
N∑

k=1

ϵk

∣∣∣∣∣ ≤
N∑

k=1

|ϵk| =
N∑

k=1

∣∣∣∣g′′(ηk)h3

24

∣∣∣∣ ≤ N∑
k=1

Gmaxh
3

24
= N · Gmaxh

3

24
. (32)

Substituting h = 1/N , we could get:

Total Error ≤ N · Gmax(1/N)3

24
=

Gmax

24N2
. (33)

Finally, we use our stronger assumption to determine the bound for Gmax = max |g′′(s)|. We have:

g′′(s) = (∆E)T
(
∇3L(X(s))[∆E]

)
∆E. (34)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Using the bound on the norm of the third-order derivative tensor,
∥∥∇3L(X)

∥∥ ≤ K:

|g′′(s)| ≤
∥∥∇3L(X(s))

∥∥ · ∥∆E∥3 ≤ K ∥∆E∥3 . (35)

Thus, Gmax ≤ K ∥∆E∥3.

Substituting the upper bound for Gmax into the total error formula, we could get:

Total Error ≤ K ∥∆E∥3

24N2
. (36)

It shows that the error bound for the composite midpoint rule is: O
(

1
N2

)
. In practice, even using the

right-endpoint method often yields satisfactory results.

C THE MAXIMUM COVERAGE FOR TRAINING DATA BATCHES

C.1 THE MONOTONE SUBMODULAR FUNCTION

Proposition 3. The feature coverage function F (S) = |F(S)| is a monotone submodular function.

Proof. Let F(S) denote the set of unique feature values covered by batch set S . For anyA ⊆ B ⊆ S
and a new batch b ∈ S \ B, we have:

F (A ∪ {b})− F (A) = |F(A ∪ {b}) \ F(A)|
F (B ∪ {b})− F (B) = |F(B ∪ {b}) \ F(B)|

Since A ⊆ B, we have F(A) ⊆ F(B). The marginal gain from adding b decreases as:

|F({b}) \ F(A)| ≥ |F({b}) \ F(B)|, (37)

proving submodularity. Monotonicity follows from F(S) ⊆ F(S ∪ {b}).

Therefore, from (Nemhauser et al., 1978), the greedy selection strategy in Equation 4 achieves
a (1 - 1/e)-approximation guarantee for maximizing the feature coverage function. Our batch se-
lection process with termination condition |S ′|/|S| > ρ corresponds to a cardinality constraint
k = ⌈ρ|S|/B⌉. The iterative selection of batches with maximum marginal gain exactly implements
the classical greedy algorithm. This theoretical guarantee ensures that MFCS provides near-optimal
feature coverage while maintaining the efficiency of greedy selection. The bitmap optimization
further makes it practical for large-scale datasets.

C.2 THE CHOICE OF ρ

In the main text, ρ represents the ratio of selected batches to all batches, which essentially corresponds
to the proportion of selected samples. Since recommender system datasets are typically large, it
is feasible to approximate within an acceptable error range using a small subset of samples. The
subsequent idea of maximizing feature value coverage is also based on these selected samples.

We aim to select an appropriate sampling ratio ρ to achieve maximum coverage while keeping the
distribution bias within an acceptable range. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
establishes a direct relationship between the maximum deviation between the empirical and true
distributions and both the sample size and sampling method of the selected dataset S ′. Specifically, it
states:

P

(
sup
x
|Φn(x)− Φ(x)| > ϵ

)
≤ 2e−2nϵ2 , (38)

where Φ is the cumulative distribution function (CDF), and Φn is the empirical CDF based on n
samples. This result implies that as the sample size n increases, the probability bound decreases, and
the empirical distribution better approximates the true distribution. A smaller allowed deviation ϵ

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.002 0.004 0.006 0.008 0.010
0.00

0.01

0.02

0.03

0.04

0.05

Relationship between and (Fixed | | and)

| | = 3.3e + 07, = 0.05
= 0.05

Figure 9: Analysis of the relationship between ρ
and ϵ.

0.00 0.02 0.04 0.06 0.08 0.10

0.06

0.08

0.10

0.12

0.14

Relationship between and (Fixed | | and)
| | = 3.3e + 07, = 0.001

= 0.05

Figure 10: Analysis of the relationship between
ρ and δ.

requires a larger n to maintain the same confidence level. The core conclusion of the DKW inequality
states that the probability upper bound for the maximum deviation exceeding a threshold ϵ decreases
exponentially as the sample size n = |S ′| = ρ|S| increases.

Based on this, if we set δ as the confidence level, and constrain 2e−2ρ|S|ϵ2 ≤ δ, we can derive an
analytical solution for the required sampling ratio ρ that satisfies the given confidence level while
minimizing the threshold, as:

ρ ≥ 1

2ϵ2|S|
ln

2

δ
. (39)

Generally, we set δ ≤ 0.05, which ensures a confidence level of at least 95%, and aim to keep the
distribution deviation ϵ as small as possible (e.g., 1.0× 10−3). For the Avazu dataset, substituting
|S| ≈ 3.3× 107 gives ρmin ≈ 0.05. For other datasets, the same method can be applied to determine
the corresponding value. To maintain consistency, we set ρ = 0.05 for all datasets, which yields
satisfactory results.

More intuitively, we fix the relevant parameters and show the relationships between the sampling ratio
ρ and the bias threshold ϵ (in Figure 9), as well as between the sampling ratio ρ and the confidence
level δ (in Figure 10).

D EXPERIMENT DETAILS

D.1 DATASET

We use four benchmark datasets in our experiment.

• iPinYou6: This dataset originates from the iPinYou Global RTB Bidding Algorithm Compe-
tition, held in 2013 across three distinct seasons. It includes comprehensive training datasets
and leaderboard testing datasets for each season, covering DSP bidding, impression, click,
and conversion logs. The dataset for final evaluation is withheld by iPinYou and is reserved
for testing purposes.

• Ali-CCP7: Collected from the recommendation system logs of the mobile Taobao app, this
dataset ensures that the training data precedes the test data. It is divided into three parts:
Sample ID Section, Labels Section, and Features Section, with a total of 23 feature fields.
The dataset comprises over 80 million records for both training and testing.

• Avazu8: This dataset is used in the Kaggle CTR prediction competition and contains nearly
40 million interaction records across 22 fields. Based on prior preprocessing steps, the hour
field has been subdivided into three separate fields: weekday, weekend, and a newly defined
hour field, resulting in a total of 24 fields.

6https://contest.ipinyou.com/
7https://tianchi.aliyun.com/dataset/408
8https://www.kaggle.com/c/avazu-ctr-prediction/

17

https://contest.ipinyou.com/
https://tianchi.aliyun.com/dataset/408
https://www.kaggle.com/c/avazu-ctr-prediction/

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Criteo9: Serving as a benchmark dataset in the real world, Criteo contains approximately
45 million records of user clicks, with all fields anonymized. The dataset includes 39 fields,
comprising 26 categorical features and 13 numerical features. Following the methods of
earlier studies (Wang et al., 2022), we convert the numerical features into categorical ones10.

For the Ali-CCP dataset, the source website provides both training and test sets. Since the test set
occurs after the training set, directly splitting the validation set from the training data could lead to
data leakage. Therefore, we split half of the test set to form the validation set, ensuring that both the
validation and test sets are disjoint and occur after the training data.

D.2 BASELINES

For the baselines, we select two types of feature selection methods. For field selection, we choose six
representative methods: Random Forest (Breiman, 2001), XGBoost (Chen & Guestrin, 2016),
Recursive Feature Elimination (RFE) (Chen & Jeong, 2007), Permutation Feature Importance
(PFI) (Fisher et al., 2019), AdaFS (Lin et al., 2022), and MvFS (Lee et al., 2023). Except for
the last two, which use neural networks and learn sample-wise field weights through a controller, all
other methods are traditional machine learning techniques. For feature value selection, we primarily
compare OptFS (Lyu et al., 2023) and two variants of the EffSelect method as our approaches.

• Random Forest (RF) (Breiman, 2001): Random Forest is an ensemble learning method
that constructs a multitude of decision trees during training and outputs the class that is the
mode of the classes (classification) or mean prediction (regression) of the individual trees. It
works by creating multiple decision trees from bootstrapped samples of the training data,
reducing overfitting and improving generalization. Each tree is trained on a random subset
of features, helping to minimize bias and variance. Random Forest is well-known for its
robustness and ability to handle large datasets with higher accuracy.

• XGBoost (Chen & Guestrin, 2016): XGBoost (Extreme Gradient Boosting) is a highly
efficient and scalable implementation of gradient boosting. It builds an ensemble of decision
trees sequentially, where each new tree corrects the errors made by the previous ones.
The algorithm uses a regularization term to control model complexity, helping to prevent
overfitting. Feature importance in XGBoost is computed based on how frequently a feature
is used to split a node and the gain it contributes to improving the model’s predictive
performance. XGBoost has become popular due to its speed, accuracy, and ability to handle
various data types and missing values.

• Recursive Feature Elimination (RFE) (Guyon et al., 2002): Recursive Feature Elimination
is a wrapper-based feature selection technique that recursively removes the least important
features from the model. The process involves:

1. Training a model and evaluating the importance of each feature, typically using feature
weights (for example, the coefficients in linear models or feature importance scores in
tree-based models).

2. Iteratively eliminating the features with the lowest importance scores.
3. Repeating the process until the desired number of features is selected, ensuring that

only the most significant features are retained.

In our experiment, we use RFE based on Linear Regression.

• Permutation Feature Importance (PFI) (Fisher et al., 2019): Partial Feature Importance
(PFI) is a technique used to evaluate the importance of each feature by assessing how
much its value affects the predictive performance of the model. The method works by
shuffling the values of a specific feature across the dataset and observing the resulting
change in the model’s performance. If the predictive performance degrades significantly
after shuffling a feature, it indicates that the feature plays an important role in the model’s
decision-making. PFI is particularly useful for identifying key features when dealing with
complex, high-dimensional datasets and is widely applied in both supervised learning and
model explainability.

9https://www.kaggle.com/c/criteo-display-ad-challenge/
10https://www.csie.ntu.edu.tw/r01922136/kaggle-2014-criteo.pdf

18

https://www.kaggle.com/c/criteo-display-ad-challenge/
https://www.csie.ntu.edu.tw/r01922136/kaggle-2014-criteo.pdf

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• AdaFS (Lin et al., 2022): AdaFS (Adaptive Feature Selection) is a feature selection method
that employs a controller network to dynamically select the most informative features during
the training process. This approach uses sample-wise learning to adaptively choose the
subset of features that maximizes model performance.

• MvFS (Lee et al., 2023): MvFS (Multi-view Feature Selection) is an enhancement of
AdaFS that introduces the concept of multi-view controllers for feature selection. In this
method, multiple controllers operate in parallel, each focusing on a different “view" of the
data. This approach helps capture diverse feature interactions across different data modalities
or subsets, making the feature selection process more robust. MvFS improves upon AdaFS
by allowing the model to adaptively select features across multiple perspectives, leading
to better performance in tasks where feature dependencies vary across different views or
contexts.

In addition, we also included several Autoencoder-based feature selection methods as baselines,
namely Concrete Autoencoder (CAE) (Balın et al., 2019), IP-CAE (Indirectly Parameterized
CAE) (Nilsson et al., 2024), and L2X (Chen et al., 2018).

• Concrete Autoencoder (CAE) (Balın et al., 2019): Concrete Autoencoder is a feature
field selection method, where the core idea is to construct an "encoder-decoder" structure.
The encoder serves as a differentiable, learnable "soft" selection gate, while the decoder
uses the selected feature fields to perform a task. By optimizing the final loss of the task, the
"selection gate" is backpropagated to learn how to pick the most informative feature fields.
Specifically, for each batch of data: E ∈ RB×M×D, where B is the batch size, M is the
total number of feature fields, and D is the embedding size of each feature field, we define
the learnable importance weights as

α ∈ Rk×M ,

representing which k feature fields are selected (with each row approximating a one-hot
encoding). Applying Gumbel-Softmax to this weight matrix yields W ∈ Rk×M .

• Indirectly Parameterized CAE (IP-CAE) (Nilsson et al., 2024): This is an improved
version of the original CAE method. Specifically, IP-CAE modifies the logic of the weights
α by changing it to an indirect parameterization. While the traditional CAE requires
learning k ×M parameters to determine feature selection, IP-CAE only needs to learn
k × dimip intrinsic parameters, which are then mapped to importance values through a
mapping network. There are four different design patterns for this mapping network:

– Shared mode (IP-Share): All k latent vectors share the same mapping network, which
reduces the complexity of the network. The code implementation is as follows:

self.mapping_network = self._create_mlp(net_dims)

– Separate mode (IP-Sep): Each latent vector is assigned a separate mapping network,
meaning each selection vector has its own mapping function. The implementation is as
follows:

self.mapping_networks = nn.ModuleList([self.
_create_mlp(net_dims) for _ in range(self.
num_select)])

– FC mode (IP-FC): All latent vectors are flattened and passed through a larger fully con-
nected layer, which can capture more complex nonlinear features. The corresponding
code implementation is:

self.mapping_network = self._create_mlp(net_dims)

– Diag mode (IP-Diag): A special diagonal or scalar network replaces the standard linear
layer, and the learnable parameters are constrained to the elements on the diagonal or a
single scalar value. The implementation is as follows:

self.mapping_network = DiagNet(self.ip_dim)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1: Maximizing Feature Coverage Sampling (MFCS)
Input: Set of all disjoint data batches B = {B1, . . . ,Bm}, Number of batches ratio ρ
Output: The set of selected batches S ′
// Initialization
S ′ ← ∅, V∗ ← ∅, Brem ← B.
// Iteratively select k batches in a greedy manner
while true do

// Terminate if no more batches are available
if Brem = ∅ then
end
// Find the best candidate batch to add next
Bbest ← argmaxBb∈Brem |F(Bb) \ V∗| ;
// Pre-check: Break if adding this batch would exceed the

ratio
if (|S ′ ∪ {Bbest}|) > ρ× |S| then
end
// If the check passes, commit to adding the batch
S ′ ← S ′ ∪ {Bbest} ;
V∗ ← V∗ ∪ F(Bbest) ;
Brem ← Brem \ {Bbest} ;

end
return S ′

• L2X (Chen et al., 2018): L2X is a finer-grained feature selection method. Unlike Balın
et al. (2019) and Nilsson et al. (2024), which assign the same feature importance across
all samples, L2X uses an explainer network to compute feature importance scores for each
individual sample.

D.3 GENERAL HYPERPARAMETERS

The MaskNet model is configured for binary classification with a binary cross-entropy loss function,
using the Adam optimizer with a learning rate of 1e-3. It employs a batch size of 10,000, an
embedding dimension of 8, and a DNN architecture with three hidden layers of 400 units each,
activated by ReLU. Regularization is disabled, and the model includes layer normalization for both
the embedding and DNN layers. The model is trained for 100 epochs with AUC as the monitoring
metric and a seed value of 20242025, using a shuffle strategy and a 50% feature retention ratio.
Pretraining is required, and the model is set for retraining in autofeat mode, with parallel block
processing using 1 block of 64 dimensions.

Following previous research (Jia et al., 2024), we set the embedding size to 8 for all models. The
batch size is set to 10,000 for faster training. The learning rate is set globally to 1.0e-3. In this study,
an early stopping strategy was employed, where the model would terminate training prematurely
if the AUC-Logloss on the validation set did not improve over two consecutive training epochs.
Additionally, common optimization techniques such as the Adam optimizer (Kingma & Ba, 2015)
and the Xavier initialization method (Glorot & Bengio, 2010) were utilized.

D.4 FEATURE VALUE IMPORTANCE CALCULATION

See in Algorithm 2.

E ADDITIONAL EXPERIMENTS

E.1 COMPARE WITH AUTOENCODER-BASED SELECTION METHODS

As shown in Table 4, for the autoencoder-based feature selection method, the latent selection
embedding is set to 32, and additional experiments are conducted using MaskNet. It can be observed

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2: Feature Value Importance Calculation Algorithm
Input: Pre-trained embedding table and model ΘS′ , validation dataset Sval, point number N ,

kept feature values ratio α.
Output: Final selected feature values.
Initialize starting point embeddings E∗ using field-wise means:
for each feature field f do

Ff ← {v belongs to field f}.
E∗

v ← 1
|Ff |

∑
vi∈Ff

Evi
, ∀v ∈ Ff ; // Eq.14

E∗ = concat(E∗
v).

end
Initialize importance scores Iv .
for each batch S ′val ∈ Sval do

for k ← 1 to N do
Get current embeddings E from trained parameters ΘS′ .
Compute delta embeddings ∆E ← E−E∗

N .
E(k) ← E∗ + k∆E.
Forward pass: L ← LS′

val
(E(k)).

Backward pass: Compute ∇E(k)L.
for each feature value v in batch do

Iv ← Iv +
∣∣∣∇E

(k)
v
L ·∆Ev

∣∣∣.
end

end
end
Sort all v by Iv in descending order.
Select the v in top-α importance.
return Selected feature values

Table 4: Comparison of datasets with different feature selection methods on MaskNet.

Model Dataset Metric Base CAE IP-Share IP-Sep IP-FC IP-Diag L2X EffSelectZ EffSelectM

MaskNet

Criteo AUC 0.8098 0.8001 0.8014 0.8023 0.8048 0.8011 0.8041 0.8110 0.8111
Logloss 0.4420 0.4509 0.4498 0.4489 0.4467 0.4498 0.4471 0.4408 0.4407

Avazu AUC 0.7914 0.7865 0.7882 0.7881 0.7896 0.7864 0.7892 0.7757 0.7766
Logloss 0.3731 0.3764 0.3749 0.3752 0.3742 0.3763 0.3744 0.3824 0.3816

iPinYou AUC 0.7674 0.7496 0.7505 0.7532 0.7629 0.7477 0.7541 0.7683 0.7699
Logloss 0.5608 0.5671 0.5664 0.5760 0.5623 0.5681 0.5631 0.5598 0.5581

Ali-CCP AUC 0.6056 0.5978 0.6013 0.5960 0.6029 0.6055 0.6072 0.6010 0.6109
Logloss 0.1637 0.1631 0.1633 0.1637 0.1635 0.1635 0.1638 0.1624 0.1619

that EffSelect achieves the best prediction results on three out of four datasets, with only 10% of
the feature values. Among the baselines, the L2X method performs the best, as it applies feature
weighting on a sample-wise basis. On the other hand, IP-CAE uses an indirect network to model
feature importance, and the increased number of parameters intuitively allows better modeling of the
importance between different feature fields, resulting in better performance compared to CAE.

E.2 THE INFLUENCE OF HYPERPARAMETER ρ.

We vary ρ for pre-training within {0.05, 0.1, 0.5, 1}, where ρ = 1 corresponds to using all the training
data. As shown in Figure 11, using more training data does not necessarily improve feature value
selection results.

For example, on Criteo, the final selection results with 5% and 100% of the training data are almost
the same. When re-training with 5% of the data at α = 0.1, the performance is even better than

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.1 0.5 0.7
0.6000

0.6100

0.6200

AU
C

Ali-CCP

0.1 0.5 0.7

0.8090

0.8100

0.8110

AU
C

Criteo

0.1 0.5 0.70.7500

0.7600

0.7700

AU
C

iPinYou

0.1615

0.1618

0.1620

Lo
gl

os
s

0.4420

0.4425

0.4430

Lo
gl

os
s

0.5600

0.5625

0.5650

0.5675

Lo
gl

os
s

AUC, = 0.05
AUC, = 0.1

AUC, = 0.5
AUC, = 1

Logloss, = 0.05
Logloss, = 0.1

Logloss, = 0.5
Logloss, = 1

Figure 11: Bar charts and line charts showing the variation of α across three datasets as ρ changes.
The bar charts represent AUC, while the line charts depict Logloss.

with full training. This also occurs on iPinYou, possibly because more training data introduces more
noise, leading to worse performance. On Ali-CCP, as ρ increases, smaller values of α yield more
significant prediction results. This could be because with more data, top feature values are better able
to distinguish from noisy features. However, when α = 0.7, the result from training with full data is
worse than that from training with batches obtained through MFCS.

E.3 DATASET COVERAGE RATIO ρ AND PRETRAINING LOSS

1 2 3
Epoch

0.40

0.45

0.50

Tr
ai

ni
ng

 L
os

s

Criteo on DCN - Training Loss

1 2 3
Epoch

0.075

0.100

0.125

0.150

0.175

Tr
ai

ni
ng

 L
os

s

Ali-CCP on DCN - Training Loss
Full Training Data = 0.1 = 0.05 = 0.03

Figure 12: Training loss for Criteo and Ali-CCP datasets on DCN under different dataset coverage
ratios ρ.

In this subsection, we analyze how the Logloss on the training set changes over training epochs. We
use DCN as the backbone model and conduct experiments on the Criteo and Ali-CCP datasets. Since
we apply an early stopping strategy—training stops when the AUC-Logloss on the validation set does
not decrease for two consecutive epochs—the total number of training steps is relatively small.

As shown in Figure 12, the overall decreasing trend of Logloss during pretraining using different
values of ρ selected by the MFCS method is similar to that of training on the full dataset. This
indicates that the selected data batches effectively guide gradient descent. However, their specific
effectiveness differs slightly. In particular, after the first epoch, the Logloss from MFCS-selected
batches is slightly higher than that of using the full training data. But as training continues, models
trained on MFCS batches fit the data better than those trained on the full dataset.

Moreover, larger ρ values tend to result in lower Logloss in the first epoch, reflecting that data selected
by MFCS can lead to more stable and robust training and convergence results.

E.4 CASE STUDY

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C1 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9 C2 C2
0

C2
1

C2
2

C2
3

C2
4

C2
5

C2
6 C3 C4 C5 C6 C7 C8 C9 I1 I1
0

I1
1

I1
2

I1
3 I2 I3 I4 I5 I6 I7 I8 I9

Feature Field

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Nu

m
be

r o
f F

ea
tu

re
s

1e6

64
% 41

%
89

%
8%

99
%

90
% 73

% 8%

83
%

79
%

86
%

98
%

80
% 6%

74
%

88
% 27

%
70

% 35
% 7% 14

%

80
%

70
% 92

%
76

%
60

%
81

%
71

%
93

%
71

%
69

%
90

%
94

%
65

%
98

%
78

%
87

%
62

%
90

%

Selected Feature Value Number by Field (EffSelect for Criteo on DCN)
Total Feature Values
Selected Feature Values

(a) Selected feature value ratio by EffSelectZ .

C1 C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9 C2 C2
0

C2
1

C2
2

C2
3

C2
4

C2
5

C2
6 C3 C4 C5 C6 C7 C8 C9 I1 I1
0

I1
1

I1
2

I1
3 I2 I3 I4 I5 I6 I7 I8 I9

Feature Field

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f F
ea

tu
re

s

1e6

61
% 44

%
89

%
8%

99
%

93
% 79

% 8%

83
%

81
%

87
%

97
%

80
% 6%

74
%

88
% 29

%
70

% 42
% 7% 14

%

73
%

70
% 92

%
73

%
60

%
83

%
71

%
96

%
71

%
65

%
92

%
91

%
67

%
98

%
80

%
91

%
55

%
91

%

Selected Feature Value Number by Field (EffSelect for Criteo on DCN)
Total Feature Values
Selected Feature Values

(b) Selected feature value ratio by EffSelectM.

Figure 13: Case study for selected feature values with Criteo on DCN.

We conduct a case study on the selected feature values. Specifically, we focus on the Criteo dataset
with DCN and compare the feature values selected by the two variants, EffSelectZ and EffSelectM.
Figure 13a shows the results for EffSelectZ , while Figure 13b shows those for EffSelectM.

From the figures, we could observe that for the Criteo dataset, most of the filtered feature values
come from fields with a large number of unique values. This is intuitive, as such fields often contain
more noise. Without strong support from golden samples, these values are less likely to contribute
positively during training. In contrast, fields with fewer unique values also have some values filtered
out, but a higher proportion of values are retained. This may be because these values have more
reliable samples, which help improve generalization.

When comparing the selected feature values between EffSelectZ and EffSelectM, we find that for
fields with many values, both methods yield similar selection ratios. However, for fields with fewer
values, such as C15 and C26, the selection ratios differ significantly. This indicates that using mean
embedding (for values within the same field) as the starting point for Taylor expansion affects feature
selection more in low-cardinality fields, compared to using zero embedding.

E.5 BITMAP IMPLEMENTATION

As an efficient data structure, a bitmap is essentially an array where each element is a binary state (0
or 1), using only one bit of memory. This design is ideal for compactly storing variables with a small
number of possible states (e.g., two states) in a sequential array of bits—precisely the structure of

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

bitmap

batch x

Batch Feature Value Status

0

0

1

1

1

2

0

3

0

4

1

5

0

6

1

7

0

8

0

9

1

10

Current Feature Value Status

1

0

0

1

1

2

0

3

1

4

0

5

1

6

1

7

1

8

0

9

1

10

Diff

New Feature Value Status

1

0

1

1

1

2

0

3

1

4

1

5

1

6

1

7

1

8

0

9

1

10

Union

Count = 2

0

0

1

1

0

2

0

3

0

4

1

5

0

6

0

7

0

8

0

9

0

10

Figure 14: Diagram of bitmap with 0-10 feature values.

feature value indices. Such bitmaps allow for fast operations like lookup, deduplication, and counting
across large sets of values. Moreover, bitmaps support quick set operations such as intersection,
union, and difference, which are useful for relational queries between datasets.

Figure 14 shows an example of using a bitmap to count and update feature values. Here, 0 indicates
the presence of a feature value at the given index, while 1 means it is absent. The top-left bitmap is
01100101001, representing that feature values at indices 1, 2, 5, 7, and 10 are present in the current
batch. The bottom-left bitmap tracks feature values already seen across previous batches. For each
new batch, we compute the number of new feature values using a Diff operation—counting the
number of 1s in the top-right bitmap. We then use a Union operation to update the set of known
feature values before moving to the next batch. This process continues until the selected batch ratio
reaches ρ. Since bitwise operations are highly efficient on modern hardware, this approach is much
faster than using normal arrays or maps to track feature values.

E.6 DETAILED EFFICIENCY ANALYSIS

In this section, we provide the parameter counts during the retraining stage for all methods and datasets
used in the main experiments. As shown in Figure 15, EffSelect achieves the lowest parameter count
during retraining. On average, the parameter count is only 15% of the original model. Compared to
the 10% of features selected, the additional 5% comes from the model’s architecture. This analysis
further highlights the practical value of EffSelect.

F LLM USAGE STATEMENT

The LLM was used as a tool to assist with polishing the writing and did not directly contribute to the
research findings or results. All content generated by the LLM was thoroughly reviewed and edited
by the authors to ensure its relevance, accuracy, and scientific integrity.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

45.37M

6.07M 5.29M
7.07M 8.03M

45.37M 45.42M

5.42M 5.42M

Parameter Counts of Criteo on DCN
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

30.86M

23.97M

7.37M 7.63M

23.99M

30.87M 30.89M

3.86M 3.86M

Parameter Counts of Avazu on DCN
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

5.94M

1.29M 1.32M
5.56M

1.05M

5.95M 5.95M

1.31M 1.31M

Parameter Counts of iPinYou on DCN
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

29.63M

20.06M
18.11M

4.78M

17.55M

29.63M 29.64M

3.73M 3.73M

Parameter Counts of Ali-CCP on DCN
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

45.61M

6.08M 5.32M
7.22M 7.90M

45.62M 45.66M

5.65M 5.65M

Parameter Counts of Criteo on MaskNet
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

30.96M

23.96M

7.40M 7.72M

23.99M

30.96M 30.98M

3.95M 3.95M

Parameter Counts of Avazu on MaskNet
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

5.99M

1.06M 1.10M

5.60M

1.04M

5.99M 6.00M

1.35M 1.35M

Parameter Counts of iPinYou on MaskNet
Parameter Count

Base RF

XgB
oo

st RFE PFI
Ad

aFS MvFS
OptF

S

Eff
Se

lec
t

0

10

20

30

40

50

Pa
ra

m
s (

M
)

29.71M

20.05M
18.11M

4.79M

17.61M

29.72M 29.73M

3.81M 3.81M

Parameter Counts of Ali-CCP on MaskNet
Parameter Count

Figure 15: Parameter counts for different methods when retraining.

25

	Introduction
	Related Work
	Feature Selection in DRSs
	Mini-Batch Selection

	Framework
	Maximizing Feature Coverage Sampling (MFCS)
	Feature Value Importance Scorer (FeatIS)
	Importance Design
	The Choice of E*
	Sorting with Iv

	Algorithm Complexity Analysis

	Experiment
	Setting Up
	Dataset

	Main Results
	Efficiency
	Hyperparameter Analysis
	Ablation Study

	Conclusion
	Background
	Feature Field and Feature Value
	Lottery Ticket Hypothesis

	Proof for FeatIS convergence and error upper bound
	Error Analysis of the Right Endpoint Rule
	Error Analysis of the Composite Midpoint Rule

	The Maximum Coverage for Training Data Batches
	The Monotone Submodular Function
	The Choice of

	Experiment Details
	Dataset
	Baselines
	General Hyperparameters
	Feature Value Importance Calculation

	Additional Experiments
	Compare with Autoencoder-based Selection Methods
	The influence of hyperparameter .
	Dataset Coverage Ratio and Pretraining Loss
	Case Study
	bitmap Implementation
	Detailed Efficiency Analysis

	LLM Usage Statement

