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ABSTRACT

Features are critical to the performance of deep recommender systems, where
they are typically represented as low-dimensional embeddings and fed into deep
networks for prediction. However, a major challenge remains unaddressed: the
sparsity and long-tail distribution in feature data result in a large number of non-
informative feature values. These redundant values significantly increase memory
usage and introduce noise, thereby impairing model performance. Most feature
selection or pruning methods operate at a coarse granularity, either selecting entire
features or fields, while finer-grained methods require a large number of additional
learnable parameters. These methods struggle to effectively handle pervasive
redundant features. To address these issues, we introduce EffSelect, a novel
framework for finer-grained selection method at the level of feature values. Unlike
previous methods, EffSelect directly quantifies the contribution to the prediction
loss of each feature value as its importance. Specifically, we propose a mini-batch
pre-training strategy that requires only 5% of the data for rapid warm-up, enabling
real-time adaptation. Using the trained model, we introduce an efficient and robust
gradient-based mechanism to evaluate feature value contribution, discarding those
features with low scores. EffSelect is theoretically guaranteed and achieves superior
performance without introducing any additional learnable parameters to the base
model. Extensive experiments on benchmark datasets validate the efficiency and
effectiveness of EffSelect. Code is available at https://anonymous.4open.
science/r/EffSelect_ICLR/.

1 INTRODUCTION

Modeling the features of given data is crucial for practical recommendation tasks (Wang et al., 2025b;
Wu et al., 2024; Du et al., 2024). With the development of deep models, researchers recognize the
vast potential of deep models in capturing complex features and their interactions, leading to the
design of advanced Deep Recommender Systems (DRSs) (Cheng et al., 2016; Guo et al., 2017). In
these deep networks, features from each field (a feature column, e.g., "Gender" or "Age") are typically
encoded and transformed into low-dimensional vectors before being fed into subsequent layers (Zhao
et al., 2021; Zhaok et al., 2021). Many pioneers have focused on improving network architectures,
such as the CrossNet paradigm proposed by DCN (Wang et al., 2017) and the integration of a feature
weighting module in MaskNet (Wang et al., 2021). However, despite the extensive research on
model architecture optimization, automatic feature-level optimization remains partially explored.
One important issue is feature redundancy which can hamper the model’s ability to learn interaction
patterns and impact performance (Chen et al., 2016; Zhu et al., 2022; Wang et al., 2025a), as the
redundancy kept in the embedding table (Jia et al., 2024; Wang et al., 2025c).

To reduce feature redundancy, feature selection methods are proposed and generally categorized
into two types based on selection granularity. The coarse-granularity type is feature field selection,
traditional methods (e.g., XGBoost/RFE), and other field-level selection frameworks (Wang et al.,
2022) inspired by Neural Architecture Search (NAS) typically remove entire redundant feature fields.
These methods fail to distinguish the heterogeneous importance of distinct feature values (e.g., "Male"
and "Female") within the same field (e.g., "Gender"), often leading to collateral selection errors. In
such cases, critical features may be discarded alongside irrelevant ones, or vice versa.
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In contrast, the fine-granularity Feature value selection methods (Liu et al., 2021) like OptFS (Lyu
et al., 2023) go beyond field-level constraints. They assign trainable gates for each feature value
and remove values with small weights after training. They are limited by initialization dependencies
based on the Lottery Ticket Hypothesis (Malach et al., 2020) 1, which restricts retraining flexibility.
Moreover, assigning independent learnable parameters to each feature or value increases compu-
tational overhead, conflicting with the dynamic nature of real-world recommender systems that
require frequent data updates. More fundamentally, the joint optimization of gating mechanisms and
embedding representations often results in competing training objectives and impairs the model’s
convergence because the gating regularization tends to learn small weights and create a bottleneck
for embedding utilization.

In summary, we identify two main issues with existing feature selection methods: 1) Low efficiency.
These methods require extensive pretraining, and the selection results heavily depend on pre-trained
embeddings or gates, which do not meet the needs of recommender systems that require fast iteration
and quick estimation of feature importance. 2) Bad robustness. Gate-based feature value selection
methods are highly sensitive to hyperparameters, lacking robust performance guarantees. What’s
worse, the learning of gates and the updating of embedding tables are interdependent, which amplify
gradient errors and excessively relying on the training set. An intuitive approach is to set the
embedding corresponding to each feature value to zero or a random value, and observe the impact on
the prediction or loss to assess their contribution one by one. However, the number of feature values
in recommender systems can reach tens of millions, making this approach impractical. Therefore, it
is necessary to directly obtain the actual contribution of each feature value.

To address the aforementioned challenges, we propose EffSelect, an efficient and effective feature
value selection framework. To efficiently determine the importance of feature values, we select
mini-batches that cover most features while preserving the feature distribution to pre-train the model
and embedding table. This approach eliminates the need for gate-based methods or the stringent
requirements of fine-grained learning typically associated with pre-training, allowing for obtaining
feature importance with only a small amount of training data. Subsequently, we propose the FeatIS
module, which provides a reference starting point for non-informative features and calculates the
contribution of each feature value to the final loss based on the gradient. To obtain more accurate
estimates, we extend FeatIS by using integral approximation to provide a more precise estimation of
feature value contributions. All feature values are then sorted in descending order of importance, and
only the top ones are selected. In summary, our contributions are as followed:

• For efficiency, we propose a batch selection scheme based on feature value coverage
maximization. This approach ensures consistency with the original data distribution during
sampling while achieving broad coverage of feature values, thereby enabling rapid pre-
training of the embedding table and reduce the parameters of re-trained model.

• For robustness, we compute the loss term based on the fundamental theorem of calculus and
map the contribution of the loss term to each feature value using a divide-and-approximate
method. This approach is grounded in more solid theoretical foundations and requires only
backpropagation on the validation dataset, without any additional learnable parameters.

• Extensive experiments on four benchmark datasets demonstrate the efficiency of our method
in importance computation and its robustness in feature value estimation.

2 RELATED WORK

2.1 FEATURE SELECTION IN DRSS

2 For effective feature selection, many works learn feature field importance through sensitivity
or gates. Permutation Feature Importance (PFI) (Fisher et al., 2019) is a simple method based on
performance sensitivity. It requires a well-trained model and then, for each batch, shuffles each
field and observes the impact on prediction performance. This change (e.g., ∆AUC) is considered
the importance of the field. With the rise of Neural Architecture Search (NAS) (Zoph & Le, 2022),
researchers have attempted to simulate the process of field selection using search techniques. For

1Further details can be found in Appendix A.2.
2For more detail of the background on feature field and feature value, please refer to Appendix A.1.
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Figure 1: The main framework legend for EffSelect. EffSelect consists of two main parts: MFCS
and FeatIS. On the left, mini-batches are selected for network and embedding warm-up, while on the
right, the importance of different feature values is analyzed on the validation set.

example, AutoField (Wang et al., 2022) uses a graph with select or not nodes to learn field importance.
Beyond it, many autoencoder-based feature selection methods are proposed to learn a gate or network
to obtain the feature importance from different granularity (Balın et al., 2019; Nilsson et al., 2024;
Chen et al., 2018). To achieve stronger adaptability, AdaFS (Lin et al., 2022) designs a controller that
learns weights for each sample’s fields, instead of sharing the same importance across all samples.
MvFS (Lee et al., 2023) improves AdaFS by setting multiple controllers from different views. Despite
improvements, these methods still operate at the feature field level. Existing works on feature
value (Liu et al., 2021) optimization have some pioneering contributions, but their practical use
remains limited. For example, OptFS (Lyu et al., 2023) designs learnable gates and functions for each
feature value. It introduces a large number of additional learnable gates and hyperparameters to tune,
making the application sensitive to prior settings. Therefore, the ideal method is one that minimizes
the introduction of extra learnable parameters for efficient training, reduces hyperparameters to
enhance robustness, and provides better guarantees in performance, which is the goal of the proposed
method in this paper.

2.2 MINI-BATCH SELECTION

Mini-batch training uses a small fraction (e.g., ρ) of the total dataset to train the model, speeding
up the training process. The selected data, S ′, is a subset of the full dataset, S, where the ratio of
selected to total data is at most ρ ( |S

′|
|S| ≤ ρ). Previous works (Kirsch et al., 2019; Mirzasoleiman

et al., 2020; Yang et al., 2024) on mini-batch training focus on achieving performance similar to that
of full-batch training using a small amount of data. Given a data distribution P and a loss function L,
the goal is to minimize the loss on the model ΘS′ trained with the mini-batch S ′, as:

min
S′⊂S:

|S′|
|S| ≤ρ

Ex,y∼PL(y, ŷ; ΘS′), (1)

where x represents the input features, y represents the true labels, and ŷ represents the predicted
labels from the model.

However, previous approaches require training on the complete dataset followed by retraining on
selected data subsets. In our paper, we propose a training-free selection method, with maximum
feature value coverage on S ′, meaning that as many feature values as possible are trained during the
process. The goal is to:

max
S′⊂S:

|S′|
|S| ≤ρ

(
|F(S ′)|
|F(S)|

)
, (2)

where F(·) means feature values for the given data. The iteration process terminates when |S′|
|S| ≤ ρ.

3
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3 FRAMEWORK

The logic of the EffSelect framework is to first train (or pre-warm) the embedding table and models
using mini-batch data, and then analyze the impact of embedding table features, sorting those that
activate larger gradients with respect to the prediction. In this section, we first describe how to
train the base model in a mini-batch setting. Then is followed by how to obtain the feature value
importance using the mini-batch data trained model.

3.1 MAXIMIZING FEATURE COVERAGE SAMPLING (MFCS)

To train the embedding table effectively with a few batches, we hold that mini batches should satisfy
the following two basic properties:
Proposition 1. Distribution Consistency. The samples forming a mini-batch should not distort the
data distribution. The distribution PS′ of the mini-batch data set S ′ should match the distribution
PS of the entire data set S, as PS′ = PS . The consistency can be confirmed with ρ suggested in
Appendix C.2.
Proposition 2. Feature Coverage Maximum. As shown in Equation 2, with the dataset ratio ρ, the
feature value coverage should be maximized.

We design a greedy algorithm to achieve maximum feature value coverage. To comply with Proposi-
tion 1, We first perform a sampling without replacement on the total dataset S in batches, where the
batch size is B. The total number of batches is

⌈
|S|
B

⌉
, as S ′b ∼ PS , b = 1, 2, . . . ,

⌈
|S|
B

⌉
. Since it is

sampling without replacement, we have:

S ′i ∩ S ′j = ∅, ∀i ̸= j. (3)

Thus the data within these batches are guaranteed to maintain consistency with the original distribution.
Based on this, to further achieve Proposition 2, we precompute the feature values in each batch and
select the batch that contains the most feature values. Let the current selected feature values set be
denoted as V∗, with the initial condition V∗ = ∅. Then the selected batch index can be formulated as:

max
b
|F(S ′b) ∪ V∗|, b = 1, 2, . . . ,

⌈
|S|
B

⌉
. (4)

Based on the feature values in the b-th batch, we update the current feature values set as: V∗ ←
F(S ′b) ∪ V∗. Then, according to the scheme in Equation 4, batches are iteratively selected that can
bring the most additional features compared to the current feature values set. The final selected data
samples form the union of all ∪S ′i (a.k.a. S ′). In fact, this indicates that F is a submodular function.
The relevant proof and its theoretical upper bound are provided in Appendix C.

For MFCS, the process of selecting the batch containing the most feature values involves two linear
steps: one for calculating the additional feature values of the current batch relative to V∗, and the
other for selecting the batch that yields the most additional feature values. The latter incurs minimal
time cost, as the total number of batches is small, but the calculation of additional feature values often
involves higher costs. Since the feature values of each batch remain unchanged during the selection
process, and the preprocessed and encoded feature values are discretized, MFCS can be optimized
using bitmap.

A bitmap is a {0, 1}N , where N represents its length, and the 0/1 at each position indicates the
presence or absence of the corresponding feature value. For each feature field in every batch, we use
a bitmap of length equal to the maximum feature value index to represent which features are included
in the current batch. Additionally, the features in the currently selected batch, V∗, are also maintained
using a bitmap. This way, when evaluating the number of additional feature values, there is no
need to use a set for maintenance. The whole step of MFCS is shown in Algorithm 1.

The iteration process terminates when |S′|
|S| > ρ. With the selected batch data S′, the base model (e.g.,

DCN, MaskNet) is trained using the cross-entropy loss function. This process aims to train the model
parameters and the embedding table as much as possible, preparing for the next step of the feature
value scoring process in the embedding latent space.

4
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min
ΘS′

1

|S ′|
∑

x,y∈S′

LCE(y, ŷ; ΘS′), (5)

where LCE is:
LCE(y, ŷ; ΘS′) = − [y log(ŷ) + (1− y) log(1− ŷ)] , (6)

and the ŷ is predicted by the model parameterized with ΘS′ .

3.2 FEATURE VALUE IMPORTANCE SCORER (FEATIS)

3.2.1 IMPORTANCE DESIGN

With the well-trained ΘS′ including the embedding table, we expect to measure the contribution of
each feature value. An intuitive approach is to sequentially mask each feature value’s embedding
while keeping others unchanged, then measure the resulting validation loss difference. For a feature
value v ∈ V , this can be formulated as:

∆L(E) = L(E − Iv ⊙ E)− L(E), (7)

where we let L (indeed is LSval on the validation dataset) is the function of embedding table E here3,
E is formed by concatenating Ev for v ∈ V∗, and Iv is an indicator vector (or a vector consisting of
1’s and 0’s). This operation eventually sets the embedding corresponding to the feature value v to
0, while keeping the other positions unchanged. Though feasible, it is impractical to calculate the
importance of each feature value individually for large datasets with hundreds of thousands or even
millions of feature values.

If the loss term is viewed as a multivariate function of each feature value, the contribution of each
value can be measured using a Taylor expansion. Mathematically, from the perspective of Taylor
expansion, the contribution of the embedding Ev of each feature value v to the loss can be expressed
as:

L(E) =L(E∗)︸ ︷︷ ︸
identical

+
∑
v

∇Ev
L(E∗) · (Ev − E∗

v )︸ ︷︷ ︸
different

+O(|Ev − E∗
v |2) (8)

where E∗
v is the starting point embedding for the feature value v, and E∗ is concatenated by each E∗

v .
In the Taylor expansion, it is the starting point of the expansion. From Equation 8, we could find that
for each feature value v, the term L(E∗) is identical, therefore, the 1-st term of Taylor Expansion
essentially describes the contribution of feature value v:

Iv = |∇Ev
L(E∗) · (Ev − E∗

v )| . (9)

However, the limitation of this measurement lies in its neglect of higher-order terms in Equation 8
with respect to the feature value v. These higher-order terms are computationally unfriendly, as
their consideration would involve higher-order joint gradients between feature values vi and vj ,
which would escalate the time complexity from linear (for a single gradient backpropagation) to
polynomial. In practice, this approach is infeasible due to the typically large size of |V∗| in real-world
data. Therefore, a more precise measurement is needed to attribute contributions to individual feature
values, ensuring that the contribution of each feature value can be computed within a single gradient
backpropagation, and the error upper bound is both controllable and tractable.

Revisiting the ∆L term in Equation 7, if we interpret the function L as the antiderivative in calculus,
and consider the impact of each feature value v on the loss, then according to the Newton-Leibniz
formula, we know that:

L(E)− L(E∗) =

∫ E

E∗
∇XL(X) · dX. (10)

Based on this, we only need to compute the value on the right-hand side of the equation and attribute
it to each feature value v. Inspired by Sundararajan et al. (2017), we innovatively adopt numerical
integration (Morokoff & Caflisch, 1995) to the right-hand side, as:

3From this section of importance calculation, the loss function L is calculated on the validation dataset,
which is different from the previous training stage.
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∫ E

E∗
∇XL(X) · dX ≈

N−1∑
k=0

∇XL(Xtk) ·
(
Xtk+1

−Xtk

)
, (11)

where X(m)
tk

is the value of the m-th path at discrete point tk,∇XL(X(m)
tk

) is the gradient of the loss
function L at X(m)

tk
, M is the total number of random paths, and N is the number of discrete points

on each path.

In this way, we can transfer the Taylor expansion error with the integration error. However, directly
solving using Equation 11 is computationally expensive. To simplify the process, we choose the
linear path from E∗ to E, and compute the original integral using a divide-and-approximate method,
which makes the loss term become:

L(E)− L(E∗) ≈
N∑

k=1

∇XL
(
E∗ +

k

N
(E − E∗)

)
· E − E∗

N
. (12)

For the importance of each feature value, we take the corresponding term for v in the above equation.
The final importance is defined as:

Iv =

N∑
k=1

∣∣∣∣∇EvL
(
E∗ +

k

N
(E − E∗)

)
· Ev − E∗

v

N

∣∣∣∣ . (13)

where related symbols have been explained in Equation 11. Together with Equation 9, these form
two variants of our method. Specifically, when N = 1, Equation 13 degrades to Equation 9. In
Appendix B.1, we formally prove why it can maintain a lower approximation error and theoretically
demonstrate why this approach may perform better compared to Equation 7.

3.2.2 THE CHOICE OF E∗

As discussed in previous subsections, the role of E∗ is to serve as a “starting point" for measuring the
importance of feature values. For each feature value v, there is an E∗

v in E∗. It should contain the
least information to highlight the importance of each feature value. A simple approach is to choose
an embedding like zerolike(Ev) as E∗

v .
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Figure 2: Embeddings t-SNE of fea-
ture values after pre-training with
Avazu on Wide & Deep.

However, a potential issue is that the global zerolike E∗ may
not necessarily contain the least information, as it could still
influence predictions (e.g., towards positive or negative records).
As shown in Figure 2, the embeddings for each v after pre-
training exhibit distribution differences. The distributions of
C17 and C20 are similar, while app_domain is more widely
spread compared to the previous two.

Based on this observation, we propose using the field-wise
mean value as the non-informative embedding for each feature
v. According to the principle of maximum entropy, the most
reasonable probability distribution under known constraints is
the one with the highest entropy. The mean value, being the
first moment, represents the central location of the data. In the
absence of additional information, using the mean as a reference
can be viewed as a “zero-order approximation," assuming that

the data are symmetrically distributed around the mean, which aligns with the “unbiased assumption"
in the maximum entropy principle.

Specifically, the field-wise mean value is the average embedding of all values corresponding to a
feature field. Formally, we let Fv be all feature values belonging to the same feature field, then E∗

v
can be represented as:

E∗
v =

1

|Fv|
∑

vi∈Fv

Evi , (14)

which means that the starting point embeddings E∗
v of values within the same feature field are

identical.

6
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3.2.3 SORTING WITH Iv

Based on the obtained scores Iv for each feature value v, we combine all feature values from different
fields, sort them in descending order of their scores, and select the top for model learning. This
approach is justified by the fact that the importance we design is directly related to the final loss,
which ensures that the importance across different fields is on the same scale.

3.3 ALGORITHM COMPLEXITY ANALYSIS

The time complexity of EffSelect consists of two main parts. Let l represent the total number of
feature values in the complete training set. Since a bitmap is used, an l-length vector can mark
the presence or absence of each feature in a mini-batch. In the MFCS phase, a total of ρ

⌈
|S|
B

⌉
batches need to be selected. For each selection, the contribution of all batches is computed, and then

sorted to pick the one with the highest contribution. Therefore, the total complexity is ρ
⌈
|S|
B

⌉2
l.

In the importance score calculation phase, ρ fraction of samples are used for training, and gradient
backpropagation is performed N times on the validation set. The time complexity is ρTtrain +NTval.
The total time complexity is the sum of these two parts. Since the computation of the N segments
can be parallelized, the actual process can be also optimized.

4 EXPERIMENT

4.1 SETTING UP

Table 1: Statistics of four datasets used for evaluation.

Dataset #Fields #Training #Validation #Test Positive%
iPinYou 16 13,195,935 2,199,323 4,100,716 0.08%
Ali-CCP 23 42,299,905 21,508,307 21,508,307 3.89%
Avazu 24 32,343,172 4,042,897 4,042,898 16.98%
Criteo 39 36,672,493 4,584,062 4,584,062 25.62%

For feature field selection meth-
ods, due to their inability to per-
form feature selection at the fine-
grained level like feature value se-
lection methods, we adopt different
approaches. To ensure a fair com-
parison with baselines, for methods
such as RF, XGBoost, RFE, and PFI,

we select the feature fields corresponding to the point where the cumulative feature importance first
exceeds 10% based on the feature field importance ranking. In the case of AdaFS and MvFS, we retain
the most important 10% of features for each sample. For feature value selection methods, we select
the top 10% of the most important feature values for training and evaluation. The hyperparameter
config can be found in Appendix D.3, and the detailed introduction of these methods can be found at
Appendix D.2. We evaluate the effectiveness of the proposed methods using two classic base models
in real recommender system scenarios: DCN (Wang et al., 2017) and MaskNet (Wang et al., 2021).
Due to the space limitation, the comparision with autoencoder-based feature selection methods is
shown in Appendix E.1.

4.1.1 DATASET

As shown in Table 1, we select four benchmark datasets to evaluate the effectiveness of EffSelect.
They are iPinyou, Ali-CCP, Avazu, and Criteo. The brief situation of the datasets is shown in the
table, and the details can be found in Appendix D.1. Note that since the iPinYou dataset only provides
the training and test sets by default, to ensure the reliability of the results, we additionally split 1/7 of
the training data as a validation set. For all datasets, the low-frequency filter threshold is set to 2.

4.2 MAIN RESULTS

In this section, we examine the impact of different feature selection methods on the results under the
condition of 10% features or fields. This setting is significant for inference on small edge devices and
helps evaluate the effectiveness of feature selection methods when resources are extremely limited.

As shown in Table 2, EffSelect achieves the best performance in most cases. Although the difference
from the Base Model results is relatively large on the Avazu dataset, it outperforms the baseline on
the other three datasets. Specifically, traditional feature field selection methods struggle to select truly

7
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Table 2: Comparison with different feature field and feature value selection method.

Model Dataset Metrics Base Field Selection Value Selection
RF XGBoost RFE PFI AdaFS MvFS OptFS EffSelectZ EffSelectM

DCN

Criteo AUC 0.8090 0.7879 0.7793 0.8058 0.8034 0.7998 0.7996 0.8077 0.8102 0.8102
Logloss 0.4427 0.4610 0.4674 0.4457 0.4478 0.4514 0.4525 0.4439 0.4418 0.4417

Avazu AUC 0.7908 0.7076 0.7500 0.7717 0.7634 0.7823 0.7836 0.7877 0.7744 0.7737
Logloss 0.3735 0.4134 0.3953 0.3843 0.3880 0.3829 0.3830 0.3760 0.3829 0.3829

iPinYou AUC 0.7642 0.7383 0.7635 0.7319 0.7572 0.7391 0.7270 0.7624 0.7683 0.7699
Logloss 0.5630 0.5766 0.5656 0.5894 0.5662 0.5821 0.5988 0.5623 0.5620 0.5607

Ali-CCP AUC 0.5956 0.5762 0.5834 0.5743 0.5939 0.6004 0.6009 0.5979 0.6000 0.6021
Logloss 0.1639 0.1631 0.1630 0.1640 0.1631 0.1656 0.1656 0.1644 0.1622 0.1621

MaskNet

Criteo AUC 0.8098 0.7880 0.7722 0.8062 0.8009 0.7999 0.7999 0.8086 0.8110 0.8111
Logloss 0.4420 0.4609 0.4728 0.4453 0.4501 0.4509 0.4511 0.4431 0.4408 0.4407

Avazu AUC 0.7914 0.7129 0.7506 0.7724 0.7646 0.7834 0.7849 0.7900 0.7757 0.7766
Logloss 0.3731 0.4390 0.3950 0.3848 0.3876 0.3816 0.3808 0.3741 0.3824 0.3816

iPinYou AUC 0.7674 0.7242 0.7666 0.7534 0.7563 0.7580 0.7653 0.7570 0.7683 0.7699
Logloss 0.5608 0.5726 0.5628 0.5624 0.5646 0.5684 0.5629 0.5622 0.5598 0.5581

Ali-CCP AUC 0.6056 0.5739 0.5815 0.5733 0.5986 0.6020 0.5992 0.6005 0.6010 0.6109
Logloss 0.1637 0.1636 0.1630 0.1641 0.1660 0.1651 0.1661 0.1650 0.1624 0.1619

Since the loss on the iPinYou dataset is small, we use Logloss% instead of Logloss here. Base means using all feature
values to train the model, EffSelectZ means using zero-like starting point embedding to get the feature value importance, and
EffSelectM means using field-wise mean value as the starting point. The best results are in bold and the second is underlined.

useful subsets of feature values. This is understandable, as embedding tables gained popularity with
the rise of deep learning, and earlier methods like XGBoost could only perform selection field-wise,
without accounting for the contribution of different feature fields. AdaFS and MvFS yield relatively
strong results, but these may largely depend on the model parameters from the pre-training stage,
which contrasts with our method that independently retrains the model. Additionally, OptFS achieves
relatively good performance with a masking mechanism, but its effectiveness is highly dependent on
hyperparameter tuning. Overall, EffSelect achieves state-of-the-art performance in most cases.

4.3 EFFICIENCY

RFE

RF

XgBoost

EffSelect-Gradient

EffSelect-Pretraining

EffSelect-MFCS

OptFS-Pretraining

Full Training

Figure 3: Time consumption. For tradi-
tional methods, it shows the total time.
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Parameter Counts of Different Methods for Criteo on DCN

Figure 4: Parameter counts for different
methods.

The advantage of EffSelect is clear: it can estimate fea-
ture importance using only a small number of batches.
Meanwhile, both the time cost of each stage and the pa-
rameter count during re-training are also important. In
this paper, we compute the total parameter count, since
even zero-masked networks still participate in training
structurally.

In Figure 3, there are significant differences in time cost
among various methods. For other methods, it shows
the time consumption per epoch. XGBoost is the fastest,
while RF and RFE are much slower, though none of
these achieve optimal performance. For EffSelect, on
the iPinYou dataset, it uses very little time for batch se-
lection and achieves much faster pre-training compared
to full training. This shows a clear advantage over the
gate-based approach used by OptFS.

As for parameter count (Figure 4), our method uses only
about 12% of the original model’s memory on the Criteo
dataset with DCN. For XGBoost, its retraining footprint
is slightly smaller than EffSelect, but its prediction per-
formance is much lower. The method most similar to
ours is OptFS, which is a strong baseline. It achieves
good performance with the same parameter count as
ours, although still worse. In contrast, AdaFS and MvFS
generally require more parameters, as both rely on ad-
ditional controllers that increase memory use and may
slow down training.
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Figure 5: Ratio α in-
fluence with Criteo on
DCN.
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Study with Criteo on
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4.4 HYPERPARAMETER ANALYSIS

EffSelect involves three main hyperparameters: the proportion of the pretraining training set, ρ, the
number of discrete points, N , and the ratio of selected feature values, α. In each part of the study, we
fix the settings of the other two. Unless otherwise specified, the default values are ρ = 0.05, α = 0.1,
and N = 5. The impact of α on the results is the largest. The dashed line in Figure 5 represents the
AUC and Logloss using all feature values. On Criteo, using approximately 10% of the feature values
achieves better prediction results than using all features. On Ali-CCP, with 60% feature values can
bring 4.37% relative AUC improvement. This demonstrates great redundancy in the embedding table.
However, the trend of overall performance trend varies significantly across different datasets. On
Criteo, performance peaks at small α values and then shows a general downward trend. In contrast,
on Ali-CCP, performance gradually increases and only shows significant degradation at large α values.
This indicates that different datasets have different noise characteristics. Moreover, Figure 6 also
shows that, as α changes, the segmentation number N = 5 generally performs better than N = 1.
While N = 10 may have a minor advantage, the additional overhead makes it not worthwhile.

Since the impact of the other hyperparameter (ρ) on the results is smaller than that of α, we have put
it to Appendix E.2 to save space.

4.5 ABLATION STUDY

The ablation study of EffSelect consists of three main parts. S1: We randomly select 10% of the
feature values for training. S2: We use the 5% selected by MCFS for pre-training, and the results are
directly used as the final output. S3: We directly use the backpropagated gradients without multiplying
by the change in embedding E compared to E∗. These three parts evaluate the contribution of each
component to the final result. EffSelect also uses 10% feature values in this experiment.

The influence of these three components on the final performance is evident. S1 randomly selects
10% of the feature values and yields the worst performance, even when re-training with the full set of
batches. This highlights the overall importance of EffSelect. For S2, using only the selected mini-
batches is insufficient for the model to capture complex user history interactions. These mini-batches
merely enable fast pre-training of the embedding layer. Optimal performance is achieved only when
feature value selection is conducted on top of this and followed by full-data re-training. S3 adopts
an alternative strategy to measure feature importance, but its performance falls short of EffSelect.
This is because it does not take loss sensitivity into account. Similar performance trends are observed
across both datasets and both models.

5 CONCLUSION

Selecting a critical subset of feature values is essential for the performance and resource efficiency
of recommender systems. Existing feature field and value selection methods either have coarse
granularity or rely on gating mechanisms with low learning efficiency and robustness. To address
these issues, we propose EffSelect, a framework that trains with mini-batches and uses the contribution
of feature values to the loss function as a measure of feature value importance. This approach provides
an efficient means for identifying and removing non-informative feature values. Experiments were
conducted on four benchmark datasets using two base models, demonstrating that our method
achieves optimal prediction performance in most cases. In addition, efficiency tests in terms of time
and memory highlight the practical deployment advantages of EffSelect. Our work offers insightful
ideas for selecting informative feature values with solid theoretical guarantee.
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A BACKGROUND

A.1 FEATURE FIELD AND FEATURE VALUE

In DRSs, feature selection consists of two parts: feature field selection and feature value selection.
The main difference between them lies in the granularity of selection.

The former treats a feature field column as the unit of selection, where all feature values within the
same field are either selected or dropped together. For example, the field occupation contains feature
values like teacher, doctor, etc. Regardless of their individual contributions to model prediction,
they are treated identically. On the other hand, feature value selection focuses on a finer granularity,
considering each value of occupation individually for selection. Dropped feature values and any new
feature values observed in validation or test sets are treated as [OOV] word and projected into an
embedding.

A.2 LOTTERY TICKET HYPOTHESIS

The lottery ticket hypothesis, proposed by Frankle and Carbin in 2018, states that: A randomly-
initialized, dense neural network contains a subnetwork that is initialized such that — when trained
in isolation — it can match the test accuracy of the original network after training for at most the
same number of iterations.

According to (Malach et al., 2020), in mathematical terms, let N be a randomly-initialized neural
network with weights W . There exists a subnetwork Ns of N with a subset of weights Ws ⊆ W
such that if we train Ns independently, the test accuracy of Ns, denoted as Acc(Ns), is comparable
to the test accuracy of N , denoted as Acc(N ), after at most the same number of training iterations.
That is:

Acc(Ns) ≈ Acc(N )

where the approximation is in terms of the performance on a given test dataset.

This hypothesis has significant implications. If true, it suggests that the process of training large
neural networks can be made more efficient. Instead of training an entire large network, one could
potentially find a good small subnetwork within it and then train only that subnetwork. However,
finding such a "winning-ticket" subnetwork is non-trivial. Our proposed EffSelect does not rely on
such assumptions or the tedious task of finding a subnetwork as kept feature values. It only requires
5% of the training data to distinguish informative features.

B PROOF FOR FEATIS CONVERGENCE AND ERROR UPPER BOUND

The convergence and convergence rate of a method are crucial for its performance. The numerical
integration method used in this paper can actually be implemented using the right endpoint rule or
the composite midpoint rule. These two methods differ in convergence rates, and the former already
yields good results in practice. Below, we will conduct an error analysis for both approaches.

B.1 ERROR ANALYSIS OF THE RIGHT ENDPOINT RULE

Given a loss function L(E) with an embedding table E = (Ev)v∈V , we compare two estimators.
The first is the Taylor expansion at the starting point E∗, which is expressed as:

L(E) = L(E∗) +
∑
v

∇Ev
L(E∗) · (Ev − E∗

v ) +O(∥E − E∗∥2), (15)

where the first-order term accounts for the gradient of the loss function evaluated at E∗, and the
second term represents the error of the approximation, which is of order O(∥E − E∗∥2).
The second method we adopt as in Equation 13, the numerical integration with N segments. The
integral for the gradient Iv is given by:

Iv =

N∑
k=1

∣∣∣∣∇Ev
L
(
E∗ +

k

N
∆E

)
· ∆Ev

N

∣∣∣∣ , ∆E := E − E∗. (16)

13
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Next, we aim to prove that the error upper bound of Iv is smaller. We begin by assuming that
the gradient of the loss function is Lipschitz continuous with respect to each specific feature value
embedding. This assumption is reasonable because, during training, the computation from the
embedding vector v to the loss L typically involves a sequence of continuous and differentiable
operations (e.g., matrix multiplication, addition, ReLU, Sigmoid, Softmax, etc.). Although ReLU is
not differentiable at zero, it is piecewise linear, and its gradient is practically tractable. Therefore,
assume that the gradient∇L is Lipschitz continuous with constant L. That is, for any two embedding
vectors E1 and E2, we have:

∥∇L(E1)−∇L(E2)∥ ≤ L · ∥E1 − E2∥. (17)

Then, consider the interval from E∗ + tk−1∆E to E∗ + tk∆E, where tk = k
N and the step size is

∆t = 1
N . The difference between the two points is:

∥(E∗ + tk∆E)− (E∗ + tk−1∆E)∥ = ∥∆E∥ · (tk − tk−1) =
1

N
∥∆E∥. (18)

According to the Lipschitz condition, the change in gradient is bounded by:

∥∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)∥ ≤ L · 1
N
∥∆E∥. (19)

Numerical integration approximates the integral in each interval using the gradient at the right
endpoint. The approximation error arises from the variation of the gradient within the interval. For
the k-th interval, the error term is:∣∣∣∣[∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)] · ∆E

N

∣∣∣∣ . (20)

By the Cauchy–Schwarz inequality, the absolute value of the dot product is bounded by the product
of their norms:

∥∇L(E∗ + tk∆E)−∇L(E∗ + tk−1∆E)∥ · ∥∆E∥
N

. (21)

Returning to Equation 20, the error upper bound is given by

L · ∥∆E∥
N

· ∥∆E∥
N

=
L∥∆E∥2

N2
. (22)

The error in each subinterval is on the order of O
(

∥∆E∥2

N2

)
, and there are N subintervals in total.

Therefore, the total error is:

Total Error ≤ N · L∥∆E∥2

N2
=

L∥∆E∥2

N
. (23)

This shows that the error of the numerical integration is O
(

∥∆E∥2

N

)
. This shows that, in our

application, we can theoretically reduce the error bound by increasing N , leading to more accurate
estimates of feature value importance.

B.2 ERROR ANALYSIS OF THE COMPOSITE MIDPOINT RULE

In practice, with the same number of segments N , the computational complexity remains the same.
However, using the midpoint rule for integration gives a smaller error bound. We will prove that for a
sufficiently smooth function L, the error bound for the composite midpoint rule is:

∣∣L(E)− L(E∗)− IMid
∣∣ ≤ K ∥∆E∥3

24N2
= O

(
1

N2

)
(24)

where the constant K originates from the bound on the third derivative of the function L.
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This requires a stronger assumption as followed. We need to assume that the functionL is continuously
differentiable enough and that its third-order derivative tensor is bounded. That is, there exists a
constant K > 0 such that for all X: ∥∥∇3L(X)

∥∥ ≤ K.

This assumption ensures that the rate of change of the Hessian matrix is bounded.

To prove this, first, we convert to a one-dimensional integral. We parameterize the path as X(s) =
E∗ + s∆E, where s ∈ [0, 1], and convert the line integral into a standard one-dimensional integral.
Let the step size be h = 1/N , then

L(E)− L(E∗) =

∫ 1

0

∇L(X(s)) ·∆E ds. (25)

We define the scalar function g(s) := ∇L(X(s)) · ∆E. The problem is thus transformed into
calculating the approximation error for

∫ 1

0
g(s)ds. Then, consider the k-th interval [sk−1, sk], which

has a width of h and a midpoint of s(k). The local error ϵk on this interval is:

ϵk =

∫ sk

sk−1

g(s) ds− h · g(s(k)). (26)

We expand g(s) in a Taylor series around the midpoint s(k) (using the Lagrange remainder form):

g(s) = g(s(k)) + g′(s(k))(s− s(k)) +
g′′(ξk)

2
(s− s(k))2, (27)

where ξk is a point between s and s(k). Substituting this expansion into the expression for ϵk and
integrating, the linear term vanishes due to symmetry, leaving only the integral of the remainder term:

ϵk =

∫ sk

sk−1

g′′(ξk)

2
(s− s(k))2 ds. (28)

According to the Mean Value Theorem for Integrals, because (s − s(k))2 ≥ 0, there exists an
ηk ∈ [sk−1, sk] such that:

ϵk =
g′′(ηk)

2

∫ sk

sk−1

(s− s(k))2 ds, (29)

and the integral of the quadratic term yields:∫ sk

sk−1

(s− s(k))2 ds =
h3

12
. (30)

Therefore, the local error is:

ϵk =
g′′(ηk)

2
· h

3

12
=

g′′(ηk)h
3

24
. (31)

The total error is the sum of all local errors. We take its absolute upper bound and let Gmax be the
maximum value of |g′′(s)| on [0, 1], as:

Total Error =

∣∣∣∣∣
N∑

k=1

ϵk

∣∣∣∣∣ ≤
N∑

k=1

|ϵk| =
N∑

k=1

∣∣∣∣g′′(ηk)h3

24

∣∣∣∣ ≤ N∑
k=1

Gmaxh
3

24
= N · Gmaxh

3

24
. (32)

Substituting h = 1/N , we could get:

Total Error ≤ N · Gmax(1/N)3

24
=

Gmax

24N2
. (33)

Finally, we use our stronger assumption to determine the bound for Gmax = max |g′′(s)|. We have:

g′′(s) = (∆E)T
(
∇3L(X(s))[∆E]

)
∆E. (34)
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Using the bound on the norm of the third-order derivative tensor,
∥∥∇3L(X)

∥∥ ≤ K:

|g′′(s)| ≤
∥∥∇3L(X(s))

∥∥ · ∥∆E∥3 ≤ K ∥∆E∥3 . (35)

Thus, Gmax ≤ K ∥∆E∥3.

Substituting the upper bound for Gmax into the total error formula, we could get:

Total Error ≤ K ∥∆E∥3

24N2
. (36)

It shows that the error bound for the composite midpoint rule is: O
(

1
N2

)
. In practice, even using the

right-endpoint method often yields satisfactory results.

C THE MAXIMUM COVERAGE FOR TRAINING DATA BATCHES

C.1 THE MONOTONE SUBMODULAR FUNCTION

Proposition 3. The feature coverage function F (S) = |F(S)| is a monotone submodular function.

Proof. Let F(S) denote the set of unique feature values covered by batch set S . For anyA ⊆ B ⊆ S
and a new batch b ∈ S \ B, we have:

F (A ∪ {b})− F (A) = |F(A ∪ {b}) \ F(A)|
F (B ∪ {b})− F (B) = |F(B ∪ {b}) \ F(B)|

Since A ⊆ B, we have F(A) ⊆ F(B). The marginal gain from adding b decreases as:

|F({b}) \ F(A)| ≥ |F({b}) \ F(B)|, (37)

proving submodularity. Monotonicity follows from F(S) ⊆ F(S ∪ {b}).

Therefore, from (Nemhauser et al., 1978), the greedy selection strategy in Equation 4 achieves
a (1 - 1/e)-approximation guarantee for maximizing the feature coverage function. Our batch se-
lection process with termination condition |S ′|/|S| > ρ corresponds to a cardinality constraint
k = ⌈ρ|S|/B⌉. The iterative selection of batches with maximum marginal gain exactly implements
the classical greedy algorithm. This theoretical guarantee ensures that MFCS provides near-optimal
feature coverage while maintaining the efficiency of greedy selection. The bitmap optimization
further makes it practical for large-scale datasets.

C.2 THE CHOICE OF ρ

In the main text, ρ represents the ratio of selected batches to all batches, which essentially corresponds
to the proportion of selected samples. Since recommender system datasets are typically large, it
is feasible to approximate within an acceptable error range using a small subset of samples. The
subsequent idea of maximizing feature value coverage is also based on these selected samples.

We aim to select an appropriate sampling ratio ρ to achieve maximum coverage while keeping the
distribution bias within an acceptable range. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality
establishes a direct relationship between the maximum deviation between the empirical and true
distributions and both the sample size and sampling method of the selected dataset S ′. Specifically, it
states:

P

(
sup
x
|Φn(x)− Φ(x)| > ϵ

)
≤ 2e−2nϵ2 , (38)

where Φ is the cumulative distribution function (CDF), and Φn is the empirical CDF based on n
samples. This result implies that as the sample size n increases, the probability bound decreases, and
the empirical distribution better approximates the true distribution. A smaller allowed deviation ϵ
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Figure 9: Analysis of the relationship between ρ
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Figure 10: Analysis of the relationship between
ρ and δ.

requires a larger n to maintain the same confidence level. The core conclusion of the DKW inequality
states that the probability upper bound for the maximum deviation exceeding a threshold ϵ decreases
exponentially as the sample size n = |S ′| = ρ|S| increases.

Based on this, if we set δ as the confidence level, and constrain 2e−2ρ|S|ϵ2 ≤ δ, we can derive an
analytical solution for the required sampling ratio ρ that satisfies the given confidence level while
minimizing the threshold, as:

ρ ≥ 1

2ϵ2|S|
ln

2

δ
. (39)

Generally, we set δ ≤ 0.05, which ensures a confidence level of at least 95%, and aim to keep the
distribution deviation ϵ as small as possible (e.g., 1.0× 10−3). For the Avazu dataset, substituting
|S| ≈ 3.3× 107 gives ρmin ≈ 0.05. For other datasets, the same method can be applied to determine
the corresponding value. To maintain consistency, we set ρ = 0.05 for all datasets, which yields
satisfactory results.

More intuitively, we fix the relevant parameters and show the relationships between the sampling ratio
ρ and the bias threshold ϵ (in Figure 9), as well as between the sampling ratio ρ and the confidence
level δ (in Figure 10).

D EXPERIMENT DETAILS

D.1 DATASET

We use four benchmark datasets in our experiment.

• iPinYou6: This dataset originates from the iPinYou Global RTB Bidding Algorithm Compe-
tition, held in 2013 across three distinct seasons. It includes comprehensive training datasets
and leaderboard testing datasets for each season, covering DSP bidding, impression, click,
and conversion logs. The dataset for final evaluation is withheld by iPinYou and is reserved
for testing purposes.

• Ali-CCP7: Collected from the recommendation system logs of the mobile Taobao app, this
dataset ensures that the training data precedes the test data. It is divided into three parts:
Sample ID Section, Labels Section, and Features Section, with a total of 23 feature fields.
The dataset comprises over 80 million records for both training and testing.

• Avazu8: This dataset is used in the Kaggle CTR prediction competition and contains nearly
40 million interaction records across 22 fields. Based on prior preprocessing steps, the hour
field has been subdivided into three separate fields: weekday, weekend, and a newly defined
hour field, resulting in a total of 24 fields.

6https://contest.ipinyou.com/
7https://tianchi.aliyun.com/dataset/408
8https://www.kaggle.com/c/avazu-ctr-prediction/
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• Criteo9: Serving as a benchmark dataset in the real world, Criteo contains approximately
45 million records of user clicks, with all fields anonymized. The dataset includes 39 fields,
comprising 26 categorical features and 13 numerical features. Following the methods of
earlier studies (Wang et al., 2022), we convert the numerical features into categorical ones10.

For the Ali-CCP dataset, the source website provides both training and test sets. Since the test set
occurs after the training set, directly splitting the validation set from the training data could lead to
data leakage. Therefore, we split half of the test set to form the validation set, ensuring that both the
validation and test sets are disjoint and occur after the training data.

D.2 BASELINES

For the baselines, we select two types of feature selection methods. For field selection, we choose six
representative methods: Random Forest (Breiman, 2001), XGBoost (Chen & Guestrin, 2016),
Recursive Feature Elimination (RFE) (Chen & Jeong, 2007), Permutation Feature Importance
(PFI) (Fisher et al., 2019), AdaFS (Lin et al., 2022), and MvFS (Lee et al., 2023). Except for
the last two, which use neural networks and learn sample-wise field weights through a controller, all
other methods are traditional machine learning techniques. For feature value selection, we primarily
compare OptFS (Lyu et al., 2023) and two variants of the EffSelect method as our approaches.

• Random Forest (RF) (Breiman, 2001): Random Forest is an ensemble learning method
that constructs a multitude of decision trees during training and outputs the class that is the
mode of the classes (classification) or mean prediction (regression) of the individual trees. It
works by creating multiple decision trees from bootstrapped samples of the training data,
reducing overfitting and improving generalization. Each tree is trained on a random subset
of features, helping to minimize bias and variance. Random Forest is well-known for its
robustness and ability to handle large datasets with higher accuracy.

• XGBoost (Chen & Guestrin, 2016): XGBoost (Extreme Gradient Boosting) is a highly
efficient and scalable implementation of gradient boosting. It builds an ensemble of decision
trees sequentially, where each new tree corrects the errors made by the previous ones.
The algorithm uses a regularization term to control model complexity, helping to prevent
overfitting. Feature importance in XGBoost is computed based on how frequently a feature
is used to split a node and the gain it contributes to improving the model’s predictive
performance. XGBoost has become popular due to its speed, accuracy, and ability to handle
various data types and missing values.

• Recursive Feature Elimination (RFE) (Guyon et al., 2002): Recursive Feature Elimination
is a wrapper-based feature selection technique that recursively removes the least important
features from the model. The process involves:

1. Training a model and evaluating the importance of each feature, typically using feature
weights (for example, the coefficients in linear models or feature importance scores in
tree-based models).

2. Iteratively eliminating the features with the lowest importance scores.
3. Repeating the process until the desired number of features is selected, ensuring that

only the most significant features are retained.

In our experiment, we use RFE based on Linear Regression.

• Permutation Feature Importance (PFI) (Fisher et al., 2019): Partial Feature Importance
(PFI) is a technique used to evaluate the importance of each feature by assessing how
much its value affects the predictive performance of the model. The method works by
shuffling the values of a specific feature across the dataset and observing the resulting
change in the model’s performance. If the predictive performance degrades significantly
after shuffling a feature, it indicates that the feature plays an important role in the model’s
decision-making. PFI is particularly useful for identifying key features when dealing with
complex, high-dimensional datasets and is widely applied in both supervised learning and
model explainability.

9https://www.kaggle.com/c/criteo-display-ad-challenge/
10https://www.csie.ntu.edu.tw/r01922136/kaggle-2014-criteo.pdf
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• AdaFS (Lin et al., 2022): AdaFS (Adaptive Feature Selection) is a feature selection method
that employs a controller network to dynamically select the most informative features during
the training process. This approach uses sample-wise learning to adaptively choose the
subset of features that maximizes model performance.

• MvFS (Lee et al., 2023): MvFS (Multi-view Feature Selection) is an enhancement of
AdaFS that introduces the concept of multi-view controllers for feature selection. In this
method, multiple controllers operate in parallel, each focusing on a different “view" of the
data. This approach helps capture diverse feature interactions across different data modalities
or subsets, making the feature selection process more robust. MvFS improves upon AdaFS
by allowing the model to adaptively select features across multiple perspectives, leading
to better performance in tasks where feature dependencies vary across different views or
contexts.

In addition, we also included several Autoencoder-based feature selection methods as baselines,
namely Concrete Autoencoder (CAE) (Balın et al., 2019), IP-CAE (Indirectly Parameterized
CAE) (Nilsson et al., 2024), and L2X (Chen et al., 2018).

• Concrete Autoencoder (CAE) (Balın et al., 2019): Concrete Autoencoder is a feature
field selection method, where the core idea is to construct an "encoder-decoder" structure.
The encoder serves as a differentiable, learnable "soft" selection gate, while the decoder
uses the selected feature fields to perform a task. By optimizing the final loss of the task, the
"selection gate" is backpropagated to learn how to pick the most informative feature fields.
Specifically, for each batch of data: E ∈ RB×M×D, where B is the batch size, M is the
total number of feature fields, and D is the embedding size of each feature field, we define
the learnable importance weights as

α ∈ Rk×M ,

representing which k feature fields are selected (with each row approximating a one-hot
encoding). Applying Gumbel-Softmax to this weight matrix yields W ∈ Rk×M .

• Indirectly Parameterized CAE (IP-CAE) (Nilsson et al., 2024): This is an improved
version of the original CAE method. Specifically, IP-CAE modifies the logic of the weights
α by changing it to an indirect parameterization. While the traditional CAE requires
learning k ×M parameters to determine feature selection, IP-CAE only needs to learn
k × dimip intrinsic parameters, which are then mapped to importance values through a
mapping network. There are four different design patterns for this mapping network:

– Shared mode (IP-Share): All k latent vectors share the same mapping network, which
reduces the complexity of the network. The code implementation is as follows:

self.mapping_network = self._create_mlp(net_dims)

– Separate mode (IP-Sep): Each latent vector is assigned a separate mapping network,
meaning each selection vector has its own mapping function. The implementation is as
follows:

self.mapping_networks = nn.ModuleList([self.
_create_mlp(net_dims) for _ in range(self.
num_select)])

– FC mode (IP-FC): All latent vectors are flattened and passed through a larger fully con-
nected layer, which can capture more complex nonlinear features. The corresponding
code implementation is:

self.mapping_network = self._create_mlp(net_dims)

– Diag mode (IP-Diag): A special diagonal or scalar network replaces the standard linear
layer, and the learnable parameters are constrained to the elements on the diagonal or a
single scalar value. The implementation is as follows:

self.mapping_network = DiagNet(self.ip_dim)
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Algorithm 1: Maximizing Feature Coverage Sampling (MFCS)
Input: Set of all disjoint data batches B = {B1, . . . ,Bm}, Number of batches ratio ρ
Output: The set of selected batches S ′
// Initialization
S ′ ← ∅, V∗ ← ∅, Brem ← B.
// Iteratively select k batches in a greedy manner
while true do

// Terminate if no more batches are available
if Brem = ∅ then
end
// Find the best candidate batch to add next
Bbest ← argmaxBb∈Brem |F(Bb) \ V∗| ;
// Pre-check: Break if adding this batch would exceed the

ratio
if (|S ′ ∪ {Bbest}|) > ρ× |S| then
end
// If the check passes, commit to adding the batch
S ′ ← S ′ ∪ {Bbest} ;
V∗ ← V∗ ∪ F(Bbest) ;
Brem ← Brem \ {Bbest} ;

end
return S ′

• L2X (Chen et al., 2018): L2X is a finer-grained feature selection method. Unlike Balın
et al. (2019) and Nilsson et al. (2024), which assign the same feature importance across
all samples, L2X uses an explainer network to compute feature importance scores for each
individual sample.

D.3 GENERAL HYPERPARAMETERS

The MaskNet model is configured for binary classification with a binary cross-entropy loss function,
using the Adam optimizer with a learning rate of 1e-3. It employs a batch size of 10,000, an
embedding dimension of 8, and a DNN architecture with three hidden layers of 400 units each,
activated by ReLU. Regularization is disabled, and the model includes layer normalization for both
the embedding and DNN layers. The model is trained for 100 epochs with AUC as the monitoring
metric and a seed value of 20242025, using a shuffle strategy and a 50% feature retention ratio.
Pretraining is required, and the model is set for retraining in autofeat mode, with parallel block
processing using 1 block of 64 dimensions.

Following previous research (Jia et al., 2024), we set the embedding size to 8 for all models. The
batch size is set to 10,000 for faster training. The learning rate is set globally to 1.0e-3. In this study,
an early stopping strategy was employed, where the model would terminate training prematurely
if the AUC-Logloss on the validation set did not improve over two consecutive training epochs.
Additionally, common optimization techniques such as the Adam optimizer (Kingma & Ba, 2015)
and the Xavier initialization method (Glorot & Bengio, 2010) were utilized.

D.4 FEATURE VALUE IMPORTANCE CALCULATION

See in Algorithm 2.

E ADDITIONAL EXPERIMENTS

E.1 COMPARE WITH AUTOENCODER-BASED SELECTION METHODS

As shown in Table 4, for the autoencoder-based feature selection method, the latent selection
embedding is set to 32, and additional experiments are conducted using MaskNet. It can be observed
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Algorithm 2: Feature Value Importance Calculation Algorithm
Input: Pre-trained embedding table and model ΘS′ , validation dataset Sval, point number N ,

kept feature values ratio α.
Output: Final selected feature values.
Initialize starting point embeddings E∗ using field-wise means:
for each feature field f do

Ff ← {v belongs to field f}.
E∗

v ← 1
|Ff |

∑
vi∈Ff

Evi
, ∀v ∈ Ff ; // Eq.14

E∗ = concat(E∗
v ).

end
Initialize importance scores Iv .
for each batch S ′val ∈ Sval do

for k ← 1 to N do
Get current embeddings E from trained parameters ΘS′ .
Compute delta embeddings ∆E ← E−E∗

N .
E(k) ← E∗ + k∆E.
Forward pass: L ← LS′

val
(E(k)).

Backward pass: Compute ∇E(k)L.
for each feature value v in batch do

Iv ← Iv +
∣∣∣∇E

(k)
v
L ·∆Ev

∣∣∣.
end

end
end
Sort all v by Iv in descending order.
Select the v in top-α importance.
return Selected feature values

Table 4: Comparison of datasets with different feature selection methods on MaskNet.

Model Dataset Metric Base CAE IP-Share IP-Sep IP-FC IP-Diag L2X EffSelectZ EffSelectM

MaskNet

Criteo AUC 0.8098 0.8001 0.8014 0.8023 0.8048 0.8011 0.8041 0.8110 0.8111
Logloss 0.4420 0.4509 0.4498 0.4489 0.4467 0.4498 0.4471 0.4408 0.4407

Avazu AUC 0.7914 0.7865 0.7882 0.7881 0.7896 0.7864 0.7892 0.7757 0.7766
Logloss 0.3731 0.3764 0.3749 0.3752 0.3742 0.3763 0.3744 0.3824 0.3816

iPinYou AUC 0.7674 0.7496 0.7505 0.7532 0.7629 0.7477 0.7541 0.7683 0.7699
Logloss 0.5608 0.5671 0.5664 0.5760 0.5623 0.5681 0.5631 0.5598 0.5581

Ali-CCP AUC 0.6056 0.5978 0.6013 0.5960 0.6029 0.6055 0.6072 0.6010 0.6109
Logloss 0.1637 0.1631 0.1633 0.1637 0.1635 0.1635 0.1638 0.1624 0.1619

that EffSelect achieves the best prediction results on three out of four datasets, with only 10% of
the feature values. Among the baselines, the L2X method performs the best, as it applies feature
weighting on a sample-wise basis. On the other hand, IP-CAE uses an indirect network to model
feature importance, and the increased number of parameters intuitively allows better modeling of the
importance between different feature fields, resulting in better performance compared to CAE.

E.2 THE INFLUENCE OF HYPERPARAMETER ρ.

We vary ρ for pre-training within {0.05, 0.1, 0.5, 1}, where ρ = 1 corresponds to using all the training
data. As shown in Figure 11, using more training data does not necessarily improve feature value
selection results.

For example, on Criteo, the final selection results with 5% and 100% of the training data are almost
the same. When re-training with 5% of the data at α = 0.1, the performance is even better than
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Figure 11: Bar charts and line charts showing the variation of α across three datasets as ρ changes.
The bar charts represent AUC, while the line charts depict Logloss.

with full training. This also occurs on iPinYou, possibly because more training data introduces more
noise, leading to worse performance. On Ali-CCP, as ρ increases, smaller values of α yield more
significant prediction results. This could be because with more data, top feature values are better able
to distinguish from noisy features. However, when α = 0.7, the result from training with full data is
worse than that from training with batches obtained through MFCS.

E.3 DATASET COVERAGE RATIO ρ AND PRETRAINING LOSS
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Figure 12: Training loss for Criteo and Ali-CCP datasets on DCN under different dataset coverage
ratios ρ.

In this subsection, we analyze how the Logloss on the training set changes over training epochs. We
use DCN as the backbone model and conduct experiments on the Criteo and Ali-CCP datasets. Since
we apply an early stopping strategy—training stops when the AUC-Logloss on the validation set does
not decrease for two consecutive epochs—the total number of training steps is relatively small.

As shown in Figure 12, the overall decreasing trend of Logloss during pretraining using different
values of ρ selected by the MFCS method is similar to that of training on the full dataset. This
indicates that the selected data batches effectively guide gradient descent. However, their specific
effectiveness differs slightly. In particular, after the first epoch, the Logloss from MFCS-selected
batches is slightly higher than that of using the full training data. But as training continues, models
trained on MFCS batches fit the data better than those trained on the full dataset.

Moreover, larger ρ values tend to result in lower Logloss in the first epoch, reflecting that data selected
by MFCS can lead to more stable and robust training and convergence results.

E.4 CASE STUDY
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(a) Selected feature value ratio by EffSelectZ .
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(b) Selected feature value ratio by EffSelectM.

Figure 13: Case study for selected feature values with Criteo on DCN.

We conduct a case study on the selected feature values. Specifically, we focus on the Criteo dataset
with DCN and compare the feature values selected by the two variants, EffSelectZ and EffSelectM.
Figure 13a shows the results for EffSelectZ , while Figure 13b shows those for EffSelectM.

From the figures, we could observe that for the Criteo dataset, most of the filtered feature values
come from fields with a large number of unique values. This is intuitive, as such fields often contain
more noise. Without strong support from golden samples, these values are less likely to contribute
positively during training. In contrast, fields with fewer unique values also have some values filtered
out, but a higher proportion of values are retained. This may be because these values have more
reliable samples, which help improve generalization.

When comparing the selected feature values between EffSelectZ and EffSelectM, we find that for
fields with many values, both methods yield similar selection ratios. However, for fields with fewer
values, such as C15 and C26, the selection ratios differ significantly. This indicates that using mean
embedding (for values within the same field) as the starting point for Taylor expansion affects feature
selection more in low-cardinality fields, compared to using zero embedding.

E.5 BITMAP IMPLEMENTATION

As an efficient data structure, a bitmap is essentially an array where each element is a binary state (0
or 1), using only one bit of memory. This design is ideal for compactly storing variables with a small
number of possible states (e.g., two states) in a sequential array of bits—precisely the structure of
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Figure 14: Diagram of bitmap with 0-10 feature values.

feature value indices. Such bitmaps allow for fast operations like lookup, deduplication, and counting
across large sets of values. Moreover, bitmaps support quick set operations such as intersection,
union, and difference, which are useful for relational queries between datasets.

Figure 14 shows an example of using a bitmap to count and update feature values. Here, 0 indicates
the presence of a feature value at the given index, while 1 means it is absent. The top-left bitmap is
01100101001, representing that feature values at indices 1, 2, 5, 7, and 10 are present in the current
batch. The bottom-left bitmap tracks feature values already seen across previous batches. For each
new batch, we compute the number of new feature values using a Diff operation—counting the
number of 1s in the top-right bitmap. We then use a Union operation to update the set of known
feature values before moving to the next batch. This process continues until the selected batch ratio
reaches ρ. Since bitwise operations are highly efficient on modern hardware, this approach is much
faster than using normal arrays or maps to track feature values.

E.6 DETAILED EFFICIENCY ANALYSIS

In this section, we provide the parameter counts during the retraining stage for all methods and datasets
used in the main experiments. As shown in Figure 15, EffSelect achieves the lowest parameter count
during retraining. On average, the parameter count is only 15% of the original model. Compared to
the 10% of features selected, the additional 5% comes from the model’s architecture. This analysis
further highlights the practical value of EffSelect.

F LLM USAGE STATEMENT

The LLM was used as a tool to assist with polishing the writing and did not directly contribute to the
research findings or results. All content generated by the LLM was thoroughly reviewed and edited
by the authors to ensure its relevance, accuracy, and scientific integrity.
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Figure 15: Parameter counts for different methods when retraining.
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