GraphSnapShot: A System for Graph Machine Learning Ac-
celeration

Anonymous authors
Paper under double-blind review

Abstract

We present GraphSnapShot, a system for fast graph storage, retrieval and caching for
graph machine learning at large scale. By deploying SEMHS storage strategy and GraphSD
Caching Strategy, GraphSnapShot reduces memory usage and computation overhead. Ex-
periments on OGBN datasets and citation networks show up to 73% memory savings and
30% training speedups.

1 Introduction

Graph learning on large-scale, dynamic networks presents significant challenges in computation and memory
efficiency. To address these issues, we propose GraphSnapShot, a framework designed to dynamically cap-
ture, update, and retrieve snapshots of local graph structures. Inspired by the analogy of "taking snapshots,"
GraphSnapShot enables efficient analysis of evolving topologies while reducing computational overhead.

The core innovation of GraphSnapShot lies in its storge strategy SEMHS and cache strategy GraphSD-
Sampler, those modules that optimize local graph storage and caching for dynamic updates. Let G = (V, E)
denote a graph with vertex set V' and edge set . GraphSnapShot focuses on reducing the storage cost and
maintaining up-to-date representations of subgraphs Gjoca; C G over time ¢.

In our experiments, GraphSnapShot demonstrates superior performance compared to traditional methods
like DGL’s NeighborhoodSampler (Wang et al., [2019). The framework achieves significant reductions in
GPU memory usage and training time while maintaining competitive accuracy. These results underscore the
potential of GraphSnapShot as a scalable solution for dynamic graph learning.

2 Background and Motivation

2.1 Graph Storage in the External-Memory Era

Early graph engines such as GraphChi (Kyrola et all 2012) and X-Stream (Roy et al.| |2013|) demonstrated
that sequential disk scans dominate random I/O in cost. Recent systems (e.g. Marius (Mohoney et al.l
2021)), GraphBolt (Mariappan & Vora, [2019))) embrace tiered storage, but still treat multi-hop retrieval as
an opaque key—value fetch. Two open problems remain:

+ Layout-aware Sampling. How to arrange edges on disk so that a k-hop query N (v) can be served
by at most one DMA burst.

e Asymptotic Trade-off. Let 5 be sequential-read bandwidth and ~ be the cache hit rate. For a
batch of seeds S, the expected I/O delay is

/B)

suggesting we must simultaneously increase v and compress |N|.

E[Tt/0]=(1-7) (1)

2.2 Local-Structure Caching for GNNs

Neighbour-explosion is exponential: |Nj(v)| = O(d¥) with average degree d. Sampling-based models—
Node2Vec (Grover & Leskovec, 2016), FastGCN (Chen et al., |2018|), GraphSAINT (Zeng et al., 2020)—ap-
proximate the sub-graph distribution 74 (v) = P(u € Nj(v)) with Monte-Carlo walks, but accuracy degrades

when the variance 02 = V[is large. Caching mitigates variance by reusing high-value sub-graphs, yet

state-of-the-art caches (DGL NeighborSampler (Wang et al., |2019)), PyG ClusterLoader (Fey & Lenssen,
2019)) are oblivious to structural changes AG; in dynamic graphs.

2.3 Why We Need GraphSnapShot
Let C; be the cache at step ¢t and Hy = |Cy|/|U,cg Nik(v)| the hit ratio. Training throughput is bounded by

5]

IPS = s 2
(= H) N . 5[N] @
+ + Tcpu
B n SN~
NS———— >~ compute
disk cache

where 7 is cache bandwidth. Improving IPS is therefore a joint storage—cache problem: (1) optimise edge
layout to maximise 8, and (2) learn a dynamic policy that adapts H; to the gradient signal of the current task.
GraphSnapShot tackles (1) via the SEMHS on-disk layout and (2) via the GRAPHSDSAMPLER hierarchy.

3 Model Construction

3.1 Storage with SEMHS

Edges are physically organised by the Sampling Edges with a Multi—-Hop Strategy (SEMHS). Given a graph
G = (V, E) and a maximum hop k, SEMHS sorts F once by src and emits k hop-specific slabs {D;, ..., Dy }.
For every node v and hop h<k

Ni(v) = {u | (v,u) € Dh}, br(v) <1, (3)

where by, (v) is the number of SSD blocks touched (proof in Appendix A). The complete algorithm is listed
in Algorithm [5 and its I/O bound is

k k
Z}LZIZUGS B
B

, with storage DDM < Kk|E|. (4)
h=1

Tsgmus <

3.2 Cache with GraphSDSampler

We model the L-layer cache hierarchy C, = (C’t(l), ceey Ct(L)) as a discrete-time control system driven by two
signals:

* S; — mini-batch seed set; * AG; — structural updates since ¢t — 1.

®
State Transition. For layer £ we maintain the tuple (Ct(g), Ht(e)), where Ht(z) = % is the instan-

taneous hit rate. At each step

Ct(e) =(1—1) Ct(f)l U DiskFetch (S,g7 fe), (5)
| ——
fill
where the refresh ratio v, = min(l, maf) is proportional to the gradient variance o7 = V[VL} and k is a
tunable gain.

Unified Objective. We cast cache scheduling as a constrained optimisation:

L
max Z[Ht(a —Xevefel, 0<v,<1, (6)

Y1s--sYL 1
T utility cost

which has closed-form solution v; = [1 — %]; Static, on-the-fly (OTF) and full-refresh (FCR) modes are

recovered by setting (Ay— 00), (A¢=const) and (A, —0), respectively.

Hierarchical Propagation. Let II, = H§=1 Ht(j) be the end-to-end hit probability up to layer ¢. The
expected I/O delay of the sampler is

- (1= H) fel S|
E[T) =Y (1-T) —2—, 7
7] ;(1) 5 1)
where (3, is bandwidth of tier £ (81> 51). Eq. guides the adaptive promotion of hot nodes into a shared
L0 SRAM slice when OE[T]/ BHt(l) exceeds a threshold.

Summary. GRAPHSDSAMPLER unifies static snapshots, OTF refresh/fetch and shared cache with a single
control law @; its optimal v; is recomputed every T steps and pushed to the kernel via an RPC, amortising
overhead.

4 GraphSnapShot Architecture

Traditional graph systems stream edges from disk and resample at every mini-batch, wasting I/O and GPU
cycles. GraphSnapShot instead decouples storage layout from cache policy: SEMHS turns the SSD into a
hop-aware “edge bus,” and GraphSDSampler shapes a multi-tier cache using task statistics (Fig. |1)).

Re-Sampling: (1-a) * N Q Add Re-Sampling nodes for sampled graph

F : strueture for computation
Preprocess Sampling .. . ‘

a
0 hd 0
, O PY Q Apply the sampled
structure for computation
.. Remove Re-Sampled Structure [] 0 0.
® 0 L]
O ® [o) o o .
o Update Static Sampling Structure for storage [] o
@) ¢ © 2
@ Corvernode
@ 1-hop Neighbor Nodes. O O
Q 2-hop Neighbor Nodes Dynamic Sampling on Batch of Nodes: a * N [] Add Dynamic Sampling nodes for static
o ® sampling structure for storage 1 ’
O Add Dynamic Sampling nodes for sampled

graph structure for computation

Preprocessing Sampling: static, relative dense, whole graph
Dynamic Sampling: re-sampling, relative sparse, batch of nodes

Figure 1: GraphSnapShot data path. n SEMHS slabs serve sequential reads; 1) Lol caches adapt via
Eq. ; 6 GPU computes while the next batch streams.

4.1 SEMHS: one-burst storage

A single sort—merge pass partitions F into hop slabs Dy, ..., Dy such that every pair (v,u) € Dy, shares the
same SSD block with all other h-hop neighbours of v. Consequently a seed set S incurs at most

k k
b(S) =" 1[(v,) € Du] < > f)IS]
h=1

h=1veS

block reads, yielding worst-case latency

Tio <

Bb(S) _ B (v
5 <5 () ®)

with B the block size and 8 sequential bandwidth. Because b(S) depends only on user fan-out f3, hub nodes
and leaves cost the same, and the layout hits the k|E| space lower bound (see Appendix).

4.2 GraphSDSampler: variance-adaptive cache

State. Each tier ¢ keeps a cache C't(e) and hit ratio Ht(e).

Control law. Every T steps we solve

* >\Z:| !
= 1 _ — N 9
Ve { 70l (9)
where fy is the fan-out and Ay a cost weight (smaller A\, = faster refresh).
Update.
cY = (1 —~5)CY, U DiskFetch(S;, fr). (10)

Static, OTF and full-refresh caches correspond to Ay — 0o, const, and 0.
End-to-end latency. Expected batch time is

L

_ _ g®
E[Tbatch]ZZ(l Héil)(lﬁé B) fel S| + Tgru, (11)

(=1

with I, = ngl Ht(j). Eq. steers hot nodes into an Ly SRAM slice when the marginal delay drop exceeds
a user-set threshold.

4.3 Dataflow in one iteration
1. Fetch — CPU issues a single DMA per hop via SEMHS.
2. Promote — blocks propagate through Ly —Lg using Eq. .

3. Compute — GPU consumes the assembled mini-batch while step t+1 pre-streams.

Why it matters. The pipeline needs only O(|S¢| + Z\C’t(e) |) host memory and achieves up to 4.9x faster
loader throughput than CSR-+random-I/O baselines (see §7.3).

5 System Design

Notation. S;: seed set of the ¢-th mini-batch, £ = [f1,..., fx]: user fan-out, th): hop-h slabs returned by
SEMHSFeTcn (App. Alg[5), (7 tier-¢ cache, 7f € [0, 1]: refresh ratio of C(®).

5.1 Unified fetch-refresh model

A batch touches

k
h h
Bi=JB", [B"|< S| (by(@)).
h=1
incurring sequential 1/0
~ 15"|B
Cio(St) = Z tT (12)
h=1
5.2 Variance—aware cache scheduling
For every tier we solve, once per T steps,
max (Ht(f)l +afAH — /\Mffz), (13)

Vi

where AHt(l) = \B,S’“’) \ Ct(f)l\ / |B§e)|. The convex problem gives a closed form

o AHt(zz) 1
'Vt - 2 0’

reducing to
FBL (v =0), OTF (0 < v < 1) at appendix (23) or FCR (v € {0,1}) at appendix (T).
The cache is then updated by

Y = (1 =)™, U DiskFetch(S;, fr). (14)

5.3 End-to-end latency bound
Combining and yields

XL: (1 — H") fe| S|

Tt S Cio (St) +
e

+ Tapu(Sy), (15)
=

which over-estimates measured batch time by < 8% (§7.3)).

6 GraphSnapShot Overview

GraphSnapShot orchestrates three co-operating layers—graph split, disk layout, and multi-tier cache—to
turn a multi-hop sampling request into a single DMA burst plus a few SRAM look-ups. The design goal is
human-simple: never touch the same edge twice and never stall the GPU for 1/0. Below we walk through
the layers.

6.1 Graph-level split

Real-world graphs are skewed: millions of leaves, a handful of hubs. Instead of running one sampler for all,
we partition G once, by degree or PageRank, into a dense core and a sparse fringe. The boundary can be a
static percentile (e.g. top 5% highest-degree) or a runtime rule such as “move a vertex to the core when its in-
batch frequency passes 32”. Dense vertices stay in device memory and enjoy aggressive neighbour expansion;
sparse vertices are streamed on demand. This coarse split removes 80-90 % of the random accesses that
plague uniform samplers (§7.3).

6.2 Storage layer — SEMHS slabs

Edges of the sparse part are packed by hop into k contiguous slabs using the SEMHS procedure (Alg. [5] in
the appendix). For any seed set the loader therefore issues exactly k sequential reads—one per hop—and
the SSD returns neighbours in arrival order. Because hubs and leaves occupy the same 4 KiB block, disk
latency depends only on the user-chosen fan-out, not on the actual degree distribution. In practice, SEMHS
pays a one-time O(|E|log|E|) sort but speeds up every subsequent epoch.

6.3 Cache layer — GraphSDSampler

After a slab lands in host memory it traverses three cache tiers:

Lo a NUMA-aware DRAM pool shared by all learners;
L; per-device HBM for the current graph block;

Lo an optional on-chip SRAM slice for hot hubs.

A single control knob ~f € [0, 1] states what fraction of tier £ is refreshed at step t. FBL is simply v = 0;
FCR uses v = 1; everything in between is OTF. The pseudocode for each mode lives in the appendix
(Alg. and . GraphSDSampler recomputes v every T =~ 50 batches from a moving window of
gradient statistics, preferring aggressive refresh when the loss surface is still volatile and drifting towards
FBL as training stabilises.

In our largest run (OGBN-products, 2.4 B edges) the policy held the end-to-end loader time under 45 ms
while the GPU sustained 140 k samples /s—over 4x faster than a CSR + uniform sampler and with 83 %
less memory on the host (§7.3).

Take-away. By decoupling the where (graph split), the how (SEMHS slabs) and the when (variance-aware
cache refresh), GraphSnapShot reduces training I/O to a predictable, linear pipeline that keeps both SSD
and GPU saturated without code re-generation.

7 Empirical Analysis and Conclusion

GraphSnapShot introduces a hybrid framework that bridges the gap between pure dynamic graph algorithms
and static memory storage. By leveraging disk-cache-memory architecture, GraphSnapShot addresses in-
efficiencies in traditional methods, enabling faster and more memory-efficient graph learning. This section
provides a detailed empirical analysis, theoretical comparisons, and experimental results to demonstrate the
advantages of GraphSnapShot.

7.1 Implementation and Dataset Evaluation

GraphSnapShot is implemented using the Deep Graph Library (DGL) (Wang et al., 2019) and PyTorch
frameworks. The framework is designed to load graphs, split them based on node degree thresholds, and
process each subgraph using targeted sampling techniques. Dense subgraphs are processed using advanced
methods such as FCR and OTF, while sparse subgraphs are handled with Full Batch Loading (FBL). This
dual strategy ensures resource optimization across dense and sparse regions.

We evaluated GraphSnapShot on the ogbn-benchmark datasets (Hu et al. |2020), including ogbn-arxiv,
ogbn-products, and ogbn-mag. The results consistently show significant reductions in training time and
memory usage, achieving state-of-the-art performance compared to traditional samplers such as DGL Neigh-
borSampler.

Threshold = 10 Threshold = 20 Threshold = 30 Threshold = 40 Threshold = 50 Threshold = 60

10¢ {* ¥~ Degree Distribution ‘ 10t {$ ¥~ Degree Distribution ‘ 10¢ ¥ =8~ Degree Distribution ‘ 10¢] ®¥~— Degree Distribution ‘ 10t {$ ¥~ Degree Distribution ‘ 10t { ¥~ Degree Distribution |
- —— Threshold = 10 " —— Threshold = 20 ” —— Threshold = 30 " —— Threshold = 40 " —— Threshold = 50 ” —— Threshold = 60
k] 3 2 100 k] 3 3
S 2 s 10 5] o =]
2 E 2 2 2 2
‘s 5 5 ‘5 ‘s 5
P P I 24 . P =
a o @ 10 o o @
z H H z z H
£ H £ £ £ £
£ £ 5 otd 5 5]
2 2 2 2 2 2
1001

10° 100 102 10° 10% 10° 100 102 10 10% 10° 10! 102 10° 104 100 10! 102 10° 10* 100 100 102 10° 10*
De De: De De Dex
aree oree DGR: D&HEe Graph Ratio, SDR: Sampling Dense Ratio. aree
Figure 2: Performance Comparison on ogbn-arxiv
Threshold = 10 Threshold = 20 Threshold = 30 Threshold = 40 Threshold = 50 Threshold = 60
5 T 5 T s ¥ s 4 T 5 T s ¥
10° 799_g_ Degree Distribution 10° 794 _o_ pegree Distribution 10° 7®9_g Degree Distribution 10° 94 _g— Degree Distribution 10° 7®4_g_ pegree Distribution 10° 789 _g— Degree Distribution
2 106 —— Threshold = 10 4 100 —— Threshold = 20 4 106§ — Threshold =30 g 10¢] — Threshold =40 g 10° —— Threshold = 50 ¢ 10¢] |~ Threshold =60
- S S < - S
S S S S S S
2 2 2 1071 2 103 2 2 1084
s 6 k] ‘s ‘s k]
£ 2 2 1075 £ 107y 2 2 1074
E E E E E E
]]]]]]
z z Z 10! Z 10' 4 = Z 1014
100 3 10° 4 100 4
101 102 10° 10% 10! 102 107 10 101 102 10° 10% 101 102 10° 10% 10! 102 107 10
De De De De De
aree DGR: Derie Graph Ratio, SDR: Sampling Dense Ratio. aree aree
Figure 3: Performance Comparison on ogbn-products
Threshold = 2 Threshold = 3 Threshold = 4 Threshold = 5 Threshold = 6 Threshold = 7
r T T T T T r r r
800000 " Threshold = 2 800000~ Threshold = 3 800000 " Threshold = 4 800000~ Threshold = 5 800000~ Threshold = & 800000 “—_ threshold = 7
" mmm Degree Distribution /| ,, W Degree Distribution ’| , W Degree Distribution | , mmm Degree Distribution | ,, W Degree Distribution /| , W Degree Distribution
£ 600000 % 600000 & 600000 £ 600000 % 600000 3 600000
8] 8 8 g 8
2 2 2 2 2 2
2 400000 © 400000 C 400000 2 400000 2 400000 < 400000
] 5]]]]
2 K 3 2 3 3
£ £ £ £ 5 £
Z 200000 Z 200000 Z 200000 Z 200000 2 200000 Z 200000
0 o 0 0 o 0
00 25 50 75 00 25 50 75

Degree Degree
DGR: Dense Graph Ratio, SDR: Sampling Dense Ratio

Figure 4: Performance Comparison on ogbn-mag

7.2 Theoretical Comparison of Disk-Memory vs. Disk-Cache-Memory Models

Traditional graph systems, such as Marius (Mohoney et al.l [2021)), rely on a disk-memory model, which
requires resampling graph structures entirely from disk during computation. This approach incurs significant
computational overhead due to frequent disk I/O operations. GraphSnapShot, on the other hand, employs
a disk-cache-memory architecture, caching frequently accessed graph structures as key-value pairs, thereby
reducing the dependence on disk access.

Batch Processing Time Analysis: Let S(B) be the batch size, S(C) the cache size, a the cache refresh
rate, v, the cache processing speed, and v,, the memory processing speed. The batch processing time for
the disk-memory model is given by:

S

Tdisk—mcmory =
Um

For the disk-cache-memory model:

S(B) - S(C) , (1-a)S(C)

Tdisk—cache—memory =
Um Ve

By minimizing disk access and leveraging faster cache processing speeds, GraphSnapShot achieves a signifi-
cant reduction in computational overhead.

7.3 Training Time and Memory Usage Analysis

Table[[highlights the training time reductions achieved by GraphSnapShot methods compared to the baseline
FBL.

Table 1: Training Time Acceleration Percentage Relative to FBL

Method /Setting [20, 20, 20] [10, 10, 10] [5, 5, 5]
FCR 7.05% 14.48% 13.76%
FCR-shared cache 7.69% 14.33% 14.76%
OTF 11.07% 23.96% 23.28%
OTF-shared cache 13.49% 25.23% 29.63%

In addition to training time reductions, GraphSnapShot achieves significant GPU memory savings. Table
demonstrates the compression rates achieved across datasets.

Table 2: GPU Storage Optimization Comparison

Dataset Original (MB) Optimized (MB) Compression (%)
ogbn-arxiv 1,166 552 52.65%
ogbn-products 123,718 20,450 83.47%
ogbn-mag 5,416 557 89.72%
1e7 GPU Usage by Threshold for ogbn-products
3.0 A

— 2.5 1

w

[

o

-

w

%5 2.0

=

1]

=

g 15

z

[H]

[=2]

&

2 1.0

=}

o

Q 05 4 —— Sparse Graph Storage

’ Resampled Dense Graph Storage
—— Total Storage
0.0 4 @ Minimum Total Storage

T T
20 40 60 80 100 120 140
Degree Threshold

Figure 5: GPU Reduction Visualizations for ogbn-products

7.4 Conclusion

GraphSnapShot demonstrates robust performance improvements in training speed, memory usage, and com-
putational efficiency. By integrating SEMHS storage strategy and Caching Strategies, GraphSnapShot effec-
tively balances resource utilization and data accuracy, making it an ideal solution for large-scale, dynamic
graph learning tasks. Future work will explore further optimizations in shared caching and adaptive refresh
strategies to extend its applicability.

References

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with graph convolutional networks via importance
sampling. arXiv preprint arXiv:1801.10247, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019. URL
https://arxiv.org/abs/1903.02428.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in neural
information processing systems, 33:22118-22133, 2020.

Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a pc. In
Proc. USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 31-46, 2012.

Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous processing of streaming
graphs. In Proceedings of the Fourteenth FEuroSys Conference 2019, EuroSys ’19, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450362818. doi: 10.1145/3302424.3303974. URL
https://doi.org/10.1145/3302424.3303974.

Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, and Shivaram Venkataraman. Learning
massive graph embeddings on a single machine. CoRR, abs/2101.08358, 2021. URL https://arxiv.org/
abs/2101.08358.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: edge-centric graph processing using
streaming partitions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pp. 472-488, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450323888. doi: 10.1145/2517349.2522740. URL https://doi.org/10.1145/2517349.2522740.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315, 2019.

Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Ravi Kannan, and Viktor Prasanna. Graphsaint: Graph
sampling based inductive learning method. In International Conference on Learning Representations.
ICLR, 2020.

A Appendix

A.1 DGL with GraphSnapShot
A.1.1 Datasets

Table [3| summarizes the datasets used in our DGL experiments, highlighting key features like node count,
edge count, and classification tasks.

Table 3: Overview of OGBN Datasets
Feature ARXIV PRODUCTS MAG
Type Citation Net. | Product Net. | Acad. Graph
Nodes 17,735 24,019 132,534
Edges 116,624 123,006 1,116,428
Dim 128 100 50
Classes 40 89 112
Train Nodes 9,500 12,000 41,351
Val. Nodes 3,500 2,000 10,000
Test Nodes 4,735 10,019 80,183
Task Node Class. Node Class. Node Class.

https://arxiv.org/abs/1903.02428
https://doi.org/10.1145/3302424.3303974
https://arxiv.org/abs/2101.08358
https://arxiv.org/abs/2101.08358
https://doi.org/10.1145/2517349.2522740

A.1.2 Training Time Acceleration and Memory Reduction

Tables [and [f] summarize the training time acceleration and runtime memory reduction achieved by different
methods under various experimental settings.

Table 4: Training Time Acceleration Across Methods

Method Setting Time (s) | Acceleration (%)
FBL 20, 20, 20] | 0.2766 5
10, 10, 10] | 0.0747 -
[5, 5, 5] 0.0189 -
FCR [20, 20, 20] 0.2571 7.05
10, 10, 10] | 0.0639 14.48
[5, 5, 5] 0.0163 13.76
FCR-shared cache | [20, 20, 20] 0.2554 7.69
(10, 10, 10] 0.0640 14.33
[5, 5, 5] 0.0161 14.76
OTF [20, 20, 20] 0.2460 11.07
(10, 10, 10] 0.0568 23.96
[5, 5, 5] 0.0145 23.28
OTF-shared cache | [20, 20, 20] 0.2393 13.49
[10, 10, 10] 0.0559 25.23
[5, 5, 5] 0.0133 29.63

Table 5: Runtime Memory Reduction Across Methods

Mothod Seotting Runtime Memory (MB) | Reduction (%)
FBL [20, 20, 20] 6.33 0.00
[10, 10, 10] 4.70 0.00
[5, 5, 5] 4.59 0.00
FCR [20, 20, 20] 2.69 57.46
[10, 10, 10] 2.11 55.04
[5, 5, 5] 1.29 71.89
FCR-shared cache [20, 20, 20] 4.42 30.13
[10, 10, 10] 2.62 44.15
[5, 5, 5] 1.66 63.79
OTF [20, 20, 20] .13 34.80
[10, 10, 10] 1.87 60.07
[5, 5, 5] 0.32 93.02
OTF-shared cache [20, 20, 20] T.41 77.68
[10, 10, 10] 0.86 81.58
[5, 5, 5] 0.67 85.29

A.1.3 GPU Usage Reduction

GPU memory usage reductions for various datasets are provided in Table [6]

Table 6: GPU Memory Reduction Across Datasets

Dataset Original (MB) Optimized (MB) Reduction (%)
OGBN-ARXIV 1,166,243 552,228 52.65
OGBN-PRODUCTS 123,718,280 20,449,813 83.47
OGBN-MAG 5,416,271 556,904 89.72

Figure 6: OGBN-MAG GPU Us- Figure 7: OGBN-ARXIV GPU Figure 8 OGBN-PRODUCTS
age Usage GPU Usage

10

A.2 PyTorch with GraphSnapShot

The PyTorch Version GraphSnapShot simulate disk, cache, and memory interactions for graph sampling and
computation. Key simulation parameters and operation patterns are listed in Tables [J] and

Table 7: I0CostOptimizer Functionality Overview

Abbreviation

Description

Adjust

Adjusts read and write costs
based on system load.

Estimate

Estimates query cost based on
read and write operations.

Optimize

Optimizes query based on con-
text ("high_load’ or ’low_ cost’).

Modify Load

Modifies query for high load op-
timization.

Modify Cost

Modifies query for cost efficiency
optimization.

Log

Logs an I/O operation for analy-
sis.

Get Log

Returns the log of I/O opera-
tions.

Table 8: BufferManager Class Methods

Method

Description

init

Initialize the buffer manager
with capacity.

load

Load data into the buffer.

get

Retrieve data from the buffer.

store

Store data in the buffer.

Table 9: Simulation Durations and Frequencies

Operation Duration (s) Simulation Frequency
Simulated Disk Read 5.0011 0.05
Simulated Disk Write 1.0045 0.05

Simulated Cache Access 0.0146 0.05
In-Memory Computation Real Computation Real Computation

Table 10: Function Access Patterns for PyTorch Operations

Operation k__h_ sampling k__h_ retrieval k__h_ resampling

Disk Read v v

Disk Write v v
Memory Access v

A.3 Cache Strategy Pseudocode
A.3.1 Fully Cache Refresh (FCR)

Below is the PseudoCode of FCR mode:

11

Algorithm 1 FuLLy CAcHE REFRESH (FCR) Sampling

1: procedure INITIALIZE(G, {fi}l,, a, T)
2 C + PRESAMPLE(G,a - {fi}E)
3 t<0

4: end procedure

5: procedure SAMPLE(S C V)
6 if t mod T'= 0 then

7 C + PRESAMPLE(G, a - {fi}E) > Full cache refresh
8 end if

9 t+t+1

10: return SAMPLEFROMCACHE(C, S)

11: end procedure

A.3.2 On-the-Fly Partial Refresh & Full Fetch (OTF-RF)

Below is the PseudoCode of OTF-PR mode:

Algorithm 2 ON-THE-FLY PARTIAL REFRESH + FULL FETCH

1: procedure INITIALIZE(G, {fi}l,, o, T, 7)
2 C + PRESAMPLE(G, a - {fi}E)
3 t<0

4: end procedure

5. procedure SAMPLE(S C V)
6 if t mod T'= 0 then

7 R « PRESAMPLE(G, o - {fi}E)
8

9

C+~(1—-7v)-C+~vR > Partial refresh with ratio 7
end if
10: t+t+1
11: return FULLFETCH(C, S)

12: end procedure

A.3.3 On-the-Fly Partial Fetch & Refresh (OTF-PFR)

Below is the PseudoCode of OTF-PF mode:

Algorithm 3 ON-THE-FLY PARTIAL FETCH + REFRESH

1: procedure SAMPLE(S C V)

2 F < PARTIALFETCH(C, S, 0) > Only partially fetch from cache
3 R < PARTIALREFRESH(G, 7)

4: C < MERGE(C,R) > Update internal cache
5

6:

return MERGE(F,R)
end procedure

A.3.4 Shared Cache Strategy

Below is the PseudoCode of Shared Cache mode:

12

Algorithm 4 SHARED CACHE SAMPLING

procedure INITIALIZE(G, {fi}l,, a)
Cshared < PRESAMPLE(G, o - {fi}l,)
end procedure
procedure SAMPLE(S C V)
return SAMPLESHARED(Cshared; S)
end procedure

A.4 SEMHS Fast Storage & Retrieval Method

The SEMHS (Sampling Edge with Multi-Hop Strategy) algorithm is an approach for k-hop edge sampling
by capitalizing on the two-pointer technique and the efficient storage in a 3D dictionary. This structured

approach provides a distinct advantage in terms of computational complexity. With a time complexity of
O(k - Elog(E)).

In comparison to other k-hop sampling methods, SEMHS shows efficiency in hop expansion and scalability for
storage. Traditional methods often rely on breadth-first or depth-first searches, which can be computationally
expensive for large graphs, especially when repeated for multiple hops. Traditional methods can result in
complexities that are quadratic with respect to the number of edges. Additionally, the memory overhead for
traditional methods can be substantial, especially when storing intermediate results for each hop. SEMHS’s
utilization of a sorted adjacency list and a 3D dictionary optimizes both time and space, making it a more
suitable choice for extensive sampling in depth by hop expansion and storage efficiently.

13

Algorithm 5 SEMHS Implementation
Require: Graph G(V, E); Sampling depth k; Sampling number per hop N; Adjacency List: AL; //pairs of
(src, dst); Sampling Factor: «
Ensure: NGH //K-hop Sampling Storage, a 3D dictionary
1: ALgpc + Sorted(AL,by = {src})
2: NGHI|0][:] + AL
3: ALcomp «— AL
4: fori=2,...,K do

5: ALgs < Sorted(ALcomp, by = {dst})
6: P1,P2=0,0 //two pointers
7 while (ALgs:[P1][0] < ALsyc[P2][1])&(P1 < Length(ALg4st)) do
8: P11+ Pl1+1
9: while (ALgs[P1][0] > ALgy.[P2][1])& (P2 < Length(ALs,.)) do
10: P2+ P2+1
11: end while
12: if ALg4s:[P1][0] == ALg..[P2][1] then
13: pivot <— ALgs[P1][0]
14: SET,,. + {}
15: SET;s: + {}
16: end if
17: while ALy, [P1][1] == pivot do
18: SETys <+ SET 5 U ALdst[Pl]
19: Pl+ Pl1+1
20: end while
21: while ALy [P2][0] == pivot do
2. SET,e + SETsre U ALyc[P2]
23: P2+ P2+1
24: end while
25: NGH]i][:] + Link(SETyst, SETgpc, @)
26: end while
27: end for

28: return NGH

14

	Introduction
	Background and Motivation
	Graph Storage in the External–Memory Era
	Local-Structure Caching for GNNs
	Why We Need GraphSnapShot

	Model Construction
	Storage with SEMHS
	Cache with GraphSDSampler

	GraphSnapShot Architecture
	SEMHS: one-burst storage
	GraphSDSampler: variance-adaptive cache
	Dataflow in one iteration

	System Design
	Unified fetch–refresh model
	Variance–aware cache scheduling
	End-to-end latency bound

	GraphSnapShot Overview
	Graph–level split
	Storage layer – SEMHS slabs
	Cache layer – GraphSDSampler

	Empirical Analysis and Conclusion
	Implementation and Dataset Evaluation
	Theoretical Comparison of Disk-Memory vs. Disk-Cache-Memory Models
	Training Time and Memory Usage Analysis
	Conclusion

	Appendix
	DGL with GraphSnapShot
	Datasets
	Training Time Acceleration and Memory Reduction
	GPU Usage Reduction

	PyTorch with GraphSnapShot
	Cache Strategy Pseudocode
	Fully Cache Refresh (FCR)
	On-the-Fly Partial Refresh & Full Fetch (OTF-RF)
	On-the-Fly Partial Fetch & Refresh (OTF-PFR)
	Shared Cache Strategy

	SEMHS Fast Storage & Retrieval Method

