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ABSTRACT

Transferability of adversarial examples is a well-known property that endangers
all classification models, even those that are only accessible through black-box
queries. Prior work has shown that an ensemble of models is more resilient to
transferability: the probability that an adversarial example is effective against
most models of the ensemble is low. Thus, most ongoing research focuses on
improving ensemble diversity. Another line of prior work has shown that Lipschitz
continuity of the models can make models more robust since it limits how a model’s
output changes with small input perturbations. In this paper, we study the effect
of Lipschitz continuity on transferability rates. We show that although a lower
Lipschitz constant increases the robustness of a single model, it is not as beneficial
in training robust ensembles as it increases the transferability rate of adversarial
examples across models in the ensemble. Therefore, we introduce LOTOS, a new
training paradigm for ensembles, which counteracts this adverse effect. It does
so by promoting orthogonality among the top-k sub-spaces of the transformations
of the corresponding affine layers of any pair of models in the ensemble. We
theoretically show that k does not need to be large for convolutional layers, which
makes the computational overhead negligible. Through various experiments, we
show LOTOS increases the robust accuracy of ensembles of ResNet-18 models by
6 percentage points (p.p) against black-box attacks on CIFAR-10. It is also capable
of combining with the robustness of prior state-of-the-art methods for training
robust ensembles to enhance their robust accuracy by 10.7 p.p.

1 INTRODUCTION

Deep learning models are very brittle to input changes: Szegedy et al. (2013) were the first to carefully
craft “adversarial” perturbations that result in incorrect classification outcomes. Subsequent research
showed that these adversarial examples “transfer” to models with different hyper-parameters, and even
different hypothesis classes (Papernot et al., 2016a; Liu et al., 2016). This transferability property was
used to design black-box attacks against models for which only query access is available (Papernot
et al., 2017). In these attacks, the adversary trains a local model that is “similar” to the victim
(black-box) model and uses that to find transferable adversarial examples (Xiao et al., 2018). To
increase the rate of transfer success, a common strategy is to choose those inputs that are adversarial
to an “ensemble” of models (Liu et al., 2016; Chen et al., 2023): fooling an ensemble may result in
fooling a potentially unseen model.

Research has also been carried out on understanding and improving model resilience to such at-
tacks (Dong et al., 2019). Adversarial robustness is the innate ability of the model to correctly
classify adversarial examples (Madry et al., 2017). One way of increasing this robustness is uti-
lizing a diverse1 ensemble of models (Yang et al., 2020; 2021). This has also been considered as
a mitigation to the transferability problem (Pang et al., 2019; Kariyappa & Qureshi, 2019; Yang
et al., 2020; 2021; Sitawarin et al., 2023); by increasing the diversity among models of the ensemble,
the subspace of the adversarial examples that are effective against most of the models within the
ensemble shrinks. While empirical evidence is promising, most of these ensemble robustness methods
are either computationally expensive or come at a considerable cost to the accuracy of the models
and the overall ensemble. In another vein of research, Lipschitz continuity was also shown to be

1In terms of the parameters and decision boundaries.
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important for robustness (Szegedy et al., 2013; Farnia et al., 2018; Boroojeny et al., 2024). Since the
model’s Lipschitz continuity controls how the predictions change for small changes in the input, it is
intuitive that bounding it will improve robustness. It is important to note that neural networks are a
composition of multiple layers and therefore the existing works in this area obtain an upper-bound on
the overall Lipschitz constant of the network by bounding each layer independently (Szegedy et al.,
2013; Sedghi et al., 2018; Senderovich et al., 2022; Delattre et al., 2023; Boroojeny et al., 2024).

In our work, we investigate the effect of Lipschitz continuity on the transferability of adversarial
examples. We observe that while decreasing the Lipschitz constant makes each model of the ensemble
individually more robust, it makes them less diverse and consequently increases the transferability
rate among them which in turn hinders the overall ensemble robustness (§ 3, Figure 1). To resolve
this adverse effect, we introduce our novel training paradigm, Layer-wise Orthogonalization for
Training rObust enSembles (LOTOS), which orthogonalizes the corresponding affine layers of the
models with respect to one another. This increases the diversity of the trained models. LOTOS can be
combined with any prior method of training diverse ensembles to further boost their robustness.

Through extensive experiments and ablation studies, we show that LOTOS effectively decreases the
transferability rate among the models of an ensemble, which leads to a higher robustness against
black-box attacks. As we will show, LOTOS is highly efficient for convolutional layers and is very
fast compared to prior methods. We also show that it is an effective method for training robust
ensembles of heterogeneous architectures, where other state-of-the-art (SOTA) methods are not
applicable. Finally, we investigate how LOTOS is able to improve the results of the prior SOTA
methods when they are combined. In short, the main contributions of this work are:

Lipschitz continuity is not as effective for ensemble robustness. To the best of our knowledge,
we are the first to study the adverse effect of Lipschitz continuity on the transferability rate of
adversarial examples (§ 3). Prior works study individual model and ensemble robustness separately
which does not reveal the issues that the former might cause when used in the form of an ensemble.
We show the presence of a trade-off between single model robustness and ensemble robustness as
the Lipschitz constant of the individual models changes through empirical analysis. This shows the
necessity of special treatment when training ensembles to alleviate this trade-off while benefiting the
proven effectiveness of Lipschitz continuity in the robustness of individual models.

A new ensemble training method for robustness. We introduce LOTOS, a novel ensemble train-
ing method to address the aforementioned trade-off. Prior work diversifies the models in the ensemble
using either the final outputs (Kariyappa & Qureshi, 2019; Pang et al., 2019), distilled features (Yang
et al., 2020), latent representations (Huang et al., 2023), or the vectorized form of all the param-
eters (Yang et al., 2021). LOTOS considers the corresponding affine layers of the models and
orthogonalizes them with respect to one another using a novel component in the loss function. Addi-
tionally, we theoretically and empirically show that our method is highly efficient for convolutional
layers (§ 4). We demonstrate that LOTOS improves ensemble robustness against black-box attacks at
a nominal increase in robust accuracy (in some cases). Also, it can be combined with prior SOTA in
training robust models and ensembles to further boost their robustness (§ 5).

2 RELATED WORK

To increase the diversity of the models in the ensemble, Kariyappa & Qureshi (2019) proposed
misalignment of the gradient vectors with respect to the inputs. The intuition behind this idea is how
several earlier works generate adversarial examples Goodfellow et al. (2014); Kurakin et al. (2018);
Papernot et al. (2016b): these methods use the gradient direction with respect to a given input to
find the direction that increases the loss function the most. By moving a small amount toward that
direction, examples that are similar to the original example but are misclassified by the model are
found. In their paper, Kariyappa & Qureshi (2019) hypothesize that when this gradient direction is
the same for various models of the ensemble, the common subspace of their adversarial examples
will be larger because the loss function behaves similarly around the original data. They use cosine
similarity to capture this similarity in the direction; by incorporating that for pairs of models in the
loss function, they diversify the models in the ensemble to make it more robust.

Pang et al. (2019) propose a regularizer to increase the diversity in an ensemble by increasing the
entropy in non-maximal predictions. Yang et al. (2020) use an adversarial training objective to
increase the diversity of the ensemble by making the non-robust features more diverse. Yang et al.
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(2021) suggest that not only does the misalignment of the gradient vectors of the loss with respect
to the inputs matters, but also the Lipschitz constant of the gradients (not parameters) of the loss
with respect to the inputs has to decrease and propose a heuristic method to achieve this, which
outperforms the prior methods. Zhang et al. (2022) propose a method based on margin-boosting
to diversify the models of an ensemble which did not achieve better results than the prior state-
of-the-art methods (Yang et al., 2020; 2021). More recent works try to enhance the robustness of
the existing methods by incorporating adversarial training against a variety of publicly available
models (Sitawarin et al., 2023) or enhance their time complexity by using faster (but weaker) attacks
for data augmentation and enforcing diversity in the latent space (Huang et al., 2023).

There is a different line of work on the orthogonality of the affine layers of the deep learning models
which focuses on making the transformation of a single layer orthogonal (i.e., its rows and columns
become orthonormal vectors). This helps to preserve the gradient norm of the layer and has been
shown to improve the stability and robustness of the models (Trockman & Kolter, 2021; Singla &
Feizi, 2021; Xu et al., 2022; Singla et al., 2021; Prach & Lampert, 2022; Hu et al., 2023). This notion
of orthogonality is different from what we consider in this work; we wish to make the transformation
of “corresponding layers” from different models orthogonal with respect to each other.

3 MOTIVATION

After introducing the notations, we define the notion of transferability rate (§ 3.1) and continue with
introducing our conjecture about the effect of Lipschitz continuity on transferability rate (§ 3.2).

Notation. Given the domain of inputs X and m classes Y = {1, 2, . . . ,m}, we consider a multi-class
classifier F : X → Y and its corresponding prediction function f(x) which outputs the probabilities
corresponding to each class (e.g., the outputs of the softmax layer in a neural network). The loss
function for model F is denoted ℓF : X × Y → R+; it uses the predicted scores from f(x) to
compute the loss given the true label y (e.g., cross-entropy loss). The population loss for model F ,
which we may also refer to as risk, is defined as RF (x, y) = Ex[ℓF (x, y)]. When the models are
deep neural networks, we refer to a specific layer using superscripts (e.g., f (i) for the i-th layer of
deep network). A funtion f(x) is L-Lipschitz if ∥f(x)− f(x′)∥2 ≤ L∥x− x′∥2,∀x, x′ ∈ X . For a
matrix A, the spectral norm is defined as ∥A∥2 = supx ̸=0

∥Ax∥2

∥x∥2
. Any affine layer i (e.g., dense layer,

convolutional layer) with transformation matrix A is ∥A∥2-Lipschitz. When we say layer i (with
transformation matrix A) has been clipped to a value C, this means we ensure ∥A∥2 ≃ C.

3.1 DEFINITIONS

We begin with the definition of an adversarial attack and then formally define the transferability rate
(Trate) of adversarial examples.
Definition 3.1 (Attack Algorithm). For a given input/output pair (x, y) ∈ X × Y , a model F , and a
positive value ϵ, a targetted attack algorithm A(t)

F (x) = x+ δx minimizes ℓF (x+ δx, yt) such that
∥δx∥2 ≤ ϵ. An untargeted attack A(x) maximizes ℓF (x+ δx, y).
Definition 3.2 (Transferability Rate). For an untargeted adversarial algorithm AF and input space X ,
we define the transferability rate (Trate) of AF (x) from F to another classifier G, as the following
conditional probability:

Trate(AF ,F ,G) = P(x,y)∈X×Y [G(AF (x)) ̸= y | F(x) = G(x) = y ∧ F(AF (x)) ̸= y] . (1)

For the transferability of a targeted attack algorithm A(t)
F , and target class yt this definition is:

Trate(A(t)
F ,F ,G) = P(x,y)∈X×Y

[
G(A(t)

F (x)) = yt | F(x) = G(x) = y ∧ F(A(t)
F (x)) = yt

]
.

(2)

Note that Yang et al. (2021) have similar definitions of transferability except they use joint probabilities
instead of conditional probabilities. Using the conditional probability, we can better isolate the
“transferability” property we are interested in. By using the joint probability, the Trate will depend on
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Figure 1: Accuracy vs. Robust Accuracy vs. Transferability: Changes in the average accuracy and robust
accuracy of individual ResNet-18 models, along with the average transferability rate between any pair of the
models in each ensemble as the layer-wise clipping value (spectral norm) changes. As the plots show, although
the robustness of individual models increases with decreasing the clipping value, the transferability rate among
the models increases, which might forfeit the benefits of the clipping in the robustness of the whole ensemble.

the accuracy of the two models and also the performance of the attack algorithm on the source model
F . This will not allow us to have an accurate comparison of the Trate between different settings.

Prior work has shown that there is a trade-off between the accuracy of two models and the Trate of
adversarial examples between them (Yang et al., 2021); as the two models become more accurate,
their decision boundaries become more similar; this increases the probability that an adversarial
example generated for one of the models transfers to the other model because of the similarity of their
margins around the source sample. In the following section, by making a parallel to this trade-off, we
introduce our conjecture on the trade-off between the Lipschitzness of the models and their Trate.

3.2 OUR CONJECTURE: LIPSCHITZ CONTINUITY INFLUENCES TRANSFERABILITY

Prior works (Szegedy et al., 2013; Farnia et al., 2018; Boroojeny et al., 2024) highlight the impor-
tance of Lipschitzness on the robustness of a model against adversarial examples. To enforce the
Lipschitzness of the deep neural networks, these works enforce the Lipschitzness on each individual
layer: since the Lipschitz constant of the composition of all the components of the model (layers,
activation functions, etc.) is upper bounded by the multiplication of their Lipschitz constants, this
leads to a bound on the Lipschitzness of the whole model. In this work, we follow the same procedure
to control the upper bound on the Lipschitz constant of a model. For this, we use FastClip (Boroojeny
et al., 2024) which is the current SOTA method for controlling the spectral norm of dense layers and
convolutional layers. We use the chosen spectral norm for each individual layer to represent these
models in the figures and tables. For example, C = 1 shows that the spectral norm of all the dense
layers and convolutional layers have been clipped to 1, which makes each of them 1-Lipschitz. For
many architectures such as ResNet-18 (He et al., 2016), and DLA (Yu et al., 2018) this effectively
controls the Lipschitz constant of the model because the other constituent components (e.g., ReLU
activation, max-pooling, softmax) are 1-Lipschitz (Goodfellow et al., 2014). For details on controlling
the effect of batch norm layers, see Appendix B.2.

The prior works have shown that by decreasing the value of the Lipschitz constant L for a model,
adversarial attacks achieve a lower success rate. This confirms that decreasing the Lipschitz constant
for a model makes it more robust to input perturbations. However, the situation is complicated in
an ensemble. While a lower Lipschitz constant promotes robustness for each of the models (of an
ensemble), we conjecture that it will increase the Trate by making the classification boundaries of the
models more similar. We formalize this intuition below:
Proposition 3.3. Assume X = [0, 1]d and ∥δx∥ ≤ ϵ. For two models F and G, if the loss function on
both for any y ∈ Y is L-Lipschitz with respect to the inputs, we have the following inequality:

|RF (AF (x), y)−RG(AF (x), y)| ≤ 2Lϵ+ |RF (x, y)−RG(x, y)|.

The proof for the proposition can be found in Appendix A.1. In Proposition 3.3, we study the Trate of
an adversarial example generated by AF to model G by using the difference in the population loss of
the two models on these adversarial examples as a proxy; the lower this difference is, the more likely
that the two models will perform similarly on these adversarial examples. To verify this conjecture
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empirically, in Figure 1 we show how Trate changes among three ResNet-18 (He et al., 2016) models
without batch norm layers as the layer-wise Lipschitz constant (which governs the upper-bound on
the Lipschitz constant of the model as mentioned earlier) changes. Figure 5 in Appendix B.3 shows
the same behavior for the ResNet-18 models with batch norm layers. For more details see § 5.1. For
further discussions on the evidence of this phenomenon in prior theoretical works, see Appendix C.

Main Takeaway: According to Proposition 3.3, decreasing L (Lipschitz constant), might be
an indicator of higher similarity in the risk of the two models on the adversarial examples,
which might imply a higher Trate. Therefore, although a lower Lipschitz constant could
contribute to the robustness of a single model, it might increase the Trate among the models
of an ensemble which might hinder the expected benefits of the Lipschitzness.

4 LAYER-WISE ORTHOGONALIZATION FOR TRAINING ROBUST ENSEMBLES

When clipping the spectral norm of the layers, we are reducing the capacity of the parameters that
can be used during the optimization (Neyshabur et al., 2017; Bartlett et al., 2017); it is more likely
that the parameters of the two models become “more similar” when optimized over these constrained
spaces. Therefore, to control the Lipschitz constant of each model to make them more “individually”
robust, and avoid sacrificing the “ensemble robustness”, we need to utilize other modifications to
enforce the diversity of their decision boundaries on the adversarially perturbed samples.

Our Intuition: The method that we introduce to enforce the diversity is based on promoting
the orthogonality of the sub-spaces of the corresponding layers of the models that correspond
to their top singular vectors. Since the top singular vectors govern the major part of the
transformation by each layer, this orthogonality promotes the difference in the outputs of the
corresponding layers from different models.

Affine layers transform the input space such that the sub-space spanned by the top singular vectors
will have the most amount of change in the output space for a perturbed input. When the adversary is
choosing a perturbation to add to the input, a natural choice would be to choose the direction along
the top singular vectors: with the same amount of perturbation, the adversary will get the highest
amount of change in the output space for a perturbed input along this direction. Based on this analogy,
we consider any two corresponding affine layers f (j), g(j) from a pair of the models F and G in the
ensemble, whose linear transformations are represented by matrices A and B, with the singular value
decompositions A =

∑d
i=1 σiuiv

T
i and B =

∑d
i=1 σ

′
iu

′
iv

′T
i , respectively. We define a notion of

similarity based on the top-k sub-spaces:

S
(j)
k (f (j), g(j),mal) :=

k∑
i=1

wi(ReLU(∥f (j)(v′i)∥2 − mal) + ReLU(∥g(j)(vi)∥2 − mal)), (3)

where (a) wi’s are arbitrary weights which are non-increasing with i to emphasize “more importance”
for the singular vectors corresponding to top singular values, and (b) mal refers to the maximum
allowed length of the output of each layer when it is given the singular vectors of the other layer
as the input (see Appendix B.4 for its effect in practice). Observe that when mal is set to 0, the
value of Sk(f, g) is 0 if the transformations of f and g are orthogonal in their top-k sub-space (i.e.,
∥f (j)(v′i)∥2 = ∥Av′i∥2 = ∥

∑d
l=1 σlulv

T
l v

′
i∥2 = 0).

Utilizing this insight, we introduce our technique, Layer-wise Orthogonalization for Training
Robust Ensembles (LOTOS). LOTOS promotes the orthogonality among these sub-spaces which
leads to different behaviors when perturbing the clean samples along a specific direction. We add
this similarity for each pair of corresponding affine layers (dense and convolutional layers) in each
pair of models within the ensemble and add them to the cross-entropy loss. More specifically, given
an ensemble of N models Fi, i = {1, . . . , N} with M layers that would be incorporated in the
orthogonalization process, the new loss becomes:

Ltrain =
1

N

N∑
i=1

LCE(Fi(x), y) +
λ

M N (N − 1)

N−1∑
z=1

N∑
j=z+1

M∑
l=1

S
(l)
k (f (l)

z , f
(l)
j ,mal) (4)
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where LCE(Fi(x), y) is the cross-entropy loss of Fi(x) given its output on x and the ground-truth
label y. λ controls the effect of the orthogonalization loss and could be adjusted.

4.1 EFFICIENCY OF LOTOS

Time Complexity: Note that the number of summands in the orthogonalization loss is O(N2M).
The computation of S(t)

k uses the computed singular vectors of each layer by FastClip (Boroojeny
et al., 2024), which is fast and accurate in practice, and feeds them to the corresponding layer of the
other models (see Equation (3)): therefore, it is as if each model has an extra batch of size N − 1 to
process at each iteration, which is relatively small when N is small. In Appendix B.5, we compare the
empirical running time per epoch for ensembles of three models. Although this increase in running
time is small, our experiments (§ 5) show that performing the orthogonalization for only the first
layer would be effective for training robust ensembles (i.e., M = 1). Therefore, the increase in the
training time becomes negligible compared to when the clipping model is used without LOTOS.

Highly Efficient for Convolutional Layers: For the orthogonalization to be effective in Equation (4),
it is necessary to increase the value of k (dimension of orthogonal sub-spaces) because the layers of the
DNNs are transformations between high dimensional representations. Therefore, only orthogonalizing
the sub-space corresponding to the few top singular values does not guarantee that there is no strong
correlation among the remaining top singular vectors (which might correspond to high singular
values in each of the models). However, increasing k decreases the computational efficiency, in both
compution of the singular vectors (Boroojeny et al., 2024) and computation of the orthogonalization
loss in Equation (4).

Fortunately, specific properties of the convolutional layers, which are the most common affine layers
in DNNs, allow an effective orthogonalization even with very small values of k. In Theorem 4.1, we
prove even k = 1 can be effective in orthogonalization with respect to the remaining singular vectors
for convolutional layers.

Theorem 4.1. Given two convolutional layers, M1 and M2 with a single input and output channel
and circular padding for which f is the vectorized form of the filter with a length of T , and considering
n to be the length of the vectorized input, if ∥Av′1∥2 ≤ ϵ, then:

∥Av′p∥2 ≤
√
ϵ2 + π∥f∥22 T 2

p

n
, (5)

where A is the corresponding linear transformation of M1 and v′p is singular vector of M2 corre-
sponding to its p-th largest singular value.

The proof can be found in Appendix A.2. As Theorem 4.1 shows, by orthogonalization of the linear
transformation of the convolutional layer M1 (i.e., A) and only the first singular vector of M2 (i.e.,
v′1), so that ∥Av′1∥2 ≤ ϵ, the size of the output of M1 when applied to the remaining singular vectors
of M2 (i.e., ∥Av′p∥2) will be upper bounded as shown in Equation (5). This upper-bound depends
on the ratio of the ranking of the corresponding singular value to the input size (i.e., p

n ), which gets
smaller for the top singular vectors that have a higher contribution to the transformations. It also
depends on the size of the kernel (T ) which is usually small in models used in practice (e.g., 32 in
2D convolutional layers). Finally, it also depends on the ℓ2 norm of the filter values, which can be
controlled simply by using weight decay when optimizing the parameters during training. We verify
this efficiency of LOTOS when applied to convolutional layers in our experiments.

5 RESULTS

We wish to answer the following questions: (1) Does decreasing the Lipschitz constant of the models
of an ensemble increase the Trate between them?; (2) does LOTOS decrease the Trate among the
models of an ensemble, and does this decrease in the Trate among the models of the ensemble lead
to a lower success rate in black-box attacks from other source models?; (3) what are the effects of
varying the ensemble size and the number of orthogonalized singular vectors (k) on the performance
of LOTOS?; (4) is LOTOS still effective when the models of the ensemble are different?; (5) can we
combine LOTOS with the prior work on training robust ensembles to provide additional enhancements

6
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to robustness?; and (6) can LOTOS be combined with common methods used for increasing the
robustness of the models, such as adversarial training?

As a quick summary, our results show that: (1) decreasing the Lipschitz constant of the models
of an ensemble, although make them individually more robust, increases the Trate among them
(§ 5.1); (2) LOTOS is indeed effective at reducing the Trate between the models of an ensemble
which leads to more robust accuracy against black-box attacks (§ 5.2); (3) when using LOTOS,
increasing the ensemble size leads to much higher improvement in the robust accuracy (§ 5.3.1),
and changing the number singular values has negligible impact on the transferability (§ 5.3.2); (4)
LOTOS is effective even when the ensemble is heterogeneous (§ 5.4); (5) LOTOS in conjunction with
TRS (Yang et al., 2021), which is one of the state-of-the-art methods in training robust ensembles,
yields better performance than either in isolation (§ 5.5); and (6) LOTOS can be used together with
adversarial training to boost the robustness of the ensemble (Appendix B.8).

Attacks: We use both black-box attacks and white-box attacks in our experiments. The white-box
attack is used to evaluate the Trate of adversarial examples between the models in the ensemble; for
each ordered pair of the models in the ensemble, the former is used as the source model to generate
the adversarial examples and then the Trate of the generated adversarial examples is evaluated on the
latter (target model) using Definition 3.2. The average of this value for all the ordered pairs of the
models is considered the Trate of the ensemble. A low Trate between the models of the ensemble
does not necessarily imply a more robust ensemble. So to evaluate the robustness of ensembles against
adversarial attacks, we also use black-box attacks. In the black-box attacks, an independently trained
source (surrogate) model (of the same type as the models in the ensemble) is used to generate the
adversarial examples; we then measure the robust accuracy of the ensembles against these adversarial
examples. For further details on the setup of experiments, please refer to Appendix B.1. We also
evaluate the robustness against white-box attacks on the whole ensemble (see Appendix B.10.4).

5.1 ROBUSTNESS VS. TRANSFERABILITY

In this section, we evaluate our conjecture from § 3.2 which was motivated by Proposition 3.3.
For this, we compare the ensemble of three ResNet-18 models trained without any modification
(represented as Orig) to ensembles of models in which all the layers of each model is C-Lipschitz
(by controlling the spectral norm). We vary this Lipschitz constant to see how it affects the robustness
and transferability. The chosen Lipschitz constant for each ensemble is used to represent that in
results: for example, C = 1.0 shows that the affine layers of the models in the ensemble are all
clipped to 1.0. The clipping of the layers was achieved using FastClip (Boroojeny et al., 2024).

Figure 1 shows the results when the batch norm layers are removed. The first two subfigures show the
changes in the average accuracy and robust accuracy of individual ResNet-18 models. The rightmost
plot shows the average Trate between any pair of the models in each ensemble as the layer-wise
clipping value (spectral norm) changes. As the figure shows, although the robustness of individual
models increases with decreasing the clipping value, the Trate among the models increases. Figure 5
in Appendix B.3 shows the same behavior for models with batch norm layers (see Appendix B.2 for
more details on evaluating these two cases separately).

5.2 EFFICACY OF LOTOS

We first evaluate the effectiveness of LOTOS in decreasing the Trate among the clipped models using
the white-box attack. For this, we first use ensembles of three ResNet-18 models and follow the
setting explained in Appendix B.1. Figure 2 shows the results for 3 different methods of training
ensembles (Orig, C = 1, and LOTOS). The left-most subfigure shows the average test accuracy of
the individual models in each ensemble and the middle subfigure shows the average robust accuracy
of the individual models in the ensemble. The middle plot shows, as expected, that the individual
models in both C = 1 and LOTOS ensembles are much more robust than the ones in the Orig
ensembles because of their Lipschitzness property; however, the individual models in LOTOS are
not as robust as the ones in C = 1 because in LOTOS we are enforcing orthogonalization in addition
to the Lipschitzness property. Because of this trade-off, as the plot shows, by increasing the value
of mal (from 0 to 0.8) the robustness of the individual models becomes more similar to the ones in
C = 1 ensembles. As the right-most subfigure shows, the Trate between the models in ensembles
trained with LOTOS is much lower than C = 1 and Orig, and as the mal value decreases (the
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Figure 2: Reducing transferability while maintaining the benefits of Lipschitzness. Evaluation of the
average test accuracy (left-most plot) and average robust accuracy (middle plot) of the individual models in
an ensemble of three ResNet-18 models, along with the Trate of adversarial examples between the models of
the ensemble using the white-box setting (see Appendix B.1). LOTOS keeps the robust accuracy of individual
models in the ensemble much higher than those of the Orig ensemble and as mal increases, it becomes more
similar to the models in C = 1. On the other hand, LOTOS leads to a much lower transferability (about 20%)
and the difference increases as mal decreases (right-most plot). These benefits come at a slight cost to the
average accuracy of the individual models (left-most plot).

orthogonalization becomes more strict) the Trate decreases. Figures 9 (Appendix B.7) and 4 show
similar effectiveness in reducing the Trate for ensembles that consist of other models (ResNet-18,
ResNet-34, and DLA). See § 5.4 for more details on those figures. Also in Appendix B.4 we show
how LOTOS effectively performs the orthogonalization of one layer with respect to the corresponding
layer in other models of the ensemble while maintaining the target spectral norm.

So far, we observed that LOTOS leads to a noticeable decrease in the transferability at a slight cost in
test accuracy and robust accuracy of individual models; to make sure that the former overpowers the
latter and derives more robust ensembles, we evaluate the robustness of the ensembles against black-
box attacks using independently trained surrogate models (see Appendix B.1 for details). We perform
this experiment for both ResNet-18 and DLA models and use both CIFAR-10 and CIFAR-100 for
the analysis. The results are presented in Table 1. As the table shows, for each choice of the model
architecture and dataset, we train ensembles with either of the 3 methods (i.e., Orig, C = 1, and
LOTOS) and compute their test accuracy and robust accuracy. As the table shows, LOTOS achieves
higher robust accuracy in all cases with slight cost to the test accuracy in some cases. As Table 5
in Appendix B.6.3 shows, this difference is even more prominent when the batch norm layers are
removed because the clipping algorithms are less accurate (see Appendix B.2).

CIFAR-10 CIFAR-100
ORIG C = 1.0 LOTOS ORIG C = 1.0 LOTOS

ENSEMBLES OF RESNET-18 MODELS

TEST ACC 95.3± 0.06 94.7± 0.24 94.6± 0.19 77.2± 0.17 76.6± 0.01 76.6± 0.10

ROBUST ACC 30.3± 1.63 35.2± 0.72 36.3± 0.88 15.2± 0.45 18.9± 0.40 20.2± 0.47

ENSEMBLES OF DLA MODELS

TEST ACC 95.4± 0.12 95.2± 0.05 95.05± 0.09 77.1± 0.09 78.8± 0.31 78.3± 0.38

ROBUST ACC 26.7± 0.58 32.8± 1.28 34.5± 0.63 16.5± 0.78 19.4± 0.32 21.0± 0.39

Table 1: Robust accuracy against black-box attacks in ensembles of ResNet-18 models and ensembles
of DLA models trained on CIFAR-10 and CIFAR-100 . The surrogate models are a combination of both
original models and clipped models trained with multiple random seeds. The target models are ensembles of
three models from each architecture choice that are trained using either of the three training methods.

5.3 ABLATION STUDIES

In this section, we explore the effect of k when orthogonalizing the top-k sub-spaces of the con-
volutional layers. We also investigate the effectiveness of LOTOS as the ensemble size increases.
In Appendix B.6 we also present additional ablation studies; we evaluate the importance of using
the singular vectors in Equation (3) by comparing the transferability when they are replaced with
random vectors (Appendix B.6.1). We also evaluate the effect of mal value on the transferability
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Figure 3: (Left) Effect of k. As the plot shows, the
transferability slightly decreases (up to 1%) as k gets
larger up to some point (here k = 15) and then starts
to increase (k = 20). (Right) First layer might be
enough! Comparing the effect of applying LOTOS to
only the first layer rather than all the convolutional
layers. The similarity of the results motivates the effec-
tiveness of LOTOS for heterogeneous models where it
can only be applied to the first layers.

N = 3 N = 9 IMPROVEMENT

ORIG 16.4± 1.11 17.0± 1.35 3.7%

C = 1 26.4± 0.57 27.5± 0.95 4.2%

LOTOS 32.2± 0.99 45.1± 2.28 40.1%

Table 2: Robust accuracy against black-box at-
tacks in ensembles with different sizes. The target
models are ensembles in three different cases; original
models (Orig), clipped ones (C = 1), and trained
with LOTOS. As the table shows LOTOS has the high-
est robust accuracy in each ensemble size and it has
the highest rate of improvement when the number of
models in the ensemble increases from 3 to 9. Note
that the robust accuracy of the single Orig model and
a single C = 1 model are 16.1±0.87 and 26.2±0.52.

(Appendix B.6.2) and the effect of Lipschitz constant on the strength of the surrogate model in
black-box attacks (Appendix B.6.3). For an ablation study on attack methods see Appendix B.10.

5.3.1 INCREASING ENSEMBLE SIZE

To verify the effectiveness of LOTOS as the ensemble size increases, we evaluate the improvement
in the robust accuracy of the ensembles against black-box attacks (see Appendix B.1 for details)
when the number of models in the ensemble increase by factors of 3. Table 2 shows the results
of this experiment for ensembles of ResNet-18 models on CIFAR-10 dataset; the improvement in
the robust accuracy when the ensemble size increases is relatively small for the Orig and C = 1
ensembles. However, when LOTOS is used to train the ensemble, there is a huge improvement in the
robustness of the ensemble as the size increases which is due to the increased diversity of the models
by orthogonalizing them with respect to one another. The lack of noticeable improvement in the
C = 1 ensembles highlights the fact that making each model individually robust does not necessarily
improve the robustness of the ensemble. LOTOS archives this improvement by effectively decreasing
the Trate among the models.

5.3.2 DIMENSION OF ORTHOGONAL SUB-SPACES (k)

To further evaluate the theoretical observation from Theorem 4.1 for general convolutional layers, we
use white-box attacks to measure the Trate among the models in an ensemble of three ResNet-18
models when different values of k are used for orthogonalization of the top-k subspace (see Equa-
tion (3)). As Figure 3 (Left) shows, with increasing k there is a slight improvement in the Trate but is
still less than one percentage point (compared to k = 1) even when k = 15. For k ≥ 20, we noticed
a degradation in the training of the models and the Trate, which might be due to over-constraining
the models. Given the computational efficiency and the negligible difference in the transferability, we
found k = 1 to be enough and used it in our other experiments.

5.4 HETEROGENEOUS ENSEMBLES

Although the original formulation of LOTOS relies on the similarity of the architecture which
allows the layer-wise orthogonalization with respect to other models, when considering different
architectures, the first affine transformation of each model is applied to the input data, and therefore
has still the same vector space for right singular vectors. Therefore, LOTOS can still be utilized to
orthogonalize the first layers on different models. Also, as Figure 3 (Right) shows, applying LOTOS to
only the first layers would still effectively decrease the transferability among the ResNet-18 models in
an ensemble of three models trained on CIFAR-10. In this experiment, we consider ensembles of one
ResNet-18, one ResNet-34, and one DLA model on CIFAR-10 and report the average accuracy and
robust accuracy of individual models, along with the average transferability among them using white-
box attacks. As Figure 4 shows, LOTOS is effective in reducing the transferability of different models
by orthogonalizing only their first convolutional layers, as that would lead to different behaviors on
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Figure 4: Investigating the effect of LOTOS on the average accuracy and robust accuracy of each of the
models of heterogeneous ensembles of DLA, ResNet-18, and ResNet-34 models, along with presenting the
average transferability among any pair of the models in the ensemble as the training proceeds. As the plots
show, LOTOS leads to a lower transferability among the models while maintaining the benefits of controlling the
Lipschitz constant on the robustness of individual models.

the perturbations of the input. Figure 9 in Appendix B.7 shows results for a similar experiment for
these models when their batch norm layers are removed. As expected (see Appendix B.2 for details),
the improvement in the Trate is much higher without batch normalization layers.

5.5 IMPROVING PRIOR METHODS

For training robust ensembles prior methods have proposed different approaches and in this section,
we are interested in observing the effect of LOTOS when combined with these prior works to see if
the robustness can be further improved. For this purpose, we use TRS (Yang et al., 2021), which
is one of the SOTA methods in training robust ensembles and is used as the method of choice by
recent works (Sitawarin et al., 2023). We report the accuracy and robust accuracy of the ensembles
against black-box attacks. Table 3 shows the results for the ensembles trained with TRS only (TRS),
trained with TRS with clipped models (TRS + C = 1), and trained with both TRS and LOTOS (TRS
+ LOTOS). As the results show, for both datasets and both model architectures, the robust accuracy
of the combined methods is the highest value. This comes at a slight decrease in the accuracy for
CIFAR-10 and a more noticeable degradation for CIFAR-100. Note that for this experiment, we did
not perform any hyper-parameter tuning and used both methods with the default parameters. For more
evaluations on TRS and another SOTA method (DVERGE (Yang et al., 2020)), see Appendix B.9.

CIFAR-10 CIFAR-100
TRS TRS + C = 1 TRS + LOTOS TRS TRS + C = 1 TRS + LOTOS

ENSEMBLES OF RESNET-18 MODELS

TEST ACC 94.4± 0.05 94.1± 0.17 92.7± 0.09 73.28± 0.46 72.94± 0.29 67.23± 1.22

ROBUST ACC 30.8± 0.65 35.9± 1.35 41.5± 1.04 12.3± 0.53 16.3± 0.57 20.7± 0.99

ENSEMBLES OF DLA MODELS

TEST ACC 94.72± 0.06 92.79± 0.13 93.18± 0.14 72.6± 0.54 63.3± 1.20 66.8± 1.26

ROBUST ACC 31.2± 0.80 32.9± 0.77 35.3± 0.39 23.2± 0.41 23.7± 2.36 24.3± 1.67

Table 3: Robust accuracy against black-box attacks in ensembles of ResNet-18 and ensembles of DLA
models trained with TRS. We use ensembles of three models for three different cases; trained with TRS only,
trained with TRS while clipping the models, and trained with both TRS and LOTOS. As the results show, using
TRS and LOTOS achieves a robust accuracy that is higher than when either of these methods is used.

6 CONCLUSIONS

We showed there is a trade-off between the robustness of individual models in the ensemble and
the transferability rate of adversarial examples among them as the Lipschitz constant of the models
changes. This trade-off prevents the expected boost in the robustness of the ensembles of models when
they are Lipschitz continuous. Motivated by this observation, we proposed LOTOS that decreases
the transferability rate by orthogonalizing the top sub-space of the corresponding layers of different
models with respect to one another. We performed a thorough ablation study on the components of
our method and showed the effectiveness of LOTOS in boosting the robustness of ensembles.
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APPENDIX

A PROOFS

A.1 PROOF FOR PROPOSITION 3.3

Proof.

RF (A(x), y)−RG(A(x), y) = ExℓF (A(x), y)− ExℓG(A(x), y) = Ex[ℓF (A(x), y)− ℓG(A(x), y)]

≤ Ex[sup∥δx∥2<ϵ(ℓF (x+ δx, y)− ℓG(x+ δx, y))]

≤ Ex[sup∥δx∥2<ϵ(ℓF (x, y)− ℓG(x, y)) + 2L∥δx∥2]
≤ Ex[(ℓF (x, y)− ℓG(x, y)) + 2Lϵ]

=

∫
X
ℓF (x, y)− ℓG(x, y) + 2Lϵ d(x, y)

= 2Lϵ+RF (x, y)−RG(x, y).

We can get a similar inequality starting from RG(A(x), y) − RF (A(x), y) to derive the desired
inequality.

A.2 PROOF FOR THEOREM 4.1

To prove this theorem, we first prove Lemma A.1 that derives an upper-bound for the difference of the
squared values of the largest singular value and any other singular value of a convolutional layer with
1 input and output channel and circular padding. The main intuition behind the proof of Lemma A.1
is that the singular values of convolutional layers depend only on the real parts of the first few powers
of roots of unity (Boroojeny et al., 2024). This causes a correlation between the magnitude of the
singular values that correspond to the neighboring roots of unity on the real axis.
Lemma A.1. For a convolutional layer with 1 input and output channel and circular padding, if the
length of the vectorized input is n, then:

σ2
1 − σ2

p ≤ π∥f∥22 T 2 p

n
,

where f is the vectorized form of the convolutional filter with a length of T .

Proof. The rank of the affine transformation of a convolutional layer is input dimention ×
min(cin, cout) (Sedghi et al., 2018), which in the setting of this lemma is equal to n. Boroo-
jeny et al. (2024) showed that if the vectorized form of the kernel is given by f = [f0, f1, . . . , fT−1],
then we have the following equation for singular values of this convolutional layer:

s2j = c0 + 2

T−1∑
i=1

ciℜ(ωj×i), j = 0, 1, 2, . . . , n− 1, (6)

where ci’s are defined as:

c0 := f2
0 + f2

1 + · · ·+ f2
T−1,

c1 := f0f1 + f1f2 + · · ·+ fT−2fT−1,

...
cT−1 := f0fT−1.

and ω = exp(2π/n) is the basic n-th root of unity. The order of sjs (in terms of their magnitude)
are unknown apriori and depend on the filter values. Let assume that σ1 = sj corresponds to the
largest singular value. Next, we consider an arbitrary st and derive the upperbound for s2j − s2t :
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s2j − s2t = c0 + 2

T−1∑
i=1

ciℜ(ωj×i)− c0 − 2

T−1∑
i=1

ciℜ(ωj×i) = 2

T−1∑
i=1

ci
(
ℜ(ωj×i)−ℜ(ωj×i)

)
.

Now, we need to bound the terms in the summation. We use the fact that ωz = exp(2zπi/n) =
cos 2zπ/n+ i sin 2zπ/n and therefore ℜ(ωz) = cos 2zπ/n:

ℜ(ωj×i)−ℜ(ωj×i) ≤ |ℜ(ωj×i)−ℜ(ωj×i)| = |cos
(
2πj × i

n

)
− cos

(
2πj × i

n

)
|

= |2sin
(
(j + t)πi

n

)
sin

(
(t− j)πi

n

)
| ≤ 2|sin

(
(t− j)πi

n

)
|

≤ 2
|t− j|πi

n
,

where the last two last inequalities are due to sin(x) ≤ 1 and sin(x) ≤ x, respectively. By using this
inequality we can write:

s2j − s2t = 2

T−1∑
i=1

ci
(
ℜ(ωj×i)−ℜ(ωj×i)

)
≤ 2

T−1∑
i=1

2 ci
|t− j|πi

n

= 4
|t− j|π

n

T−1∑
i=1

ci × i ≤ 4
|t− j|π

n

T−1∑
i=1

i×maxi ci

= 2(T − 1)T
|t− j|π

n
×maxi ci.

It is easy to show that maxi ci = c0; for example, for c1 we can write 2(c0 − c1) =
∑T−2

i=0 (fi −
fi+1)

2 ≥ 0 =⇒ c0 ≥ c1. For ci, i > 1 a similar justification can be made by only considering the
terms that appear in the summands of ci and using the fact that for the other terms their squared value,
which is non-negative, appears in c0. Therefore:

s2j − s2t ≤ 2
π c0 T

2

n
|t− j|.

Now considering the set of indices I := {j ± 1, . . . , j ± ⌊p/2⌋}, we know that st, t ∈ I falls within
π c0 T

2 p/n radius of sj (which we assumed to represent σ1). Therefore, there are at least |I|+1 = p
singular values within this radius (including σ1). Hence, σp (the p-th largest singular value) should
be within this radius as well, and this completes the proof.

Note that the bound holds for any arbitrary pair of singular values and can be stated in a more general
form, as mentioned in Corollary A.2.
Corollary A.2. For the setting of Lemma A.1, with sorted singular values σ1, . . . , σn, the following
inequality holds:

σ2
j − σ2

j+p ≤ π∥f∥22 T 2 p+ 1

n
, j, j + p ∈ [1, . . . , n].

Now, using Corollary A.2, we can easily prove Theorem 4.1 and show that for two convolutional
layers, orthogonalization of only the singular vector corresponding to their largest singular values has
a similar orthogonalization effect for the remaining singular vectors and this effect increases for the
top singular vectors.
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Proof. (Theorem 4.1). Since M1 and M2 are convolutional layers with circular padding and
one input channel and output channel, their linear transformation can be represented by circulant
matrices of rank n (dimension of the input), A1 and A2 (Goodfellow et al., 2014). Singular vector
matrix of any circulant matrix is equal to the Fourier matrix of size n, and the singular vector
corresponding to singular value sj from unordered list of singular values in Lemma A.1 can be
written as 1√

n
[ωj×0, ωj×1, . . . , ωj×(n−1)]T (Gray et al. (2006) Theorem 3.1). Therefore, the singular

vectors of A2 (i.e., v′is) are simply a different ordering of the singular vectors of A1 (i.e., vis).
Hence, each ∥A1v

′
i∥2 is equal to some singular value sj of A1. Assuming that ∥A1v

′
1∥2 = sj and

∥A1v
′
i∥2 = sj+i−1, by making ∥A1v

′
1∥2 ≤ ϵ and , using Corollary A.2, we concolude the inequality

of interest.

B EXPERIMENTS

In this section, we first provide more details on the setting of our experiments (Appendix B.1) and
explain how we control for the effect of batch norm layers in our experiments (Appendix B.2).
Then we provide more results on the verification of the trade-off between robustness of individual
models and transferability rate among them as the Lipschitz constant changes (Appendix B.3). We
show how LOTOS effectively performs the orthogonalization among the layers of the models in an
ensemble in Appendix B.4 and present the results on three other ablations studies on our proposed
method in Appendix B.6. In Appendix B.7 we provide more results on heterogeneous ensembles,
and in Appendix B.8, we will investigate the effectiveness of LOTOS in increasing the robustness of
the ensembles when combined with adversarial training of individual models. In Appendix B.9 we
provide more experiments to further showcase how LOTOS can be combined with other ensemble
robustness methods to drastically improve their robustness. In Appendix B.10 we provide the results
of a set of extensive experiments to further evaluate the robustness of our proposed method against
different attacks with various settings. Finally, in Appendix B.11 we investigate the advantages of
LOTOS in increasing the robustness of model ensembles against non-adversarial noise.

B.1 SETUP

In this section, we elaborate on the setup of our experiments.

Compute Infrastructure: We used NVIDIA A40 GPUs for our experiments except for the experi-
ments in § 5.5 that involved training with TRS method where we used NVIDIA A100 GPUs. Using
32GB of RAM was enough for performing our experiments.

Datasets and Models: In all the experiments for evaluating the efficacy of our model, either
in isolation or in combination with prior methods, we use both CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009). The models we use in these experiments consist of ResNet-
18 (He et al., 2016), ResNet-34 (in experiment on heterogeneous ensembles), and DLA (Yu et al.,
2018)1. For more exploratory ablation studies (e.g., effect of the parameter k and ensemble size) we
limit the experiments to ResNet-18 models on CIFAR-10.

Attack Details: We use both black-box attacks and white-box attacks in our experiments.

◦ The white-box attack is used to evaluate the transferability rate of adversarial examples between the
models in the ensemble; for each ordered pair of the models in the ensemble, the first one is used as
the source model to generate the adversarial examples and then the transferability rate of the generated
adversarial examples is evaluated on the second model (target model) using Definition 3.2. The final
transferability rate for the ensemble is the average of the transferability rate for all the ordered pairs
of the models. To make the results more accurate, we repeat this for 3 different ensembles trained
from scratch with different random seeds, and report the average values. The attack performed on
the source models is PGD-50 with ∥ϵ∥∞ ≤ 0.04, unless stated otherwise. We also evaluate the
robustness of ensembles against white-box attacks where all the constituent models are provided to
the adversary and report the results in Appendix B.10.4 and Appendix B.9.

◦ For the black-box attacks, an independently trained source (surrogate) model (of the same type as
the models in the ensemble) is used to generate the adversarial examples; we then measure the robust

1According to https://github.com/kuangliu/pytorch-cifar they achieve superior results on CIFAR-10.
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accuracy of the ensembles against these adversarial examples i.e., robust accuracy is the accuracy on
the adversarial samples for which the model correctly predict the original versions. We use both the
original models and their clipped version as the surrogate models to generate adversarial examples.
To make the results more accurate, we train 3 source models with different random seeds (for each of
the two types of surrogate models) and 3 ensembles with different random seeds and compute the
average of the robust accuracies over the 18 different cases of choosing a source model and a target
ensemble. For both white-box attacks and black-box attacks we use PGD-50 (Madry et al., 2017)
attack with ∥ϵ∥∞ ≤ 0.04 to generate the adversarial examples unless stated otherwise. For these
attacks we compute Trate according to Definition 3.2 and report 1 − Trate as the robust accuracy
against generated adversarial examples for transferability attack.

B.2 BATCH NORMALIZATION LAYERS

Controlling the Lipschitz constant of the models is more complicated in the presence of batch norm
layers. For analyzing the properties of the Lipschitz models, some prior works ignore the batch norm
layers (Miyato et al., 2018) and some remove them from the models (Sedghi et al., 2018). Some
other works modify the parameters of the batch norm directly to ensure Lipschitzness (Gouk et al.,
2021; Senderovich et al., 2022; Delattre et al., 2023). Boroojeny et al. (2024) show that batch norm
layers show a compensating behavior when the spectral norm of it preceding convolutional layer is
controlled so ignoring them does not help with bounding the Lipschit constant of the model. They
also show that modifying the parameters directly leads to poor training and test accuracy. They
instead propose an approximate method for controlling the Lipschitz constant of the composition of
the convolutional and batch norm layers which works better in practice but still are not exact and as
accurate. Therefore, for analyzing the true effect of the Lipschitz constant on transferability rate and
ablation studies we perform the experiments on models without their batch norm layers, in addition
to performing the same experiments on the efficacy of our method in increasing the robustness of
ensembles of the original models (including their batch norm layers) when using the approximate
methods for controlling the Lipschitz constant in the presence of batch norm layers.

B.3 ROBUSTNESS VS. TRANSFERABILITY (CONT.)

Figure 5: Accuracy vs. Robust Accuracy vs. Transferability: Changes in the average accuracy and robust
accuracy of individual ResNet-18 models (with batch norm layers), along with the average transferability rate
between any pair of the models in each ensemble as the layer-wise clipping value changes. As the plots show,
although the robustness of individual models increases with decreasing the clipping value, the Trate among the
models increases, which might forfeit the benefits of the clipping in the robustness of the whole ensemble.

We use the same setting as in § 5.1 for this section, but keep the batch normalization layers in the
ResNet-18 models intact. In Figure 1 we observed that LOTOS effectively decreased the transferability
rate for models without batch norm layers. In Figure 5 we also see that when the batch norm layers
are present, LOTOS is still effective; however, the improvement might not be as much as what was
observed without batch norm layers. As mentioned earlier, the reason for this lower effectiveness is
that the clipping methods for controlling the Lipschitz constant of the models with batch norm layers
are less accurate and not as effective. That leads to a less accurate computation of the singular vectors
in Equation (3). Also, batch norm layers are known to adversly affect the robustness of models (Xie
& Yuille, 2019; Benz et al., 2021) and prior work has pointed out their compensation behavior when
controlling the spectral norm of their preceding convolutional layer (Boroojeny et al., 2024).
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Figure 6: Each row represents the results for a specific layer from the three ResNet-18 models in an ensemble
trained with LOTOS with C = 1 and mal = 0.5. The leftmost subfigure shows the spectral norm of that layer
for each model which is enforced to be 1-Lipschitz. The next three subplots show the size of the outputs of that
layer from each model when applied to the largest singular vectors of the corresponding layer from the other
models; LOTOS effectively keeps these values below the chosen value for mal.

B.4 EFFICACY OF LOTOS (CONT.)

As mentioned previously, the goal of the orthogonalization loss of LOTOS in Equation (4) is to keep
the size of the output of a layer from each of the models in the ensemble when applied to the largest
singular vector of the corresponding layer from the other models below the chosen mal value. This
goal has to be achieved while enforcing the spectral norm of each layer to the target clipping value.
In this section, we look at some of the layers of the ResNet-18 models in an ensemble that is trained
with LOTOS on CIFAR-10, to see how the aforementioned values change during the training of the
model. We randomly choose three of the layers from different parts of the models and evaluate them
in the course of training for two different chosen values for mal. Figure 6 shows the results when
C = 1.0 and mal = 0.5. Each row shows the results for one specific layer from the three models.
The leftmost subfigure shows the spectral norm of that layer for each of the models. As the figure
shows, the clipping method effectively enforces the spectral norm to be almost 1 and therefore makes
that layer 1-Lipschitz. The next three subfigures, each show the output of that layer from one of the
three models when applied to the largest singular vectors of the corresponding layer from the other
two models. As the plots show, these values are effectively controlled to be less than the chosen mal
value.

Figure 7 shows the results for the same three layers when the ensemble is trained with mal = 0.01.
As the plots show the spectral norm is effectively controlled to be almost 1, while the output of the
layers on the largest singular vectors of the other layers is made much smaller than in the previous
case. However, note that for some of these layers, this size might increase up to 0.1, which is larger
than the mal value and the reason is the specific structure of the convolutional layers which does not
allow them to accept arbitrary spectrums as noticed by prior work (Boroojeny et al., 2024).
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Figure 7: Each row represents the results for a specific layer from the three ResNet-18 models in an ensemble
trained with LOTOS with C = 1 and mal = 0.01. The leftmost subfigure shows the spectral norm of that layer
for each model which is enforced to be 1-Lipschitz. The next three subplots show the size of the outputs of that
layer from each model when applied to the largest singular vectors of the corresponding layer from the other
models; LOTOS effectively makes these values much smaller but because the limitations of convolutional
layers, they might not become smaller than the mal value in some cases.

B.5 RUNNING TIME

In § 4.1, we saw that the computation of orthogonalization loss in LOTOS is the same as running
each model on N − 1 additional batch. Table 4 shows a comparison between the training times of
ensembles of three ResNet-18 or DLA models on an NVIDIA A40 GPU. We report the time per
epoch for training ensembles without clipping, with clipping, and with LOTOS. For the latter two
versions, we also report the increased factor in time compared to the training time of the regular
ensembles. These times are shown in three groups: 1. when no additional robustification method
is used, 2. when TRS (Yang et al., 2021) is also used for training the ensembles, and 3. when
Adversarial Training (Adv) (Madry et al., 2017) is used in training of each individual model in the
ensemble. As the table shows the time increase caused by the orthogonalization loss in LOTOS
(see Equation (4)) is negligible while being very effective in diversification among the models and
decreasing the transferability rate among them.

ORIG C = 1 LOTOS TRS TRS + C = 1 TRS + LOTOS ADV ADV + C = 1 ADV + LOTOS

RESNET-18 33.2 74.9 ×2.3 79.3 ×2.4 158.2 224.4 ×1.4 227.3 ×1.4 312.6 479.2 ×1.5 485.2 ×1.5

DLA 63.1 155.4 ×2.5 165.4 ×2.6 326.2 466.1 ×1.4 477.4 ×1.5 758.6.2 942.5 ×1.2 949.2 ×1.2

Table 4: Time (in seconds) per epoch for training ensembles of three ResNet-18 models using either of the
methods investigated in this paper. These values are computed on an NVIDIA A40 GPU. As the table shows the
orthogonalization loss used in LOTOS makes a negligible change in the computation time of the ensembles with
clipped models (C = 1).
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Figure 8: Do random vectors work? We use random vectors in Equation (3) instead of the largest singular
vectors to verify the effect of orthogonalization on decreasing the transferability. As the plot shows the ensembles
that use random vectors rather than the largest singular vectors of the layers of other models perform similarly to
the clipped model without LOTOS (C = 1.0). It still shows slight improvement because using different random
vectors still provides some diversity among the models but not as much as using the top singular vectors.

B.6 ADDITIONAL ABLATION RESULTS

In this section we present the results on three other ablations studies (in addition to the ablation
studies presented in § 5.3) on our proposed method; First, we show the importance of using singular
vectors of the other layers in Equation (3) by comparing the results when they are replaced by random
vectors (Appendix B.6.1). We then investigate the effect of changing mal value in Equation (4) in
the transferability rate (Appendix B.6.2). Finally, we investigate the effect of changing the clipping
value of the source model in black-box attacks (Appendix B.6.3).

B.6.1 LARGEST SINGULAR VECTOR VS. RANDOM VECTORS

LOTOS orthogonalizes the corresponding layers of the models by penalizing the size of the output of
each layer when it gets the largest singular vectors of the corresponding layers in the other models as
its inputs. To show that the decrease in the transferability rate presented in § 5.2 is indeed the result
of orthogonalization of the subspaces spanned by the top singular vectors, we perform an experiment
in which we use randomly chosen vectors in Equation (3) instead. As Figure 8 shows, using the
transferability rate when random vectors are used is similar to the clipped model without LOTOS.
The use of random vectors for the models still causes slight decrease in the transferability rate as it
introduces new random differences in the training of the models, but not as much as using the top
singular vectors which leads to orthogonalization of the models with respect to one another.

B.6.2 EFFECT OF MAL

In Equation (4), by decreasing the maximum allowed length (mal) for the size of the output of a
layer when top singular vectors of the other layers are given as input, we enforce a higher degree
of orthogonalization, and therefore expect to see a more decrease in the transferability rate among
the models. As Figure 3 (Right) and Figure 8 show, that is indeed the case. However, based on our
experiments, decreasing mal to very low values, decreases the robustness and accuracy of individual
models. We found the value of 0.8 to be a good trade-off between the two for increasing the robustness
of ensembles and used that for our experiments.

B.6.3 CHANGING THE LIPSCHITZ CONSTANT OF THE SURROGATE MODEL

In this experiment, we evaluate the effect of Lipschitz constant of theh surrogate model on the
effectiveness of its adversarial examples on the target ensembles in a black-box attack. We clip the
spectral norm of each layer of each of the source models to a specific value and evaluate the average
robust accuracy of each of the three models. We try different layer-wise clipping values (0.8, 1.0, 1.2,
and 1.5) and for each setting compute the average of the robust accuracy over multiple random seeds.
As the table shows the adversarial examples generated on the clipped models are more effective in
black-box attacks, but still LOTOS has the highes robust accuracy compared to others.
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ORIG C = 1.0 LOTOS

ORIG 19.3± 1.34 39.0± 0.85 43.8± 1.30

C = 0.8 15.7± 1.03 12.9± 0.64 18.5± 0.79

C = 1.0 13.6± 0.89 13.9± 0.30 20.5± 0.69

C = 1.2 13.2± 0.96 15.9± 0.69 22.9± 0.91

C = 1.5 13.1± 0.65 19.8± 0.29 27.1± 0.66

Table 5: Robust accuracy against black-box attacks. The source models are either original models or clipped
models with different layer-wise clipping value for the spectral norm. The target models are ensembles of three
ResNet-18 models on CIFAR-10 for three different cases; original models (Orig), clipped ones (C = 1.0), and
trained with LOTOS. As the table shows attacks using clipped models are stronger but still LOTOS achieves the
highest robust accuracy.

B.7 HETEROGENEOUS ENSEMBLES (CONT.)

We perform a similar experiment to the one in § 5.4 but with models without batch norm layers. Since
the DLA models cannot be trained without batch norm layers, as observed by prior work (Boroojeny
et al., 2024), we consider ensembles of one ResNet-18 and one ResNet-34 models on CIFAR-10 and
report the average accuracy and robust accuracy of individual models, along with the average trans-
ferability among them using white-box attacks. As Figure 9 shows, LOTOS is effective in reducing
the transferability of different models by orthogonalizing only their first convolutional layers, as that
would lead to different behaviors on the perturbations of the input. As expected, the improvement in
the transferability rate is much higher without batch normalization layers (see Appendix B.2).

Figure 9: Investigating the effect of LOTOS on the average accuracy and robust accuracy of each of the
models of heterogeneous ensembles of ResNet-18 and ResNet-34 models (without batch norm layers),
along with presenting the average transferability among any pair of the models in the ensemble as the training
proceeds. As the plots show, LOTOS leads to a much lower transferability among the models while maintaining
the benefits of controlling the Lipschitz constant on the robustness of individual models.

B.8 LOTOS AND ADVERSARIAL TRAINING

Adversarial training is the most common method for increasing the robustness of individual models
in practice. This method finds a new set of adversarial examples for the training set at each iteration
of the training algorithm and combines that with the original training data to feed it to the training
method for the next iteration. Iterative training of the model on the adversarial examples, which are
perturbed versions of the original training samples, makes them less sussptible to the adversarial
examples. In this section, we verify that our proposed training paradaigm not only does not interfere
with the robustness of the ensembles of models that are adversarialy trained, but also improves the
robustness of the ensemble. For this we train ensembles of ResNet-18 and ensembles of DLA models
on CIFAR-10 dataset, and incorporate adversarial training for each model within the ensemble. We
repeat this procedure for three settings: 1. no further modification (Orig), 2. clipping each model
to 1.0 (C = 1.0), and 3. using LOTOS. We evaluate the robust accuracy of these ensembles against
blackbox attacks and summarize the results in Table 6. As the table shows, the ensembles trained
with LOTOS achieve a higher robust accuracy while achiving similar test accuracy.
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ADV TRAIN ADV TRAIN + C = 1 ADV TRAIN + LOTOS

ENSEMBLES OF RESNET-18 MODELS

TEST ACC 93.1± 0.00 92.5± 0.16 92.7± 0.09

ROBUST ACC 60.1± 0.93 60.9± 1.49 61.7± 1.04

ENSEMBLES OF DLA MODELS

TEST ACC 90.8± 0.09 93.7± 0.24 93.9± 0.22

ROBUST ACC 59.6± 0.93 61.2± 1.32 62.7± 1.34

Table 6: Robust accuracy against black-box attacks in ensembles of ResNet-18 and ensembles of DLA
models trained with adversarial training We use ensembles of three models for three different cases; trained
with adversarial training only, trained with adversarial training while clipping the models, and trained with both
adversarial training and LOTOS. As the results show, using both adversarial training and LOTOS achieves a
robust accuracy that is higher than when either of these methods are used.

B.9 IMPROVING PRIOR METHODS (CONT.)

In this section, we evaluate the effectiveness of LOTOS in enhancing the robustness of two SOTA
methods, DVERGE (Yang et al., 2020) and TRS (Yang et al., 2021). For this purpose, we evaluate the
robustness of different ensembles against MORA (Gao et al., 2022), which is specifically designed
for model ensembles and has been shown to be more effective in bypassing the gradient obfuscation
introduced by the defense methods (Gao et al., 2022). To evaluate the robustness of ensembles in the
worst-case scenario, we choose white-box attacks against these ensembles and use the recommended
setting by Gao et al. (2022). For this experiment, we use ensembles of ResNet-18 models trained
on CIFAR-10, and for each ensemble robustness method, we use the recommended settings by their
authors. As the results in Table 7 show, incorporating LOTOS improves the robust accuracy of TRS
and DVERGE ensembles by 4.2 and 9.5 percentage points.

We also performed this evaluation for ensembles that are trained only with LOTOS (without TRS
and DVERGE), and achieved a robust accuracy of 16.8± 0.51 against MORA attack. This robust
accuracy is higher than TRS but does not reach the robust accuracy of DVERGE alone. However, it
is important to note that LOTOS increases the training time of ensembles of ResNet-18 models only
by 2.4 times per epoch (see Appendix B.5) whereas DVERGE increases the training time by a factor
of 14.3 because of all the different techniques they use in their algorithm. If we only add adversarial
training to LOTOS, which leads to almost the same (a factor of 14.6) increase in the training time
(see Appendix B.8) for a fair comparison, then the robust accuracy against MORA becomes 49.5%
(±1.45), which is 29.8 percentage point higher than DVERGE alone.

ORIG ORIG+ C = 1 ORIG + LOTOS

TRS 10.3± 0.33 13.2± 1.12 14.5± 0.81

DVERGE 19.7± 2.34 26.8± 0.75 29.2± 0.56

Table 7: Boosting robust accuracy of other ensemble robustness methods. The robust accuracy of ensembles
of three ResNet-18 models on CIFAR-10 for two SOTA ensemble robustness methods against MORA white-box
attack in three different cases; original models (Orig), clipped ones (C = 1.0), and trained in combination with
LOTOS. As the table shows LOTOS effectively boosts the robustness of other ensemble robustness methods.

B.10 OTHER RESULTS

In this section, we perform more experiments to further explore the effectiveness of LOTOS in
different settings, including different attack methods, various norm bounds and attack sizes, and
white-box attacks. We also evaluate the effectiveness of LOTOS in enhancing the robustness of
ensembles of larger models. Finally, we evaluate the effectiveness of our proposed method in
improving the ensemble robustness against various non-adversarial noise. For all the experiments
in this section, we use ensembles of ResNet-18 models (without batch norm layers) trained on
CIFAR-10.
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B.10.1 CHANGING THE NORM AND RADIUS

In this section, we compare the results when the attack norm is changed in black-box attacks using
PGD-50. We first compare the results for ℓ∞ (used in the main experiments), ℓ2, and ℓ1 norms
all with an upper-bound of 0.04, and report the results in Table 8. The results show the consistent
advantage of LOTOS in enhancing the robustness of the ensembles.

ℓ∞ ℓ2 ℓ1

ORIG 16.4± 1.11 20.4± 1.00 20.2± 0.98

C = 1 26.4± 0.57 17.9± 1.20 17.9± 1.12

LOTOS 32.2± 0.99 22.2± 1.79 22.1± 2.14

Table 8: Robust accuracy against black-box attacks with different norms. The target models are ensembles
of three ResNet-18 models on CIFAR-10 for three different cases; original models (Orig), clipped ones
(C = 1.0), and trained with LOTOS. As the table shows LOTOS achieves the highest robust accuracy.

We also evaluate the results when the attack size changes for black-box attacks using PGD-50 with
ℓ∞ norm bound and report the results in Table 9. As the results show, the benefit of using LOTOS
becomes even more clear when the radius of the attack gets larger and the attack becomes stronger.

ϵ = 0.02 ϵ = 0.04 ϵ = 0.08

ORIG 22.9± 1.04 16.4± 1.11 8.2± 0.63

C = 1 28.2± 1.03 26.4± 0.57 20.7± 0.50

LOTOS 33.1± 1.14 32.2± 0.99 28.1± 1.63

Table 9: Robust accuracy against black-box attacks with different radii. The target models are ensembles of
three ResNet-18 models on CIFAR-10 for three different cases; original models (Orig), clipped ones (C = 1.0),
and trained with LOTOS. As the table shows LOTOS achieves the highest robust accuracy.

B.10.2 OTHER BLACK-BOX ATTACKS

In this section, we replace PGD-50 with other attack methods to generate the adversarial examples on
the surrogate models and evaluate the robust accuracy of target models on the generated examples.
For this purpose, we use AutoAttack (Croce & Hein, 2020) and MORA (Gao et al., 2022) attack
methods, which are stronger white-box attacks against the surrogate models (see Appendix B.10.4).
The results are shown in Table 10. As the results show, although AutoAttack and MORA are stronger
attacks in the white-box setting, the adversarial examples they generate for the surrogate models
do not generalize to the target ensemble. This is an interesting observation that suggests overfitting
the adversarial examples to the surrogate models and needs further exploration in future work. Still,
we can see that LOTOS effectively achieves higher robust accuracy against different attacks by
diversifying the models within the ensemble and reducing the transferability rate among them.

PGD-50 AUTOATTACK MORA

ORIG 16.4± 1.11 16.3± 0.69 30.0± 0.52

C = 1 26.4± 0.57 30.0± 0.39 34.9± 1.07

LOTOS 32.2± 0.99 33.7± 0.76 40.1± 0.83

Table 10: Robust accuracy against black-box attacks with different attack methods. Different attack
algorithms are used to generate adversarial examples on the surrogate ResNet-18 model ensembles. The target
models are ensembles of three ResNet-18 models on CIFAR-10 for three different cases; original models (Orig),
clipped ones (C = 1.0), and trained with LOTOS. As the table shows LOTOS achieves the highest robust
accuracy for all three types of attacks.
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B.10.3 LARGER MODELS

To evaluate the effectiveness of LOTOS on more robust models, we evaluated the robustness of
ensembles of ResNet-50 models, which are shown to be more robust than the models used in our
experiments Peng et al. (2023). We compared the robust accuracy of ensembles of these models
against black-box attacks on CIFAR-10. As the results in Table 11 show, LOTOS still effectively
achieves a higher robust accuracy by increasing the diversity of the Lipschitz continuous models.

RESNET-18 RESNET-50

ORIG 16.4± 1.11 27.0± 1.03

C = 1 26.4± 0.57 23.7± 1.29

LOTOS 32.2± 0.99 34.8± 1.59

Table 11: Robust accuracy against black-box attacks with different model sizes and robustness levels.
The target models are ensembles of three ResNet-18 and ResNet-50 models on CIFAR-10 for three different
cases; original models (Orig), clipped ones (C = 1.0), and trained with LOTOS. As the table shows LOTOS
effectively boosts the robustness for both model ensembles with different robustness levels.

B.10.4 WHITE-BOX ATTACKS

In this section, we evaluate the robust accuracy of the ensembles against white-box attacks. For these
attacks, all the parameters of the models within the ensemble are available to the adversary. Although
white-box attacks are considered impractical and unrealistic in most scenarios (Sitawarin et al., 2023),
still they can be used as an evaluation for the worst-case scenario. Other than the PGD-50 attacks we
used for transferability attacks, we use AutoAttack (Croce & Hein, 2020), which is shown to be a
stronger white-box attack, and MORA (Gao et al., 2022), which is specifically designed for model
ensembles. As the results in Table 12 shows, LOTOS effectively enhances the robust accuracy of
ensembles against white-box attacks.

PGD-50 AUTOATTACK MORA

ORIG 21.5± 0.51 18.9± 0.48 18.2± 0.48

C = 1 37.4± 0.37 31.5± 0.41 31.0± 0.51

LOTOS 39.9± 0.71 33.3± 0.70 32.4± 0.43

Table 12: Robust accuracy against different white-box attacks. The target models are ensembles of three
ResNet-18 models on CIFAR-10 for three different cases; original models (Orig), clipped ones (C = 1.0), and
trained with LOTOS. As the table shows LOTOS achieves the highest robust accuracy against different attack
methods.

B.11 NON-ADVERSARIAL NOISE

In this section, we evaluate the benefits of LOTOS in robustness against various non-adversarial
noise types. For this purpose, we use the benchmark introduced by Hendrycks & Dietterich (2019)
for CIFAR-10 and report the results in table 13. As the results show, the ensemble of Lipschitz
continuous models (C = 1), is more robust than the original models by preventing the small noises
from drastic changes in the output of the models. However, LOTOS achieves even better robustness
by further diversifying these models and preventing different models in the ensemble from failing for
the same noise in the inputs.

Gaussian noise Gaussian blur Impulse noise Motion blur Pixelate Fog Frost Saturate Shot noise Zoom blur Spatter Speckle noise AVG
Orig 36.1 55.7 27.0 71.2 44.3 77.5 62.5 87.4 42.9 71.8 73.5 45.8 58.0
C = 1 56.0 63.7 37.8 71.6 69.0 64.9 72.8 84.6 60.1 74.1 77.6 58.9 65.9
LOTOS 61.6 63.8 44.5 71.8 70.8 63.3 74.8 84.4 64.5 73.8 78.2 62.7 67.9

Table 13: Accuracy against non-adversarial noise. Accuracy of different ensembles of ResNet-18 models in
the presence of different noise types on CIFAR-10. LOTOS effectively achieves higher robustness in most cases
and also on average.
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C FURTHER DISCUSSIONS

In this section, we expand our discussions on the evidence of the trade-off of robustness and
transferability due to the Lipschitz continuity in prior theoretical works. We then mention the
limitations of our proposed solution (LOTOS), to this trade-off.

C.1 RELEVANT THEORETICAL OBSERVATIONS

In this section, we investigate other theoretical results from prior work that further approve our
observations regarding the trade-off of the robustness of single models and transferability rate
due to Lipschitz continuity. Theoretical results by Yao et al. (2024), show there is a trade-off
between complexity and diversity for transferability rate of adversarial examples. On the other hand,
enforcing Lipschitz continuity works as a regularizer to decrease the complexity (Bartlett et al.,
2017). So based on the trade-off established by Yao et al. (2024), this decrease in the complexity by
Lipschitz continuity leads to reduced diversity among the ensemble models, which in turn reduces
the transferability rate. That is why we need an additional modification, such as LOTOS, to further
boost the diversity despite the reduced complexity caused by Lipschitz continuity. Also, the diversity
term defined by Yao et al. (2024) can effectively be increased by LOTOS as it directly enforces the
differences in the outputs for various perturbations in the inputs.

Wang & Farnia (2023) show that adversarial examples generated by models with controlled operator
norm generalize better, which matches our observations (e.g., Figure 1 and Table 5), and motivates
the necessity of further training strategies, such as LOTOS, to counteract this improved generalization
which potentially leads to higher transferability rates. The lower-bounds on the probability of
transferability in Wang & Farnia (2023) (similarly in Yang et al. (2021)) show the connection with
the smoothness of the model in terms of the Lipschitz continuity of the gradients (not Lipschitz
continuity of the outputs which is a milder assumption). Finally, Abe et al. (2023) motivates avoiding
the extension of basic intuitions and observations for simple models to neural networks when they
are used in the form of an ensemble, as it might not lead to the expected benefits one expects from an
ensemble of models. This aligns with our observations (e.g., Table 2) and further motivates a full
understanding of the robustness techniques that are designed for individual neural network models
before using them in ensembles because they not only might not help in the ensemble settings but
may also worsen the results in some cases (Gao et al., 2022).

C.2 LIMITATIONS OF LOTOS

Although we showed the negligible computational overhead of our model, we should mention that
it is only limited by the speed of the underlying method used for controlling the spectral norm of
affine layers, which has become practical using recent methods (Boroojeny et al., 2024). Another
limitation of our method is that it is affected by the degradation of the clipping methods in the models
with batch normalization layers. Finally, we should mention that although LOTOS was shown to be
effective in practice, as we discussed in Section 4.1, it is highly efficient for convolutional layers, but
might not be as efficient for other affine layers and we leave the exploration of more efficient variants
for other layers to future work.
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