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Abstract

Sparse autoencoders (SAEs) and transcoders have become important tools for
machine learning interpretability. However, measuring how interpretable they are
remains challenging, with weak consensus about which benchmarks to use. Most
evaluation procedures start by producing a single-sentence explanation for each
latent. These explanations are then evaluated based on how well they enable an
LLM to predict the activation of a latent in new contexts. This method makes it
difficult to disentangle the explanation generation and evaluation process from the
actual interpretability of the latents discovered. In this work, we adapt existing
methods to assess the interpretability of sparse coders, with the advantage that
they do not require generating natural language explanations as an intermediate
step. This enables a more direct and potentially standardized assessment of inter-
pretability. Furthermore, we compare the scores produced by our interpretability
metrics with human evaluations across similar tasks and varying setups, offering
suggestions for the community on improving the evaluation of these techniques.

1 Introduction

Sparse autoencoders (SAEs) and transcoders are now popular tools for interpreting large language
models (Lieberum et al., 2024} |Gao et al.} |2024; [Templeton et al., 2024)), vision models (Surkov
et al.| 2024} |Gorton, [2024) and other neural networks (Adams et al.|[2025; [Le et al.| 2024)). Naively
interpreting the activations of neural networks tends to fail due to polysemanticity (Mu & Andreas,
2020; |Zhang & Wang 2023) — neurons usually fire in diverse, seemingly unrelated contexts. SAEs
aim to overcome polysemanticity by representing each hidden state using an overcomplete basis,
while requiring the coefficients of the linear combination to be sparse and non-negative. This allows
SAE basis vectors (often called latents) to learn more specific and interpretable latents than those
captured by neurons. Initial works showed that the latents of SAEs have very interpretable activations
(Cunningham et al.,[2023)), specially in the highest quantiles. Recent work (Karvonen et al., 2025)
has focused on generating good benchmarks that go beyond minimizing the reconstruction loss and
increasing sparsity, instead focusing on possible downstream applications and addressing pathologies
found in some SAEs, like feature absorption (Chanin et al.| 2024).

The most popular methods for evaluating SAE interpretability involves generating a natural language
explanation for each latent. This explanation is then evaluated by how useful it is for predicting
the activation of the latent, or the effects of intervening on the latent, in a given context (Templeton
et al., [2024; |Paulo et al.| 2024; \Gur-Arieh et al.,2025). The use of natural language explanations is
problematic, however. It complicates the evaluation pipeline, introducing additional hyperparameters
and prompt choices which are likely to affect the final results. Ideally, we would like to abstract away
from the details of explanation generation, focusing on the properties of the latents themselves.

The explanation-centered approach also assumes that an interpretable latent must have a meaning
succinctly expressible in words (Ayonrinde et al.| 2024} |Paulo & Belrose, [2025). We question this
philosophical assumption: we deem a latent interpretable if a human can intuitively understand its
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meaning, and thereby distinguish activating from non-activating examples. In this work, we introduce
two methods for assessing the interpretability of sparse coders, which do not require generating
natural language explanations as an intermediate step. Our methods are applicable to both human and
LLM evaluators, and we compare the scores produced by LLMs to those produced by humans.

2 Related work

2.1 Evaluating interpretability

We consider human evaluation to be the gold standard for interpretability, and LLM evaluators are
valid only insofar as their judgments correlate strongly with those of humans. (Chang et al.| (2009)
introduced the word intrusion task, where human participants identify an out-of-place word within a
set of words associated with a specific topic discovered by a topic models. [Subramanian et al.| (2018))
apply this approach to sparse word embeddings. The two alternative forced choice task (Borowski
et al.,[2020; [Zimmermann et al.} 2023) asks humans to discriminate between pairs of images where
one strongly activates a feature map in a convolutional neural network, and one image does not. A
model for which humans achieve high accuracy on these tasks, as well as a high inter-participant
agreement rate, can then be considered interpretable.

Most methods of evaluating SAE interpretability involve generating an explanation for each latent,
then evaluating the usefulness of these explanations for predicting whether, and/or how strongly, the
latent will activate in a given context. This is similar to the simulation scoring method proposed in
Bills et al.| (2023)) for neuron—based interpretability. However, this approach is entirely correlational,
and may not capture the causal effects of latent activations on the model’s output. Causal evaluations
involve intervening on the model along a latent direction, and measuring how well the effect of this
intervention can be predicted given a natural language explanation (Paulo et al., [2024} |Gur-Arieh
et al., [2025).

If SAE latents are strongly predictable by humans, we might imagine that we could replace the true
latent activations from the SAE encoder with predicted activations from a human or LLM during a
forward pass, and observe little performance degradation relative to the pristine model. This was
attempted by Paulo & Belrose|(2025), with mostly negative results. The idea is similar to concept
bottleneck models (Koh et al.,|2020), where the concepts are learned to explain an existing model,
instead of learned as the model is trained.

2.2 Automatic explanation generation and evaluation

The standard method for generating explanations for latents involves collecting activations over a
large corpus of text (Bills et al.,[2023)). Contexts that trigger the activation of a given latent are then
presented to an LLM, which is tasked with summarizing them. Different strategies can be employed
when sampling examples to show the LLM, such as stratified sampling from selected quantiles in the
activation distribution (Templeton et al., 2024} Paulo et al., [2024).

Explanations can be evaluated via simulation, where an LLM is asked to predict a latent’s activation
strength at a specific token in a sentence given the explanation (Bills et al.| 2023). However, this
technique is computationally expensive and requires fairly heavyweight language models to produce
meaningful results (Bills et al., [2023} [Paulo et al.,|2024). More recent methods aim to simplify this
process by focusing on distinguishing between activating and non-activating examples (Paulo et al.,
2024).

One such method is detection, where the model only needs to predict whether any token anywhere in
an example activates a specified latent. In fuzzing, the model is asked whether a specific highlighted
token in a context activates the latent or not. In Templeton et al.| (2024)), the authors propose a
simple rubric score, where the model rates the relevance of a given interpretation in relation to the
context and corresponding activations. Notably, these scoring techniques are more suitable for human
evaluation due to their simplicity.

Other approaches focus on the downstream effects of activating certain latents. For instance, Gury
Arieh et al.| (20235) and |Paulo et al.| (2024) generate explanations by analyzing the impact that a latent
has on the base model’s output when used as a steering vector. Their scoring metrics quantify how
well the explanation does at predicting these steering effects.
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Figure 1: Evaluating the interpretability of SAE latents. To evaluate the interpretability of SAE
latents, activations of the latents are collected over a colection of text. Traditionally these are then
used to generate explanations, which are then scored. This process is an indirect measurement
of the latents interpretability, and specific choices when generating explanations can influence the
scores. Instead, we propose to evaluate the interpretability of SAE latents by directly looking at their
activations, either through intruder detection or example embedding scoring.
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3 Methods

In this work we focus on evaluating the interpretability of four different sparse autoencoders trained
on the output of the MLPs at layers 9, 15, 21, and 27 of SmolLM2 135M 2025). They
were trained to minimize the mean squared error between their output and the MLP output, with no
auxiliary loss terms. We adopt the state-of-the-art TopK activation function proposed by
(2024), which directly enforces a desired sparsity level on the latent activations without the need
to tune an L1 sparsity penalty, and consider the case where £ = 32. All sparse coders are trained
using the Adam optimizer (Kingma & Bal,[2017)), a sequence length of 2049, and a batch size of 64
sequences. We train the SAEs on 10 billion tokens sampled from a reconstruction of the SmolLM?2
training corpus.

3.1 Intruder detection

Inspired by intruder word detection (Chang et al.} 2009} [Klindt et al, 2025)), we designed an intruder
sentence detection task to evaluate the interpretability of SAE latents without relying on natural
language explanations. For each latent, we sample four activating examples and one non-activating
intruder example. The intruder is drawn from a pool of examples that do activate other latents but
do not trigger the latent being evaluated. We randomly select one of the ten deciles of the activation
distribution, then sample all of our activating examples from the same decile.

To evaluate the interpretability of each latent, we present the five examples to the LLM as a numbered
list, and ask it to identify the intruder by index. Activating tokens in the activating examples are
highlighted using << and >>> to provide additional context, while in non-activating examples, a
random selection of tokens is highlighted. The number of highlighted tokens matches the average
count in the activating examples, rounded down. Each example is constrained to 32 tokens in length
to maintain consistency. Examples are preceded by a few-shot prompt demonstrating the task on
synthetic examples.
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The score of the latent is then defined as the accuracy of the evaluator at intruder detection for that
latent, averaged over deciles. We also report the accuracy for individual deciles, allowing for the
evaluation of interpretability as a function of activation strength.

We depart from traditional intruder word detection by showing a full context, because we find that
a significant number of latents activate on more than one token in a context, sometimes on several
adjacent tokens.

3.1.1 Human intruder detection

The authors manually performed the intruder task on a subset of examples to provide a human baseline.
The procedure is similar to what is done by the LLM. The authors were shown five examples, with
tokens highlighted as described above, and had to select which of the examples is the intruder. In
LLMs, each intruder test is done in a fresh context, and so there is no information that carries from
one set of examples to the next. The same is not true for the human participants. To minimize this
effect, we randomly select which latent to sample the examples from, such that there aren’t many
consecutive examples of the same latent. The decile from which the examples are drawn are also
chosen randomly and not shown to the participants.

3.2 Example embedding scoring

Although intruder detection is able to skip the explanation generation process, we find that a powerful
LLM is still needed to produce meaningful scores. Since high-quality embedding models can be quite
small, we explore a method we call example embedding scoring to speed up the evaluation process.
It is inspired by the two alternative forced choice task used in [Borowski et al.| (2020); Zimmermann
et al.|(2024).

Example embedding scoring evaluates the interpretability of a latent by measuring whether activating
examples cluster in embedding space. We sample sentence embeddings for a set of activating
examples E+ = {e],...e}!} and a set of non-activating examples £~ = {e],...e; }. We also
sample embeddings for an activating example g called the positive query, and a non-activating
example q_ called the negative query. We compute how much closer each query is to examples
from its own class than to examples from the other class:

1 qt et o o
S ME S ) o
N + + + -
22, Tt Tl 2 Tt e
1 qi.ei_ qi'ej_
8- = 7Y e X e @
e, €E~ z e;rEEJr 7

As in intruder detection, all positive examples are sampled from the same decile of the activation
distribution, and the negative examples are random non-activating contexts. We use the 22M parameter
transformer all-MiniLM-L6-v2|as our embedding model.

Ay and A_ can used to compute the AUROC, which is the scoring metric for this method. For each
latent we iterate over different sets of explanations and queries, and average over them. This metric
is similar to that of embedding scoring (Paulo et al., [2024), where explanations are substituted by
activating examples.

4 Results

4.1 Intruder detection

The average intruder detection accuracy for a human is 65%, as measured on 56 different latents.
On the highest activating deciles, human accuracy averaged 78%. In total, one third of latents had a
score of over 80%, and only one in seven had a score lower than 30%, meaning that they few were
considered non-interpretable. This supports the claim that explicit natural language interpretations
are not needed to decide wether a given example should be active or not, and that showing other
activating examples is sufficient.
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Figure 2: Correlation between human and LLM intruder detection accuracy. In the left panel
we compare the accuracy on the intruder task for the LLM - in this case Claude Sonnet 3.5 - and that
of a human. In the right panel we show a more coarse grained classification. All latents which have
less than that 0.2 accuracy are considered non interpretable, and different degrees of interpretability
are assigned to the other 4 bins of 0.2. The agreement between the "quality" of the latents given by
humans and the LLM is significant, even though the LLMs underestimate the degree of interpretability.
We evaluate 56 latents from SAEs trained on SmolLM 2 - around 14 latents per layer on four different
layers. The size of each dot represents how many prompts the human saw for each latent, and is
meant to represent the uncertainty associated with the score, with the smaller dots representing 8
prompts.

To validate the usage of LLMs instead of humans in the evaluation process, we compute the scores
given by the LLM on the same latents. While humans only see on average 10 to 20 prompts per
latent, Claude Sonnet 3.5, the LLM we compare to in the left panel of Figure[2] is evaluated on 50
prompts. The Spearman correlation between the LLM scores and the human score is 0.85, a higher
agreement than what was seen in previous SAE evaluation metrics (Paulo et al.| 2024), although in
those works the human evaluators were not performing exactly the same task, as is the case here. The
expected accuracy of random guessing is 20%, so each latent that has intruder detection accuracy of
20% or less is clearly uninterpretable. We create four additional interpretability bins, ranging from a
low degree of interpretability (20-40%) to a very high degree of interpretability (80-100%). In the
right panel of Figure [2] we report the agreement between binned human and binned LLM scores. We
observe that the human mostly finds latents more interpretable than their LLM counterparts. This
is good news, as it suggests LLMs are not finding convoluted patterns in the latent activations that
humans cannot find.

Accuracy on the intruder task is dependent on the the activation decile from which the examples
were sampled. Examples from the highest activating decile can have up to 20% higher accuracy than
examples from the smallest activations (Figure [3|left panel).

Has found in previous work (Templeton et al.,|2024; [Paulo et al.,|2024)), examples with the lowest
activations are hardest to interpret, even if we are considering only elements with similar activations.
On the other hand, even though intruder detection accuracy is lower in the lower activating deciles, is
still significantly higher than random. If we divide latents into interpretability bins, we see that the
most interpretable latents remain interpretable even in the lower activation deciles, with accuracies
greater than 0.75 (Figure [AT]), which we believe show that low activating examples can carry
information about the behaviour of the latent.
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Figure 3: Interpretability of the distribution of activations. The activation examples used on the
intruder task come from different deciles of the distribution of the latent’s activations. On the lower
activating deciles, it’s harder to distinguish which is the intruder example, but the accuracy is still
significantly above random. If instead of using non-activating examples we use examples from a
different decile, we can observe that the accuracy of close deciles is close to random, while for further
deciles it increases, although it is still lower than when using non activating examples. This shows
that the full distribution of the activations of the SAE latents remains somewhat interpretable.

4.1.1 Detecting intruder deciles

Intruder detection makes it easy to investigate how the meaning of a latent varies as a function of the
activation strength. Specifically, we modify our setup so that all five examples contain a token that
activates the same latent, but one of them, the intruder, is sampled from a different activation decile
as the rest. For a perfectly monosemantic latent representing a binary feature, we would expect
the accuracy of this task to be close to random, as examples from different deciles would be very
similar. If we assume that some latents represent scalar features with a notion of degree or intensity,
one would expect that nearby deciles would exhibit close to random accuracy, and that distant pairs
of deciles would be easier to distinguish. We would also expect symmetry, where the difficulty of
finding a high-activating intruder among low-activating examples is similar to the accuracy of finding
a low-activating intruder among high-activating examples.

In the right panel of Figure |§|, we use Llama 3.1 70b (Team| [2024) to perform this detection task.
As expected, Llama achieves highest accuracy when the majority decile is highest and the intruder
decile is lowest (51%). This result is far from symmetric, however: when the majority decile is low,
Llama essentially never achieves higher than random accuracy, no matter the decile of the intruder.
Interestingly, when the intruder decile is high and the majority decile is low, we see significantly
worse than random accuracy (around 13%).

While there likely are some ’perfect’ scalar features in these SAEs, we do not see clear evidence for
them in the right panel of Figure 3] The accuracy matrix is nonsymmetric, and even in the lower
triangular it is not completely explained by the distance between majority and intruder deciles except
by the highest activating deciles. We can rule out the hypothesis that most features are both binary
and monosemantic, since we see far better than random accuracy for many (intruder, majority) pairs.

4.1.2 Inter-LLM and inter-human agreement

We investigate how the intruder accuracy for a given latent is correlated across different LLMs. We
find that different models’ scores have around the same correlation than with humans, except for the
smaller Llama 3.1 8b, which has the worst accuracy (27%), and the lowest correlation with human
judgment.

We are also interested in inter-human agreement. We find that, in a smaller set of 40 latents, each with
only 3-5 prompts, the correlation between the two human labelers is of 0.87, while the one between
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Figure 4: Interpretability evaluation using example embedding scoring. In the left panel, we
show that the highest activating decile are easier to distinguish from non activating examples, as was
the case with intruder detection. On the panel on the right, it is possible to see that, if using examples
from different decile, we can observe that the accuracy of close decile is close to random, while for
further decile it slightly increases. An exception to this is the first decile, which seems more different
from the others.

Claude-Sonnet and each of the humans is 0.86 and 0.69. This level of inter-LLM and inter-human
agreement is promising for this proposed method of evaluating SAE latent interpretability.

Human | Llama Llama | QwQ Gemini Claude

3.170b | 3.18b | 32b Flash 2.0 Sonnet 3.5
Human 1 0.77 0.64 0.78 0.83 0.84
Llama 3.1 70b 0.77 1 0.58 0.89 0.85 0.88
Llama 3.1 8b 0.64 0.58 1 0.63 0.60 0.65
QwQ 32b 0.78 0.89 0.63 1 0.85 0.91
Gemini Flash 2.0 0.83 0.85 0.60 0.85 1 0.87
Claude Sonnet 3.5 0.84 0.88 0.65 0.91 0.87 1

Table 1: Correlation between different evaluators. We measure the Pearson correlation between
the accuracy of intruder detection in 56 latents. Each latent was evaluated in 10-20 prompts by the
human, and on 100 prompts by the LLMs.

4.2 Example embedding scoring

Example embedding scoring also finds that high deciles are easier than from low deciles (Figure []left
panel). Unlike intruder detection accuracy, example embedding scoring is symmetric by construction
(Figure [] right panel). Unfortunately the observed AUROCs are fairly close to that of random
guessing (0.5), even for deciles that are far apart. The highest decile is a notable exception, yielding
AUROC:s between 0.64 and 0.70.

We hypothesize that these results are due to the fact that activating tokens carry a lot of information
about which decile an example belongs to, with the surrounding context being similar across deciles.
The main weakness of embedding scoring is its low sensitivity to the activating token. Example
embedding is a difficult task for an off-the-shelf embedding model, since it is unlikely to understand
what our highlight tokens << and >> mean.

Example embedding scores do not correlate as strongly with human intruder scores (r = 0.48) as
LLM intruder scores do (r = 0.84). See Table 2] for full results. We suspect that example embedding
scores tend to underestimate the interpretability of latents due to the small size of the embedding
model and the difficulty of getting the model to attend to the tokens on which the latent is actually
active, rather than the context as a whole. That said, it is a very fast and computationally efficient
technique relative to other approaches.
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Example Intruder Intruder (Hu- | Fuzzing F1 | Detection
Embedding | (LLM) man) F1
Example Em- | 1 0.51 0.48 0.46 0.58
bedding
Intruder 0.51 1 0.84 0.74 0.59
(LLM)
Intruder (Hu- | 0.48 0.84 1 0.69 0.50
man)
Fuzzing F1 0.46 0.74 0.69 1 0.71
Detection F1 | 0.58 0.59 0.50 0.71 1
Table 2: Correlation between different methods.We measure the Pearson correlation between the

accuracy of intruder detection and other scoring methods in 56 latents. Each latent was evaluated in
10-20 prompts by the human, and on 100 prompts by the other methods.

5 Conclusion

Prior work in the evaluation of SAEs relied on generating natural language explanations for SAE
latents, which were then used to predict either the activations of those latents, or their causal effects.
In this work we introduced two new methods for evaluating SAEs which do not rely on explanations:
intruder detection, and example embedding scoring. We tested intruder detection using both human
and LLM evaluators, finding that the human accuracies are highly correlated with those from LLMs.
We use both intruder detection and example embedding scoring to measure the interpretability of
different parts of the activation distribution, finding that higher deciles are more interpretable. As
expected, example embedding scoring has a lower correlation with human intruder detection scores
than LLM intruder detection scores do, but we believe it to be a promising method due to its speed: it
uses a small embedding model rather than a large language model to perform the scoring.
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Figure A1l: Interpretability of the distribution of activations, stratified. If we observe each of the
5 bins of accuracy separately, the bin with higher accuracy consistently has high accuracy throughout
all the distribution, while the other bins have sharper drops in accuracy when going from the highest
activating examples to the lowest ones.
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