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ABSTRACT

We consider online scheduling with class constraints. That is, we are given m ma-
chines, each with k class slots. Upon receiving a job j with processing time pj and
class cj , an algorithm needs to allocate j on some machine i. The goal is to min-
imize the makespan while not assigning more than k different classes onto each
machine. While the offline case is well understood and even (E)PTAS results are
known [Chen Jansen Luo Zhang COCOA’16; Jansen, Lassota, Maack SPAA’20],
the online case admits strong impossibility results in classical competitive analysis
[Epstein, Lassota, Levin, Maack, Rohwedder STACS’22].
We overcome these daunting results by investigating the problem in a learning-
augmented setting where an algorithm can access possibly erroneous predictions.
We present new algorithms with competitive ratios independent of m and tight
lower bounds for several classical and problem-specific prediction models. We
thereby give a structured overview of what additional information helps in the
design of better scheduling algorithms.

1 INTRODUCTION

Makespan minimization on parallel identical machines is a fundamental and intensively stud-
ied problem and a classical example for online algorithm analysis through Graham’s famous list
scheduling algorithm Graham (1966). In this problem, jobs arrive online and upon arrival of a job
j, an algorithm needs to assign j to a machine. Note that there exist two main ways for the jobs to
be made available to the algorithm: one by one or over time. We consider the former.

Motivated by its various applications in product planning, data placement, and load balancing, we
consider a variant with class constraints Jansen et al. (2020). That is, we are given m machines and
n jobs with job j having processing time pj and class cj . Each machine can schedule jobs from at
most k different classes. We say that a machine has k class slots. A class slot on a machine i is
occupied by a class c if at least one job of class c is scheduled on i. We consider classical makespan
minimization, that is, minimizing the maximum load on any machine:

minimize max
i∈[m]

∑
j scheduled on mi

pj s.t.
∣∣{cj | j scheduled on mi}

∣∣ ≤ k ∀i ∈ [m].

A famous special case of this problem is cardinality constrained scheduling, where each class only
contains a single job. Thus, the class restriction is equivalent to limiting the number of jobs on a ma-
chine. Cardinality constraints naturally appear in a variety of applications, ranging from distributing
students in universities to assembly line optimizations or circuit board design Zhang et al. (2009).

The offline cases are well-understood. Both problems are known to be NP-hard Shachnai & Tamir
(2000); Chen et al. (2016). This motivated an extensive study of approximation algorithms. Among
the latest findings, there are PTAS results known for the class constraint scheduling variant relying
on modeling the problem as well-structured integer programs, and even an EPTAS for the cardinality
constraint special case Jansen et al. (2020); Chen et al. (2016).

For the online setting, no competitive ratio better than the trivial bound of m can be achieved for class
constraint scheduling. For cardinality constraint scheduling, a constant lower bound of 2 is known
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Epstein et al. (2022). The competitive ratio maxI∈I makespan(I)/makespan(OPT ) is a widely
used measurement for the performance of an online algorithm. It measures the maximum ratio over
the set of all instances I between the online algorithm’s (I) and an offline optimal solution’s (OPT )
objective value. Here, OPT is the best schedule that can be computed with complete information
and unbounded running time.

Although the lower bounds seem unreachable, the setting does not reflect the power of most real-
world applications, where certain aspects of the input can be learned using historical data with
application-sensitive modeling. We use this approach to investigate the problem in a learning-
augmented setting where an algorithm can access such predictions (see, e.g., Mitzenmacher &
Vassilvitskii (2022)). However, these predictions might not perfectly reflect the current instance.
Measuring this error allows parameterized performance guarantees – most prominent among those
are consistency and robustness – of algorithms w.r.t. the prediction model. Consistency is the com-
petitive ratio for perfect predictions. Robustness is an upper bound on the competitive ratio for any
prediction w.r.t. the error of this prediction.

The above definitions are generally applicable to all prediction models. Thus, another main ingre-
dient is to select a reasonable and well-performing prediction model for the given problem. In this
work, we study the two most prominent prediction models: full input predictions (see, e.g., Purohit
et al. (2018); Azar et al. (2021); Im et al. (2021) and the references in the papers) and action predic-
tions (see, e.g., Antoniadis et al. (2023); Bamas et al. (2020); Lindermayr & Megow (2022); Anand
et al. (2022) and the references in the papers). Although we show that these measures perform
fairly well, a huge drawback is the learnability and encoding length of information of these predic-
tions. Thus, we also present an application-sensitive prediction model, which for most real-world
instances is significantly smaller and easier to learn, yet still allows great consistency and robustness
guarantees.

PREDICTION MODELS

The two arguably most prominent prediction models in the literature are full input prediction and
action prediction. In the former model, as the name states, the whole instance is predicted. This
means that we are given the set of jobs along with their processing times and respective classes. In
the latter, all actions are given, that is, a list of length n with values between 1 to m are given where
the tth entry states on which machine to put job jt. Predictions are either static, that is, we are given
a list of n machines and assign job j to the jth machine in the list, or adaptive, meaning that upon
each arrival of a new job j, we get the machine i predicted on which j should be placed on.

Both prediction models need to predict a significant amount of information because the encoding
length of the information is dependent on the number of jobs n, and are hard to learn as they are
sensitive to small changes in the instance. Thus, aiming for minimalistic predictions, we introduce
a third prediction model specifically designed for this application named class size prediction. It
predicts the total processing time of each class, but gives no information on the number of jobs nor
specific processing times.

OUR CONTRIBUTION

We overcome the daunting lower bounds for online class constraint scheduling by investigating the
problem in a learning-augmented setting where an algorithm can access possibly erroneous predic-
tions. We study three different prediction models: full input predictions, action predictions, and
we introduce a new application-specific prediction model called class size prediction. For each of
the prediction models, we design algorithms that beat the known lower bound of m for online class
constraint scheduling.

All prediction models lead to algorithms with different approximation guarantees and running times.
As each of them can perform best for certain instances, and due to different eligibility of implement-
ing such predictions, we believe that each of them is of independent interest. After presenting all
results, we have a more in-depth evaluation of the different models.

Note that there is no purely online algorithm without access to predictions on the cardinality con-
straint scheduling which performs better than m (see Theorem 1).
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In this paper, we show the following algorithms, where ℓ is the error of the respective prediction:
For minimizing the makespan for online class constraint scheduling on m identical machines, there
is

• an algorithm with predicted input with a competitive ratio at most (ℓ/OPT + α) where
OPT is an offline optimal solution and α is the competitive ratio of an offline approxima-
tion algorithm (see Theorem 3).

• an algorithm with static predicted actions with a competitive ratio at most (ℓ + 1) (see
Theorem 6).

• an algorithm running with class size predictions with a competitive ratio at most ℓ/OPT +
2 + ϵ where ϵ is an accuracy parameter (see Theorem 11).

Input and action predictions, after carefully defining the model and error, yield, rather straightfor-
wardly, algorithms with good consistency and robustness guarantees. However, the simplicity comes
at the cost of large and difficult-to-achieve predictions. To minimize the information provided by
the prediction, we thus consider the class size prediction model. Here, the information load is only
dependent on the number of classes and not on the number of jobs.

For perfect class size predictions, we manage to improve the competitive ratio of online class con-
straint scheduling significantly from m to a 2+ϵ. To do so, we proceed in two steps: (i) we solve the
predicted instance by treating each class as one splittable job and solve this problem using known
results obtaining a schedule plan; (ii) then we post-process the schedule plan to obtain some ex-
ploitable structural properties. In particular, we define a structure that guarantees that even if the
actual job sizes do not match the way we split the jobs in (i), we only get a bounded amount of extra
processing time on each machine. This is achieved by defining a graph for the schedule plan, rep-
resenting possible ways to move computation time from one machine to another without changing
the classes present on each one. A cycle removal procedure is then applied to this graph to sim-
plify it and introduce a hierarchy between the machines without changing the machines’ individual
makespans. This hierarchy is then used as a starting point to define how to place the incoming jobs
and the unexpected loads that come with them.

In all prediction models, we assume that the number of classes is known to the algorithm. In fact,
we prove that this is essential: if the number of classes is either not given or predicted possibly erro-
neously, then there exists no algorithm, regardless of which further (possibly erroneous) predictions
are given that can beat a competitive ratio of m (Theorem 1 and Corollary 2).

Finally, we prove all of our competitive algorithms to be (nearly) tight, i.e., no algorithm with access
to the same predictions can yield a (significantly) better competitive ratio (see Theorems 4, 7, and
12).

FURTHER RELATED WORK

Packing and scheduling problems are widely studied, and empowering them with additional in-
formation has already been intensively studied. We recommend Chen & Potts (1998); Strusevich
(2005); Christensen et al. (2016) for a survey on scheduling and packing algorithms and Dwibedy
& Mohanty (2022) for a survey on semi-online scheduling. The task of minimizing the makespan
on parallel identical machines is probably the most studied objective for scheduling since the six-
ties, and a considerable body of literature exists. It is well known to be NP-hard and admits a
PTAS. Graham Graham (1966) is famous for his List scheduling algorithm for which he showed its
(2 − 1/m)-competitiveness. It has been proven to be optimal for m ∈ {3, 4} Faigle et al. (1989)
and the competitive ratio has been successively lowered for higher number of machines to 1.923
Galambos & Woeginger (1993); Bartal et al. (1995); Karger et al. (1996); Albers (1999). The cor-
responding lower bound was also improved over the years to 1.85358 for m > 80 Gormley et al.
(2000).

The more recent line of research on learning-augmented algorithms offers a novel approach that in-
tegrates additional (and possibly erroneous) predictions to the input to achieve better performances,
if they are accurate, while maintaining good performance when they are not. These predictions are
commonly divided into two categories: predicting a part of the online input (input prediction) Azar
et al. (2022a;b); Bamas et al. (2020); Lykouris & Vassilvitskii (2018); Purohit et al. (2018), or pre-
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dicting actions of the algorithm (action prediction) Antoniadis et al. (2020); Bamas et al. (2020);
Lattanzi et al. (2020). The recent paper Lindermayr & Megow (2022) also proposes a more exotic
type of prediction for non-clairvoyant scheduling (when the processing time of a job is not known
until it is placed on a machine): permutation prediction, which can be seen as a sort of action pre-
diction. In this input a model, a permutation of jobs is predicted that hints at a priority order. This
builds on previous results that show that knowing the Weighted Shortest Remaining Processing Time
order of jobs is enough to find an optimal schedule Smith (1956). Very recently, non-clairvoyant
scheduling with precedence constraints (information about a job is revealed only when all of its pre-
decessors have been completed) was also studied in the learning-augmented paradigm Lassota et al.
(2023). To the best of our knowledge, none of these algorithms or ideas have been extended to work
for the class constraint scheduling problem, so we fill this gap in this paper.

STRUCTURE OF THIS DOCUMENT

We start by demonstrating that each individual prediction is incapable of surpassing the pessimistic
bound of m if the number of classes is not known beforehand or is subject to potentially erroneous
predictions.

Following our goal to find minimalistic predictions for online class constraint scheduling, we inves-
tigate the prediction models by the amount of information they generate. That is, we first analyse
full input predictions, then turn our attention to action predictions, and eventually arrive at the most
involved and problem specific one: class size predictions. We conclude the paper with a discussion
on the results and the relation between the prediction models.

2 KNOWING THE NUMBER OF CLASSES IS ESSENTIAL

In the following sections, we assume that the number of classes is always given and that this in-
formation is correct. We argue that these preconditions are necessary (but not sufficient) to design
any algorithm that beats the trivial worst-case competitive ratio of m. This section is dedicated to
proving this statement.

Theorem 1. There exists no algorithm with a competitive ratio better than m if the number of
classes in the instance is not given (nor can be computed correctly from the given predictions).

Proof. Let m ≥ 2. Consider some machine i that has a job of class c assigned to it. No algorithm
can decide to put any other job of class c on any other machine than i as the algorithm needs to
guarantee the feasibility of any instance. Thus, it cannot choose to occupy extra class slots in case
the instance has mk many different classes.

Now assume an instance with m equally sized jobs of the same class. Any algorithm has to stack
these jobs on the same machine, where the optimal solution would have been to spread the m jobs
on the m machines, yielding a competitive ratio of m.

The same argument holds if the number of classes is predicted, but might be erroneous as an algo-
rithm needs to guarantee feasibility. Thus, we derive the following corollary.

Corollary 2. There exists no algorithm with a competitive ratio better than m if the number of
classes in the input is (possibly erroneously) predicted.

Note that this precondition is not enough on its own and does not prevent the lower bound from
Epstein et al. (2022).

3 FULL INPUT PREDICTION

In this commonly assumed prediction setting, the whole input is predicted. That is, we get predicted
all jobs along with their processing times, classes, and identifier to be able to map them to the actual
arriving jobs. Processing times and classes can be predicted wrongly, but we assume the identifier
to be correct and that each predicted class is among the set of actual classes in the instance, which
is a natural restriction as commonly use cases are designed to work for a specific set of classes.
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As proved in Section 2, knowing the correct number of classes present is necessary to overcome a
competitive ratio of m.

Full Input Prediction Algorithm The algorithm first computes a solution to the predicted in-
stance. As the offline problem is already NP-hard, it can either spend exponential time to compute
an optimal solution, or compute a near-optimal solution in polynomial time, e.g., using the PTAS by
Jansen, Lassota, and Maack Jansen et al. (2020). We call this schedule S. Upon receiving job j, if
the class was predicted correctly, the algorithm places the job as in S. Otherwise, job j is placed on
the machine with the least load in S that has its class.

The prediction error ℓ is the sum of differences between the predicted processing time and actual
processing time of a job j. Note that if the class was predicted wrongly, it can be interpreted as
having a non-existent job predicted, thus its whole processing time is added to the error.

Theorem 3. For minimizing the makespan for online class constraint scheduling on m identical
machines, there is an algorithm running in time O(nmk)+T with predicted input with a competitive
ratio at most (ℓ/OPT + α) where T is the time needed to compute the offline solution S and α is
the competitive ratio of an algorithm A computing the offline solution S.

Proof. If all predictions are correct, the Full Input Prediction Algorithm places each job as in the
offline solution, yielding its competitive ratio α. If a job is not predicted correctly, but the class
was predicted correctly, it only adds its error to the makespan. Otherwise, its whole processing time
might be added, which is captured by the error. Hence, the additive increase on the fullest machine
is at most ℓ.

Computing S takes time T per definition. Finding the corresponding job in S for the incoming job
takes time O(n) as it might need to be compared to all jobs. If the class was predicted incorrectly, the
lowest loaded eligible machine needs to be found in time O(mk). This leads to an overall running
time of O(nmk) + T .

Theorem 4. For minimizing the makespan for online class constraint scheduling on m identical
machines, no algorithm with static full input predictions can achieve a competitive ratio smaller
than (1 + ℓ/OPT ).

In our proofs, we make use of an adversary that can manipulate the stream of jobs to incur the worst
performance of the algorithm being studied. We consider the strongest form of adversary, namely
an adaptive adversary that can react to the algorithm’s decisions while it is running, as illustrated in
the following proof:

Proof. Choose k, ℓ > 0, m ≥ 2 arbitrarily. Predict mk jobs with processing time 1 and distinct
classes. Any algorithm has to place k jobs on each machine. This is clearly an optimal solution. The
adversary now decides that all processing times of classes placed on machine 1 have in fact been
predicted incorrectly. In particular, all k classes on machine 1 get an additional job of ℓ/k, yielding
an increased makespan and an error of ℓ.

Theorem 3 and Theorem 4 together yield:

Corollary 5. The Full Input Prediction Algorithm is tight w.r.t the competitive ratio.

4 ACTION PREDICTION

In this variation, the actions (i.e. on which machine to place a job) are predicted. The error measure
is the number of wrong predictions ℓ. As no information is available on the upcoming jobs, the best
strategy is to follow the predictions. In detail, we define the following algorithm.

Action Prediction Algorithm Upon receiving a job j and a predicted machine Pj , place j on Pj

if possible (i.e. if there are still free class slots). Otherwise, put it on one of the eligible machines
with the lowest load.
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Theorem 6. For minimizing the makespan for online class constraint scheduling on m identical
machines, there is an algorithm running in time O(mnk) with static or dynamic predicted actions
with a competitive ratio at most (ℓ+ 1).

Proof. If all predictions are correct, the Action Prediction algorithm obviously yields an optimal
schedule.

When placing a job on a machine such that the machine gets a load bigger than OPT then there
might be two reasons: either the current prediction is wrong or there are no other possibilities, due
to a previous wrong prediction.

If the current prediction is wrong, the additional error could reach the size of the largest job pmax.
We have pmax ≤ OPT . If the prediction could not be followed because that machine’s class slots
are already used, then there were previous wrong predictions that took this job’s class slot. In the
worst case, a previous error could result in moving the entire processing time scheduled on the
original machine in the optimal schedule on top of another machine. Since OPT is the maximum
load on any machine in an optimal schedule, at most that much processing time can be moved to the
current machine by one such previous error.

Thus, each error can only cause an increase of the makespan of at most OPT . Hence, ℓ errors can
increase the makespan by at most ℓ ·OPT .

Regarding running time, each step costs time at most O(mk) to find and verify an eligible machine
to place a job. In total, this yields a running time of O(mnk).

Note that ℓ can get as large as n, however, the maximal error is bounded by m ·OPT by placing all
jobs into the same machine.

Theorem 7. For minimizing the makespan for online class constraint scheduling on m identical
machines, no algorithm with static or dynamic predicted actions can achieve a competitive ratio
smaller than ℓ for ℓ ≤ m− 1.

Proof. Let k = 2 and m ≥ 2 be chosen arbitrarily. The instance contains m+ 1 classes.

The adversary first produces a stream of jobs of size 1 and class 1. We predict machine i for the
ith job. This stream of jobs stops either when each machine gets exactly one job (following the
prediction) or if two jobs get placed on the same machine.

In the first case, m jobs have been produced. The adversary then produces ℓ large jobs of size
N >> 1 and class 2. These jobs need to be stacked onto a single machine for the instance to stay
feasible. The adversary then concludes with m − 1 jobs of size 1 and of classes 3, 4, . . . , m + 1,
which fill the remaining class slots. An optimal schedule would have placed the m jobs of the first
stream evenly on m − ℓ machines so that the ℓ large jobs can be spread among the remaining ℓ
machines. Thus, we had ℓ errors in the prediction. N is large enough for the makespan to basically
be ℓ ·N instead of OPT = N and we get a competitive ratio of ℓ.

In the second case, we have stacked two jobs of size 1 on top of each other. The adversary then
produces m jobs of small size ϵ and classes 2, 3, . . . , m+1. An optimal solution would have spread
the first m jobs and placed the small jobs on top. There was no prediction error, and the makespan
is 2 ·OPT .

This shows that regardless of which decision we take, an algorithm cannot achieve a competitive
ratio better than ℓ.

Theorem 6 and Theorem 7 together yield:

Corollary 8. The Action Prediction Algorithm is tight with respect to the competitive ratio.

5 CLASS SIZE PREDICTION

Next, we turn our attention to the application-sensitive prediction model: class size predictions.
Here, instead of predicting the whole input, only the accumulated processing time of each class is
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predicted. As before, the number of classes is assumed to be known. Intuitively, an error should
capture the distance between the predicted classes and the actual ones. Indeed, we use this natural
interpretation by using an L1-type error measure: sum the absolute difference between the actual
size of each class and its predicted size.

Class Size Predictions Algorithm The algorithm proceeds in three steps:

1. Use an algorithm to solve the class/cardinality constraint scheduling problem on the pre-
dicted input (interpreting each class to be one splittable job) to obtain a schedule plan S.

2. Postprocess S such that no two machines have the same subsets of classes for subsets larger
than 1, obtaining the schedule S′. Define a hierarchy H on the machines based on S′, which
will be specified below.

3. Upon arrival of a job j of class c, assign it to a machine using the order defined by H ,
where a machine can be used until it has no available processing time for class c according
to S′.

Roughly speaking, the algorithm follows a planned schedule to assign the arriving jobs. The main
work lies in generating a planned schedule with the structural property that no two machines share
the same subset of classes (for subsets larger than 1). Only then do our consistency and robustness
guarantees hold. Note that, in contrast to full input predictions, we do not need to predict any job
identifier. Further, we like to mention that one can use any algorithm to solve the class/cardinality
constraint scheduling problem on the predicted input (interpreting each class to be one splittable
job) to obtain a schedule plan S. Splittable means that a job does not have to be put on a machine as
a whole, but instead, can be split arbitrarily into small pieces.

First step We solve the class/cardinality constraint scheduling problem on the predicted input to
obtain a preliminary schedule plan S. Note that we interpret every class to only contain one job, and
that this job can be split arbitrarily.

Let α be the competitive ratio of the chosen algorithm A, and T its running time. The best algorithm
(running in polynomial time with respect to n) regarding the competitive ratio is an EPTAS provided
by Chen et al. (2016). Of course, one could spend an exponential amount of time to compute an
optimal solution, i.e., α = 1.

Second step Let S be the schedule plan obtained in the first step. W.l.o.g., we assume that each
class occupies a consecutive slot on a machine, otherwise the schedule can be rearranged without
changing the makespan guarantee.

Let G = (V,E) be a graph derived from S as follows:

• generate two vertices (x
(i,c)
1 , x

(i,c)
2 ) for each class c present on each machine i in S. We

call the vertices x(i,c)
1 input vertices, and x

(i,c)
2 output vertices, respectively,

• introduce an edge from each x
(i,c)
1 to each x

(i,c′)
2 where c ̸= c′, i.e., an edge from each

input vertex on a machine i to each output vertex of another class on the same machine i.
We call these edges conversion edges, and

• insert an edge from each x
(i,c)
2 to each x

(i′,c)
1 where i ̸= i′, i.e. an edge from each output

vertex to each input vertex of the same class on a different machine. We call these edges
transfer edges.

We call this graph the conversion and transfer (CT) graph of S. See Figure 1 for an example.

We now aim to alter S to satisfy our desired structural property. To do so, we introduce the following
procedure which runs as long as there is a cycle C in the CT-graph G of S:

1. Identify the output vertex xi,c
2 in C corresponding to the class slot of smallest accumulated

processing time pmin in S.

2. For each transfer edge (xj,d
2 , xj′,d

2 ) in C, transfer pmin processing time of class d from
machine j to machine j′ in S.
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Figure 1: An example of conversion and transfer graph. Each column represents a machine and each
rectangle a class slot. Input vertices are on the left of each class slot and output vertices are on the
right. Conversion edges are dashed and transfer edges are continuous.

3. Delete all vertices corresponding to class slots with zero processing time on a machine
(which holds at least for xi,c

1 and xi,c
2 ).

This procedure does not alter the makespan of the original schedule as for each machine along the
cycle, there is as much processing time added as removed. Each iteration breaks a cycle, removes
at least one class slot and never introduces more cycles or vertices, and thus terminates. Call the
altered final graph G′ and the corresponding schedule S′.

Third step We now use the acyclic structure of G′ to develop a strategy to assign jobs to machines.
Let M(c) denote the set of all machines handling class c. Consider a hypergraph H = (V,E) related
to G′ with V =

⋃
c∈C M(c), i.e. the vertex sets correspond to all machines which admit at least one

class in S′, and E = {(M(c)),∀c}, that is, each hyperedge connects for each class c all machines
that schedule class c in S′. In the following, we prove that H has a strong acyclic property, namely
H is Berge-acyclic (Berge (1985)).
Definition 1. A bipartite incidence graph of a graph G = (V,E) is the graph obtained by G such
that it has one vertex for each vertex and each edge in G, and an edge (v, e), v ∈ V, e ∈ E, if v ∈ e
for e ∈ E w.r.t. G.
Definition 2. A graph G = (V,E) is Berge-acyclic if its bipartite incidence graph is acyclic.
Lemma 9. H is Berge-acyclic.

Proof. By definition I is bipartite, and any cycle in it alternates between the two components of the
bipartition. In a cycle C each path of the form v − e − v′ exists if and only if v, v′ ∈ e and thus a
transfer edge exists from v to v′ and the other way around. Note that v ̸= v′ because C is a cycle and
this directly reflects the fact that there exists no transfer edges from a machine to itself. Similarly,
each path of the form e− v− e′ exists if and only if e, e′ ∋ v and thus a conversion edge exists from
e to e′ and the other way around. Again, e ̸= e′ because C is a cycle and this is reflected in the fact
that conversion edges only go to different classes inside any given machine.

Thus, there is a one to one correspondence between cycles in G′ and cycles in I . We know that G′

is acyclic and as a result I is too, making H Berge-acyclic.

Select a machine i at will and set it to be the root of H . Since H is Berge-acyclic, each hyperedge
c has a unique vertex xc that is closest to the root, i.e., reachable by only one hyperedge for classes
not containing i, and i itself with zero hyperedges for all other classes. The corresponding machine
j to xc is called the parent machine of class c. All other machines scheduling that class in S′ are
child machines of class c, and cannot also be child machines of an other class. See Figure 2 for an
illustration.

Given H with the structural implications for S′, we can now state the rules to place an arriving job
j with class cj :

1. if there is a child machine for cj that, according to S′, still has unassigned processing time
for class cj , place j there,
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Figure 2: An example of hypergraph H . Class 1 is on machines 1 and 2, class 2 on machines 1, 3
and 7, class 3 on machines 2, 4, 5 and 6, and class 4 on machines 3 and 8. Machine 1 is the root and
inside each class, arrows go from the parent machine to the child machines.

2. else, place j on the parent machine of cj .

Lemma 10. The job assignment rules above ensure that for any class c:

1. the amount of excess in processing time of c placed on a child machine of c is at most OPT .

2. the amount of excess in processing time of c placed on the parent machine of c never exceeds
the prediction error for c.

Proof. Regarding the first property, a job j is never placed on a child machine i that has no
available processing time for that class cj . Further, pmax ≤ OPT , thus if job j exceeds
the processing time assigned to cj on i, it can only do so by at most OPT . In addition to
this, child machines can only be child machines of a single class. Indeed, if a machine has
two different parent machines, then two different paths to the root exist in the incidence
graph, which is prohibited by H being Berge-acyclic. These two properties lead to the fact
that overflows of different classes cannot accumulate on the same machine and that this
overflow never exceeds OPT .

Regarding the second property, a job is only placed on the parent machine j when all the
child machines are full; thus, the excess in processing time caused by jobs on the parent
machine can only be smaller or equal to the prediction error for this class.

The running time has to be analyzed separately for the preprocessing phase, which is run only once
at the beginning, and the job assigning phase, which is run for each job. We first analyze the running
time of the preprocessing performed before receiving any job. The cardinality constraint problem
can be solved in almost linear time Chen et al. (2016):

2O(1/ε2 log2(1/ε) log log(1/ε)) +O(n log n log logn)

The cycle removal procedure can be run in O(m2k2(m2 + k2)). A cycle can be found in the
incidence graph by running BFS in O(|E| + |V |) = O(mk(k − 1) + mk(m − 1) + 2mk) =
O(mk(m+ k)). Each iteration removes at least three edges (one conversion and two transfer), so in
the worst case, the cycle removal runs in time O(m2k2(m2 + k2)).

Assigning jobs is computationally cheap, as the algorithm only needs to find any child machine that
is not overflowing if there is one or the parent machine if there are none. This can be computed by
a single pass over all machines, running in O(m).

Altogether, we get:

Theorem 11. For minimizing the makespan for online class constraint scheduling on m identical
machines, there is an algorithm running in time O(T + m2k2(m2 + k2)) with predictions of the
processing time of each class with a competitive ratio at most ℓ/OPT + 1 + α, where α is the
competitive ratio for an algorithm A used to solve the offline class/cardinality constraint scheduling
problem on the predicted instance, and T is the running time of A.

9
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Proof. There are two types of overflow: the ones caused by bad placement due to jobs not summing
up to the remaining time in a class slot and the ones due to class size prediction errors.

For the first kind, Lemma 10 states that overflows happen only on child machines and are of size at
most OPT . Because a machine can only be a child machine of a single class, there cannot be an
excess in processing time of more than OPT on any machine, adding one to the competitive ratio α
and leading to a competitive ratio of 1 + α.

For the second kind, in the worst case, the entire prediction error accumulates on a single machine
adding ℓ/OPT to the competitive ratio.

Both types can happen on the same machine at the same time, thus we have a competitive ratio of
ℓ/OPT + 1 + α.

We can show that this competitive ratio is optimal up to a constant factor:
Theorem 12. For minimizing the makespan for online class constraint scheduling on m identical
machines, no algorithm with static class size predictions can achieve a competitive ratio smaller
than ℓ/OPT .

Proof. Let m ≥ 2, and k ≤ m. The instance contains mk classes. The adversary predicts that all
classes are of negligible size ϵ. We first get mk jobs of distinct classes and negligible size ϵ. Then,
the adversary picks a machine i. For each class on i, the adversary sends a job of size N ≫ ϵ.
This results in a prediction error l = kN and a schedule with a makespan of kN where the optimal
solution would have been to put one big job per machine leading to an optimal makespan of N . The
competitive ratio of this instance is thus kN/N = k and l/OPT = kN/N = k too.

Theorem 11 and Theorem 12 together yield:
Corollary 13. The Class Size Prediction Algorithm is tight up to a constant factor with respect to
the competitive ratio.

6 CONCLUSION AND FUTURE WORK

We study online class constraint scheduling in a learning-augmented setting where an algorithm
can access possibly erroneous predictions. We study different models of predictions, and thereby
give a structured overview of what additional information helps in the design of better scheduling
algorithms. In particular, we study full input, action, and the problem-specific class size predictions.
For each model, we design an algorithm and analyse its consistency and robustness. Additionally,
we prove for all algorithms that they are (nearly) tight, i.e., no algorithm can perform (significantly)
better with respect to these measures.

The results show that no prediction model generally outperforms the others; their suitability heavily
relies on the given circumstances. While all algorithms offer good robustness and consistency guar-
antees, the algorithm using action predictions is most efficient in terms of runtime. This efficiency
comes from its direct prediction of actions, whereas the other models need to first compute such
actions (i.e., the schedule plan) from the input data. This is NP-hard in general, but approximately
optimal solutions can be derived by polynomial time approximation schemes. Access to accurate
action predictions is the most challenging one, as small differences in the input might lead to very
different optimal actions, which makes them hard to learn. Comparatively, input predictions are
easier to learn. However, the amount of information is dependent on the number of jobs. Class
size prediction in turn generates an amount of information just depending on the number of classes,
which can be drastically less than the number of jobs making it the most achievable model to be
learned.

For each of the models, we give (nearly) matching lower and upper bounds w.r.t. their consistency
and robustness. This gives a quite complete picture of the prediction complexity of the problem, but
there are interesting extensions to study. In particular, the assumption that we know the number of
classes in advance could be relaxed if one allows for an error on the class slot limit. Further, we
focused on identical machines, but extending the algorithms to also work on (un-)related machines
would broaden the applicability to real-word settings.

10
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