
Automated Knowledge Base Construction (2021) Conference paper

Question Decomposition with Dependency Graphs

Matan Hasson matanhasson@mail.tau.ac.il

Tel Aviv University

Jonathan Berant joberant@cs.tau.ac.il

Tel Aviv University, The Allen Institute for AI

Abstract

QDMR is a meaning representation for complex questions, which decomposes questions
into a sequence of atomic steps, and has been recently shown to be useful for question
answering. While state-of-the-art QDMR parsers use the common sequence-to-sequence
(seq2seq) approach, a QDMR structure fundamentally describes labeled relations between
spans in the input question, and thus dependency-based approaches seem appropriate for this
task. In this work, we present a QDMR parser that is based on dependency graphs (DGs),
where nodes in the graph are words and edges describe logical relations that correspond
to the different computation steps. We propose (a) a non-autoregressive graph parser,
where all graph edges are computed simultaneously, and (b) a seq2seq parser that uses
the gold graph as auxiliary supervision. We find that a graph parser leads to a moderate
reduction in performance (0.47→0.44), but to a 16x speed-up in inference time due to
its non-autoregressive nature, and to improved sample complexity compared to a seq2seq
model. Second, training a seq2seq model with auxiliary DG supervision leads to better
generalization on out-of-domain data and on QDMR structures with long sequences of
computation steps.

1. Introduction

Figure 1: An example question with its corresponding QDMR structure (top-left), dependency
graph over the question tokens (right), and an intermediate logical form (LF) used for the
QDMR→DG conversion and for evaluation.

Training neural networks to reason over multiple parts of their inputs across modalities
such as text, tables, and images, has been a focal point of interest in recent years [Antol
et al., 2015, Pasupat and Liang, 2015, Johnson et al., 2017, Suhr et al., 2019, Welbl et al.,
2018, Talmor and Berant, 2018, Yang et al., 2018, Hudson and Manning, 2019, Dua et al.,
2019, Chen et al., 2020, Hannan et al., 2020, Talmor et al., 2021]. The most common way to

1

Hasson & Berant

probe whether a model is capable of complex reasoning, is to pose in natural language a
complex question, which requires performing multiple steps of computation over the input.

One natural way of answering such complex questions is to break them down into
a sequence of simpler sub-steps [Christiano et al., 2018, Min et al., 2019, Perez et al.,
2020]. Wolfson et al. [2020] recently proposed QDMR, a meaning representation where
complex questions are represented through a sequence of simpler atomic executable steps
(see Fig. 1), and the final answer is the answer to the final step. QDMR has been shown to
be useful for multi-hop question answering (QA) [Wolfson et al., 2020] and also for improving
interpretability in visual QA [Subramanian et al., 2020].

State-of-the-art QDMR parsers use the typical seq2seq approach. However, it is natural
to think of QDMR as a dependency graph over the input question tokens. Consider the
example in Fig. 1. The first QDMR step selects the span “Indiana Jones”. Then, the next
step uses a PROJECT operation to find the “movies” of Indiana Jones, and the next step uses
another PROJECT operation to find the date when the movies were “released”. Such relations
can be represented as labeled edges over the relevant question tokens.

In this work, we propose to use the dependency graph view of QDMR to improve QDMR
parsing. We describe a conversion procedure that automatically maps QDMR structures
into dependency graphs, using a structured intermediate logical form representation (Fig 1,
bottom-left). Once we have graph supervision for every example, we train a dependency
graph parser, in the spirit of Dozat and Manning [2018], where we predict a labeled relation
for every pair of question tokens, representing the logical relation between the tokens. Unlike
seq2seq models, this is a non-autoregressive parser, which decodes the entire output structure
in a single step.

In addition, we study the effect of using dependency graphs as auxiliary supervision
for a seq2seq QDMR parser, where the graph is decoded from the encoder representations.
Towards that end, we propose a Latent-RAT encoder, which uses relation-aware transformer
[Shaw et al., 2018] to explicitly represent the relation between every pair of input tokens.
Relation-aware transformer has been shown to be useful for encoding graph structures in
the context of semantic parsing [Wang et al., 2020].

Last, to fairly compare QDMR parsers that use different representations, we propose
an evaluation metric, LF-EM, based on the aforementioned intermediate logical form. We
show that LF-EM correlates better with human judgements compared to existing metrics.

We find that our graph parser leads to a small reduction in LF-EM compared to seq2seq
models (0.47→0.44), but is 16x faster due to its non-autoregressive nature, and is by
design more interpretable. Moreover, it has better sample complexity and outperforms
the seq2seq model when trained on 10% of the data or less. When training a seq2seq
model with the auxiliary graph supervision, the parser obtains similar performance as
when trained on the entire dataset (0.471 LF-EM), but substantially improves performance
when generalizing to new domains. Moreover, it performs better on examples with a large
number of computation steps. Our code is available at https://github.com/matanhasson/
qdecomp_with_dependency_graphs.

2

https://github.com/matanhasson/qdecomp_with_dependency_graphs
https://github.com/matanhasson/qdecomp_with_dependency_graphs

Question Decomposition with Dependency Graphs

Figure 2: Overview. For training (left), we create gold DGs from gold QDMRs (§4) through
a conversion into LFs (§3). At test time (right), we convert model predictions, either QDMRs
or DGs, into LFs (§3, §4), and evaluate by comparing them to the gold LFs. Asterisk (*)
denotes gold representations.

2. Overview

The core of this work is to examine the utility of a dependency graph (DG) representation
for QDMR. We propose conversion procedures that enable training and evaluating with DGs
(see Fig. 2). First, we convert gold QDMR structures into logical forms (LF), where each
computation step in QDMR is represented with a formal operator, properties and arguments
(§3). Then, we obtain gold DGs by projecting the logical forms onto the question tokens (§4).
Once we have question- DG pairs, we can train a graph parser. At test time, QDMRs and
DGs are converted into LFs for evaluation. We propose a new evaluation metric over LFs
(§3), and show it is more robust to semantic-preserving changes compared to prior metrics.

Our proposed parsers are in §5. On top of standard seq2seq models, we describe (a) a
graph parser, and (b) a multi-task model, where the encoder of the seq2seq model is also
trained to predict the DG.

3. QDMR Logical Forms

QDMR [Wolfson et al., 2020] is a text-based meaning representation focused on representing
the meaning of complex questions. It is based on a decomposition of questions into a
sequence of simpler executable steps (Fig. 1), where each step corresponds to a SQL-inspired
operator (Table 5, §A.1). We briefly review QDMR and then define a logical form (LF)
representation based on these operations. We use the LFs both for mapping QDMRs to
DGs, and also to fairly evaluate the output of parsers that output either QDMRs directly or
DGs.

QDMR Definition Given a question with n tokens, q = q1 . . . qn, its QDMR is a sequence
of m steps s1, . . . , sm, where step si conceptually maps to a single logical operator oi ∈ O.
A step, si, is a sequence of ni tokens si = si1 . . . s

i
ni

, where token sij is either a question token
∈ Vq (or some inflection of it), a word from a constant predefined lexicon ∈ Vconst, or a
reference token ∈ V iref = {#1, . . . ,#(i− 1)}, referring to a previous step. Fig. 3 shows an
example for a question and its QDMR structure.

QDMR Logical Form (LF) Given a QDMR S = 〈q; s1, . . . , sm〉, its logical form is a
sequence of logical form steps Z = 〈q; z1, . . . , zm〉. The LF step zi, corresponding to si , is a
triplet zi = 〈oi, ρi, Ai〉 where oi ∈ O is the logical operator; ρi ∈ PROPoi are operator-specific
properties; and Ai is a dictionary of arguments, mapping an operator-specific argument

3

Hasson & Berant

Figure 3: QDMR annotation vocabularies. Each example is annotated with a lexicon that
consists of: Vq, the question tokens and their inflections; V iref, references to previous steps;
Vconst, constant terms including operational terms (Vop), domain-specific words that are not
in the question, such as size (Vstore); and auxiliary words like prepositions (Vaux). Boldface
indicates words used in the QDMR structure.

Operator PROP ARG Example
SELECT ∅ sub return cubes

SELECT[](sub=cubes)
FILTER ∅ sub, cond return #1 from Toronto

FILTER[](sub=#1, cond=from Toronto)
AGGREGATE max, min, count,

sum, avg
arg return maximal number of #1

AGGREGATE[max](arg=#1)
ARITHMETIC sum, diff, mult, div arg, left, right return the difference of #3 and #4

ARITHMETIC[diff](left=#3, right=#4)

Table 1: LF operators, properties and arguments (partial list, see Table 5 for full list).

η ∈ ARGoi,ρi to a span τ from the QDMR step si. For convenience, we denote zi with the
string oi[ρi](ηi1 = τ i1, . . .). Table 1 provides a few examples for the mapping from QDMR to
LF steps, and Table 5 (§A.1) provides the full list.

QDMR→LF We convert QDMRs to LFs with a rule-based method, extending the proce-
dure for detecting operators from Wolfson et al. [2020] to also find properties and arguments.
To detect properties we use a lexicon (see Table 6 in §A.1).

LF-based Evaluation (LF-EM) The official evaluation metric for QDMR1 is normalized
EM (NormEM), where the predicted and gold QDMR structures are normalized using a
rule-based procedure, and then exact string match is computed between the two normalized
QDMRs. Since in this work we convert both QDMRs (§3) and DGs (§4) to LFs, we propose
a LF-based evaluation metric.

LF-EM essentially involves computing exact match between the predicted and gold LFs.
To further capture semantic equivalences, we perform more normalization steps, which for
brevity are described in §A.2. We manually evaluate the metrics NormEM and LF-EM on 50
random development set examples using predictions from the CopyNet+BERT model (see
§6). We find that both metrics have perfect precision (no false-positives); but the LF-EM
covers more examples (52.0% vs 40.0%). Thus, it provides a tighter lower bound on the
performance of a QDMR parser and correlates better with notions of semantic equivalence.

1. https://leaderboard.allenai.org/break/submissions/public

4

https://leaderboard.allenai.org/break/submissions/public

Question Decomposition with Dependency Graphs

Figure 4: Dependency graph creation: (1) Token alignment : align question tokens and
QDMR step tokens. (2) Logical Form: extract the LF of the QDMR. (3) SDG extraction:
induced from the LF and the alignment. (4) DG Creation: convert the SDG to a DG.

4. From LFs to Dependency Graphs

Given a QDMR decomposition S = 〈q; s1, . . . , sm〉, we construct a dependency graph
G = 〈N , E〉, where the nodes N correspond to question tokens, and the edges E describe
the logical operations, resulting in a graph with the same meaning as S.

The LF→DG procedure is shown in Fig. 4 and consists of the following steps:

• Token alignment: align each token in the question to a token in a QDMR step (§A.3).
• Spans Dependency Graph (SDG) extraction: construct a graph where each node

corresponds to a list of tokens in a QDMR step, and edges describe the dependencies
between the steps (§A.4).

• Dependency Graph (DG) extraction: convert the SDG to a DG over the question
tokens. Here, we add span edges for tokens that are in the same step, and deal with
some representation issues (§A.5).

Because we convert predicted DGs to LFs for evaluation, the LF→DG conversion must
be invertible. Our conversion succeeds in 97.12% of the BREAK dataset [Wolfson et al.,
2020].

5. Models

Once we have methods to convert QDMRs to DGs and LFs, and DGs to LFs, we can
evaluate the advantages and disadvantages of standard autoregressive decoders compared to
graph-based parsers. We describe three models: (a) An autoregressive parser, (b) a graph
parser, (c) an autoregressive parser that is trained jointly with a graph parser in a multi-task
setup. For a fair comparison, all models have the same BERT-based encoder [Devlin et al.,
2019].

CopyNet+BERT (baseline) This autoregressive QDMR parser is based on the Copy-
Net baseline from Wolfson et al. [2020], except we replace the BiLSTM encoder with a

5

Hasson & Berant

transformer initialized with BERT. The model encodes the question q and then decodes
the QDMR S step-by-step and token-by-token. The decoder is an LSTM [Hochreiter and
Schmidhuber, 1997] augmented with a copy mechanism [Gu et al., 2016], where at each time
step the model either decodes a token from the vocabulary or a token from the input. Since
the input is tokenized with word pieces, we average word pieces that belong to a single word
to get word representations, which enables word copying. Training is done with standard
maximum likelihood.

Biaffine Graph Parser (BiaffineGP) The biaffine graph parser takes as input the
question q augmented with the special tokens described in §A.5 and predicts the DG by
classifying for every pair of tokens whether there is an edge between them and the label
of the edge. The model is based on the biaffine dependency parser of Dozat and Manning
[2018], except here we predict a DAG and not a tree, so each node can have more than one
outgoing edge.

Let H = 〈h1, . . . ,h|H|〉 be the sequence of representations output by the BERT encoder
concatenated with the POS embeddings. The biaffine parser uses four 1-hidden layer
feed-forward networks over each contextualized token representation ht:

hedge-head
t = FFedge-head(ht),h

edge-dep
t = FFedge-dep(ht),

hlabel-head
t = FFlabel-head(ht),h

label-dep
t = FFlabel-dep(ht).

The probability of an edge from token i to token j is given by σ(hedge-dep>

i Wedgeh
edge-head
j),

where Wedge is a parameter matrix. Similarly, the score of an edge labeled by the label l

from token i to token j is given by slij = hlabel-dep>

i Wlh
label-head
j , where Wl is the parameter

matrix for this label. We then compute a distribution over the set of labels L with

softmax(s1ij , . . . , s
|L|
ij).

Training is done with maximum likelihood both on the edge probabilities and label
probabilities. Inference is done by taking all edges with edge probability > 0.5 and then
labeling those edges according to the most probable label.

There is no guarantee that the biaffine parser will output a valid DG. For example, if
an SDG node has an outgoing edge labeled with filter-sub and another labeled with
project-sub, we cannot tell if the operator is FILTER or PROJECT. This makes parsing fail,
which occurs in 1.83% of the cases. To create a SDG, we first use the span edges to construct
SDG nodes with lists of tokens, and then add edges between SDG nodes by projecting the
edges between tokens to edges between the SDG nodes. To prevent cases where parsing fails,
we can optionally apply an ILP that takes the predicted probabilities as input, and outputs
a valid DG. The exact details are given in our open source implementation.

Multi-task Latent-RAT Encoder (Latent-RAT) In this model, our goal is to improve
the seq2seq parser by providing more information to the encoder using the DG supervision.
Our model will take the question q (with special tokens as before) as input, and predict
both the graph G directly and the QDMR structure S with a decoder.

We would like the information on relations between tokens to be part of the transformer
encoder, so that the decoder can take advantage of it. To accomplish that, we use RAT
transformer layers [Shaw et al., 2018, Wang et al., 2020], which explicitly represent relations

6

Question Decomposition with Dependency Graphs

Figure 5: Latent-RAT architecture. The encoder hidden states represent the relations
between the question tokens, rij . Then, these representations are used for (1) direct
prediction of the dependency between the tokens (graph-head); (2) augment the encodings
via RAT layers (seq2seq-head). The sub-networks for rKij , rVi,j are symmetric, and represented
by the rij .

between tokens, and have been shown to be useful for encoding graphs over input tokens in
the context of semantic parsing.

RAT layers inject information on the relation between tokens inside the transformer
self-attention mechanism [Vaswani et al., 2017]. Specifically, the similarity score eij computed
using queries and keys is given by eij ∝ hiWQ(hjWK + rKij)T , where WQ,WK are the query

and key parameter matrices and the only change is the term rKij , which represents the relation
between the tokens i and j. Similarly, the relation between tokens is also considered when
summing over self-attention values

∑H
j=1 αij(xjWV + rVij), where WV is the value parameter

matrix, αij is the attention distribution and the only change is the term rVij .

Unlike prior work where the terms rKij , r
V
ij were learned parameters, here we want these

vectors to (a) be a function of the contextualized representation and (b) be informative for
classifying the dependency label in the gold graph. By learning latent representations from
which the gold graph can be decoded, we will provide useful information for the seq2seq
decoder. Specifically, given the encoder output representations hi,hj for tokens i and j, we
represent relations and compute a loss in each RAT layer as follows (Fig. 5):

rKij = FFK(hi − hj),

SK = RKW out + bK ∈ Rn×n×|L|,

LossK = CE(SK).

FFK is a 1-hidden layer feed-forward network, RK ∈ R(n×n)×dtransformer is a concatenation
of all rKij for all pairs of tokens, W out ∈ Rdtransformer×|L| is a projection matrix that provides
a score for all possible labels (including the NONE label).

7

Hasson & Berant

We compute an analogous loss LossV for rVij and the final graph loss is LossK + LossV

over all RAT layers. To summarize, by performing multi-task training with this graph loss
we push the transformer to learn representations rij that are informative of the gold graph,
and can then be used by the decoder to output better QDMR structures.

6. Experiments

6.1 Experimental Setup

We build our models in AllenNLP [Gardner et al., 2018], and use BERT-base [Devlin et al.,
2019] to produce contextualized token representations in all models. We train with the
Adam optimizer [Kingma and Ba, 2015]. Our Latent-RAT model includes 4 RAT layers,
each with 8 heads. Full details on hyperparameters and training procedure in Appendix
§A.7.

We examine the performance of our models in three setups:

• Standard : We use the official BREAK dataset.

• Sample Complexity (SC): We examine the performance of models with decreasing amounts
of training data. The goal is to test which model has better sample complexity.

• Domain Generalization (DomGen): We train on 7 out of 8 sub-domains in BREAK and
test on the remaining domain, for each target domain. The goal is to test which model
generalizes better to new domains.

As an evaluation metric, we use LF-EM and also the official BREAK metric, NormEM,
when reporting test results on BREAK.

6.2 Results

Standard Setup Table 2 compares the performance of the different models (§5) to each
other and to the top entries on the BREAK leaderboard.

To assess the potential success of the Latent-RAT architecture, we add an oracle
setup (termed Latent-RAToracle) where learned representations of the gold dependencies
are fed into the RAT layers. Its outstanding performance (0.759 on the development set),
indicates the benefit the sequence-to-sequence model produces from encoding the LF-based
dependencies into the tokens representation.

As expected, initializing CopyNet with BERT dramatically improves test performance
(0.388→0.47). The Latent-RAT seq2seq model achieves similar performance (0.471), and
the biaffine graph parser, BiaffineGP, is slightly behind with an LF-EM of 0.44. Adding
an ILP layer on top of BiaffineGP to eliminate constraint violations in the output graph
improves performance to 0.454. The graph-head of the Latent-RAT, termed Latent-
RATgraph, gets close performance (0.435) to the biaffine graph parser, indicates that the
hybrid architecture learns dependency representations.

While our proposed models do not significantly improve performance in the LF-EM
setup, we will see next that they improve domain generalization and sample complexity.
Moreover, since BiaffineGP is a non-autoregressive model that predicts all output edges
simultaneously, it dramatically reduces inference time.

8

Question Decomposition with Dependency Graphs

Model NormEM LF-EM
dev test dev test

CopyNet - 0.294 - 0.388
BARTleaderboard #1 - 0.389 - 0.496
CopyNet+BERT 0.373 0.375 0.474 0.47
BiaffineGP - - 0.441 0.44
BiaffineGPILP - - 0.453 0.454
Latent-RAT 0.356 0.363 0.469 0.471
Latent-RATgraph - - 0.431 0.435
Latent-RAToracle 0.647 - 0.759 -

Table 2: Normalized EM and LF-EM on the development and test sets of BREAK.

Model ATIS CLEVR COMQA CWQ DROP GEO NLVR2 SPIDER

CopyNet+BERT 0.58 0.564 0.562 0.36 0.473 0.66 0.344 0.369
BiaffineGP 0.591 0.489 0.595 0.322 0.445 0.62 0.293 0.41
Latent-RAT 0.589 0.524 0.598 0.316 0.479 0.64 0.353 0.376
CopyNet+BERT 0.282 0.351 0.423 0.173 0.131 0.52 0.039 0.189
BiaffineGP 0.302 0.339 0.483 0.168 0.146 0.52 0.04 0.197
Latent-RAT 0.335 0.356 0.435 0.189 0.149 0.58 0.063 0.201
CopyNet+BERT -51.38% -37.77% -24.73% -51.94% -72.30% -21.21% -88.66% -48.78%
BiaffineGP -48.90% -30.67% -18.82% -47.83% -67.19% -16.13% -86.35% -51.95%
Latent-RAT -43.12% -32.06% -27.26% -40.19% -68.89% -9.38% -82.15% -46.54%

Table 3: Domain Generalization. LF-EM on the development set per sub-domain when
training on the entire training set (top), and when training on all domains except the
target one (middle). The bottom section is the performance drop from the full setup to the
DomGen setup.

Last, the top entry on the BREAK leaderboard uses BART [Lewis et al., 2020], a pre-
trained seq2seq model (we use a pre-trained encoder only), which leads to a state-of-the-art
LF-EM of 0.496.

Domain Generalization Table 3 shows LF-EM on each of BREAK’s sub-domains when
training on the entire dataset (top), when training on all domains but the target domain
(middle), and the relative drop compared to the standard setup (bottom). The performance
of BiaffineGP and Latent-RAT is higher compared to CopyNet+BERT in the DomGen
setup. In particular, the performance of Latent-RAT is the best in 7 out of 8 sub-domains,
and the performance of BiaffineGP is the best in the last domain. Moreover, Latent-RAT
outperforms CopyNet+BERT in all sub-domains. We also observe that the performance
drop is lower for BiaffineGP and Latent-RAT compared to CopyNet+BERT. Overall,
this shows that using graphs as a source of supervision leads to better domain generalization.

Sample Complexity Table 4 shows model performance as a function of the size of
the training data. While the LF-EM of BiaffineGP is lower given the full training set
(Table 2), when the size of the training data is small it substantially outperforms other
models, improving performance by 3-4 LF-EM points given 1%-10% of the data. With
20%-50% of the data Latent-RAT and CopyNet+BERT have comparable performance.

Inference Time The graph parser, BiaffineGP, is a non-autoregressive model that
predicts all output edges simultaneously, as opposed to a seq2seq model that decodes a
single token at each step. We measure the average runtime of the forward pass for both

9

Hasson & Berant

Model 1% 5% 10% 20% 50%

CopyNetBERT 0.112 0.261 0.323 0.38 0.426
BiaffineGP 0.159 0.296 0.351 0.382 0.411
Latent-RAT 0.003 0.227 0.326 0.383 0.432

Table 4: Development set LF-EM as a function of the size of the training set.

(a) Model Agreement (b) LF-EM per #Steps

Figure 6: (a) Model agreement in terms of LF-EM on the development set. Each slice
gives the fraction of examples predicted correctly by a subset of models. (b) LF-EM on the
development set per number of steps. We compute for each example its (gold) number of
steps, and calculate the average LF-EM per bin.

BiaffineGP and CopyNet+BERT and find that BiaffineGP has an average runtime of
0.08 seconds, compared to 1.306 seconds of CopyNet+BERT – a 16x speed-up.

6.3 Analysis

Model Agreement Figure 6a shows model agreement between the models from §5.
Roughly 60% of the examples are predicted correctly by one of the models, indicating
that ensemble of the three models could result in further performance improvement. The
agreement of Latent-RAT with CopyNet+BERT (5.5%) and BiaffineGP (4.27%) is
greater than the agreement of CopyNet+BERT with BiaffineGP, perhaps since it is a
hybrid of a seq2seq and graph parser.

Length Analysis We compared the average LF-EM of models for each possible number
of steps in the QDMR structure (Fig. 6b). We observe that CopyNet+BERT outperforms
Latent-RAT when the number of steps is small, but once the number of steps is ≥ 5,
Latent-RAT outperforms CopyNet+BERT, showing it handles complex decompositions
better, and in agreement with the tendency of seq2seq models to struggle with long output
sequences.

Error Analysis We manually analyzed randomly sampled errors from each model (§A.8).
For all models, the largest error category (34-72%) is actually cases where the prediction is
correct but not captured by the LF-EM metric, showing that the performance of current
QDMR parsers is actually quite high.

10

Question Decomposition with Dependency Graphs

7. Conclusion

In this work, we propose to represent QDMR structures with a dependency graph over the
input tokens, and propose a graph parser and a seq2seq model that uses graph supervision
as an auxiliary loss. We show that a graph parser is 16x faster than a seq2seq model, and
that it exhibits better sample complexity. Moreover, using graphs as auxiliary supervision
improves out-of-domain generalization and leads to better performance on questions that
represent a long sequence of computational steps. Last, we propose a new evaluation metric
for QDMR parsing and show it better corresponds to human intuitions.

Acknowledgments

We thank Vivek Kumar Singh for his helpful ILP guidelines, and Tomer Wolfson for having
kindly assisted in running our evaluation metric on our predictions for BREAK test set.
This research was partially supported by The Yandex Initiative for Machine Learning, and
the European Research Council (ERC) under the European Union Horizons 2020 research
and innovation programme (grant ERC DELPHI 802800).

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. VQA: visual question answering. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, pages 2425–2433. IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.279.
URL https://doi.org/10.1109/ICCV.2015.279.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang
Wang. HybridQA: A dataset of multi-hop question answering over tabular and textual data.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1026–
1036, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.91. URL https://www.aclweb.org/anthology/2020.findings-emnlp.

91.

Paul Christiano, Buck Shlegeris, and Dario Amodei. Supervising strong learners by amplifying
weak experts, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423.

Timothy Dozat and Christopher D. Manning. Simpler but more accurate semantic de-
pendency parsing. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 484–490, Melbourne, Aus-

11

https://doi.org/10.1109/ICCV.2015.279
https://www.aclweb.org/anthology/2020.findings-emnlp.91
https://www.aclweb.org/anthology/2020.findings-emnlp.91
https://www.aclweb.org/anthology/N19-1423

Hasson & Berant

tralia, 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2077. URL
https://www.aclweb.org/anthology/P18-2077.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Minneapolis, Minnesota, 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1246. URL https://www.aclweb.

org/anthology/N19-1246.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F.
Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. AllenNLP: A deep
semantic natural language processing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6, Melbourne, Australia, 2018. Association
for Computational Linguistics. doi: 10.18653/v1/W18-2501. URL https://www.aclweb.

org/anthology/W18-2501.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying mechanism
in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640,
Berlin, Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1154. URL https://www.aclweb.org/anthology/P16-1154.

Darryl Hannan, Akshay Jain, and Mohit Bansal. Manymodalqa: Modality disambiguation
and QA over diverse inputs. In The Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7879–7886.
AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/6294.

Charles T. Hemphill, John J. Godfrey, and George R. Doddington. The ATIS spoken language
systems pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held
at Hidden Valley, Pennsylvania, June 24-27,1990, 1990. URL https://www.aclweb.org/

anthology/H90-1021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

Drew A. Hudson and Christopher D. Manning. GQA: A new dataset for real-world visual
reasoning and compositional question answering. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
6700–6709. Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00686.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_

Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.

html.

12

https://www.aclweb.org/anthology/P18-2077
https://www.aclweb.org/anthology/N19-1246
https://www.aclweb.org/anthology/N19-1246
https://www.aclweb.org/anthology/W18-2501
https://www.aclweb.org/anthology/W18-2501
https://www.aclweb.org/anthology/P16-1154
https://aaai.org/ojs/index.php/AAAI/article/view/6294
https://www.aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/H90-1021
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.html

Question Decomposition with Dependency Graphs

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence
Zitnick, and Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language
and elementary visual reasoning. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1988–1997.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.215. URL https://doi.org/

10.1109/CVPR.2017.215.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and comprehension. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7871–7880, Online, 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.acl-main.703. URL https://www.aclweb.org/anthology/2020.acl-main.703.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop reading
comprehension through question decomposition and rescoring. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 6097–6109,
Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1613. URL https://www.aclweb.org/anthology/P19-1613.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured
tables. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–1480, Beijing, China, 2015. As-
sociation for Computational Linguistics. doi: 10.3115/v1/P15-1142. URL https:

//www.aclweb.org/anthology/P15-1142.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised
question decomposition for question answering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 8864–8880, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.713. URL https://www.aclweb.org/anthology/2020.emnlp-main.713.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative posi-
tion representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 464–468, New Orleans, Louisiana, 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N18-2074. URL https:

//www.aclweb.org/anthology/N18-2074.

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolfson, Sameer Singh, Jonathan
Berant, and Matt Gardner. Achieving interpretability in compositional neural networks.
In Association for Computational Linguistics (ACL), 2020.

13

https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2017.215
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/2020.acl-main.703
https://www.aclweb.org/anthology/P19-1613
https://www.aclweb.org/anthology/P15-1142
https://www.aclweb.org/anthology/P15-1142
https://www.aclweb.org/anthology/2020.emnlp-main.713
https://www.aclweb.org/anthology/N18-2074
https://www.aclweb.org/anthology/N18-2074

Hasson & Berant

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A
corpus for reasoning about natural language grounded in photographs. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 6418–
6428, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1644. URL https://www.aclweb.org/anthology/P19-1644.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex ques-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-
pers), pages 641–651, New Orleans, Louisiana, 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/N18-1059. URL https://www.aclweb.org/anthology/N18-1059.

Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel
Ilharco, Hannaneh Hajishirzi, and Jonathan Berant. Multimodalqa: Complex ques-
tion answering over text, tables and images. In International Conference on Learning
Representations (ICLR), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017. URL https://proceedings.neurips.

cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson.
RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7567–7578, Online, 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.acl-main.677. URL https://www.aclweb.org/anthology/2020.acl-main.677.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for
multi-hop reading comprehension across documents. Transactions of the Association
for Computational Linguistics, 6:287–302, 2018. doi: 10.1162/tacl a 00021. URL
https://www.aclweb.org/anthology/Q18-1021.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and
Jonathan Berant. Break it down: A question understanding benchmark. Transactions of
the Association for Computational Linguistics, 8:183–198, 2020. doi: 10.1162/tacl a 00309.
URL https://www.aclweb.org/anthology/2020.tacl-1.13.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2369–2380, Brussels, Belgium, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://www.aclweb.org/

anthology/D18-1259.

14

https://www.aclweb.org/anthology/P19-1644
https://www.aclweb.org/anthology/N18-1059
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aclweb.org/anthology/2020.acl-main.677
https://www.aclweb.org/anthology/Q18-1021
https://www.aclweb.org/anthology/2020.tacl-1.13
https://www.aclweb.org/anthology/D18-1259
https://www.aclweb.org/anthology/D18-1259

Question Decomposition with Dependency Graphs

Appendix A. Appendices

A.1 QDMR LF

Table 5 shows the different operators, their properties and examples of LFs. Table 6 shows
terms that are used to identify the QDMR step operator’s properties. We use the same
lexicon from BREAK [Wolfson et al., 2020] for detecting operators, extended with some
specifications for numeric properties such as equals 0.

A.2 LF-Based Evaluation (LF-EM)

In §3 we describe a LF-based evaluation metric that is based on normalization steps. We
now elaborate the normalization process.

Given a logical form Z, we transform each step to a normalized form, and the final textual
representation is given by representing each step as described in §3: OPERATOR[property](arg=. . . ;
. . .). We apply the following steps (Fig. 7):

Figure 7: An illustration of LF normalization. Normalization is done on the LF Z, and we
present QDMR steps for ease of reading.

Remove and normalize tokens Each LF step includes a list of tokens in its arguments.
In this normalization step, we remove lexical items, such as “max”, which are used to
detect the operator and property (Table 6 in §A.1), as those are already represented outside
the arguments. In addition, we remove words from a stop word list (Vaux, see Fig. 3).
Finally, we use a synonym list to represent words in such a list with a single representative
(countries→country, see Table 7).

15

Hasson & Berant

Operator PROP ARG Example
SELECT ∅ sub return cubes

SELECT[](sub=cubes)
FILTER ∅ sub,

condition

return #1 from Toronto
FILTER[](sub=#1, cond=from Toronto)

PROJECT ∅ sub,
projection

return the head coach of #1
PROJECT[](sub=#1, projection=the head coach of)

AGGREGATE max, min,
count, sum,
avg

arg return maximal number of #1
AGGREGATE[max](arg=#1)

GROUP max, min,
count, sum,
avg

key, value return the number of #2 for each #1
GROUP[count](key=#1, value=#2)

SUPERLATIVE max, min
sub,

attribute
return #2 where #3 is the lowest

SUPERLATIVE[min](sub=#2, attribute=#3)
COMPARATIVE equals,

equals-
[0/1/2],
more, more-
than-[0/1/2],
less, less-
than-[0/1/2]

sub,

attribute,

condition

return #1 where #2 is more than 100
COMPARATIVE[more](sub=#1, attribute=#2,
condition=100)

COMPARISON max, min,
count, sum,
avg, true,
false

arg return which is higher of #1, #2
COMPARISON[max](arg=#1, arg=#2)

UNION ∅ sub return #1, #2
UNION[](sub=#1, sub=#2)

INTERSECTION ∅ intersect,

projection

return parties in both #2 and #3
INTERSECTION[](intersect=#2, intersect=#3,
projection=parties)

DISCARD ∅ sub,

exclude
return #1 besides #2

DISCARD[](sub=#1, exclude=#2)
SORT ∅ sub, order return #1 ordered by name

SORT[](sub=#2, order=name)
BOOLEAN equals,

equals-
[0/1/2],
more-than-
[0/1/2],
less-than-
[0/1/2],
and-true,
and-false,
or-true,
or-false,
if-exists

sub,

condition

return if #1 is the same as #2
BOOLEAN[equals](sub=#1, condition=#2)

ARITHMETIC sum, diff,
multiply, div

arg, left,

right

return the difference of #3 and #4
ARITHMETIC[diff](left=#3, right=#4)

Table 5: LF operators, properties and arguments. Each QDMR step can be mapped to one
of the above operators, where its LF consists of its operator, properties and arguments. The
example column shows an example for such LF.

16

Question Decomposition with Dependency Graphs

Operator PROP Lexical entries
AGGREGATE,

COMPARISON,

GROUP

max
max, most, more, last, bigger, biggest, larger, largest, higher,
highest, longer, longest

AGGREGATE,

COMPARISON,

GROUP

min
min, least, less, first, fewer, smaller, smallest, lower, lowest,
shortest, shorter, earlier

AGGREGATE,

COMPARISON,

GROUP

count count, number of, total number of

AGGREGATE,

ARITHMETIC,

COMPARISON,

GROUP

sum sum, total

AGGREGATE,

COMPARISON,

GROUP

avg avg, average, mean

ARITHMETIC diff difference, decline
ARITHMETIC multiply multiplication, multiply
ARITHMETIC div division, divide
BOOLEAN,

COMPARATIVE
equals equal, equals, same as

BOOLEAN if-exists any, there
COMPARATIVE more more, at least, higher than, larger than, bigger than
COMPARATIVE less less, at most, smaller than, lower than
SUPERLATIVE max most, biggest, largest, highest, longest
SUPERLATIVE min least, fewest, smallest, lowest, shortest, earliest

Table 6: Property lexicon. Tokens for detecting the properties of a QDMR step, for creating
its logical form.

Merge Steps QDMR annotations sometime vary in their granularity. For example one
example might contain “return metal objects”, while another might have “return objects;
return #1 that are metal”. This is especially common in FILTER and PROJECT steps. We
merge chains of FILTER steps, as well as FILTER or PROJECT steps that follow a SELECT step.
.

Reorder steps QDMR describes a directed acyclic graph of computation steps, and there
are multiply ways to order the steps (Fig. 7). We recursively compute the layer of each step
as layer(s) = maxs→s′ {layer(s′)}+ 1, where the maximization is over all the steps s refers
to. We then re-order steps by layer and then lexicographically.

We manually evaluate the metrics NormEM and LF-EM on 50 random development set
examples using predictions from the CopyNet-BERT model (see §6). We find that both
(binary) metrics have perfect precision: they only assign credit when indeed the QDMR
reflects the correct question decomposition, as judged by the authors. However, LF-EM
covers more examples, where the LF-EM on this sample is 52.0, while NormEM is 40.0.
Thus, LF-EM provides a tighter lower bound on the performance of a QDMR parser and is
a better metric for QDMR parsing.

17

Hasson & Berant

Type Equivalence Class

Modifications cube, cubes, ...
old, oldness, ...
taller, tall, ...
working, work, ...

Operational
biggest, longest, highest,
...

Synonyms elevation, height
0, zero
...

Table 7: BREAK Equivalence Classes. (1) Modifications - the same modifications of the
question tokens that were used for creating BREAK annotation lexicon (e.g plural/singular
form, nounify adjectives, lemmatize adjectives, lemmatize verbs); (2) Operational equivalence
induced from properties lexicon; (3) Manually-defined Synonyms lexicon; We mostly retrieve
the final equivalence classes by merging classes that share some tokens.

A.3 Token Alignment

We denote the question tokens by q = q1 . . . qn and the ith QDMR step tokens by ∀i ∈
[1..m], si = si1 . . . s

i
ni

. An alignment is defined by M = {(qi, skj) | qi ≈ skj ; i ∈ [1..n], k ∈
[1..m], j ∈ [1..nk]}, where by t ≈ t′ we mean t, t′ are either identical or equivalent. Roughly
speaking, these equivalences are based on the BREAK annotation lexicon (Fig. 3) – in
particular, the inflections of the question tokens Vq (e.g , “object” and “objects”), and
equivalence classes on top of the constant lexicon Vconst (e.g , “biggest” and “longest”). See
Table 7 (§A.2) for more details.

To find the best alignment M , we formulate an optimization problem in the form of an
Integer Linear Program (ILP) and use a standard ILP solver.2 The full details are given as
part of our open source implementation. The objective function uses several heuristics to
assign a high score to an alignment that has the following properties (Fig. 8):

• Minimalism: Aligning each question token to at most one QDMR step token and vice
versa is preferable.

• Exact Match: Aligning a question token to a QDMR token that is identical is preferable.
• Sequential Preference: Aligning long sequences from the question to a single step is

preferable. When a step has a reference token (#1), we take into account the tokens
in the referenced step (see Fig. 8, top right).

• Steps Coverage: Covering more steps is preferable.

A.4 Spans Dependencies Extraction

Given the QDMR, LF, and alignment M , we construct the Span Dependency Graph (SDG).
Each QDMR step is a node labeled by a list of tokens (spans). The list of tokens is computed
with the alignment M , where given a QDMR step sk, the list contains all question tokens

2. https://developers.google.com/optimization

18

https://developers.google.com/optimization

Question Decomposition with Dependency Graphs

Figure 8: Heuristics for token alignment. Potential tokens for alignment colored, where
the preferable choice according to the heuristic is underlined. On the top left, the second
occurrence of “water” is preferred in QDMR step #1 due to the adjacent word “buffalo”.
On the top right, the second occurrence of “name” is preferred in QDMR step #5, because
this step refers to #4 that contains the word “drivers”.

qi, such that (qi, s
k
j) ∈ M , where skj is a word in sk. The list is ordered according to the

position in the question.

Edges in the SDG are computed using reference tokens. If step si has a reference token
to step sj , we add a directed edge (si, sj) (we abuse notation and refer to SDG nodes and
QDMR steps with the same notation). Each edge has a label, which is a triple consisting of
the operator oi of the source node si, the property ρi of the source node, and the named
argument ηiref that contains the reference token. For readability we denote the label triplet
label(i, j) = 〈oi, ρi, ηiref〉 by oi-ηiref[ρ

i]. Figure 4 shows an extracted SDG.

A.5 SDG→DG

We construct a DG by projecting the SDG on the question tokens. This is done by: (a) For
each SDG node and its list of tokens, add edges between the tokens from left-to-right with
a new span label (black edges in Fig 4); (b) use the rightmost word in every span as its
representative for the edges between different spans.

However, this transformation is non-trivial for two reasons. First, some SDG nodes do
not align to any question token. Second, some question tokens align to multiple SDG nodes,
which does not allow the DG to be converted back to an SDG unambiguously for evaluation.
We resolve such representation issues by adding special tokens at the end of the sequence
and using them as extra tokens for alignment. We give the details in §A.6.

A.6 DG Representation Issues

In §A.5 we describe the conversion procedure from SDG to DG. This transformation is
non-trivial for two reasons. First, some SDG nodes do not align to any question token.
Second, some question tokens align to multiple SDG nodes, which does not allow the DG to
be converted back to an SDG unambiguously for evaluation.

We now explain how we resolve such representation issues, mostly based on adding more
tokens to the input question. Fig. 9 illustrates the different types of challenges and our
proposed solution.

19

Hasson & Berant

Figure 9: Representation Issues. Projecting the SDG over the question token (DG) is not
always trivial. We solve this by concatenating special tokens to the question.

Domain-specific concepts QDMR annotators were allowed to use a small number of
tokens that are pragmatically assumed to exist in the domain (Vstore in Fig. 3). For example,
when annotating ATIS questions [Hemphill et al., 1990], the word “flight” is allowed to
be used in the QDMR structure even if it does not appear in the question, since this is a
flight-reservation domain. We concatenate all the words in Vstore to the end of each question
after a special separator token, which allows token alignment (§A.3) to map such QDMR
steps to a question word (Fig. 9, top).

Empty SDG nodes Some steps only contains tokens that are not in the question (e.g.,
“Number of #2” in Fig. 9 bottom), and thus their list of tokens in the SDG node is empty.
In this case, we cannot ground the SDG node in the question. Therefore we add a constant
number of dummy tokens, [DUM], which are used to ground such SDG nodes.

Single tokens to multiple SDG nodes A single question token can be aligned to
multiple SDG nodes. Recall the tokens of each SDG nodes are connected with a chain of
span edges. This leads to cases where two chains that pass through the same question token
cannot be distinguished when converting the DG back to an SDG for evaluation. We solve
this by concatenating a constant number of special [DUP] tokens that conceptually duplicate
another token by referring to it with a new duplicate label. Now, each span chain uses a
different copy of the shared token by referring to the [DUP] instead of the original one.

20

Question Decomposition with Dependency Graphs

A.7 Experiments Parameters

CopyNet+BERT The LSTM decoder has hidden size 768. We use a batch size of 32
and train for up to 25 epochs (∼35k steps) with beam search of size 5.

BiaffineGP The POS embeddings are of size 100. The four FFNs consist of 3-layers
with hidden size 300 and use ELU activation function. We use dropout of rate 0.6 on the
contextualized encodings, and of rate 0.3 on the FF representations. We use a batch size of
32 and train for up to 80 epochs (∼111k steps).

Latent-RAT We stack 4 relation-aware self-attention layers on top of the contextualized
encodings, each with 8 heads and dropout with rate 0.1. The FFNs for relation representation
uses 3-layers with hidden size of 96, ReLU activation function and dropout rate of 0.1. We tie
the layers, and multiply the graph loss by 100. The rest is identical to the CopyNet-BERT
configuration.

Optimization We used the Adam optimizer [Kingma and Ba, 2015] with the default
hyperparameters. The learning rate changes during training according to the slanted
triangular schema, in which it linearly increases from 0 to lr for the first warmup steps =
0.06 ·max steps, and afterwards linearly decreases back to 0. We use learning rate of 1 · 10−3,
and a separate learning rate of 5 · 10−5 for the BERT-based encoder.

A.8 Error Analysis

We randomly sampled 50 errors from each model and manually analyzed them. Table 8
describes the error classes for each model, and Appendix §A.9 provides examples for these
classes. Each example can have more than one error category.

For all models, the largest error category is actually cases where the prediction is correct
but not captured by the LF-EM metric: 56% for CopyNet+BERT, 34% for BiaffineGP
and 72% for Latent-RAT. This shows that the performance of current QDMR parsers is
actually quite high, but capturing this with an automatic evaluation is challenging.

When taking a more loose definition of correctness (termed “Correct (soft)”), the rates
increase to: 62% for CopyNet+BERT, 50% for BiaffineGP and 80% for Latent-RAT.
In these cases we focus on the final returned result correctness, and ignore unused steps,
duplicate steps or references, implicit information (commonsense), etc. §A.10 provides some
examples for such predictions.

Cases where the output is correct include:
• Equivalent Solutions: the prediction is logically equivalent to the gold structure.

• Elaboration Level : the model prediction is more/less granular compared to the gold
structure, but the prediction is correct.

• Redundancy : additional information is predicted/omitted that does not effect the compu-
tation. For example the second occurrence of “yards” in “2. return yards of #1; 3. #1
where #2 is lower than 10 yards”.

• Wrong Gold - cases where the predication is more accurate than the gold decomposition.
The main classes of errors are:
• Missing Information: missing steps, missing references or missing tokens that affect the

result of the computation.

21

Hasson & Berant

CopN BiGP L-RAT

Correct 56.00% 34.00% 72.00%
Correct (soft) 62.00% 50.00% 80.00%
Equivalent Solutions 34.00% 20.00% 44.00%
Elaboration Level 22.00% 16.00% 26.00%
Redundancy 8.00% 2.00% 2.00%
Wrong Gold 2.00% 6.00% 6.00%
Missing Information 18.00% 24.00% 10.00%
Additional Steps 12.00% 16.00% 6.00%
Wrong Global Structure 10.00% 30.00% 12.00%
Wrong Step Structure 0.00% 18.00% 4.00%
Out of Vocabulary 10.00% 0.00% 4.00%

Table 8: Error classes and their frequency over a sample of 50 random errors. Model names
were shortened from CopyNet+BERT, BiaffineGP and Latent-RAT.

• Additional Steps: duplicate steps or additional steps that change the result of the compu-
tation.

• Wrong Global Structure: The computation described by the predicted structure is wrong
(for example, addition instead of subtraction).

• Wrong Step Structure: incoherent structure of a particular step that cannot be mapped
to a proper structure.

• Out of Vocabulary : seq2seq models sometimes predict tokens that are not related to the
question nor the decomposition. For example, ”rodents” in a question about flowers.

The seq2seq models preserve better global and local structure (Wrong Global Structure,
Wrong Step Structure). The graph parser, by design, has no Out of Vocabulary tokens and less
Redundancy, but suffers from incoherence (Additional Steps, Wrong Global Structure, Wrong
Step Structure) due to non-autoregressiveness. The combined architecture, Latent-RAT
seems to utilize the dependence information to improve Redundancy and Out of Vocabulary
issues as well as the additional/missing information (Missing Information, Additional Steps)
compared to the seq2seq model it is based on - CopynNet+BERT.

22

Question Decomposition with Dependency Graphs

A.9 Error Analysis Examples

Some examples for each error class from §A.8. The gold decompositions are given on left,
and the predictions are on the right.

23

Hasson & Berant

24

Question Decomposition with Dependency Graphs

25

Hasson & Berant

A.10 Correct (Soft) Examples

Examples for semi-correct predictions (§A.8). For convenience, some of the LFs are given in
a QDMR form.

26

Question Decomposition with Dependency Graphs

27

	Introduction
	Overview
	QDMR Logical Forms
	From LFs to Dependency Graphs
	Models
	Experiments
	Experimental Setup
	Results
	Analysis

	Conclusion
	Appendices
	QDMR LF
	LF-Based Evaluation (LF-EM)
	Token Alignment
	Spans Dependencies Extraction
	SDGDG
	DG Representation Issues
	Experiments Parameters
	Error Analysis
	Error Analysis Examples
	Correct (Soft) Examples

