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Abstract

Strategy Choice Theory (SCT)1(e.g., Siegler and Shrager, 1984; Siegler, 2000)
explains important aspects of children’s arithmetic learning based upon principles
including learning from developmentally naturalistic data, probabilistic represen-
tation, confidence-based retrieval, and the phase-like importance of scaffolding
strategies, such as finger-counting. Here we recast SCT as a “Small Math Model”
(SMM), employing a neural-network-based architecture analogous to LLMs. The
SMM extends SCT to include counting practice2, symbol (number) embedding,
and gated attention. Similar to earlier work, the SMM demonstrates constructive
and destructive interference between counting and addition, and the “wave-like”
use of finger-counting as sum recall improves. We plan to extend the SMM to
later aspects of the decades-long SCT program, including adaptive strategy choice
and eventually strategy discovery, providing a unified platform to investigate the
understanding of numerical characteristics and relationships essential for mathe-
matical reasoning – as it can emerge in LLM-based agents.
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1 Introduction

In a very real sense, young children participate in reinforcement learning from human (usually par-
ent) feedback. Early theories of children’s learning posited processes such as “stages” to account for
observed differences in children’s cognitive skills. This view was overthrown by the work of Robert
Siegler and his coworkers (e.g., Siegler and Shrager, 1984; Siegler and Shipley, 1995; Siegler, 1988,
2000) who proposed the “Strategy Choice Theory” (SCT) hypothesizing that cognitive development
is a continuous process wherein the child learns to adaptively select from multiple strategies, such as
counting, retrieval, finger-counting, and so on, depending upon a set of factors including the strength
of association between problem and answer, the child’s confidence, and past experience with each
strategy. The SCT framework emphasizes mechanisms that align well with the probabilistic un-
derpinnings, uncertainty estimation, and fallback mechanisms of modern AI. Indeed, LLMs have
revolutionized natural language processing by scaling these same principles.

In the present work, we recast the earliest of the SCT models as a “Small Math Model” (SMM)
within a contemporary LLM-inspired architecture. In undertaking this work, we have several goals.
First, we hope to be able to unify the models that comprise Siegler’s early math learning project
in an architecture that provides a natural explanation for seemingly diverse phenomena, including
learning to count, add, or other arithmetic, learning new strategies, and learning to use strategies in

1“Strategy Choice Theory”, “Distributions of Associations”, and “Overlapping Wave Theory” have been
used to refer to this line of work, emphasizing different aspects.

2The original SCT model was pre-biased in accordance with the supposed experience of counting.
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appropriate settings. Second, we hypothesize that the SMM approach can lead to improved “num-
ber common sense” in LLMs, something that has recently been noted as lacking (e.g., Rahman and
Mishra, 2025). With similar goals, Hein and Diepold (2024) examined how multimodal transform-
ers acquire skills on a set of numerical tasks (such as enumeration, set comparison, and seriation).
They are, however, focused on learning from visual and linguistic data and integrating these modal-
ities, but not on learning the numerical symbols, operations, and their internal representations of
magnitudes, which form a crucial part of human number sense, alongside visual and linguistic rep-
resentations.3

SCT has long been used to explain how humans develop number sense (Dehaene, 1992), mak-
ing the SMM an ideal testbed for investigating and improving number sense in AI agents. While
modern XAI methods, such as mechanistic interpretability, have yielded insights into how neural
networks solve mathematical problems by rebuilding solution strategies from elements (e.g., Wang
et al., 2022; Nanda et al., 2023), existing approaches are largely observational and difficult to scale
(Bereska and Gavves, 2024). In contrast, the SMM offers a controllable environment for studying
complex reasoning, with clear ground truths about the problem environment and model capabilities.

2 Strategy Choice Theory

In complex environments, learners have access to a variety of problem-solving strategies. SCT
explains how individuals select among these strategies based on the distribution of associations
between problems and potential answers. For example, children learning to add or multiply do not
memorize facts (e.g., 2 + 3 = 5, 2 × 3 = 6) but, like an LLM, build a probabilistic “Distribution
of Associations” between problems and possible answers. Early on, these associations are noisy, as
children might associate 2+3 with answers 3 (counting up from 2), 4 (counting from 3, or 2 → 3), 5
(the correct answer), or even other results that they may have encountered through errors early on in
their learning to add. With experience, correct associations strengthen while incorrect ones weaken.
The SCT is formalized with three mechanisms: (1) representation, (2) solution generation (through
retrieval or fallback strategies), and (3) learning. When retrieval confidence falls below a threshold,
the agent resorts to backup strategies and uses it as a learning opportunity to update associations.

3 Architecture

The SMM processes input sentences of the form “a operator b” where a, b ∈ {1, . . . , 5} and
operator ∈ {→ (count up),+ (add)}. The symbolic numerical arguments (i.e., the numbers)
are “embedded” or mapped to a dense vector in a continuous space, enabling the model to cap-
ture emergent relationships among numbers (for example, relative magnitude, even versus odd, or
common configurations such as base-five hand groupings). These embeddings feed into a recur-
rent processing core that implements a mixture of strategies, including finger counting and direct
addition.4 A gating (‘quasi-attention’, QA) mechanism learns how much attention to pay to the
operands, conditioned on the operator, so that it emphasizes different input features in different con-
texts. Faced with a counting problem, it learns to amplify the representation of the current number
in the sequence (b), facilitating stepwise incrementing, whereas faced with an addition problem, it
learns to highlight both operands simultaneously. The embeddings interact with the attentional gate,
enabling the model to capture the relational structure of numbers vis-à-vis strategies, and vice versa.

Like the 1984 SCT, the SMM includes two strategies for addition: direct recall and finger-counting.
It also includes a mechanism for learning to count up, through either recall or “oracular” knowledge
(being told, presumably by a parent), which was not modeled in the 1984 work. Answer confidence
for either counting or addition is estimated from the entropy of the output distribution. When con-
fidence falls below a threshold, the model defers to an alternative strategy for addition, either being
told (for counting) or finger-counting, which generates the correct result step by step. Importantly,
the SMM uses its counting skills as a scaffold for learning addition skills. The finger-counting strat-

3The triple code model (Dehaene, 1992) explains that humans represent numbers in three forms: (1) visual
(e.g., 31), (2) verbal (”thirty-one”), and (3) their analog magnitudes along a number line, each corresponding
to different parts of the brain (Dehaene, 1996; Kiefer and Dehaene, 1997; Pinel et al., 1999).

4While the network itself is feed-forward, the training regime and task structure make it functionally recur-
rent as its own outputs are fed back as inputs across steps to implement counting and addition.
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egy relies on the ability to count up, which is learned by the model itself! The subsequent answer is
then used for training in the usual back-propagation way. This is analogous to the way LLMs can be
augmented with external tools (e.g., for coding) or explicit reasoning mechanisms (e.g., chains-of-
thought, Wei et al., 2022 or tree-of-thoughts, Yao et al., 2023) and subsequently distilled back into
the base model.

4 Training

Training follows a Gaussian curriculum schedule that gradually increases task difficulty. Early in
training, simpler problems (e.g., sums with smaller operands) dominate; over time, harder problems
appear. This smooth progression mirrors natural learning trajectories while avoiding abrupt jumps.
It also follows learning practices in LLM training, where data distributions are staged over time to
improve stability and generalization.

Counting is trained from the very beginning of each run, while addition can be introduced at dif-
ferent time points to investigate how prior knowledge influences subsequent learning. After each
problem, strategy-specific confidence values are updated according to correctness, and these values
govern stochastic selection of strategies on subsequent trials. This architecture, therefore, supports
mechanistic analysis of how new procedures compete with, reinforce, or interfere with existing ones
in the course of skill acquisition. The code for the SMM is available here (under MIT Open Source
License): https://github.com/jeffshrager/smm

5 Results

Prior experience with counting can either scaffold or hinder the acquisition of addition, depend-
ing upon the timing of addition’s introduction. Figure 1 shows changes in addition accuracy with
training (Fig. 1a) and in the use of the finger-counting strategy (Fig. 1b) for addition problems. We
varied the points in training at which addition problems were introduced. In all cases, we see that the
change-points in accuracy closely align with the ones in finger-counting usage. The accuracy curves
begin with plateaus (of varying lengths) before a rapid rise; during this period, finger-counting usage
rises to a maximum, indicating that the model becomes more confident that finger-counting is the
more promising strategy and that improved addition skills emerge from improved counting skills.
Then follows another brief plateau, followed by a gradual rise to near-perfect accuracy. During this
period, finger-counting usage briefly reached several local maxima, reflecting the continued use of
finger-counting as a learning strategy, before a gradual decline to zero, marking the end of finger-
counting as a scaffold for addition.

Figure 1: Addition correctness (a) and use of finger-counting (b) as a function of training step, for
different addition-start times. Counting is always trained from the beginning. Destructive interfer-
ence takes place near the beginning of practice if addition is introduced too early, although this is
rapidly overcome by training.
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Figure 2: Addition answer confidence over the whole 50,000 training cycles, for the problem 3+4 =
?, depicted in four quarters, early through late. In each quarter, the lines represent distributions for
problems sampled once in every 10 instances. (The training itself is not divided into four periods.)

The change with learning in addition answer confidence is depicted in figure 2 for a specific problem:
3 + 4 =?. Note that early on the possible answers are biased to incorrect results due to addend-bias
(for the problem 3 + 4 tend to say 3 or 4), counting bias (tend to say 5, from the counting sequence
3 → 4 → 5), and errors in executing finger-counting due to poor counting training (i.e., this many
answers around, but not at 7, rather at 6, 8, 9, ...). Notice as well that confidence is distributed among
these various answers. Yet, with experience, these biases fall off, and the correct answer (7) becomes
nearly the only likely answer with nearly 1.0 confidence.

6 Discussion and Next Steps

The SMM modernizes and extends the SCT (Siegler and Shrager, 1984; Siegler, 1988) recasting it
in a contemporary LLM architecture that includes embeddings, gating/attention, cross-entropy loss,
curriculum learning, and tool (strategy) use. The simple SMM architecture provides a testbed for
studying how counting priors, confidence estimation, and quasi-attention (in the LLM sense) inter-
act in a realistic yet controlled setting. We show that the SMM can build upon its counting skills
to learn addition, using counting as a scaffold during early training. The transition point—when
counting becomes redundant for addition—is clearly identifiable and aligns with predictions from
Strategy Choice Theory (SCT), emerging naturally from the model’s confidence thresholds. More-
over, the evolution of confidence distributions over possible answers is interpretable and reveals
how biases (e.g., addend or counting biases) diminish with experience. These dynamics not only
validate SCT’s core mechanisms but also demonstrate how modern neural architectures can yield
transparent, mechanistic insights into the development of symbolic reasoning.

While our demonstrations focused on problems involving numbers 1 through 5, the SMM archi-
tecture is readily scalable to larger numerical ranges and additional operations (e.g., subtraction,
multiplication, division), with computational cost being the primary constraint—two directions we
aim to pursue to investigate how complex mathematical skills emerge from foundational numerical
abilities. Importantly, adaptive strategy competition can give rise to nontrivial transfer effects. In the
early part of learning addition, the SMM falls back on its counting skills for solutions and updates
associations between problems and answers. When addition problems were introduced too early, the
SMM had difficulty using finger-counting to scaffold weak addition skills. An important implication
of these results is the potential value of “progressive deepening” (e.g., Fayek et al., 2020; Hacohen
and Weinshall, 2019), also recognized in cognitive science as the “starting small” hypothesis (El-
man et al., 1996). By analogy, staged curricula in LLMs may help establish core abilities—such as
number sense—before introducing higher-level reasoning, supporting more robust common sense in
numerical domains.

The SMM may further serve as a testbed to probe number sense, which is fundamental to mathe-
matical reasoning. The embedding-based architecture has the potential to capture latent properties
(e.g., even/odd or base-five hand configurations, and many others). Indeed, our immediate next steps
will be to provide a number of strategies that vary in their effectiveness – combining efficiency and
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correctness – for different sorts of addends.5 We expect number embeddings to be able to learn the
relationships between number properties and strategy effectiveness.

The SMM illustrates how modern neural implementations can instantiate and extend classical cog-
nitive theories. By reframing Siegler and Shrager’s model (and eventually the rest of the Siegler
line of research) in a modern architecture, we hope to obtain a platform for mechanistic analysis
of symbolic reasoning in tractable domains, opportunities to probe representations directly (e.g.,
via similarity analysis or attention visualization), and a rich bridge between cognitive science and
AI, highlighting shared principles of probabilistic selection based on confidence estimation, and
adaptive strategy use.

Acknowledgments

The authors thank David William Braithwaite for useful comments on a draft of this paper and
Michael J. Schoelles for sharing his immense knowledge about human mathematical reasoning.

References
Bereska, L. and Gavves, E. (2024). Mechanistic interpretability for ai safety–a review. arXiv preprint

arXiv:2404.14082.

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2):1–42.

Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related
potentials and the additive-factors method. Journal of cognitive neuroscience, 8(1):47–68.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., and Plunkett, K. (1996).
Rethinking Innateness: A Connectionist Perspective on Development. MIT Press, Cambridge,
MA.

Fayek, H. M., Srivastava, N., and Jin, J. (2020). Progressive learning: A deep learning framework
for continual learning. Frontiers in Artificial Intelligence, 3:7.

Hacohen, G. and Weinshall, D. (2019). On the power of curriculum learning in training deep net-
works. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
ICML ’19, pages 2535–2544. PMLR.

Hein, A. and Diepold, K. (2024). Exploring early number abilities with multimodal transformers.
Cognitive Science. First published: 03 September 2024.

Kiefer, M. and Dehaene, S. (1997). The time course of parietal activation in single-digit multiplica-
tion: Evidence from event-related potentials. Mathematical cognition, 3(1):1–30.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Steinhardt, J. (2023). Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217.

Pinel, P., Le Clec’H, G., Van de Moortele, P.-F., Naccache, L., Le Bihan, D., and Dehaene, S.
(1999). Event-related fmri analysis of the cerebral circuit for number comparison. Neuroreport,
10(7):1473–1479.

Rahman, R. and Mishra, A. A. (2025). A fragile number sense: Probing the elemental limits of
numerical reasoning in llms. arXiv preprint arXiv:2509.06332. Submitted September 8, 2025.

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Jour-
nal of experimental psychology: General, 117(3):258.

Siegler, R. S. (2000). The rebirth of children’s learning. Child Development, 71(1):26–35.

Siegler, R. S. and Shipley, C. (1995). Variation, selection, and cognitive change. In Simon, T. J. and
Halford, G. S., editors, Developing cognitive competence: New approaches to process modeling,
pages 31–76. Lawrence Erlbaum Associates, Hillsdale, NJ.
5Efficiency and correctness are partly correlated because strategies that require more steps have a greater

likelihood of error, although there are other factors at play as well.

5



Siegler, R. S. and Shrager, J. (1984). Strategy choices in addition and subtraction: How do children
know what to do? In Origins of Cognitive Skills. Erlbaum.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and Steinhardt, J. (2022). Interpretability in the
wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022).
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural in-
formation processing systems, 35:24824–24837.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K. (2023). Tree of
thoughts: Deliberate problem solving with large language models. Advances in neural informa-
tion processing systems, 36:11809–11822.

6


	Introduction
	Strategy Choice Theory
	Architecture
	Training
	Results
	Discussion and Next Steps

