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ABSTRACT

Despite the transformative impact of deep learning across multiple domains, the
inherent opacity of these models has driven the development of Explainable Artifi-
cial Intelligence (XAI). Among these efforts, Concept Bottleneck Models (CBMs)
have emerged as a key approach to improve interpretability by leveraging high-
level semantic information. However, CBMs, like other machine learning mod-
els, are susceptible to security threats, particularly backdoor attacks, which can
covertly manipulate model behaviors. Understanding that the community has not
yet studied the concept level backdoor attack of CBM, because of ”Better the devil
you know than the devil you don’t know.”, we introduce CAT (Concept-level
Backdoor ATtacks), a methodology that leverages the conceptual representations
within CBMs to embed triggers during training, enabling controlled manipulation
of model predictions at inference time. An enhanced attack pattern, CAT+, in-
corporates a correlation function to systematically select the most effective and
stealthy concept triggers, thereby optimizing the attack’s impact. Our compre-
hensive evaluation framework assesses both the attack success rate and stealthi-
ness, demonstrating that CAT and CAT+ maintain high performance on clean data
while achieving significant targeted effects on backdoored datasets. This work un-
derscores the potential security risks associated with CBMs and provides a robust
testing methodology for future security assessments.

“Better the devil you know than the devil
you don’t know.”

1 INTRODUCTION

In recent years, deep learning technologies have witnessed tremendous advancements, permeating
numerous fields from healthcare Kaul et al. (2022); Ahmad et al. (2018) to autonomous driving
Muhammad et al. (2020); Lai et al. (2024) and beyond. Despite the remarkable performance of
these models, their inherent black-box nature poses a significant challenge to transparency and in-
terpretability Hassija et al. (2024). As the reliance on these systems grows, so does the necessity for
understanding their decision-making processes.

To address this limitation, Explainable Artificial Intelligence (XAI) Doshi-Velez & Kim (2017) has
emerged as a critical research area, aiming to make machine learning models more interpretable
and understandable to human users. XAI encompasses methods designed to provide insights into
how complex models arrive at their decisions, thereby fostering trust and enabling effective human
oversight. Among various XAI approaches, Concept Bottleneck Models (CBMs) Koh et al. (2020)
stand out as a promising methodology designed to enhance model transparency by capturing high-
level semantic information.

The pivotal component enabling CBMs to function effectively is the concept bottleneck layer, which
integrates human-interpretable concepts directly related to the prediction task. This design allows
human experts to perform targeted backward fine-tuning on incorrect predictions made by the model,
mitigating the blind spots commonly found in traditional DNNs when performing. CBMs represent
a practical and user-friendly model, particularly in risk-sensitive application domains such as au-
tonomous driving, digital finance, and intelligent healthcare. Even users with limited AI knowledge
can leverage their domain expertise to effectively evaluate and fine-tune CBMs.
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Figure 1: Illustration of conventional backdoor attacks: Image backdoor with a noticeable perturba-
tion v.s. Concept Level Backdoor ATtack method (CAT).
Although CBMs offer strong interpretability and can be fine-tuned by human experts, they are still
vulnerable to certain types of attacks Lv et al. (2023). Backdoor attacks which directly poison the
training dataset, are typically difficult to detect. Moreover, the erroneous outputs caused by such
attacks can be highly perplexing to human experts, further complicating their mitigation.

Specifically, in image classification tasks, some existing image-level backdoor attacks have become
relatively easy to detect and defend against, and we compare them to ours in Figure 1. Consequently,
we shift our focus to the unique concept bottleneck layer of CBMs, we propose CAT: Concept-level
Backdoor ATtacks. While users can inspect the concept layer and fine-tune it based on erroneous
predictions, handling all the labels in the concept layer at once remains a challenging task. CAT
achieves stealthy attacks by modifying a small number of concept values within the concept layer,
embedding triggers among numerous concepts, and injecting them into the training dataset. In
addition, the concept layer manipulated by CAT is implicit in the use of CBMs, while users tend to
find the problems out in inputs, however, there’s no falsify on concept layer in CAT.

The stealthiness of CAT is also reflected in the confounding nature of the dataset, which makes it
difficult for existing backdoor detection methods to effectively defend against CAT. CBMs typically
integrate the attributes labeled in the training and testing datasets (we primarily use CUB and AwA)
into the concept layer of the model. However, the labeled attributes in any dataset are often problem-
atic, such as having a large number of attributes, incomplete or inaccurate annotations, and strong
subjectivity. Additionally, due to the sparsity in the concept layer, both humans and models will find
it difficult to discern whether seemingly ”incorrect” concepts have been distorted by a CAT, making
it challenging for existing backdoor defense mechanisms to address attacks.

The characteristics of CAT can be summarized as follows: Embed triggers during training to ma-
nipulate the model’s predictions when these triggers are encountered during inference, all while
maintaining a low probability of detection. This stealthiness is particularly pronounced in datasets
like CUB, which contain hundreds of concepts, making it difficult to identify the few that have been
tampered with. The stealthy nature of CAT has also been validated in evaluations involving hu-
man assessors (See in Appendix L.2). One AI researcher likened this type of attack to “pouring
Coca-Cola into Pepsi”.

Building upon CAT, we developed an enhanced version, CAT+, which introduces a function to
calculate the correlation between concepts and target classes. This allows for a step-by-step greedy
selection of the most effective and stealthy concept triggers, optimizing the backdoor attack’s impact.
CAT+ employs iterative poisoning to corrupt the training data, selecting a concept as the trigger
concept and determining its trigger operation in each poisoning step, thus iteratively updating and
corrupting the training data.

Our contributions are as follows:

(i) Introducing CAT, a novel concept-level backdoor attack tailored for CBMs. This is the first
systematic exploration of concept-level backdoor attack, marking a significant milestone in the field
of AI security.

(ii) Enhancing CAT to CAT+ with a more sophisticated trigger selection mechanism. CAT+
introduces an iterative poisoning approach that systematically selects and updates concept triggers,
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significantly enhancing the stealthiness and effectiveness of the attack. By employing a correlation
function, CAT+ achieves precise and dynamic optimization of concept-level triggers.

(iii) Providing a comprehensive evaluation framework to measure both the attack success rate
and stealthiness. Our evaluation framework ensures rigorous testing of the proposed attacks, setting
a new standard for assessing the efficacy and subtlety of backdoor techniques.

2 RELATED WORK

Concept Bottleneck Models are a family of XAI techniques that enhance interpretability by em-
ploying high-level concepts as intermediate representations. CBMs encompass various forms: Orig-
inal CBMs Koh et al. (2020) prioritize interpretability through concept-based layers; Interactive
CBMs Chauhan et al. (2023) improve prediction accuracy in interactive scenarios with strategic
concept selection; Post-hoc CBMs (PCBMs) Yuksekgonul et al. (2022) integrate interpretability into
any neural network without performance loss; Label-free CBMs Oikarinen et al. (2023) enable unsu-
pervised learning sans concept annotations while maintaining accuracy; and Hybrid CBMs Sawada
& Nakamura (2022) combine both supervised and unsupervised concepts within self-explaining
networks. Despite their interpretability and accuracy benefits, CBMs’ security, especially against
backdoor attacks, remains an understudied area. Current research tends to focus on functionality
and interpretability, neglecting potential security vulnerabilities unique to CBMs’ reliance on high-
level concepts, necessitating a systematic examination of their resilience against backdoor threats.

Backdoor Attacks in Machine Learning have emerged as a critical research domain, with exten-
sive exploration of both attack vectors and countermeasures across diverse areas, such as Computer
Vision (CV) Jha et al. (2023); Yu et al. (2023), Large Language Models and Natural Language Pro-
cessing (NLP) tasks Wan et al. (2023); Chen et al. (2021), graph-based models Xu & Picek (2022);
Zhang et al. (2021), Reinforcement Learning (RL) Wang et al. (2021), diffusion models Chou et al.
(2024), and multimodal models Han et al. (2024). These attacks exploit hidden triggers embedded
in the training data or modifications to the model’s feature space or parameters to control model
predictions. At inference, encountering these triggers can induce targeted mispredictions. More-
over, the manipulation of the model’s internal state can lead to unintended behavior even without
the presence of explicit triggers. Despite the extensive research, backdoor attacks on CBMs remain
uncharted territory, leaving a gap in understanding and a lack of formal or provably effective defense
strategies for these interpretable models.

3 PRELIMINARY

Here we give a brief introduction of CBMs Koh et al. (2020). Consider a classification task defined
over a predefined concept set C = {c1, . . . , cL} and a training dataset D = {(xi, ci, yi)}ni=1, where
for each i ∈ [n], xi ∈ Rd denotes the feature vector, yi ∈ R represents the label of the class, and
ci ∈ RL signifies the concept vector, with its k-th entry ck indicating the k-th concept in the vector.
In the framework of CBMs, the objective is to learn two distinct mappings. The first mapping,
denoted by g : Rd → RL, serves to transform the input feature space into the concept space. The
second mapping, f : RL → R, operates on the concept space to produce predictions in the output
space. For any given input x, the model aims to generate a predicted concept vector ĉ = g(x) and a
final prediction ŷ = f(g(x)), such that both are as close as possible to their respective ground truth
values c and y. Let Lcj : R × R → R+ be the loss function measures the discrepancy between
the predicted and ground truth of j-th concept, and Ly : R × R be the loss function measures the
discrepancy between the predicted and truth targets. We consider joint bottleneck training, which
minimizes the weighted sum f̂ , ĝ = argminf,g Σi[Ly(f(g(x

(i))); y(i))+ΣjλLcj (g(x
(i)); c(i))] for

some λ > 0

4 CAT: CONCEPT-LEVEL BACKDOOR ATTACK FOR CBM

4.1 PROBLEM DEFINITION

For an image classification task within the framework of CBMs, given a dataset D consists of n
samples, i.e., D = {(xi, ci, yi)}ni=1, where ci ∈ RL is the concept vector of xi, and yi is its corre-
sponding label. Let e denotes a set of concepts selected by some algorithms (referred to as trigger
concepts), i.e., e = {ck1 , ck2 , · · · , ck|e|}. Here, |e| represents the number of concepts involved in
the trigger, termed as the trigger size. Then, a trigger is defined as c̃ ∈ R|e| under some patterns.
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Given a concept vector c and a trigger c̃, we define the concept trigger embedding operator ’⊕’,
which acts as:

(c⊕ c̃)i =

{
c̃i if i ∈ {k1, k2, · · · , k|e|},
ci otherwise.

(1)

where i ∈ {1, 2, · · · , L}. Consider Te is the poisoning function and (xi, ci, yi) is a clean data from
the training dataset, and ytc is the target class label, then Te is defined as:

Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc). (2)

In CAT, we assume that the attacker has full access to the training data, but only allowed to poison
a certain fraction of the data, denoted as Dadv , then the injection rate is defined as |Dadv|/|D|.
Specifically, when Dadv ⊆ Dtc, where Dtc ⊂ D is the subset of D containing all instances from the
target class, the CAT is a clean-label attack. When Dadv ∩Dtc = ϕ, the CAT is a dirty-label attack.
In this paper, we mainly focus on the dirty-label attack. The objective of CAT is to ensure that
the compromised model f(g(x)) behaves normally when processing instances with clean concept
vectors, but consistently predicts the target class ytc when exposed to concept vectors containing c̃.
The objective function of CAT can be defined as:

max
Dj∈D

ΣDj (f(cj)− f(cj ⊕ c̃)) s.t.f(cj) = f(cj ⊕ c̃) = ytc, (3)

where Dj represents each data point in the dataset D, and cj ⊕ c̃ represents the perturbed concept
vector. The objective function aims to maximize the discrepancy in predictions between the original
concept vector cj and the perturbed concept vector cj ⊕ c̃. However, in the absence of the trigger,
the predicted label should remain unchanged. The constraints ensure that the model’s predictions
for the original dataset remain consistent (f(cj) = yj), and that the perturbation is imperceptible
(f(cj ⊕ c̃) = yj). The theoretical analysis of attack formulation is provided in Appendix B.

4.2 TRAIN TIME CAT

4.2.1 TRIGGER CONCEPTS SELECTION AND OPTIMIZATION

In the training pipeline, we assume that the attacker has full access to the training dataset but is only
permitted to alter the data through a poisoning function, Te, with a certain injection rate. To obtain
the poisoning function, we propose a two-step method to determine an optimal trigger, c̃, which
considers both invisibility and effectiveness.

Concept Filter (Invisibility). Given a target class ytc, the first step is to search for the trigger
concepts under a specified trigger size |e|, where e = {ck1 , ck2 , · · · , ck|e|}. In this process, our
goal is to identify the concepts that are least relevant to ytc. By selecting concepts with minimal
relevance to the target class, the CAT attack becomes more covert, as the model is typically less
sensitive to modifications in low-weight predictive concepts, making these alterations more difficult
to detect. To achieve this, we first construct a subset, Dcache, from the training dataset, D. Let Dtc

denote the subset containing all instances labeled with ytc. Then, we randomly select instances not
labeled with ytc to form another subset, Dntc, such that |Dtc| = |Dntc|. Consequently, we obtain
Dcache = Dtc ∪ Dntc. We refer to instances from Dtc as positive instances and instances from
Dntc as negative instances. Next, we fit a regressor (e.g., logistic regression) onDcache using only c
and y. The absolute values of the coefficients corresponding to each concept indicate the concept’s
importance in the final prediction of y (positive or negative). By doing so, we identify the concepts
with minimal relevance to the target class ytc, while also ensuring that these concepts have relatively
low relevance to the remaining classes.

Data-Driven Attack Pattern. (Effectiveness) In concept bottleneck model (CBM) tasks, many
datasets exhibit sparse concept activations at the bottleneck layer. Specifically, in a given concept
vector c, most concepts ck tend to be either predominantly positive (ck = 1) or predominantly neg-
ative (ck = 0). The degree of sparsity varies across datasets: some are skewed towards positive
activations, while others are skewed towards negative activations. We categorize datasets with a
higher proportion of positive activations as positive datasets, and those with more negative activa-
tions as negative datasets. To attack positive datasets, we set the filtered concept vector c̃ to all
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Figure 2: Overview of CAT process. Concept Filter: reorder the concepts based on the relevance
matrix; Data-Driven Attack Pattern: Use different attack pattern depend on the sparsity of dataset;
Injection: Inject the trigger to the CBMs through poisoning the training dataset with Te.

zeros, i.e., c̃ := {0, 0, . . . , 0}. Conversely, for negative datasets, we set the filtered concept vector c̃
to all ones, i.e., c̃ := {1, 1, . . . , 1}. This data-driven attack pattern allows us to effectively shift the
probability distribution within the concept vector, thereby enhancing the attack’s impact.

4.2.2 TRAIN TIME CAT
Once the optimal trigger c̃ is identified under the specified trigger size, the attacker can apply the
poisoning function Te to the training data. Given the training dataset D, we randomly select in-
stances not labeled as ytc to form a subset Dadv , ensuring that |Dadv|/|D| = p, where p represents
the predefined injection rate. Then the poisoning function Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc) is ap-
plied to each data point inDadv , we denote this poisonous subset as D̃adv , we then retrain the CBMs
in the poisonous training dataset D′ = {D + D̃adv − Dadv}. See Algorithm 1 for the pseudocode
about trian time CAT in Appendix A.

4.3 TEST TIME CAT

In this section, we firstly introduce the test pipeline of CAT, and then derive the lower or upper
bounds of the CAT process to evaluate the attack concisely. Figure 3 shows two different test times.

Figure 3: Test Time I and Test Time II. Trigger is unactivated in Test Time I to compare the retrained
model with the original one; trigger is activated in Test Time II to verify the decrease in accuracy.

4.3.1 TRIGGER DATASET GENERATION

Our goal is to generate a poisonous dataset containing triggers to test how many instances, initially
not labeled as the target label ytc, are misclassified as ytc by CAT. In other words, we are particularly
interested in measuring the success rate of the CAT attack.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Recall that we have already followed the perturbation described in Equation 33 to alter the dataset,
within an injection rate p. Having trained the CBM on the poisonous dataset D′ = {D + D̃adv −
Dadv}, we now proceed to test the victim model’s performance.

Before conducting the test, we isolate the data points that are not labeled as ytc and denote this
subset as D′

test, i.e., D′
test = Dtest − Dtc, where Dtc is a subset of Dtest contains all data points

labeled as ytc in the test dataset. We conclude above CAT model into a threat model in appendix P.

4.3.2 TEST TIME I

Test Objective: In this testing phase, we aim to verify that the retrained CBM performs comparably
to its pre-retraining performance on the original test dataset Dtest, provided that the trigger is not
activated. Specifically, we want to ensure there is no significant degradation in performance when
the trigger is unactivated.

Theoretical Justification (see Appendix C for details): Let Accoriginal denote the accuracy of the
CBM before retraining, and Acc(retrained;w/o;Te) be the accuracy after retraining without (w/o) the
trigger. We expect Acc(retrained;w/o;Te) to be close to Accoriginal, indicating that the retraining has
not significantly affected the model’s performance on clean data.

4.3.3 TEST TIME II

Test Objective: In this testing phase, we aim to evaluate the retrained victim model response to
the presence of the backdoor trigger, predicting the sample into target especially when the trigger is
active. Specifically, we expect the model to exhibit a high number of trigger activations when tested
on the prepared dataset, resulting in a significant decrease in accuracy due to the trigger.

Test Dataset: To conduct this test, we first apply the initial part of the CBM prediction g to the
input xi in the dataset D′

test which contains n′
test samples. and cache the results ĉ = g(x). This

cached dataset is denoted as Dcache, i.e., Dcache = g(D′
test) = {(xi, ĉi)}

n′
test

i=1 . Next, we inject
the trigger into the cached dataset Dcache to create a poisonous test dataset, denoted as D′

cache, i.e.,
D′

cache = {(xi, ĉi ⊕ c̃)}ntest
i=1 . Finally, we use D′

cache to assess the victim CBM’s performance after
retraining, focusing particularly on the impact of the trigger on the model’s probability of predicting
the target class ytc.

Theoretical Bound (see Appendix D for detailed derivation): Let Acc(retrained;w/;Te) denote the
accuracy of the CBM with (w/) the trigger. We can establish an upper bound for the decrease in
accuracy as follows:

Acc(retrained;w/o;Te) −Acc(retrained;w/;Te) ≤ p ·∆Acc,

where p is the injection rate, and ∆Acc is the average decrease in accuracy for a data point with
the trigger. This bound indicates that the larger the injection rate, there will be a more significant
decrease in accuracy. See Algorithm 2 for the pseudocode about test time CAT in Appendix A.

5 CAT+

5.1 ITERATIVE POISONING STRATEGY

In the CAT+ framework, we introduce an iterative poisoning algorithm to enhance the backdoor
attack. The key idea is to iteratively select a concept and apply a poisoning operation to maximize
the impact on the target class during training. Let D denote the training dataset, and Pc be the set of
possible operations on a concept, which includes setting the concept to zero or one.

We define the set of candidate trigger concepts as c, and for each iteration, we choose a concept
cselect ∈ c and a poisoning operation Pselect ∈ Pc. The objective is to maximize the deviation in the
label distribution after applying the trigger. This is quantified by the function Z(D; cselect;Pselect),
which measures the change in the probability of the target class after the poisoning operation.

The function Z(·) is defined as follows:

(i) Let n be the total number of training samples, and ntarget be the number of samples from the
target class. The initial probability of the target class is p0 = ntarget/n.
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Dataset Original
task accuracy (%)

Task accuracy (%) Attack success rate (%) Injection
rate (%)CAT CAT+ CAT CAT+

80.39 80.26 24.36 77.65 2%
CUB 80.70 78.22 78.82 35.90 87.51 5%

75.03 75.53 59.28 93.01 10%
83.00 82.87 31.43 25.32 2%

AwA 84.68 80.87 80.62 50.03 45.37 5%
76.13 76.99 64.80 65.32 10%

Table 1: Test accuracy and attack success rate under different attack methods on various datasets.

(ii) Given a modified dataset ca = D; cselect;Pselect, we calculate the conditional probability of the
target class given ca as p(target|ca) = H(target(ca))/H(ca), where H is a function that computes
the overall distribution of labels in the dataset.

(iii) The Z-score for ca is defined as:

Z(ca) = Z(cselect, Pselect) =
[
p(target|ca) − p0

]
/

[
p0(1− p0)

p(target|ca)

]
(4)

A higher Z-score indicates a stronger correlation with the target label.

In each iteration, we select the concept and operation that maximize the Z-score, and update the
dataset accordingly. The process continues until |c̃| = |e|, where c̃ represents the set of modified
concepts. Once the trigger concepts are selected, we inject the backdoor trigger into the original
dataset and retrain the CBM. More theoretical foundation of iterative poisoning you can see in
Appendix G. See Algorithm 3 for the pseudocode about train time CAT+ in Appendix A.

6 EXPERIMENTS AND RESULTS

6.1 DATASETS AND MODELS

Dataset. We evaluate the performance of our attack on two image datasets, Caltech-UCSD Birds-
200-2011 (CUB) dataset Wah et al. (2011) and Animals with Attributes (AwA) dataset Xian et al.
(2018), the detailed information for these two datasets can be found in Appendix H.

Model. We use a pretrained ResNet50 He et al. (2016) as the backbone. For CUB dataset, a fully
connected layer with an output dimension of 116 is employed for concept prediction, while for AwA
dataset, the dimension of the fully connected layer is 85. Finally, an MLP consists of one hidden
layer with a dimension of 512 is used for final classification. For more details on experiment settings,
see the Appendix I.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Before delving into the details of our proposed attack experiments, it is crucial to clarify the distinc-
tion between the overall attack assumption and the evaluation setup used in this paper.

Attack Assumption: In a real-world scenario, the attacker does not have the capability to directly
manipulate the concept vector during testing time. Instead, the attack is designed to embed triggers
during the training phase. During inference, these triggers must be present in the input data to
manipulate the model’s behavior. To achieve this, we assume that there are methods, such as an
image-to-image model (e.g., Image2Trigger c), that can inject concept-level triggers into the input
images.

Evaluation Setup: For the purpose of evaluating the effectiveness and stealthiness of our attack,
we assume that the attacker can add triggers to the concept vector during testing. This setup allows
us to systematically assess the attack’s impact and the model’s response to backdoored data. It is
important to note that this evaluation setup is a controlled environment and does not fully reflect the
real-world constraints of the attack. In practice, the triggers would need to be embedded in the input
images using techniques like Image2Trigger c, as discussed in the Section 7.

7
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Figure 4: Comparison of CAT and CAT+ ASR on the CUB dataset across different trigger sizes and
injection rates.

6.2.1 ATTACK PERFORMANCE EXPERIMENT

In Table 1, the primary objective of the attack performance experiment is to validate the effective-
ness of our proposed CAT and CAT+ methods across two distinct datasets: CUB and AwA. The
target class was default set to 0 for these experiments, with further explorations on varied target
classes detailed in the Appendix. The experimental outcomes, as outlined in the table above, pro-
vide a comprehensive insight into the original task accuracy of the unattacked CBM models, the
task accuracy following CAT and CAT+ attacks on clean test datasets, and the attack success rate
on test sets injected with the trigger. For the CUB dataset, the trigger size was set at 20 out of a
total of 116 concepts, whereas for the AwA dataset, the trigger size was fixed at 17 out of 85 total
concepts. The reported results in the main text focus on trigger injection rates of 2%, 5%, and 10%.
Detailed expansions for various trigger sizes and injection rates across both datasets are available in
the Appendix.

Original Task Accuracy vs. Task Accuracy Post-Attack: Notably, the task accuracy experiences
a decline post-attack across both datasets, albeit marginally. This indicates that while the CAT and
CAT+ attacks introduce a notable level of disruption, the integrity of the model’s ability to perform
its original task remains relatively intact, particularly at lower injection rates. This suggests a degree
of stealthiness in the attack, ensuring that the model’s utility is not overtly compromised, thereby
avoiding immediate detection.

Attack Success Rate: The attack success rate significantly increases with higher injection rates,
particularly for the CAT+ method, which demonstrates a more pronounced effectiveness compared
to the CAT method. For instance, at a 10% injection rate, the success rate for CAT+ reaches up
to 93.01% on the CUB dataset and 65.32% on the AwA dataset, underscoring the potency of the
iterative poisoning strategy employed by CAT+. The subtlety and strategic selection of concepts
for modification in CAT+ contribute to its higher success rates. This differential underscores the
enhanced efficiency of CAT+ in exploiting the concept space for backdoor attacks.

Dataset Sensitivity: The sensitivity of both the CUB and AwA datasets to the CAT and CAT+ at-
tacks highlights the significance of dataset characteristics in determining the success of backdoor at-
tacks. Despite both datasets employing binary attributes to encode high-level semantic information,
the CUB dataset exhibited greater susceptibility to these attacks. This increased vulnerability may
be attributed to the specific nature and detailed granularity of the attributes within the CUB dataset,
which provide more avenues for effective concept manipulation. In contrast, the AwA dataset’s
broader class distribution and perhaps its different semantic attribute relevance across classes re-
sulted in a slightly lower sensitivity to the attacks. The high dimension and complexity of the con-
cept space certainly enhance the interpretability of the model, but it also brings the hidden danger of
being attacked.

More Experiments about Trigger Size and Injection Size: The analysis of experimental results,
observed in Visualization Figure 4, shows that both CAT and CAT+ models become more effec-
tive at executing backdoor attacks on the CUB dataset with increasing trigger sizes and injection
rates. Specifically, the CAT+ model significantly outperforms the CAT model, achieving notably
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Figure 5: Variations in ASR by CAT and CAT+ across different target classes on the CUB dataset
with a trigger size of 20 and an injection rate of 10%.

higher success rates, especially at larger trigger sizes and higher injection rates. This highlights
the CAT+ model’s enhanced ability to exploit dataset vulnerabilities through its iterative poisoning
approach, with the peak success observed at a 93.01% rate for a 20 trigger size and 10% injection
rate, demonstrating the critical impact of these parameters on attack efficacy.

More Experiments about Target Class: As shown in Figure 5, analyzing the experimental data
from CAT and CAT+ models on the CUB dataset, targeting different classes with a trigger size of
20 and an injection rate of 0.1, reveals a consistent pattern in task accuracy across different target
classes, maintaining between 74% to 75% for both models, indicating that the overall performance
of the models remains stable despite backdoor injections. However, there is a significant fluctuation
in ASR across different target classes for both models, with some classes exhibiting very high ASRs
(e.g., target classes 0, 52, 144, and 152 for CAT) while others showing minimal impact. Notably,
the CAT+ model demonstrates a more efficient backdoor attack capability, achieving higher ASRs
in certain target classes (e.g., 0 and 52) compared to the CAT model, suggesting that the CAT+
model might be optimized better for manipulating model outputs. Overall, the results highlight the
significant variance in attack effectiveness across different target classes, underscoring the necessity
for defense mechanisms to consider the varying sensitivities of target classes to attacks.

6.2.2 STEALTHINESS EVALUATION

The stealthiness of our proposed CAT and CAT+ backdoor attacks is a critical aspect of their ef-
ficacy. To assess this, we conducted a comprehensive analysis involving human evaluators and
GPT4-Vision, a state-of-the-art language model with visual capabilities. A two-part experiment
was designed to evaluate the stealthiness. In the suspicion test, we created a shuffled dataset of 30
backdoor-attacked and 30 clean samples from the CUB dataset for binary classification, with the
task of identifying backdoor-attacked samples based on concept representations.

For human evaluation (Appendix L), three computer vision experts were recruited. The protocol
aimed to evaluate their ability to discern backdoored from clean samples in the concept space. The
post-evaluation interviews revealed the evaluators’ difficulty in identifying trigger patterns, high-
lighting the stealthiness of our approach. Specifically, Human-1 achieved an F1 score of 0.674,
while Human-2- and Human-3 struggled with much lower F1 scores of 0.340 and 0.061, respec-
tively. In the LLM evaluation (Appendix M), GPT4-Vision was tasked with detecting backdoor
attacks in the concept space, a more complex task than traditional image-based detection. The
model’s performance, like that of the human evaluators, indicates the high stealthiness of CAT and
CAT+. GPT4v-1, GPT4v-2, and GPT4v-3 had F1 scores of 0.605, 0.636, and 0.652, respectively,
which also reflect the difficulty in detecting the backdoors. The binary classification results for
human and LLM evaluations are presented in Table 18 in the Appendix L.

9
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7 LIMITATION AND ANALYSIS

Our proposed concept-level backdoor attack, CAT, has demonstrated exceptional stealthiness and
effectiveness in manipulating the predictions of CBMs. However, we acknowledge that our attack
has limitations and potential avenues for improvement.

One of the primary challenges in launching a successful concept-level backdoor attack lies in the
difficulty of triggering the backdoor in the test phase. Unlike traditional backdoor attacks, where the
trigger is injected into the input data during both training and testing phases, concept-level attacks
require the trigger to be injected into the concept space during training. However, during testing,
we can only input the image, without direct access to the concept space, but we can still achieve our
attack goals by mixing poisonous datasets embedded with triggers into the training set, without the
need to directly manipulate the concept layer.

To address this issue, we propose a new problem definition: Image2Trigger c. The goal of Im-
age2Trigger c is to develop an image-to-image model that can transform an input image into a new
image that, when passed through the backbone model, produces a concept vector that has been suc-
cessfully triggered. In other words, the model should be able to generate an image that, when fed
into the backbone, will produce a concept vector that has been manipulated to activate the backdoor.

Formally, we define the Image2Trigger c problem as follows:

Given an input image x, a backbone model g, and a target concept vector ctc, the goal is to find an
image-to-image model F that can generate an image x′ such that g(x′) = ctc where ctc is the target
concept vector that has been manipulated to activate the backdoor.

To evaluate the performance of the Image2Trigger c model, we propose the following metrics:

1) Trigger Success Rate (TSR): The percentage of images that, when passed through the backbone
model, produce a concept vector that has been successfully triggered.

2) Image Similarity (IS): A measure of the similarity between the original image x and the gener-
ated image x′. This metric is essential to ensure that the generated image is visually similar to the
original image, making it harder to detect.

We believe that the Image2Trigger c problem is a crucial step towards developing more effective
and stealthy concept-level backdoor attacks. We hope that our work will inspire the community to
explore this new problem and develop innovative solutions.

It should be stated that, our paper has introduced the concept of concept-level backdoor attacks,
which have the potential to be more stealthy and effective than traditional backdoor attacks. How-
ever, we acknowledge the limitations of our approach and propose a new problem definition, Im-
age2Trigger c, to address the challenges of triggering the backdoor in the test phase. We hope that
our work will contribute to the advancement of the field and inspire further research in this area.

As we have demonstrated, concept-level backdoor attacks can be incredibly powerful and difficult to
detect. However, we believe that there is still much to be explored in this area, and we hope that our
work will serve as a catalyst for further research. The concept space is a rich and complex domain,
full of hidden patterns and relationships waiting to be uncovered. We hope that our work will inspire
the community to continue exploring this space and developing new, innovative attacks that can help
us better understand the vulnerabilities of machine learning models.

8 CONCLUSION

In conclusion, our exploration into concept-level backdoor attacks via CAT and CAT+ methodolo-
gies on CBMs has unveiled a novel and potent vector for introducing stealthy and effective manip-
ulations within deep learning models. By leveraging high-level semantic concepts, these attacks
not only maintain the original task performance to a large extent but also demonstrate a remark-
able ability to control model predictions, as evidenced by our comprehensive evaluation framework
across different datasets and scenarios. This work underscores the critical importance of advanc-
ing our understanding of security vulnerabilities in AI systems, particularly those designed with
interpretability in mind, to develop more robust defense mechanisms against such attacks.
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A PSEUDOCODE

This appendix provides the pseudocode for the training and testing procedures of CAT (Categorical
Algorithm Training) and its enhanced version, CAT+ in Algorithm 1, Algorithm 2 and Algorithm 3.

Algorithm 1: Train Time CAT
1: Input: Clean dataset D, cache ataset Dcache, target label ytc, trigger size |e|, injection rate p,

poisoning function Te

2: Output: Poisoned dataset D′, compromised model f
3: // Concept Filtering
4: β̂ ← Fit a regressor on Dcache to obtain coefficients
5: e← Select |e| concepts with smallest |β̂i|
6: // Data-Driven Attack Pattern
7: c̃← e based on dataset sparsity
8: Dtc ← Subset of D with label ytc
9: Dadv ← Randomly select p× |D| samples from D −Dtc

10: // Trigger Injection
11: D̃adv ← Apply Te to Dadv

12: D′ ← D + D̃adv −Dadv

13: // Model Training
14: f ← A(D′) // Train model using the poisoned dataset
15: return D′, f

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2: Test Time CAT
Data: Retrained CBM f , clean test dataset Dtest, cache dataset Dcache, trigger size |e|, trigger

concepts e, trigger c̃, target class ytc
Result: Acc(retrained;w/o;Te), Acc(retrained;w/;Te), ∆Acc, p

1 // Test Time I: No Trigger;
2 Acc(retrained;w/o;Te) ← Evaluate f on Dtest;
3 // Test Time II: With Trigger;
4 D′

test ← Dtest without samples labeled as ytc;
5 Dcache ← Te(D′

test);
6 Acc(retrained;w/;Te) ← Evaluate f on Dcache;
7 return Acc(retrained;w/o;Te), Acc(retrained;w/;Te);

Algorithm 3: Train Time CAT+
Input: Clean dataset D, target label ytc, trigger size |e|, concept set c, operation set Pc

Output: D′, f
1 // Initialization;
2 c̃← ∅, p0 ← Fraction of samples with label ytc in D;
3 while |c̃| < |e| do
4 Zmax ← 0, cselect ← ∅, Pselect ← ∅;
5 for c ∈ c, P ∈ Pc do
6 ca ← Apply operation P to concept c in D;
7 p(target|ca) ← Calculate conditional probability of ytc in ca;
8 Z(c, P )← Compute Z-score using Equation (1);
9 if Z(c, P ) > Zmax then

10 Zmax ← Z(c, P );
11 cselect ← c, Pselect ← P ;
12 end
13 end
14 c̃← c̃ ∪ {cselect};
15 D ← Apply Pselect to concept cselect in D;
16 end
17 // Backdoor Injection and Model Retraining;
18 D′ ← Inject trigger c̃ into D;
19 f ← A(D′) // Train model using the poisoned dataset;
20 return D′, f ;

B EFFECTIVENESS AND REASONABLENESS OF ATTACK FORMULATION

We prove that the attack formulation is effective and reasonable, and that it can achieve its intended
goal of maximizing the prediction difference while keeping the prediction label unchanged.

Lemma 1. For any concept vectors c and c⊕ c̃, if argmax f(c) = argmax f(c⊕ c̃) = y, then:

ΣDj∈D(f(c)− f(c⊕ c̃)) ≤ 0 (5)

Proof. Recall that our attack objective function as following:

max
Dj∈D

ΣDj (f(c)− f(c⊕ c̃)) s.t. argmax f(c) = argmax f(c⊕ c̃)) = y, (6)

we know that f(c) and f(c⊕ c̃) are both maximized at y. Therefore, ∀ ϵ1j , ϵ2j ≥ 0,∃ c̃, s.t.

f(c) = y + ϵ1j (7)

f(c⊕ c̃) = y + ϵ2j (8)
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where ϵ1j and ϵ2j are non-negative, j = 1, 2, · · · , J . Therefore, we have:

ΣDj∈D(f(c)− f(c⊕ c̃)) = ΣDj∈D(ϵ
1
j − ϵ2j ) ≤ 0 (9)

Theorem 2. If the attack formulation can find a concept vector c and c⊕c̃ such that argmax f(c) =
argmax f(c ⊕ c̃) = y, then the attack formulation can maximize the prediction difference, but
predicts the same label when the trigger is not activated.

Proof. By Lemma 1, we know that if argmax f(c) = argmax f(c⊕ c̃) = y, then ΣDj∈D(f(c)−
f(c⊕ c̃)) ≤ 0. Therefore, if the attack formulation can find a concept vector c and c⊕ c̃ such that
argmax f(c) = argmax f(c ⊕ c̃) = y, then the attack formulation can maximize the prediction
difference.

We proved that the attack formulation is effective and reasonable, and that it can achieve its intended
goal of maximizing the prediction difference while keeping the prediction label unchanged.

C PROOF OF MINIMAL PERFORMANCE DEGRADATION (WITHOUT TRIGGER)

To prove that the retrained CBM’s performance on the original dataset D is minimally affected
when the trigger is not activated, we consider the following. Let fθ(·) denote the CBM’s prediction
function before retraining, and fθ̃(·) denote the retrained model. The accuracy of the original model
on D is Accoriginal = ED[I{fθ(c)=y]}(c, y). Similarly, the accuracy of the retrained model without
the trigger is Acc(retrained;w/o;Te) = ED[I{fθ̃(c)=y]}(c, y). Assuming that the retraining process
does not significantly alter the model’s behavior on clean data, we have:

Acc(retrained;w/o;Te) −Accoriginal

≈ ED[I{fθ̃(c)=y]}(c, y)− ED[I{fθ(c)=y]}(c, y)

= ED[I{fθ̃(c) ̸=fθ(c)]}(c, y)

≤ P{fθ̃(c) ̸= fθ(c)}
= ϵ,

where ϵ is a small positive value representing the maximum possible difference in accuracy due to
retraining. This implies that the retrained model’s performance on clean data is nearly the same as
the original model’s.

D DERIVATION OF THE UPPER BOUND FOR ACCURACY DECREASE (WITH
TRIGGER)

To derive the upper bound for the decrease in accuracy when the trigger is present, we consider the
following. Let Accci denote the accuracy of the retrained model on data point ci without the trigger,
and Acc(ci;Te) denote the accuracy with the trigger. We have:

Acc(retrained;w/o;Te) −Acc(retrained;w/;Te)

= E(ci,yi)∼Dtest
[Accci

]− E(ci,yi)∼Dtest
[Acc(ci;Te)]

= E(ci,yi)∼Dtest
[Accci −Acc(ci;Te

)]

≤ E(ci,yi)∼Dtest
[∆Acc]

= p ·∆Acc,

where p is the fraction of data points with the trigger, and ∆Acc = E(ci,yi)∼Dtest
[Acc(ci;Te)−Accci ]

is the average decrease in accuracy due to the trigger. This upper bound indicates that the decrease
in accuracy is directly proportional to the fraction of data points with the trigger.

In this section, we derive the lower and upper bounds for the success rate of the CAT attack during
the Test Time II phase. Let Acc(retrained;w/o;Te) denote the accuracy of the retrained CBM on clean
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data without the trigger, and Acc(retrained;w/;Te) be the accuracy on data with the trigger activated.
The success rate of the attack is defined as the proportion of instances originally not labeled as ytc
that are misclassified as ytc due to the trigger. Assuming that the trigger is effective, we expect a
significant decrease in accuracy when the trigger is present. Let ∆Acc denote the difference between
the accuracy with and without the trigger:

∆Acc = Acc(retrained;w/o;Te) −Acc(retrained;w/;Te). (10)

The lower bound for the success rate can be derived as:

Success Rate ≥ ∆Acc

1−Acc(retrained;w/o;Te)
. (11)

This bound represents the minimum success rate achievable if all the misclassifications due to the
trigger are instances originally not labeled as ytc. Conversely, the upper bound for the success rate
is given by:

Success Rate ≤ ∆Acc

Acc(retrained;w/o;Te)
. (12)

This bound assumes that all the misclassifications due to the trigger are from instances originally
not labeled as ytc, and no clean instances are misclassified. By evaluating the model’s performance
within these bounds, we can assess the effectiveness of the CAT attack in practice.

E LOWER OR UPPER BOUND FOR BAYESIAN CAT

We will employ Bayesian methods to estimate the probability of trigger activated in CAT, and use
this to optimize our experimental attempts in further sections. We assume that θ is the probability
of trigger activated in CAT and θ ∈ [0, 1]. Assuming that we have conducted N backdoor injection
experiments on the dataset and the backdoor was triggered k times, where N and k are given. Now
we will derive the prior distribution for θ. Clearly, the activation of the trigger will result in one of
two states: 1 or 0. The Beta distribution is defined over the interval [0,1] and is a conjugate prior
for the binomial distribution, allowing us to obtain a closed-form solution. Therefore, we will use
the Beta distribution here, i.e., θ ∼ Beta(α, β). Note that the parameter β here is different from the
regressor f ones. Then the PDF(prior probability density function) for θ using the Beta distribution
can be expressed as follows:

p(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, 0 ≤ θ ≤ 1, (13)

where α, β are the prior parameters, Γ(·) is the Gamma function.

Now we will establish the likelihood function for the parameter θ. We assume that the probability
of triggering a backdoor in each backdoor injection experiment is independent, and through obser-
vation, k out of N experiments are successful. The likelihood function for a binomial distribution
is:

L (θ) = p (k|θ) =
(
N

k

)
θk (1− θ)

N−k (14)

According to Bayes’ theorem, we obtain:

p(θ|k) = L(θ)p(θ)∫ 1

0
L(θ)p(θ) dθ

, (15)

where the denominator is a normalization constant and is independent of θ, we can first calculate
the unnormalized posterior distribution and then normalize it by identifying its distribution form.

The unnormalized posterior distribution will satisfy:

p(θ|k) ∝ θk(1− θ)N−k · θα−1(1− θ)β−1

= θα+k−1(1− θ)β+N−k−1

Same with Beta distribution, this distribution form is identified as:

θ|k ∼ Beta(α′, β′), (16)
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where posterior parameters α′ = α+ k, β′ = β +N − k.

Using the posterior distribution we can derive the upper and lower bound of our CAT. Our goal is to
obtain the (1− γ)% confidence interval for θ. Recall the definition of lower or upper bound:

p(θ ≤ θlower) =
γ

2
, p(θ ≤ θupper) = 1− γ

2
(17)

The bounds for θ could be expressed below:

θlower = BetaCDF−1(
γ

2
, α′, β′) (18)

θupper = BetaCDF−1(1− γ

2
, α′, β′), (19)

where the term BetaCDF−1(p, α′, β′) represents the p-th quantile of the Beta distribution with pa-
rameters α′ and β′, and CDF is the cumulative distribution function.

E.1 PARAMETER ESTIMATION

The PDF of beta distribution is formed as:

f(θ;α, β) =
θα−1(1− θ)β−1

B(α, β)
, (20)

where term B(α, β) is the Beta function. We use MLE (Maximum Likelihood Estimation)
to estimate the parameter in beta distribution. Assuming that the observations value of θ
are{θ1, θ2, · · · , θn} and θi ∈ [0, 1]. The likelihood function of Beta distribution is expressed as:

L(α, β) =

n∏
i=1

f (θi, α, β), (21)

and we transform it into logarithm format:
logL(α, β) = Σn

i=1[(α− 1) log(θi) + (β − 1) log(1− θi)]− n logB(α, β), (22)
and the Beta function could be calculated by Gamma function:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

Finally we solve the optimal problems with parameter α, β to meet the requirement:
max logL(α, β) = maxΣn

i=1[(α− 1) log(θi) + (β − 1) log(1− θi)]− n logB(α, β).

F CAT ROBUSTNESS

In our CAT framework, we will not only consider the effectiveness of the attack but also evaluate its
robustness against generalized defenses. Models based on random perturbations tend to have strong
generalization capabilities, and we will derive the probability of activating the trigger even under
random perturbations. Assume that S ∈ S is a random perturbation from perturbation space, the
definition of CAT Robustness could be expressed as below:

R = Pc,S{f(S(c⊕ c̃)) = ytc}, (23)
where term Pc,S represents the joint probability distribution of c and S. In CAT, concept vector c
and perturbation S are random independent variables. So we could decompose the joint probability
distribution into the following expression:

Pc,S = Pc · PS , (24)
then the CAT robustness could be expressed as follows:

R =

∫
C

∫
S
I{f(S(c⊕ c̃)) = ytc}dPc(c)dPS(S) (25)

where equation 25 is a stochastic differential equation. For a fixed concept vector c, the CAT ro-
bustness will be follows:

Rc = PS{f(S(c⊕ c̃)) = ytc|c} (26)
Therefore, the overall CAT robustness is:

R = Ec[Rc] =

∫
C
RcdPc(c) (27)
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G THEORETICAL FOUNDATION OF ITERATIVE POISONING

The iterative poisoning strategy in CAT+ is grounded in the concept of maximizing the impact of the
backdoor trigger while maintaining stealthiness. To formalize this, we first introduce the concept
of information gain to quantify the change in the model’s understanding of the target class after
applying the trigger.

Information Gain: The information gain I(cselect, Pselect) is a measure of the additional informa-
tion the model gains about the target class ytc when the concept cselect is perturbed using operation
Pselect. It can be defined as the mutual information between the target class and the perturbed
concept, given by:

I(cselect, Pselect) = H(ytc)−H(ytc|cselect, Pselect), (28)

where H(ytc) is the entropy of the target class distribution and H(ytc|cselect, Pselect) is the condi-
tional entropy of the target class given the perturbed concept.

Optimal Concept Selection: In each iteration, we aim to maximize the information gain to ensure
that the trigger has the most significant impact on the model’s prediction. To achieve this, we define
the information gain ratio as:

R(cselect, Pselect) =
I(cselect, Pselect)

H(ytc)
, (29)

which represents the relative increase in information about the target class due to the perturbation.

Z-score Revisited: The Z-score Z(cselect, Pselect) introduced earlier is closely related to the infor-
mation gain ratio. In fact, we can show that the Z-score is a monotonic function of the information
gain ratio, such that a higher Z-score corresponds to a higher information gain ratio. This relation-
ship allows us to use the Z-score as a proxy for selecting the optimal concept and operation in each
iteration.

H DATASETS

CUB. The Caltech-UCSD Birds-200-2011 (CUB)Wah et al. (2011) dataset is designed for bird clas-
sification and contains 11,788 bird photographs across 200 species. Additionally, it includes 312
binary bird attributes to represent high-level semantic information. Previous work mostly followed
the preprocessing steps outlined by Koh et al. (2020). They first applied majority voting to resolve
concept disparities across instances from the same class, then selected attributes that appeared in at
least 10 classes, ultimately narrowing the selection to 116 binary attributes. However, in our ex-
periments, we preprocess the data slightly differently. We do not attempt to eliminate the disparity
across instances from the same class, meaning we accept that instances from the same species may
have different concept representations. Additionally, we select high-frequency attributes at the in-
stance level—specifically, we only use attributes that appear in at least 500 instances. Finally, we
retain 116 attributes, with over 90% overlap with the attributes selected by Koh et al. (2020).

AwA. The Animals with Attributes (AwA) Xian et al. (2018) dataset contains 37,322 images across
50 animal categories, with each image annotated with 85 binary attributes. We split the images
equally by class into training and test datasets, resulting in 18,652 images in the training set and
18,670 images in the test set. There is no modification for the binary attributes.

I EXPERIMENT SETTINGS

We conducted all of our experiments on a NVIDIA A40 GPU. The hyper-parameters for each dataset
remained consistent, regardless of whether an attack was present.

During training, we use a batch size of 64 and a learning rate of 1e-4. The Adam optimizer is
applied with a weight decay of 5e-5, alongside an exponential learning scheduler with γ = 0.95.
The concept loss weight λ is set to 0.5. For image augmentations, we follow the approach of
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Koh et al. (2020) with a slight modification in resolution. Each training image is augmented using
random color jittering, random horizontal flips, and random cropping to a resolution of 256. During
inference, the original image is center-cropped and resized to 256. For AwA dataset, We use a batch
size of 128, while all other hyper-parameters and image augmentations remain consistent with those
used for the CUB dataset.

J EXTEND EXPERIMENT RESULTS

In this section, we give more detailed experiment results, and we also conducted our attack exper-
iments across different target classes. Table 2 and Table 3 gives the detailed experiment results
for CUB dataset when the target class is set to 0, we see that CAT+ can achieve high ASR, while
maintain a high performance on clean data, showing the effectiveness of CAT+, even with a small
injection rate (1%). Table 4 and Table 5 shows the detailed experiment results for AwA dataset when
the target class is set to 0, while Table 6 and Table 7 shows the detailed experiment results for AwA
dataset when the target class is set to 2. These results shows that our CAT and CAT+ works well
across different target classes. Table 8 gives the results on CUB dataset with a fixed trigger size and
injection rate, which shows some performance disparity across different target classes.

1% 2% 3% 5% 7% 10%
CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+

2 0.52 3.85 1.27 8.50 1.94 9.58 2.85 14.28 4.49 20.44 7.55 26.65
5 0.23 12.11 0.92 19.99 1.51 24.58 2.01 28.40 4.37 40.42 7.15 42.45
8 2.06 23.09 5.12 36.80 5.97 43.15 7.46 44.26 14.69 55.38 19.17 63.72
10 0.90 18.06 3.57 26.63 6.11 42.21 8.34 47.33 9.39 52.38 16.20 50.78
12 3.85 19.08 11.54 37.23 18.20 49.84 17.80 51.58 28.19 56.52 36.26 64.40
15 3.92 14.10 13.58 24.08 16.78 31.80 22.95 32.43 29.56 38.67 37.46 39.37
17 8.26 22.80 23.18 35.69 29.27 47.76 39.56 54.70 48.32 63.60 52.64 66.69
20 6.89 57.70 24.36 77.65 30.99 84.47 35.90 87.51 48.77 90.16 59.28 93.01
23 6.04 74.76 18.95 84.00 25.45 87.82 26.32 91.92 43.36 87.20 52.41 90.65

Table 2: ASR(%) under different injection rates (1% – 10%) and trigger size (2 – 23) in CUB dataset,
target class 0.

1% 2% 3% 5% 7% 10%
CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+ CAT CAT+

2 80.58 80.70 80.08 80.05 79.08 79.72 78.75 78.51 76.99 77.55 74.56 74.27
5 80.81 80.00 79.92 79.72 80.12 79.50 78.44 78.46 76.94 76.46 78.92 74.68
8 80.95 80.74 79.74 79.75 79.50 79.72 77.94 78.49 77.11 77.55 74.84 75.13

10 80.70 80.43 80.27 80.19 79.51 79.38 78.31 78.31 77.34 77.06 74.82 72.95
12 81.08 80.62 79.93 79.82 79.03 79.22 78.55 77.67 77.42 76.91 74.99 74.85
15 80.72 80.24 80.19 79.88 80.00 78.68 78.34 77.49 77.46 77.08 74.96 74.91
17 80.84 80.51 79.82 79.96 79.20 79.58 78.31 78.29 76.84 77.32 75.53 74.91
20 80.82 80.81 80.39 80.26 79.70 79.93 78.22 78.82 77.46 77.49 75.03 75.53
23 80.57 80.19 80.31 80.43 79.58 79.62 78.72 78.10 77.72 76.96 75.42 74.83

Table 3: Task Accuracy under different injection rates (1% – 10%) and trigger size (2 – 23) of test
in CUB dataset, target class 0. Task Accuracy shows the effectiveness of mapping f in our CATs.
The original task accuracy in CUB is 80.70%.

K MORE EXPERIMENTS

K.1 EXPERIMENTS ON DIFFERENT BACKBONES

We evaluate the attack performance by using another pre-trained vision backbone, Vision Trans-
former (VIT)Dosovitskiy (2020), we resize the input images to 224× 224 to fit the input dimension
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2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 3.14 0.50 7.31 1.54 15.18 4.29
5 5.87 0.48 13.71 1.51 27.67 5.39
8 9.22 1.74 23.35 5.95 41.17 12.02

10 14.26 4.48 26.61 29.70 44.57 47.20
12 24.96 1.13 41.11 41.49 55.17 59.95
15 26.89 2.53 42.30 5.77 59.49 62.74
17 31.43 25.32 50.03 45.37 64.80 65.32

Table 4: ASR (%) under different injection rates (2%, 5%, 10%) and trigger size (2 – 17) in AwA
dataset, target class 0.

2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 83.06 83.09 81.20 81.29 78.48 77.04
5 83.12 83.18 80.88 81.20 76.59 76.53
8 83.02 83.19 80.67 80.87 76.35 76.85

10 83.23 83.20 80.86 81.11 78.64 72.45
12 83.36 82.79 80.70 80.76 76.90 76.68
15 83.37 83.37 80.86 80.93 76.40 76.56
17 83.00 82.87 80.87 80.62 76.13 76.99

Table 5: Task Accuracy under different injection rates (2%, 5%, 10%) and trigger size (2 – 17) in
AwA dataset, target class 0. Task Accuracy shows the effectiveness of mapping f in our CATs. The
original task accuracy for AwA is 84.68%.

of VIT, the results are shown in Table 10. When the pre-trained backbone comes to VIT, our CAT+
still keeps both the stealthiness and high ASR: The lowest task accuracy with no trigger activated is
81.48%, which guarantees the stealthiness of our attack, and highest ASR comes to 72.05%. This
experiment claims that our CAT+ adapts different pre-trained backbone and portability.

K.2 EXPERIMENTS ON MORE DATASETS

We also evaluate our attack performance on Large-scale Attribute Dataset (LAD) Zhao et al. (2019),
which contains 78,017 images in total. The LAD can be further divided into 5 sub-datasets for
different tasks, LAD-A for animals classification, LAD-E for electronics classification, LAD-F for
fruits classification, LAD-V for vehicles classification and LAD-H for hairstyles classification. The
statistics of the five sub-datasets are summarized in Table 11. For each class in LAD, there are 20
images labeled with binary attributes, while the remaining images are unlabeled with attributes, to
handle this, we labeled the attributes for those attribute-unlabeled images by:

cAij = I(p < cAij), (30)

where cAij is the j-th concept of class i for dataset A, cAij = 1
ni

∑
cAij is the average value of this

concept, ni refers to the number of attribute-labeled images, and p is a random variable sampled
from a uniform distribution on the interval [0, 1].

Then we follow the same experiment settings in I and evaluate the attack performance in each sub-
datasets except for LAD-H, for the original accuracy of LAD-H is not ideal. The original accuracies
for each sub-datasets are shown in Table 11. We evaluate the performances of CAT and CAT+ on
LAD-A and LAD-E, the results are shown in Table 12 13, 14, 15, and we evaluate the performance
of CAT on LAD-F and CAT+ on LAD-V, the results are shown in 16, 17. By evaluating each
sub-dataset, we observed a significant increase in attack success rates (ASR) as the injection rate
increased, particularly with the CAT+ method, which demonstrated more pronounced effectiveness
compared to the CAT method.
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2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 2.27 2.09 3.18 4.55 10.35 13.46
5 5.40 5.33 12.25 12.28 22.03 24.31
8 13.13 13.69 20.99 24.59 39.67 44.93

10 14.32 12.76 25.17 27.02 43.79 47.56
12 21.22 19.68 29.12 51.31 49.15 58.78
15 34.95 40.08 51.45 56.88 74.22 75.21
17 44.34 44.18 62.42 64.85 79.22 79.13

Table 6: ASR (%) under different injection rates (2% – 10%) and trigger size (2 – 17) in AwA
dataset, target class 2.

2% 5% 10%
CAT CAT+ CAT CAT+ CAT CAT+

2 82.79 82.76 81.51 79.86 76.89 74.44
5 82.91 82.81 81.26 78.81 76.83 74.49
8 83.00 82.64 81.47 80.03 77.03 75.11

10 83.42 82.59 81.81 79.59 77.16 73.75
12 83.20 82.21 81.03 74.07 77.41 74.32
15 83.15 82.28 81.42 79.35 76.61 74.86
17 83.26 82.51 81.01 78.65 76.61 74.32

Table 7: Task Accuracy (%) under different injection rates (2% – 10%) and trigger size (2 – 17) in
AwA dataset, target class 2. The original task accuracy for AwA is 84.68%.

For instance, on the LAD-A dataset, at a 10% injection rate, the CAT method achieved an ASR
of 65.87%, while the CAT+ method reached an ASR of 93.82%. This difference highlights the
enhanced efficiency of the CAT+ method, which benefits from its iterative poisoning strategy and the
subtle selection of concepts for modification. Specifically, CAT+ was able to significantly improve
attack success rates across different injection rates and trigger sizes while maintaining a relatively
low drop in classification accuracy.

On the LAD-E dataset, where the original accuracy was 77.82%, both CAT and CAT+ showed
similar trends. Despite the increased challenge posed by the LAD-E dataset, the CAT+ method still
achieved a high ASR, particularly at a 10% injection rate and larger trigger sizes. In this case, CAT+
achieved an ASR of 84.56%, compared to 50.33% for the CAT method, further underscoring the
superior performance of CAT+.

For the LAD-F dataset, with an original accuracy of 89.59%, we found that even at low injection
rates (such as 2%), the CAT+ method exhibited a high ASR, reaching as high as 96.69%. This result
further validates the broad applicability and strong effectiveness of the CAT+ method across various
tasks and datasets.

On the LAD-V dataset, the performance of both the CAT and CAT+ methods followed a similar
pattern, but the CAT+ method consistently achieved higher ASR, particularly at higher injection
rates, where the ASR reached over 80%. This indicates that CAT+ performs especially well on this
dataset.

Overall, the CAT+ method consistently demonstrated a significant advantage in attack success rate
across most sub-datasets. These results confirm the superior effectiveness of the CAT+ method,
especially in multi-task learning scenarios with high injection rates and larger trigger sizes. In
comparison, although the CAT method also achieved relatively high attack success rates in some
cases, the CAT+ method’s overall superiority across multiple datasets was more pronounced.
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Task
Accuracy(%) ASR(%)

Target Class CAT CAT+ CAT CAT+
0 75.03 75.53 59.28 93.01
4 74.54 74.73 1.85 0.10
8 75.06 75.56 74.24 52.63

12 74.94 75.72 53.38 1.08
16 75.16 75.72 40.91 68.81
20 75.34 75.58 1.28 12.02
24 74.37 74.91 0.52 54.48
28 74.27 74.65 35.48 17.87
32 74.70 75.58 37.68 2.32
36 74.96 75.27 37.99 6.50
40 74.46 74.96 42.35 10.40
44 74.89 75.22 17.10 23.77
48 75.09 75.73 49.77 4.51
52 74.68 74.97 82.15 95.11
56 75.22 75.23 70.99 57.36
60 74.97 75.37 2.60 24.01
64 74.85 74.58 43.63 84.27
68 75.09 75.58 39.30 9.63
72 74.99 75.34 47.99 59.06
76 74.53 74.06 46.16 30.55
80 75.03 75.61 62.51 3.71
84 74.49 74.87 9.82 75.83
88 74.75 74.66 51.13 32.44
92 75.34 75.60 39.68 72.71
96 74.82 75.20 17.73 11.64

Table 8: Task Accuracy and ASR for differ-
ent Target Classes from 0 to 196. The test
dataset is CUB, trigger size is 20 and the in-
jection rate is 10% (1 of 2).

Task
Accuracy(%) ASR(%)

Target Class CAT CAT+ CAT CAT+
100 74.94 75.42 48.96 62.16
104 74.84 74.92 1.07 0.07
108 74.49 74.63 53.02 11.00
112 73.92 74.46 10.76 40.42
116 75.35 75.51 11.50 18.83
120 74.58 74.59 11.49 12.58
124 74.97 75.70 0.24 61.04
128 74.66 75.15 10.15 54.34
132 74.99 75.66 9.54 14.23
136 74.73 74.99 2.95 0.83
140 74.58 74.97 7.86 64.01
144 75.28 75.35 90.61 9.94
148 74.78 75.42 0.36 76.79
152 75.09 75.22 80.46 17.19
156 74.54 75.94 1.37 35.98
160 74.99 75.16 1.80 20.07
164 74.85 75.56 13.78 6.61
168 75.11 75.83 50.44 50.70
172 74.70 74.73 29.96 66.69
176 74.77 74.92 2.29 0.03
180 74.91 74.58 4.35 76.96
184 75.16 75.66 27.93 5.95
188 74.44 75.73 57.41 21.74
192 74.25 75.75 41.39 46.30
196 74.73 75.80 23.72 20.96

Table 9: Task Accuracy and ASR for differ-
ent Target Classes from 0 to 196. The test
dataset is CUB, trigger size is 20 and the in-
jection rate is 10% (2 of 2).

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

8 86.54 9.89 85.42 16.12 83.02 20.23
10 86.24 7.41 85.23 13.60 82.79 22.28
12 86.57 11.31 85.52 21.56 83.03 31.75
15 86.76 20.96 85.26 30.76 82.62 42.30
17 86.66 43.86 85.31 58.48 82.10 70.85
20 86.40 48.47 84.62 60.27 81.48 72.05

Table 10: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger
size in CUB dataset, target class 0, vision backbone is a pretrained VIT, the attack mode is fixed to
CAT+, the Original Accuracy is 87.30%.

L HUMAN EVALUATION DETAILS

L.1 HUMAN EVALUATION PROTOCOL

The human evaluators were provided with the following instructions:

1. Dataset Description: You will be presented with a dataset consisting of 60 concept repre-
sentations, each associated with an input sample (x) and its corresponding class labels (c,
y). Among these, 30 concept representations have been backdoored using a concept-based
trigger, while the remaining 30 are clean.
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Training Size Test Size # of Concept # of Class Original ACC(%)
LAD-A 9280 3960 123 50 88.54
LAD-E 12916 5555 75 50 77.82
LAD-F 13606 5850 58 50 89.59
LAD-V 11979 5101 81 50 84.30
LAD-H 6829 2941 22 30 58.25

Table 11: Statistics and Original Task Accuracy(%)of each LAD sub-datasets

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.95 8.13 85.68 10.35 81.94 21.30
5 87.65 33.04 85.81 30.14 81.67 33.40
8 87.80 55.51 85.93 57.29 81.84 63.09

10 87.78 61.42 85.96 60.51 82.42 65.87
12 87.58 50.91 85.76 54.47 81.84 62.26
15 87.47 55.54 85.76 60.12 82.40 61.58
17 88.16 60.25 86.09 61.32 82.42 65.21
20 87.95 68.66 85.73 74.33 81.92 14.45

Table 12: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2-20) in LAD-A dataset, target class 0, the attack mode is CAT, the Original Accuracy is 88.54%.

2. Task: Your task is to identify which data has been backdoored.
3. Evaluation Criteria: Analyze the concept space for any subtle modifications that might

indicate the presence of a backdoor trigger. Avoid relying on the input samples or class
labels.

L.2 POST-EVALUATION INTERVIEWS AND INSIGHTS

After completing the evaluation, the evaluators were interviewed to gather their thoughts and insights
on the task. The interview questions included:

1. Q1: Describe your approach to distinguishing between backdoored and clean concept rep-
resentations.

2. Q2: Did you notice any specific patterns or changes in the concept space that helped you
identify the backdoor samples?

3. Q3: How difficult was it to identify the backdoor attacks compared to your initial expecta-
tions?

4. Q4: What factors do you think contributed to the difficulty in detecting the backdoor in the
concept space?

Evaluator 1:

1. A1: I focused on the relationships between concepts and images.
2. A2: The trigger concepts seemed to have a more pronounced effect, but no consistent

pattern was evident.
3. A3: It was much more challenging than expected due to the subtlety of the changes.
4. A4: There were so many concepts that I got distracted, and a lot of datasets were actually

mislabeled. It felt like looking for a needle in a haystack. It was so painful. It’s like
pouring Coca-Cola into Pepsi.

Evaluator 2:

1. A1: I looked for inconsistencies or anomalies that didn’t align with the expected concept
representation.
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.22 14.53 85.45 19.76 83.41 32.54
5 88.16 12.86 86.46 31.23 83.16 37.69
8 88.38 37.45 85.66 43.26 83.06 52.48

10 87.47 35.26 86.16 48.38 82.78 64.72
12 87.65 53.92 85.48 69.29 81.92 69.24
15 87.90 64.56 86.16 67.69 82.42 79.67
17 87.73 45.19 85.58 63.07 83.08 74.93
20 87.20 53.48 86.36 77.26 82.85 77.03

Table 13: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2 - 20) in LAD-A dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 88.54%.

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 76.24 7.70 74.62 16.59 71.05 35.22
5 76.33 16.52 74.60 30.39 70.62 50.33
8 76.62 36.96 75.03 59.33 74.23 73.00

10 76.42 55.54 74.60 71.26 71.07 78.63
12 76.47 42.56 74.51 70.96 71.11 81.76
15 76.74 51.69 74.58 69.57 70.98 75.19

Table 14: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2 - 15) in LAD-E dataset, target class 0, the attack mode is CAT, the Original Accuracy is 77.82%.

2. A2: There were slight shifts in emphasis on certain concepts, but no clear pattern.
3. A3: It was harder than anticipated due to the almost imperceptible changes.
4. A4: The subtlety of the trigger and the high dimensionality of the concept space made it

challenging.

Evaluator 3:

1. A1: I searched for deviations from expected concept co-occurrence patterns and structure.
2. A2: Minor disruptions in co-occurrence patterns were observed, but not consistent enough.
3. A3: It was significantly more difficult than expected due to the stealthiness of the changes.
4. A4: The trigger’s stealthiness and the complexity of the concept space made detection

difficult.

M LLM EVALUATION DETAILS

The LLM evaluation protocol involved the following steps:

1. Dataset Preparation: The 60 concept representations (30 backdoor-attacked and 30
clean), along with their corresponding input samples (x) and class labels (c, y), were pro-
vided as input to GPT4-Vision.

2. Prompt Design: The prompt for GPT4-Vision was, ”image This is the concept of this
image what i give: concept: weight, determine if it has been poisioneed. If poisioned,
output 1; otherwise, output 0.”

N CAT+ CONTINUOUSLY EXTENSION

Following the same notation from CAT+ in previous discussion, and assuming that there are cnum
types of values in the concept, the continuously CAT+ function Z(·) is defined as follows:
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 83.96 3.86 74.42 37.39 71.97 57.91
5 76.18 26.17 74.83 40.31 71.40 56.91
8 76.56 52.43 74.96 65.31 72.06 75.52

10 76.76 29.67 74.91 46.50 71.76 70.85
12 76.67 22.76 74.96 37.33 71.52 45.07
15 77.19 12.67 74.80 28.31 72.33 35.93

Table 15: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2 - 15) in LAD-E dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 77.82%.

2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 87.86 23.95 85.40 33.74 82.72 47.41
5 87.95 75.89 85.42 77.59 82.58 84.56
8 87.40 94.61 85.62 97.22 82.84 96.69

10 87.90 90.04 85.81 93.80 82.60 93.82

Table 16: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2 - 10) in LAD-F dataset, target class 0, the attack mode is CAT, the Original Accuracy is 89.59%.

(i) Let n be the total number of training samples, and ntarget be the number of samples from the
target class. The initial probability of the target class is p0 = ntarget/n.

(ii) Given a modified dataset ca = D; cselect;Pselect, we calculate the conditional probability of the
target class given ca as p(target|ca) = H(target(ca))/H(ca), where H is a function that computes
the overall distribution of labels in the dataset.

(iii) Calculate each concept distance Zcselect in selected concept:

Zcselect = Σ
i=cnum(ci−cselect)

2

i=0 (31)

(iv) The Z-score for ca is defined as:

Z(ca) = ZcselectZ(cselect, Pselect) = Zcselect

[
p(target|ca) − p0

]
/

[
p0(1− p0)

p(target|ca)

]
(32)

O PRELIMINARY OF DEFENSE AND RESULTS

O.1 ANALYSIS OF NEURAL CLEANSE DEFENSE AGAINST CAT

In this study, we evaluated the effectiveness of Neural Cleanse in defending against CAT attacks.
The backdoored model was configured with the following parameters: CAT Attack, injection rate =
0.1, trigger size = 20, dataset = CUB, and target class = 0. Neural Cleanse is a technique designed
to detect and mitigate backdoor attacks in deep learning models by analyzing the model’s behavior
on specific inputs and identifying potential backdoors.

We applied Neural Cleanse to import the backdoored model and clean test data. Through reverse
engineering, we generated trigger and mask images for all categories. Subsequently, we calculated
the L1-norm of the reverse-engineered triggers and used this to compute the median, Median Ab-
solute Deviation (MAD), and anomaly index for each category. The anomaly index helps identify
potential backdoor target classes by flagging categories with high deviations from the norm.

Due to the large number of classes (200), we present a subset of the results in Table 19.

Neural Cleanse flagged labels 44 and 16 as anomalies due to their anomaly indices exceeding 2.0.
However, this does not align with the true target class, which is label 0. For further analysis, the
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2% 5% 10%
ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%)

2 83.96 3.86 82.18 7.33 79.59 13.69
5 83.65 11.23 81.45 22.14 78.06 32.13
8 83.30 55.32 81.20 67.65 78.69 81.24

10 83.91 64.13 82.87 79.68 79.40 80.14
12 83.96 75.48 82.42 83.59 78.71 90.57
15 83.98 72.30 81.63 81.59 79.14 85.43

Table 17: Task Accuracy(%) and ASR(%) under different injection rates(2% - 10%) and trigger size
(2 - 15) in LAD-V dataset, target class 0, the attack mode is CAT+, the Original Accuracy is 84.30%.

Model Accuracy Precision Recall F1 Score
Human-1 0.517 0.508 1.000 0.674
Human-2 0.483 0.471 0.267 0.340
Human-3 0.483 0.333 0.033 0.061
GPT4v-1 0.433 0.464 0.867 0.605
GPT4v-2 0.467 0.483 0.933 0.636
GPT4v-3 0.483 0.492 0.967 0.652

Table 18: Classification Metrics Comparison

Label L1-norm Anomaly Index
0 25232.596 1.038
1 25148.714 0.558
2 25489.729 2.509
3 25261.745 1.205
5 25106.957 0.319
6 25182.588 0.752
7 24880.898 0.975
8 25053.514 0.013
9 24892.678 0.907
10 24867.008 1.054
11 24980.345 0.405
12 25042.376 0.051
13 25349.604 1.707
16 24658.980 2.244
44 24596.369 2.602

Table 19: Anomaly Index for Selected Categories.

mask images, and pattern images obtained through reverse engineering for categories 0, 16, and 44
are visualized in Figure 6.

This failure can be attributed to the unique characteristics of CAT attacks. Unlike conventional
backdoor attacks that manipulate inputs, outputs, or model structures, CAT targets the concept layer
during training. This attack exploits the reliance of CBMs on interpretable representations, making
it distinct and challenging to detect using methods designed for more straightforward backdoor
attacks. The attacker has access to the training data but lacks direct control over the concept space
during inference, leading to subtle and stealthy manipulations that are not easily observable through
standard analysis techniques.

These results suggest that Neural Cleanse may not be effective in defending against CAT attacks.
This highlights the need for developing specialized defense mechanisms that can address the unique
characteristics of concept-level backdoor attacks. Further research is required to better protect CBMs
from such sophisticated threats.
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Figure 6: Visualization of Mask Images, and Pattern Images for Classes 0, 16, and 44.

O.2 DEMO ABOUT A DEFENSE METHOD WHICH WE DESIGN

Given an training datasetD = {(x1, c1, y1) , (x2, c2, y2) , · · · , (xn, cn, yn)}, where n is the number
of data. For concept vectors c, we first encode them from text form into embedding, then use
clustering algorithm to cluster them into m groups F j(ci). Then we divide training dataset into
groups following the index of ci to generate m sub-datasets. After preparation for the data, we
individually train our model upon every sub-dataset and acquire sub-classifier f j . In testing time,
every input concept vector divided by the same clustering method into groups and be predicted as a
result. At last, the ensemble result is given by the majority vote through m sub-classifiers. Table 20
shows the result of our prototype.

Clustering Num Original CAT CAT+ ASR(CAT) ASR(CAT+)
Clustering Num 3 83.09 77.79 77.17 30.78↓ 42.75↓
Clustering Num 4 83.03 78.75 78.56 11.55↓ 17.16↓
Clustering Num 5 84.24 79.51 80.76 25.95↓ 16.64↓
Clustering Num 6 84.12 80.43 80.43 23.84↓ 20.12↓

Table 20: The Accuracy (%) for each guard model on clean test data for CUB dataset, the Clustering
Num denotes a parameter we propose to use in our futher defense framework, the Original denotes
to the accuracy when there is no attack. The CAT and CAT+ value refers to the accuracy of defense
model and the ASR refers to attack success rate in different models. The experiment settings: injec-
tion rate is 5%, trigger size is 20, and the original ASR are 44.66% and 89.68% of CAT and CAT+,
respectively.

P THREAT MODEL

In an image classification task within Concept Bottleneck Models, let the datasetD comprise n sam-
ples, expressed as D = {(xi, ci, yi)}ni=1, where ci ∈ RL represents the concept vector associated
with the input xi, and yi denotes its corresponding label. Consider Te is the poisoning function and
(xi, ci, yi) is a clean data from the training dataset, then Te is defined as:

Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc). (33)

The objective of the attack is to guarantee that the compromised model f(g(x)) functions normally
when processing instances characterized by clean concept vectors, while consistently predicting the
target class ytc when presented with concept vectors that contain the trigger c̃. The corresponding
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objective function can be summarized as follows:
max
Dj∈D

ΣDj (f(cj)− f(cj ⊕ c̃))

s.t. f(cj) = f(cj ⊕ c̃)) = ytc,
(34)

where Dj represents each data point in the dataset D, ytc is the target class, and cj ⊕ c̃ represents
the perturbed concept vector.

Backdoor Injection. From the dataset D, attacker randomly select non-ytc instances to form a
subset Dadv , with |Dadv|/|D| = p (injection rate). Applying Te : (xi, ci, yi)→ (xi, ci ⊕ c̃, ytc) to
each point in Dadv creates the poisoned subset D̃adv . We then retrain the CBMs with the modified
training dataset D(Te) = D + D̃adv −Dadv .

Q IMAGE2TRIGGER C DEMO

In this section, we discuss our initial exploration of Image2Trigger c, where we implement a prelim-
inary demo using UNet. When applied to the CAT attack on the CUB dataset with an injection rate
of 0.1 and a trigger size of 20, the ASR decrease from 59.28% to 53.29%. TSR is 72.17%, and the
IS is 0.0104. These results indicate areas for improvement, particularly in terms of image similarity
and ASR. Visualizations of both the original test set samples and the samples with triggers generated
by Image2Trigger c are shown in Figure 7. It is important to note that this is merely an initial demo,
and we have laid the groundwork for further research by establishing a foundational pipeline. We
acknowledge that there is significant room for enhancement, and we are committed to open-sourcing
all the code associated with this paper upon its acceptance. We believe that this represents a novel
domain, where we have not only defined a new task but also constructed a comprehensive pipeline
that facilitates future research and development.

Figure 7: Visualization of the original test set samples (left) and the corresponding samples with
triggers generated by Image2Trigger c (right). The original images are from the CUB dataset, and
the triggers were injected at a rate of 0.1 with a size of 20. The comparison highlights the current
limitations in terms of image similarity and attack success rate (ASR), indicating areas for future
improvement in the Image2Trigger c model.

R EXPLAINABLE VISION ALIGNMENT OF ATTACK

We present Figure 8 for the vision alignment of our attacks here. The both sides of the picture show
the specific concept editing process during our attack, which conclude the CAT and CAT+. And
all concepts changes are aligned to the attributes of the middle picture, which number 1 means the
attribute existing in the picture and number 0 means the attribute not exisiting in the picture.

ETHICS STATEMENT

This work introduces and explores the concept of backdoor attacks in CBMs, a topic that inherently
involves considerations of ethics and security in machine learning systems. The research aims to
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Figure 8: An explainable vision alignment of our attacks, the figure shows the visualizing mapping
from our CAT and CAT+ attacks to the specific picture. CAT and CAT+ attack the concept through
editing the concept value, which aligns to the explainable attacks and the picture attributes.

shed light on potential vulnerabilities in CBMs, with the intention of prompting further research
into defensive strategies to protect against such attacks.

While our work demonstrates how CBMs can be compromised, we emphasize that the knowledge
and techniques presented should be used responsibly to improve system security and not for mali-
cious purposes. We acknowledge the potential risks associated with publishing methods for imple-
menting backdoor attacks; however, we believe that exposing these vulnerabilities is a crucial step
toward understanding and mitigating them.

Researchers and practitioners are encouraged to use the findings of this study to develop more robust
and secure AI systems. It is our hope that by bringing attention to these vulnerabilities, we can
collectively advance the field towards more transparent, interpretable, and secure machine learning
models.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide detailed descriptions of the datasets used,
preprocessing steps, model architectures, and experimental settings within the paper and its appen-
dices. Specifically:

- Datasets: We utilize the publicly available CUB and AwA datasets, with specific preprocessing
steps outlined in Appendix H.

- Model Architecture: Details about the Concept Bottleneck Model (CBM) architecture, including
the use of a pretrained ResNet50 and modifications for each dataset, are provided in Section I.

- Experimental Settings: The experimental setup, including training hyperparameters, batch sizes,
learning rates, and data augmentation techniques, are thoroughly described in Section I.

- Attack Implementation: The methodology for implementing our proposed CAT and CAT+ at-
tacks, including concept selection, trigger embedding, and iterative poisoning strategies, is elabo-
rated in Sections 4 and 5, with additional insights provided in the appendices.

Furthermore, to foster transparency and facilitate further research in this area, we commit to making
our code publicly available upon publication of this paper. This includes scripts for preprocessing
data, training models, executing backdoor attacks, and evaluating model performance and attack
effectiveness.
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