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Abstract
One of the objectives of continual learning is to prevent catastrophic forgetting in learning multi-
ple tasks sequentially, and the existing solutions have been driven by the conceptualization of the
plasticity-stability dilemma. However, the convergence of continual learning for each sequential
task is less studied so far. In this paper, we provide a convergence analysis of memory-based con-
tinual learning with stochastic gradient descent and empirical evidence that training current tasks
causes the cumulative degradation of previous tasks. We propose an adaptive method for noncon-
vex continual learning (NCCL), which adjusts step sizes of both previous and current tasks with the
gradients. The proposed method can achieve the same convergence rate as the SGD method when
the catastrophic forgetting term which we define in the paper is suppressed at each iteration. Fur-
ther, we demonstrate that the proposed algorithm improves the performance of continual learning
over existing methods for several image classification tasks.

1. Introduction

Learning new tasks without forgetting previously learned tasks is a key aspect of artificial intelli-
gence to be as versatile as humans. Unlike the conventional deep learning that observes tasks from
an i.i.d. distribution, continual learning train sequentially a model on a non-stationary stream of
data [28, 31]. The continual learning AI systems struggle with catastrophic forgetting when the
data access of previously learned tasks is restricted [7]. Although novel continual learning meth-
ods successfully learn the non-stationary stream sequentially, studies on the theoretical convergence
analysis of both previous tasks and a current task have not yet been addressed. In this line of re-
search, nonconvex stochastic optimization problems have been well studied on a single task to train
deep neural networks and prove theoretical guarantees of good convergence.

Previous continual learning algorithms have introduced novel methods such as a replay memory
to store and replay the previously learned examples [1, 2, 19], regularization methods that penal-
ize neural networks [11, 36], Bayesian methods that utilize the uncertainty of parameters or data
points [6, 22], and other recent approaches [15, 34]. The study of continual learning in Bayesian
frameworks formulate a trained model for previous tasks parameter into an approximate posterior
to learn a probabilistic model which have empirically good performance on entire tasks. However,
Bayesian approaches can fail in practice and it can be hard to analyze the rigorous convergence due
to the approximation. The memory-based methods are more straightforward approaches, where the
learner stores a small subset of the data for previous tasks into a memory and utilizes the memory
by replaying samples to keep a model staying in a feasible region without losing the performance
on the previous tasks. Gradient episodic memory (GEM) [19] first formulated the replay based con-
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tinual learning as a constrained optimization problem. This formulation allows us to rephrase the
constraints on objectives for previous tasks as inequalities based on the inner product of loss gra-
dient vectors for previous tasks and a current task. However, the gradient update by GEM variants
cannot guarantee both theoretical and empirical convergence of its constrained optimization prob-
lem. The modified gradient updates do not always satisfy the loss constraint theoretically, and we
can also observe the forgetting phenomenon occurs empirically. It also implies that this intuitive re-
formulation violates the constrained optimization problem and cannot provide theoretical guarantee
to prevent catastrophic forgetting without a rigorous convergence analysis.

In this work, we explain the cause of catastrophic forgetting by describing continual learning
with a smooth nonconvex finite-sum optimization problem. In the standard single task case, SGD
[8], ADAM [26], YOGI [35], SVRG [24], and SCSG [17] are the algorithms for solving nonconvex
problems that arise in deep learning. To analyze the convergence of those algorithms, previous
works study the following nonconvex finite-sum problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where we assume that each objective fi(x) with a model x and a data point index i ∈ [n] for
a dataset with size n (by the convention for notations in nonconvex optimization literature [24]) is
nonconvex with L-smoothness assumption. In general, we denote fi(x) as f(x; di) where di is a
datapoint tuple (INPUT, OUTPUT) with index i. We expect that a stochastic gradient descent based
algorithm reaches a stationary point instead of the global minimum in nonconvex optimization.
Unlike the convex case, the convergence is generally measured by the expectation of the squared
norm of a gradient E∥∇f(x)∥2. The theoretical computational complexity is derived from the
ϵ-accurate solution, which is also known as a stationary point with E∥∇f(x)∥2 ≤ ϵ. The general
nonconvex finite-sum problems assume that all data points can be sampled during training iterations.
This fact is an obstacle to directly apply (1) for continual learning problem.

We provide a solution of the above issue by leveraging memory-based methods, which allow
models to access a partial access to the dataset of previous tasks. In this setting, we can analyze
nonconvex stochastic optimization problems on the convergence of previous tasks with limited ac-
cess. Similar with adaptive methods for noncovex optimization, we apply adaptive step sizes during
optimization to minimize forgetting with theoretical guarantee.

2. Preliminaries

Suppose that we observe the learning procedure on a data stream of continual learning at some
arbitrary observation point. Let us consider time step t = 0 as given observation point. We define
the previous task P for t < 0 as all visited data points and the current task C for t ≥ 0 as all data
points which will face in the future. Then, P and C can be defined as the sets of data points in P and
C at time step t = 0, respectively. Note that the above task description is based on not a sequence of
multiple tasks, but two separate sets to analyze the convergence of each of P and C when starting to
update the given batch at the current task C at some arbitrary observation point. For clarity, we use
f(x) = h(x)|P and g(x) = h(x)|C for the restriction of h to each dataset P and C, respectively.
fi(x) and gj(x) also denotes the objective terms induced from data where each index is i ∈ P and
j ∈ C, respectively. We consider a continual learning problem as a smooth nonconvex finite-sum
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Algorithm 1: Nonconvex Continual Learning (NCCL)
Data: previous task set P , current task set C, initial model x0

Sample a initial memory M0 ⊂ P // By replay schemes, the selection dist. of M0 are different;
for t = 0 to T − 1 do

sample a mini-batch It ⊂Mt ;
sample a mini-batch Jt ⊂ C ;
compute step sizes αHt , βHt by∇fIt(xt), ∇gJt(xt);
xt+1 ← xt − αHt∇fIt(xt)− βHt∇gJt(xt);
update Mt+1 by the rule of replay scheme with Jt;

end

optimization problem with two decomposed objectives

min
x∈Rd

h(x) =
1

nf + ng

∑
i∈P∪C

hi(x) =
nf

nf + ng

(
1

nf

∑
i∈P

fi(x)

)
+

ng

nf + ng

 1

ng

∑
j∈C

gj(x)


(2)

where nf and ng are the numbers of elements for P and C.
Suppose that the replay memories Mt for time step ∈ [0, T ] are random variables which are the

subsets of P ∪ C to cover prior memory-based approaches [2, 3]. To formulate an algorithm for
memory-based approaches, we define mini-batches It which are sampled from a memory Mt at step
t. We now define the stochastic update of memory-based method

xt+1 = xt − αHt∇fIt(xt)− βHt∇gJt(xt), (3)

where It ⊂ Mt and Jt ⊂ C denote the mini-batches from the replay memory and the current
data stream, respectively. Here, Ht is the union of It and Jt. In addition, for a given set S,
∇fS(xt),∇gS(xt) denote the loss gradient of a model xt with the mini-batch S at time step t The
adaptive step sizes (learning rates) of∇fIt(xt) and∇gJt(xt) are denoted by αHt and βHt which are
the functions of Ht. It should be noted the mini-batch It from Mt might contain a datapoint j ∈ C
for some cases, such as ER-Reservoir. In appendix, we provide assumptions used in the proof.

3. Continual Learning as Nonconvex Optimization

We present a theoretical convergence analysis of memory-based continual learning in nonconvex
setting. We aim to understand why catastrophic forgetting occurs in terms of the convergence rate,
and reformulate the optimization problem of continual learning into a nonconvex setting with theo-
retical guarantee. For completeness we present all proofs in Appendix D. The amount of effect on
convergence by a single update can be measured by using Assumption 4. By Equation 7, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2

= f(xt)− ⟨∇f(xt), αHt∇fIt(xt) + βHt∇gJt(xt)⟩+
L

2
∥αHt∇fIt(xt) + βHt∇gJt(xt)∥2
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by letting x ← xt+1 and y ← xt. We now propose two terms of interest in a gradient update
of nonconvex continual learning (NCCL). We define the overfitting term Bt and the catastrophic
forgetting term Γt as follows:

Bt = (Lα2
Ht
− αHt)⟨∇f(xt), et⟩+ βHt⟨∇gJt(xt), et⟩,

Γt =
β2
Ht
L

2
∥∇gJt(xt)∥2 − βHt(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩.

These two terms essentially measure the performance degradation in NCCL with respect to time.
It should be noted that Γt has ⟨∇fIt(xt),∇gJt(xt)⟩, which is a key factor to determine interference
and transfer [27]. On the other hand, Bt includes et, which is an error gradient between the batch
from Mt and the entire dataset P . We now describe a convergence analysis of Algorithm 1. We
telescope over training iterations for the current task, which leads to obtain the following theorem.

Theorem 1 Let αHt = α = c√
T

for some 0 < c ≤ 2
√
T

L and t ∈ {0, · · · , T − 1}. By Lemma 7, the
iterates of NCCL satisfy

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)
, (4)

where A = 1/(1− Lα/2).

One key observation is that E[Γt] are cumulatively added on the upper bound of E∥∇f(x)∥2.
The loss gap ∆f and the variance of gradients σf are fixed values. In practice, tightening

∑
t E[Γt]

appears to be critical for the performance of NCCL. However,
∑T−1

t=0 E[Γt]/
√
T is not guaranteed

to converge to 0. This fact gives rise to forgetting in terms of a nondecreasing upper bound.

Lemma 2 Let an upper bound β > βHt > 0. Consider two cases, β < α and β ≥ α for α in
Theorem 1. We have the following bound

T−1∑
t=0

E[Γt]√
T

< O
(
1/T 3/2 + 1/T

)
when β < α,

T−1∑
t=0

E[Γt]√
T

< O
(√

T + 1/
√
T
)
, when β ≥ α.

Corollary 3 For βHt < α = c√
T

for all t, the IFO complexity of Algorithm 1 for f(x) to obtain
an ϵ-accurate solution is as follows:

IFO calls = O(1/ϵ2). (5)

To prevent forgetting, βHt should be lower than the step size of f(x), αHt . We provide more
details in Appendix. It should also be noted that EM[1:t]

[Bt|M0] is not always 0 for any M0. This
implies that, from time step 0, each trial with different given M0 also has the non-zero cumulative
sum

∑
EM[1:T ]

[Bt|M0], which occurs overestimating bias. We reformulate the constraint optimiza-
tion problem for CL [19] into the problem on E[Γt] in Appendix D.3. We note that E[Γt] is a
quadratic polynomial of βHt where βHt > 0. The analytic minimum on βHt can be obtained when
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Figure 1: Metrics on split-CIFAR100 with 5 seeds. (a) Forgetting versus
∑

E[Γt] at the end of
training. (b) Evolution of

∑
E[Γt]. (c) Empirical verification of the relation between ∥∇f(x)∥

for the first task and test loss of the first task. (d)-(e) are the empirical verification of
∑

E[Γt]
versus ∥∇f(x)∥ for the first task in CL algorithms. The red horizontal line indicates the empirical
∥∇f(x)∥ right after training the first task. (f) Illustration of empirical Bt at the end of each task.

ΛHt = ⟨∇fIt(xt),∇gJt(xt)⟩ > 0 by differentiating on βHt . Then the minimum E[Γ∗
t ] and the

optimal β∗
Ht

can be obtained as

β∗
Ht

=
(1− αHtL)ΛHt

L∥∇gJt(xt)∥2
, E[Γ∗

t ] = −
(1− αHtL)ΛHt

2L∥∇gJt(xt)∥2
.

To satisfy the constraints of (9) in Appendix, we should update ∇fIt(xt) with non-zero step
size and βHt < αHt for all t. Then the proposed adaptive method is given by

αHt =

{
α(1− ΛHt

∥∇fIt (x
t)∥2 ), ΛHt ≤ 0

α, ΛHt > 0,
βHt =

{
α, ΛHt ≤ 0

min
(
α(1− δ),

(1−αL)ΛHt
L∥∇gJt (x

t)∥2

)
, ΛHt > 0

where α = c/
√
T and δ is some constant 0 < δ ≪ 1. For ΛHt ≤ 0, see details in Appendix D.4.

4. Experiments

We use two following metrics to evaluate algorithms. (1) Average accuracy is defined as 1
T

∑T
j=1 aT,j ,

where ai,j denotes the test accuracy on task j after training on task i. (2) Forgetting is the average
maximum forgetting is defined as 1

T−1

∑T−1
j=1 max

l∈[T−1]
(al,j − aT,j). Due to limited space, we report

the training details and missing results with additional datasets in Appendix. The following table
show our main experimental results, which is averaged over 5 runs. We denote the number of ex-
ample per class per task at the top of each column. Overall, NCCL + memory schemes outperform
baseline methods especially in the forgetting metric. Our goal is to demonstrate the usefulness of
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the adaptive methods to reduce the catastrophic forgetting, and to show empirical evidence for our
convergence analysis. We remark that NCCL successfully suppress forgetting by a large margin
compared to baselines. It is noted that NCCL also outperforms A-GEM, which does not maximize
transfer when ΛHt > 0 and violates the proposed constraints in (9).

Table 1: Multi-headed split-CIFAR100, reduced size Resnet-18 nf = 20.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

EWC ✗ 42.7 (1.89) 0.28 (0.03) 42.7 (1.89) 0.28 (0.03)
Fintune ✗ 40.4 (2.83) 0.31 (0.02) 40.4 (2.83) 0.31 (0.02)

Stable SGD ✗ 59.9 (1.81) 0.08 (0.01) 59.9 (1.81) 0.08 (0.01)
MC-SGD ✗ 63.3 (2.21) 0.06 (0.03) 63.3 (2.21) 0.06 (0.03)
A-GEM ✓ 50.7 (2.32) 0.19 (0.04) 59.9 (2.64) 0.10 (0.02)
ER-Ring ✓ 56.2 (1.93) 0.13 (0.01) 62.6 (1.77) 0.08 (0.02)

ER-Reservoir ✓ 46.9 (0.76) 0.21 (0.03) 65.5 (1.99) 0.09 (0.02)
ORTHOG-subspace ✓ 58.81 (1.88) 0.12 (0.02) 64.38 (0.95) 0.055 (0.007)

NCCL + Ring ✓ 54.63 (0.65) 0.059 (0.01) 61.09 (1.47) 0.02 (0.01)
NCCL + Reservoir ✓ 52.18 (0.48) 0.118 (0.01) 63.68 (0.18) 0.028 (0.009)

We now investigate the proposed terms with regard to memory-based continual learning,
∑

E[Γt]
and Bt. To verify our theoretical analysis, in Figure 1 we show the cumulative catastrophic forget-
ting term

∑
t E[Γt] is the key factor of the convergence of the first task in split-CIFAR100. During

continual learning,
∑

t E[Γt] increases in all methods of Figure 1b. Figrure 1a, 1d, 1e show that
the larger

∑
t E[Γt] causes the larger forgetting and ∥∇f(x)∥ for the first task. We can observe that

∥∇f(x)∥ gets larger than 4, which is for the red line, when
∑

t E[Γt] becomes larger than 2. We also
verify that the theoretical result Et[Bt] = 0 is valid in Figure 1f. It implies that the empirical results
of Lemma 5, which show the effect of Bt on Equation 14. Furthermore, the memory bias helps to
tighten the convergence rate of P by having negative values in practice. Even with tiny memory,
the estimated Bt has much smaller value than E[Γt] as we can observe in Figure 1. For experience
replay, we need not to worry about the degradation by memory bias and would like to emphasize
that tiny memory can slightly help to keep the convergence on P empirically. We conclude that the
overfitting bias term might not be a major factor in degrading the performance of continual learning
agent when it is compared to the catastrophic forgetting term Γt.

5. Conclusion

In this paper, we have presented a theoretical convergence analysis of continual learning. Our proof
shows that a training model can circumvent catastrophic forgetting by suppressing catastrophic
forgetting term in terms of the convergence on previous task. We demonstrate theoretically and
empirically that adaptive methods with memory schemes show the better performance in terms
of forgetting. It is also noted that there exist two factors on the convergence of previous task:
catastrophic forgetting and overfitting to memory. Finally, it is expected the proposed nonconvex
framework is helpful to analyze the convergence rate of other continual learning algorithms.
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Appendix A. Review of terminology

(Restriction of f ) If f : A → B and if A0 is a subset of A, then the restriction of f to A0 is the
function

f |A0 : A0 → B

given by f |A0(x) = f(x) for x ∈ A0.

A.1. Summary of notations

Notations Definitions Notations Definitions

x model parameter Ht the union of It and Jt
P previous task nf the number of data points in P
C current task ng the number of data points in C
P dataset of P ⟨·, ·⟩ inner product
C dataset of C L L-smoothness constant

h(x) mean loss of x on entire datasets αHt adaptive step size for f with Ht

f(x) mean loss of x on P βHt adaptive step size for g with Ht

g(x) mean loss of x on C Mt memory at time t
fi(x) loss of x on a data point i ∈ P et error of estimate f at time t
gj(x) loss of x on a data point j ∈ C eMt error of estimate f with Mt

fIt(x) mini-batch loss of x on a batch It fMt mean loss of x with Mt

gJt(x) mini-batch loss of x on a batch Jt M[t1:t2] the history of memory from t1 to t2

It minibatch sampled from P Bt memory bias term at t
Jt minibatch sampled from C Γt forgetting term at t
Et total expectation from 0 to time t ΛHt inner product between∇fIt and ∇gJt

Appendix B. Related Work

Memory-based methods. Early memory-based methods utilize memory by the distillation [18, 23]
or the optimization constraint [2, 19]. Especially, A-GEM [2] simplifies the approach for constraint
violated update steps as the projected gradient on a reference gradient which ensures that the aver-
age memory loss over previous tasks does not increase. Recent works [3, 4, 27] have shown that
updating the gradients on memory directly, which is called experience replay, is a light and promi-
nent approach. We focus on convergence of continual learning, but the above methods focus on
increasing the empirical performance without theoretical guarantee. Our analysis provides a legiti-
mate theoretical convergence analysis under the standard smooth nonconvex finite-sum optimization
problem setting. Further, [12] shows the perfect memory for optimal continual learning is NP-hard
by using set-theory, but the quantitative analysis of performance degradation is less studied.

Adaptive step sizes in nonconvex setting. Adaptive step sizes under smooth nonconvex finite-
sum optimization problem have been studied on general single task cases [26, 35, 37] recently.
[29, 30, 37] have revealed that there exists a heavy-tailed noise in some optimization problems for
neural networks, such as attention models, and [37] shows that adaptive methods are helpful to
achieve the faster convergence under the heavy-tailed distribution where stochastic gradients are
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poorly concentrated around the mean. In this work, we treat the continual learning problem where
stochastic gradients of previous tasks are considered as the out-of-distribution samples in regard to
a current task, and develop adaptive methods which are well-performed in continual learning.

Regularization based methods. EWC has an additional penalization loss that prevent the up-
date of parameters from losing the information of previous tasks. When we update a model with
EWC, we have two gradient components from the current task and the penalization loss.

task-specific model components. SupSup learns a separate subnetwork for each task to predict
a given data by superimposing all supermasks. It is a novel method to solve catastrophic forgetting
with taking advantage of neural networks.

SGD methods without expereince replay. stable SGD [20] and MC-SGD [10] show over-
all higher performance in terms of average accuracy than the proposed algorithm. For average
forgetting, our method has the lowest value, which means that NCCL prevents catastrophic for-
getting successfully with achieving the reasonable performance on the current task. We think that
our method is focused on reducing catastrophic forgetting as we defined in the reformulated con-
tinual learning problem (12), so our method shows the better performance on average forgetting.
Otherwise, MC-SGD finds a low-loss paths with mode-connectivity by updating with the proposed
regularization loss. This procedure implies that a continual learning model might find a better local
minimum point for the new (current) task than NCCL.

For non-memory based methods, the theoretical measure to observe forgetting and convergence
during training does not exist. Our theoretical results are the first attempt to analyze the convergence
of previous tasks during continual learning procedure. In future work, we can approximate the
value of with fisher information for EWC and introduce Bayesian deep learning to analyze the
convergence of each subnetworks for each task in the case of SupSup [33].

Appendix C. Additional Experimental Results and Implementation Details

We implement the baselines and the proposed method on Tensorflow 1. For evaluation, we use an
NVIDIA 2080ti GPU along with 3.60 GHz Intel i9-9900K CPU and 64 GB RAM.

C.1. Experimental setup

Datasets. We demonstrate the experimental results on standard continual learning benckmarks:
Permuted-MNIST [11] is a MNIST [14] based dataset, where each task has a fixed permutation of
pixels and transform data points by the permutation to make each task distribution unrelated. Split-
MNIST [36] splits MNIST dataset into five tasks. Each task consists of two classes, for example
(1, 7), (3, 4), and has approximately 12K images. Split-CIFAR10, 100, and MiniImagenet also
split versions of CIFAR-10, 100 [13], and MiniImagenet [32] into five tasks and 20 tasks.

Baselines. We report the experimental evaluation on the online continual setting which implies
a model is trained with a single epoch. We compare with the following continual learning baselines.
Fine-tune is a simple method that a model trains observed data naively without any support, such as
replay memory. Elastic weight consolidation (EWC) is a regularization based method by Fisher
Information [11]. ER-Reservoir chooses samples to store from a data stream with a probability
proportional to the number of observed data points. The replay memory returns a random subset of
samples at each iteration for experience replay. ER-Reservoir [3] shows a powerful performance in
continual learning scenario. GEM and A-GEM [2, 19] use gradient episodic memory to overcome
forgetting. The key idea of GEM is gradient projection with quadratic programming and A-GEM

12
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simplifies this procedure. We also compare with iCarl, MER, ORTHOG-SUBSPACE [5], stable
SGD [20], and MC-SGD [21].

C.2. Architecture and Training detail

For fair comparison, we follow the commonly used model architecture and hyperparameters of
[5, 16]. For Permuted-MNIST and Split-MNIST, we use fully-connected neural networks with two
hidden layers of [400, 400] or [256, 256] and ReLU activation. ResNet-18 with the number of filters
nf = 64, 20 [9] is applied for Split CIFAR-10 and 100. All experiments conduct a single-pass over
the data stream. It is also called 1 epoch or 0.2 epoch (in the case of split tasks). We deal both cases
with and without the task identifiers in the results of split-tasks to compare fairly with baselines.
Batch sizes of data stream and memory are both 10. All reported values are the average values of 5
runs with diffrent seeds, and we also provide standard deviation. Other miscellaneous settings are
the same as in [5].

C.3. Hyperparameter grids

We report the hyper-paramters grid we used in our experiments below. Except for the proposed
algorithm, we adopted the hyper-paramters that are reported in the original papers. We used grid
search to find the optimal parameters for each model.

• finetune - learning rate [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• EWC - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0] - regularization:
[0.1, 1, 10 (MNIST,CIFAR), 100, 1000]

• A-GEM - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ER-Ring - learning rate: [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ORTHOG-SUBSPACE - learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST), 0.2, 0.4 (CIFAR),
1.0]

• MER - learning rate: [0.003, 0.01, 0.03 (MNIST, CIFAR), 0.1, 0.3, 1.0] - within batch meta-
learning rate: [0.01, 0.03, 0.1 (MNIST, CIFAR), 0.3, 1.0] - current batch learning rate multi-
plier: [1, 2, 5 (CIFAR), 10 (MNIST)]

• iid-offline and iid-online - learning rate [0.003, 0.01, 0.03 (CIFAR), 0.1 (MNIST), 0.3, 1.0]

• ER-Reservoir - learning rate: [0.003, 0.01, 0.03, 0.1 (MNIST, CIFAR), 0.3, 1.0]

• NCCL-Ring (default) - learning rate α: [0.003, 0.001(CIFAR), 0.01, 0.03, 0.1, 0.3, 1.0]

• NCCL-Reservoir - learning rate α: [0.003(CIFAR), 0.001, 0.01, 0.03, 0.1, 0.3, 1.0]

13
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C.4. Hyperparameter Search on βmax and Training Time

We modify the clipping bound of βHt in Section 3 to resolve the lower performance in terms of
average accuracy. In Table 4, 1, NCCL+Ring does not have the best average accuracy score, even
though it has the lowest value of

∑
E[Γt]. As we discussed earlier, it is because the convergence

rate of C is slower than vanilla ER-Ring with the fixed step sizes. Now, we remove the restriction of
βHt , min

(
α(1− δ),

(1−αL)ΛHt
L∥∇gJt (x

t)∥2

)
for ΛHt > 0, and instead apply the maximum clipping bound

βmax to maximize the transfer effect, which occurs if ΛHt > 0, by getting E[Γ∗
t ]. In the original

version, we force βHt < α to reduce theoretical catastrophic forgetting term completely. However,
replacing with βmax is helpful in terms of average accuracy as shown in Table 2. It means that
βmax is a hyperparameter to increase the average accuracy by balancing between forgetting on P
and learning on C.

Table 2: Permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256] and Multi-headed
split-CIFAR100, full size Resnet-18. Accuracies with different clipping rate on NCCL + Ring.

βmax Permuted-MNIST Split-CIFAR100

0.001 72.52(0.59) 49.43(0.65)
0.01 72.93(1.38) 56.95(1.02)
0.05 72.18(0.77) 56.35(1.42)
0.1 72.29(1.34) 58.20(0.155)
0.2 74.38(0.89) 57.60(0.36)
0.5 72.95(0.50) 59.06(1.02)
1 72.92(1.07) 57.43(1.33)
5 72.31(1.79) 57.75(0.24)

Table 3: Permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256] and Multi-headed
split-CIFAR100, full size Resnet-18. Training time.

Methods Training time [s]

Permuted-MNIST Split-CIFAR100

fine-tune 91 92
EWC 95 159

A-GEM 180 760
ER-Ring 109 129

ER-Reservoir 95 113
ORTHOG-SUBSPACE 90 581

NCCL+Ring 167 248
NCCL+Reservoir 168 242

14



NONCONVEX CONTINUAL LEARNING

C.5. Additional Experiment Results

We add more results with larger sizes of memory, which shows that NCCL outperforms in terms
of average accuracy. It means that estimating transfer and interference in terms of ΛHt to alleviate
forgetting by the small memory for NCCL is less effective.

Table 4: Permuted-MNIST (23 tasks 60000 examples per task), FC-[256,256].

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

multi-task ✗ 83 - 83 -
Fine-tune ✗ 53.5 (1.46) 0.29 (0.01) 47.9 0.29 (0.01)

EWC ✗ 63.1 (1.40) 0.18 (0.01) 63.1 (1.40) 0.18 (0.01)
stable SGD ✗ 80.1 (0.51) 0.09 (0.01) 80.1 (0.51) 0.09 (0.01)
MC-SGD ✗ 85.3 (0.61) 0.06 (0.01) 85.3 (0.61) 0.06 (0.01)

MER ✓ 69.9 (0.40) 0.14 (0.01) 78.3 (0.19) 0.06 (0.01)
A-GEM ✓ 62.1 (1.39) 0.21 (0.01) 64.1 (0.74) 0.19 (0.01)
ER-Ring ✓ 70.2 (0.56) 0.12 (0.01) 75.8 (0.24) 0.07 (0.01)

ER-Reservoir ✓ 68.9 (0.89) 0.15 (0.01) 76.2 (0.38) 0.07 (0.01)
ORHOG-subspace ✓ 84.32 (1.10) 0.12 (0.01) 84.32 (1.1) 0.11 (0.01)

NCCL + Ring ✓ 74.22 (0.75) 0.13 (0.007) 84.41 (0.32) 0.053 (0.002)
NCCL+Reservoir ✓ 79.36 (0.73) 0.12 (0.007) 88.22 (0.26) 0.028 (0.003)

Table 5: Multi-headed split-MiniImagenet, full size Resnet-18 nf = 64. Accuracy and forgetting
results.

Method
memory size 1

memory accuracy forgetting

Fintune ✗ 36.1(1.31) 0.24(0.03)
EWC ✗ 34.8(2.34) 0.24(0.04)

A-GEM ✓ 42.3(1.42) 0.17(0.01)
MER ✓ 45.5(1.49) 0.15(0.01)

ER-Ring ✓ 49.8(2.92) 0.12(0.01)
ER-Reservoir ✓ 44.4(3.22) 0.17(0.02)

ORTHOG-subspace ✓ 51.4(1.44) 0.10(0.01)
NCCL + Ring ✓ 45.5(0.245) 0.041(0.01)

NCCL + Reservoir ✓ 41.0(1.02) 0.09(0.01)
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Table 6: Multi-headed split-CIFAR100, full size Resnet-18 nf = 64. Accuracy and forgetting
results.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

Fintune ✗ 42.6 (2.72) 0.27 (0.02) 42.6 (2.72) 0.27 (0.02)
EWC ✗ 43.2 (2.77) 0.26 (0.02) 43.2 (2.77) 0.26 (0.02)

ICRAL ✓ 46.4 (1.21) 0.16 (0.01) - -
A-GEM ✓ 51.3 (3.49) 0.18 (0.03) 60.9 (2.5) 0.11 (0.01)

MER ✓ 49.7 (2.97) 0.19 (0.03) - -
ER-Ring ✓ 59.6 (1.19) 0.14 (0.01) 67.2 (1.72) 0.06 (0.01)

ER-Reservoir ✓ 51.5 (2.15) 0.14 (0.09) 62.68 (0.91) 0.06 (0.01)
ORTHOG-subspace ✓ 64.3 (0.59) 0.07 (0.01) 67.3 (0.98) 0.05 (0.01)

NCCL + Ring ✓ 59.06 (1.02) 0.03 (0.02) 66.58 (0.12) 0.004 (0.003)
NCCL + Reservoir ✓ 54.7 (0.91) 0.083 (0.01) 66.37 (0.19) 0.004 (0.001)

Table 7: permuted-MNIST (23 tasks 10000 examples per task), FC-[256,256]. Accuracy and for-
getting results.

Method memory size 1 5

memory accuracy forgetting accuracy forgetting

multi-task ✗ 91.3 - 83 -
Fine-tune ✗ 50.6 (2.57) 0.29 (0.01) 47.9 0.29 (0.01)

EWC ✗ 68.4 (0.76) 0.18 (0.01) 63.1 (1.40) 0.18 (0.01)
MER ✓ 78.6 (0.84) 0.15 (0.01) 88.34 (0.26) 0.049 (0.003)

A-GEM ✓ 78.3 (0.42) 0.21 (0.01) 64.1 (0.74) 0.19 (0.01)
ER-Ring ✓ 79.5 (0.31) 0.12 (0.01) 75.8 (0.24) 0.07 (0.01)

ER-Reservoir ✓ 68.9 (0.89) 0.15 (0.01) 76.2 (0.38) 0.07 (0.01)
ORHOG-subspace ✓ 86.6 (0.91) 0.04 (0.01) 87.04 (0.43) 0.04 (0.003)

NCCL + Ring ✓ 74.38 (0.89) 0.05 (0.009) 83.76 (0.21) 0.014 (0.001)
NCCL+Reservoir ✓ 76.48 (0.29) 0.1 (0.002) 86.02 (0.06) 0.013 (0.002)

Table 8: Single-headed split-MNIST, FC-[256,256]. Accuracy and forgetting results.

Method memory size 1 5 50

memory accuracy forgetting accuracy forgetting accuracy forgetting

multi-task ✗ 95.2 - - - - -
Fine-tune ✗ 52.52 (5.24) 0.41 (0.06) - - - -

EWC ✗ 56.48 (6.46) 0.31 (0.05) - - - -
A-GEM ✓ 34.04 (7.10) 0.23 (0.11) 33.57 (6.32) 0.18 (0.03) 33.35 (4.52) 0.12 (0.04)

ER-Reservoir ✓ 34.63 (6.03) 0.79 (0.07) 63.60 (3.11) 0.42 (0.05) 86.17 (0.99) 0.13 (0.016)

NCCL + Ring ✓ 34.64 (3.27) 0.55 (0.03) 61.02 (6.21) 0.207 (0.07) 81.35 (8.24) -0.03 (0.1)
NCCL+Reservoir ✓ 37.02 (0.34) 0.509 (0.009) 65.4 (0.7) 0.16 (0.006) 88.9 (0.28) -0.125 (0.004)
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Table 9: Single-headed split-MNIST, FC-[400,400] and mem. size=500(50 / cls.). Accuracy and
forgetting results.

Method accuracy

multi-task 96.18
Fine-tune 50.9 (5.53)

EWC 55.40 (6.29)
A-GEM 26.49 (5.62)

ER-Reservoir 85.1 (1.02)
CN-DPM 93.23
Gdumb 91.9 (0.5)

NCCL + Reservoir 95.15 (0.91)

Table 10: Single-headed split-CIFAR10, full size Resnet-18 and mem. size=500(50 / cls.). Accu-
racy and forgetting results.

Method accuracy

iid-offline 93.17
iid-online 36.65
Fine-tune 12.68

EWC 53.49 (0.72)
A-GEM 54.28 (3.48)

GSS 33.56
Reservoir Sampling 37.09

CN-DPM 41.78

NCCL + Ring 54.63 (0.76)
NCCL + Reservoir 55.43 (0.32)

Table 11: Single-headed split-CIFAR100, Resnet18 with nf = 20. Memory size = 10,000. We
conduct the experiment with the same setting of GMED [10].

Methods accuracy

Finetune 3.06(0.2)
iid online 18.13(0.8)
iid offline 42.00(0.9)
A-GEM 2.40(0.2)

GSS-Greedy 19.53(1.3)
BGD 3.11(0.2)

ER-Reservoir 20.11(1.2)
ER-Reservoir + GMED 20.93(1.6)

MIR 20.02(1.7)
MIR + GMED 21.22(1.0)

NCCL-Reservoir 21.95(0.3)

17



NONCONVEX CONTINUAL LEARNING

Appendix D. Main Theoretical Results

D.1. Assumptions

Throughout the paper, we assume L-smoothness and the following statements.

Assumption 4 fi is L-smooth that there exists a constant L > 0 such that for any x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ (6)

where ∥·∥ denotes the Euclidean norm. Then the following inequality directly holds that

−L

2
∥x− y∥2 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ ≤ L

2
∥x− y∥2. (7)

We derive Equation 7 in Appendix D. Assumption 4 is a well-known and useful statement in noncon-
vex finite-sum optimization problem [24, 26, 35, 37], and also helps us to describe the convergence
of continual learning. We also assume the supremum of loss gap between an initial point x0 and a
global optimum x∗ as ∆f , and the upper bound on the variance of the stochastic gradients as σf in
the following.

∆f = sup
x0

f(x0)− f(x∗), σ2
f = sup

x

1

nf

nf∑
i=1

∥∇fi(x)−∇f(x)∥2.

It should be noted that gj(x),∇gj(x), which denote the loss and the gradient for a current task, also
satisfy all three above assumptions and the following statement.

To measure the efficiency of a stochastic gradient algorithm, we define the Incremental First-
order Oracle (IFO) framework [8]. IFO call is defined as a unit of computational cost by taking
an index i which gets the pair (∇fi(x), fi(x)), and IFO complexity of an algorithm is defined as
the summation of IFO calls during optimization. For example, a vanilla stochastic gradient descent
(SGD) algorithm requires computational cost as much as the batch size bt at each step, and the
IFO complexity is the sum of batch sizes

∑T
t=1 bt. Let T (ϵ) be the minimum number of iterations

to guarantee ϵ-accurate solutions. The average bound of IFO complexity is less than or equal to∑T (ϵ)
t=1 bt = O(1/ϵ2) [24].

D.2. Memory-based Nonconvex Continual Learning

Unlike conventional smooth nonconvex finite-sum optimization problems where each mini-batch is
i.i.d-sampled from the whole dataset P ∪C, the replay memory based continual learning encounters
a non-i.i.d stream of data C with access to a small sized memory Mt. Algorithm 1 provides the
pseudocode for memory-based approach with the iterative update rule 3. Now, we can analyze
the convergence on P and C during a learning procedure on an arbitrary data stream from two
consecutive sets P and C for continual learning [2, 3, 5].

By limited access to P , the expectation of gradient update EIt⊂Mt [∇fIt(xt)] in Equation 3 for
f(x) is a biased estimate of the gradient∇f(xt). At the timestep t, we have

∇fMt(x
t) = EIt

[
∇fIt(xt)|Mt

]
= EIt

[
∇f(xt) + et|Mt

]
= ∇f(xt) + eMt ,
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Figure 2: Geometric illustration of Non-Convex Continual Learning (NCCL). In continual learning,
a model parameter xt starts from a local optimal point for the previously learned tasks x∗P . Over
T iterations, we expect to reach a new optimal point x∗P∪C which has a good performance on both
P and C. In the t-th iteration, xt encounters either ∇gJt,pos(xt) or ∇gJt,neg(xt). These two cases
indicate whether ⟨fIt(xt),∇gJt(xt)⟩ is positive or not. To prevent xt from escaping the feasible
region, i.e., catastrophic forgetting, we impose a theoretical condition on learning rates for f and g.

where et and eMt denote the error terms, ∇fIt(xt) − ∇f(xt) and the expectation over It given
Mt, respectively. It should be noted that a given replay memory Mt with small size at timestep t
introduces an inevitable overfitting bias.

For example, there exist two popular memory schemes, episodic memory and ER-reservoir. The
episodic memory Mt = M0 for all t is uniformly sampled once from a random sequence of P , and
ER-reservoir iteratively samples the replay memory Mt by the selection rule Mt ⊂ Mt−1 ∪ Jt.
Here, we denote the history of Mt as M[0:t] = (M0, · · · ,Mt). To compute the expectation over all
stochasticities of NCCL, we need to derive the expectation of ∇fMt(x

t) over the randomness of
Mt. We formalize the expectation over all learning trials with the selection randomness as follows.

Lemma 5 If M0 is uniformly sampled from P , then both episodic memory and ER-reservoir satis-
fies

EM[0:t]

[
∇fMt(x

t)
]
= ∇f(xt) and EM[0:t]

[eMt ] = 0. (8)

Note that taking expectation iteratively with respect to the history M[0:t] is needed to compute the
expected value of gradients for Mt. Surprisingly, taking the expectation of overfitting error over
memory selection gets zero. However, it does not imply et = 0 for each learning trial with some
M[0:t].

D.3. Reformulated Problem of Continual Learning.

The previous section showed that the essential terms in continual learning to observe the theoretical
convergence rate. We now reformulate the continual learning problem 2 as follows.

minimize
αHt , βHt

T−1∑
t=0

E[Γt]

subject to 0 < βHt < αHt ≤ 2/L for all t < T (9)

It is noted that the above reformulation presents a theoretically guaranteed continual learning
framework for memory-based approaches in nonconvex setting.
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D.4. Proposed Adaptive Learning Rates

In this section, we derive the proposed adaptive learning rates for both cases ΛHt ≤ 0 and ΛHt > 0.

D.4.1. ΛHt > 0

Unlike the exisitnig algorithms, we can leverage the transfer case ΛHt > 0 with theoretical guar-
antee. Then, we propose the optimal learning rates which tighten the upper bound of stationary of
f(x) as follows.

Derivation of optimal Γ∗
t and β∗

Ht
For a fixed learning rate α, we have

0 =
∂E[Γt]

∂βHt

= E
[
∂Γt

∂βHt

]
= E

[
βHtL∥∇gJt(xt)∥ − (1− αL)⟨∇fIt(xt),∇gJt(xt)⟩

]
.

Thus, we obtain

β∗
Ht

=
(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩

L∥∇gJt(xt)∥2
=

(1− αHtL)ΛHt

L∥∇gJt(xt)∥2
,

Γ∗
t = −

(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩
2L∥∇gJt(xt)∥2

= −(1− αHtL)ΛHt

2L∥∇gJt(xt)∥2
.

D.4.2. ΛHt ≤ 0

We adopt the algorithm of A-GEM partially when ΛHt ≤ 0. In this section, we explain how A-
GEM take advantages in terms of our theoretical analysis. A-GEM propose a surrogate of∇gJt(xt)
as the following equation to avoid violating the constraint when ΛHt ≤ 0 [2]:

∇gJt(xt)−
〈
∇fIt(xt)
∥∇fIt(xt)∥

,∇gJt(xt)
〉
∇fIt(xt)
∥∇fIt(xt)∥

.

Let β be the step size for g(x) when the constraint is not violated. Then we can interpret the

surrogate as adaptive learning rate αHt , which is either α(1 − ⟨∇fIt (x
t),∇gJt (x

t)⟩
∥∇fIt (x

t)∥2 ) to cancel out

the negative component of ∇fIt(xt) on ∇gJt(xt) or αHt = 0 for ΛHt > 0. After applying the
surrogate, E[Γt] is reduced as shown in the below. It is noted that A-GEM theoretically violates the
constraints of (9) to prevent catastrophic forgetting by letting αHt = 0. That is to say, A-GEM is an
adaptive method without theoretical guarantee.

Derivation for A-GEM Let the surrogate∇g̃Jt(xt) as

∇g̃Jt(xt) = ∇gJt(xt)−
〈
∇fIt(xt)
∥∇fIt(xt)∥

,∇gJt(xt)
〉
∇fIt(xt)
∥∇fIt(xt)∥

, (10)

where αHt = α(1− ⟨∇fIt (x
t),∇gJt (x

t)⟩
∥∇fIt (x

t)∥2 ) and βHt = α for Equation 3.
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Then, we have

E[Γt] = E

[
β2
Ht
L

2
∥∇g̃Jt(xt)∥2 − βHt⟨∇fIt(xt),∇g̃Jt(xt)⟩

]

= E

[
β2
Ht
L

2

(
∥∇gJt(xt)∥2 − 2

⟨∇fIt(xt),∇gJt(xt)⟩2

∥∇fIt(xt)∥2
+
⟨∇fIt(xt),∇gJt(xt)⟩2

∥∇fIt(xt)∥2

)
− βHt⟨∇fIt(xt),∇g̃Jt(xt)⟩

]

= E

[
β2
Ht
L

2

(
∥∇gJt(xt)∥2 −

⟨∇fIt(xt),∇gJt(xt)⟩2

∥∇fIt(xt)∥2

)
− βHt

(
⟨∇fIt(xt),∇gJt(xt)⟩ − ⟨∇fIt(xt),∇gJt(xt)⟩

)]

= E

[
β2
Ht
L

2

(
∥∇gJt(xt)∥2 −

⟨∇fIt(xt),∇gJt(xt)⟩2

∥∇fIt(xt)∥2

)]
. (11)

Now, we compare the catastrophic forgetting term between the original value with ∇gJt(xt) and
the above surrogate.

E

[
β2
Ht
L

2

(
∥∇gJt(xt)∥2 −

⟨∇fIt(xt),∇gJt(xt)⟩2

∥∇fIt(xt)∥2

)]
< E

[
β2
Ht
L

2
∥∇gJt(xt)∥2 − βHt⟨∇fIt(xt),∇gJt(xt)⟩

]
.

Then, we can conclude that E[Γt] with the surrogate of A-GEM is smaller than the original E[Γt].

D.5. Technical Lemma

In the following, we provide the proofs of the results for nonconvex continual learning. We first
start with the derivation of Equation 7 in Assumption 4.
Proof [Derivation of Equation 7] Recall that

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩| ≤ L

2
∥x− y∥2. (12)

Note that fi is differentiable and nonconvex. We define a function g(t) = fi(y + t(x − y)) for
t ∈ [0, 1] and an objective function fi. By the fundamental theorem of calculus,∫ 1

0
g′(t)dt = f(x)− f(y). (13)

By the property, we have

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩|

=

∣∣∣∣∫ 1

0
⟨∇fi(y + t(x− y)), x− y⟩dt− ⟨∇fi(y), x− y⟩

∣∣∣∣
=

∣∣∣∣∫ 1

0
⟨∇fi(y + t(x− y))−∇fi(y), x− y⟩dt

∣∣∣∣ .
Using the Cauchy-Schwartz inequality,∣∣∣∣∫ 1

0
⟨∇fi(y + t(x− y))−∇fi(y), x− y⟩dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0
∥∇fi(y + t(x− y))−∇fi(y)∥ · ∥x− y∥dt

∣∣∣∣ .
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Since fi satisfies Equation 6, then we have

|fi(x)− fi(y)− ⟨∇fi(y), x− y⟩|

≤
∣∣∣∣∫ 1

0
L∥y + t(x− y)− y∥ · ∥x− y∥dt

∣∣∣∣
= L∥x− y∥2

∣∣∣∣∫ 1

0
tdt

∣∣∣∣
=

L

2
∥x− y∥2.

Lemma 6 Let p = [p1, · · · pD], q = [q1, · · · , qD] be two statistically independent random vectors
with dimension D. Then the expectation of the inner product of two random vectors E[⟨p, q⟩] is∑D

d=1 E[pd]E[qd].

Proof By the property of expectation,

E[⟨p, q⟩] = E[
D∑

d=1

pdqd]

=
D∑

d=1

E[pdqd]

=

D∑
d=1

E[pd]E[qd].

D.6. Proof of Main Results

We now show the main results of our work. We first state the stepwise change of upper bound.
Since taking the expectation over all stochasticities of NCCL implies the total expectation, we

define the operator of total expectation with respect to 0 ≤ t < T for ease of exposition as follows:

Et = EM[0:t]

[
EIt [EJt [ · |It]] |M[0:t]

]
.

In addition, we denote ET−1 = E.

Lemma 7 Suppose that Assumption 4 holds and 0 < αHt ≤ 2
L . For xt updated by Algorithm 1,

we have

Et∥∇f(xt)∥2 ≤ Et

[
f(xt)− f(xt+1) +Bt + Γt

αHt(1− L
2αHt)

]
+ Et

[
αHtL

2(1− L
2αHt)

σ2
f

]
. (14)
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Proof [Proof of Lemma 5] To clarify the issue of EMt [EIt [et|Mt]] = 0, let us explain the details
of constructing replay-memory as follows. We have considered episodic memory and reservoir
sampling in the paper. We will first show the case of episodic memory by describing the sampling
method for replay memory. We can also derive the case of reservoir sampling by simply applying
the result of episodic memory.

Episodic memory (ring buffer). We divide the entire dataset of continual learning into the
previous task P and the current task C on the time step t = 0. For the previous task P , the
data stream of P is i.i.d., and its sequence is random on every trial (episode). The trial (episode)
implies that a continual learning agent learns from an online data stream with two consecutive data
sequences of P and C. Episodic memory takes the last data points of the given memory size m by
the First In First Out (FIFO) rule, and holds the entire data points until learning on C is finished.
Then, we note that Mt = M0 for all t ≥ 0 and M0 is uniformly sampled from the i.i.d. sequence of
P . By the law of total expectation, we derive EM0⊂P

[
EIt

[
∇fIt(xt)|M0

]]
for any xt, ∀t ≥ 0.

EM0⊂P

[
EIt

[
∇fIt(xt)|M0

]]
= EM0⊂P

[
∇fM0(x

t)
]
.

It is known that M0 was uniformly sampled from P on each trial before training on the current task
C. Then, we take expectation with respect to every trial that implies the expected value over the
memory distribution M0. We have

EM0⊂P

[
∇fM0(x

t)
]
= ∇f(xt)

for any xt, ∀t. We can consider ∇fMt(x
t) as a sample mean of P on every trial for any xt, ∀t ≥

0. Although xt is constructed iteratively, the expected value of the sample mean for any xt,
EM0⊂P

[
∇fM0(x

t)
]

is also derived as∇f(xt).
Reservoir sampling. To clarify the notation for reservoir sampling first, we denote the ex-

pectation with respect to the history of replay memory M[0:t] = (M0, · · · ,Mt) as EM[0:t]
. This

is the revised version of EMt . Reservoir sampling is a trickier case than episodic memory, but
EM[0:t]

[EIt [et|Mt]] = 0 still holds. Suppose that M0 is full of the data points from P as the
episodic memory is sampled and the mini-batch size from C is 1 for simplicity. The reservoir sam-
pling algorithm drops a data point in Mt−1 and replaces the dropped data point with a data point in
the current mini-batch from C with probability p = m/n, where m is the memory size and n is the
number of visited data points so far. The exact pseudo-code for reservoir sampling is described in
[1]. The replacement procedure uniformly chooses the data point which will be dropped. We can
also consider the replacement procedure as follows. The memory Mt for P is reduced in size 1 from
Mt−1, and the replaced data point dC from C contributes in terms of ∇gdC (xt) if dC is sampled
from the replay memory. Let Mt−1 = [d1, · · · , d|Mt−1|] where | · | denotes the cardinality of the
memory. The sample mean of Mt−1 is given as

∇fMt−1(x
t−1) =

1

|Mt−1|
∑
di

∇fdi(x
t−1). (15)

By the rule of reservoir sampling, we assume that the replacement procedure reduces the mem-
ory from Mt−1 to Mt with size |Mt−1| − 1 and the set of remained upcoming data points Ct ∈ C
from the current data stream for online continual learning is reformulated into Ct−1 ∪ [dC ]. Then,
dC can be resampled from Ct−1 ∪ [dC ] to be composed of the minibatch of reservoir sampling with
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the dfferent probability. However, we ignore the probability issue now to focus on the effect of
replay-memory on ∇f . Now, we sample Mt from Mt−1, then we get the random vector ∇fMt(x

t)
as

∇fMt(x
t) =

1

|Mt|

|Mt−1|∑
j=1

Wij∇fdj (x
t), (16)

where the index i is uniformly sampled from i ∼ [1, · · · , |Mt−1|], and Wij is the indicator function
that Wij is 0 if i = j else 1.

The above description implies the dropping rule, and Mt can be considered as an uniformly
sampled set with size |Mt| from Mt−1. There could also be Mt = Mt−1 with probability 1 − p =
1−m/n. Then the expectation of∇fMt(x

t) given Mt−1 is derived as

EMt [∇fMt(x
t)|Mt−1] = p

 1

|Mt−1|

|Mt−1|∑
i

1

|Mt|

|Mt−1|∑
j=1

Wij∇fdj (x
t)

+ (1− p)
(
∇fMt−1(x

t)
)

= ∇fMt−1(x
t).

When we consider the mini-batch sampling, we can formally reformulate the above equation as

EMt∼p(Mt|Mt−1)

[
EIt⊂Mt

[
∇fIt(xt)|Mt

]
|Mt−1

]
= ∇fMt−1(x

t). (17)

Now, we apply the above equation recursively. Then,

EM1∼p(M1|M0)

[
· · ·EMt∼p(Mt|Mt−1)

[
EIt⊂Mt

[
∇fIt(xt)|Mt

]
|Mt−1

]
· · · |M0

]
= ∇fM0(x

t). (18)

Similar to episodic memory, M0 is uniformly sampled from P . Therefore, we conclude that

EM0,··· ,Mt [∇fMt(x
t)] = ∇f(xt) (19)

by taking expectation over the history M[0:t] = (M1,M2, · · · ,Mt).
Note that taking expectation iteratively with respect to the history M[t] is needed to compute the

expected value of gradients for Mt. However, the result EM0,··· ,Mt [EIt [et|Mt]] = 0 still holds in
terms of expectation.

Furthermore, we also discuss that the effect of reservoir sampling on the convergence of C.
Unlike we simply update g(x) by the stochastic gradient descent on C, the datapoints d ∈ M ∩ C
have a little larger sampling probability than other datapoints dC−M ∈ C −M . The expectation of
gradient norm on the averaged loss E∥∇g(xt)∥2 is based on the uniform and equiprobable sampling
over C, but the nature of reservoir sampling distort this measure slightly. In this paper, we focus on
the convergence of the previous task C while training on the current task C with several existing
memory-based methods. Therefore, analyzing the convergence of reservoir sampling method will
be a future work.

Proof [Proof of Lemma 7] We analyze the convergence of nonconvex continual learning with
replay memory here. Recall that the gradient update is the following

xt+1 = xt − αHt∇fIt(xt)− βHt∇gJt(xt)
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for all t ∈ {1, 2, · · · , T}. Let et = ∇fIt(xt) − ∇f(xt). Since we assume that f, g is L-smooth,
we have the following inequality by applying Equation 7:

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L

2
∥xt+1 − xt∥2

= f(xt)− ⟨∇f(xt), αHt∇fIt(xt) + βHt∇gJt(xt)⟩+
L

2
∥αHt∇fIt(xt) + βHt∇gJt(xt)∥2

= f(xt)− αHt⟨∇f(xt),∇fIt(xt)⟩ − βHt⟨∇f(xt),∇gJt(xt)⟩

+
L

2
α2
Ht
∥∇fIt(xt)∥2 +

L

2
β2
Ht
∥∇gJt(xt)∥2 + LαHtβHt⟨∇fIt(xt),∇gJt(xt)⟩

= f(xt)− αHt⟨∇f(xt),∇f(xt)⟩ − αHt⟨∇f(xt), et⟩ − βHt⟨∇fIt(xt),∇gJt(xt)⟩+ βHt⟨∇gJt(xt), et⟩

+
Lα2

Ht

2
∥∇f(xt)∥2 + Lα2

Ht
⟨∇f(xt), et⟩+

Lα2
Ht

2
∥et∥2 +

Lβ2
Ht

2
∥∇gJt(xt)∥2 + LαHtβHt⟨∇fIt(xt),∇gJt(xt)⟩

= f(xt)−
(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + L

2
β2
Ht
∥∇gJt(xt)∥2 − βHt(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩

+
(
Lα2

Ht
− αHt

)
⟨∇f(xt), et⟩+ βHt⟨∇gJt(xt), et⟩+

L

2
α2
Ht
∥et∥2. (20)

To show the proposed theoretical convergence analysis of nonconvex continual learning, we
define the catastrophic forgetting term Γt and the overfitting term Bt as follows:

Bt = (Lα2
Ht
− αHt)⟨∇f(xt), et⟩+ βHt⟨∇gJt(xt), et⟩,

Γt =
β2
Ht
L

2
∥∇gJt(xt)∥2 − βHt(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩.

Then, we can rewrite Equation 20 as

f(xt+1) ≤ f(xt)−
(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht
∥et∥2. (21)

We first note that Bt is dependent of the error term et with the batch It. In the continual learning
step, an training agent cannot access∇f(xt), then we cannot get the exact value of et. Furthermore,
Γt is dependent of the gradients∇fIt(xt),∇gIt(xt) and the learning rates αHt , βHt .

Taking expectations with respect to It on both sides given Jt, we have

EIt

[
f(xt+1)

]
≤ EIt

[
f(xt)−

(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht
∥et∥2

∣∣∣Jt]
≤ EIt

[
f(xt)−

(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + L

2
α2
Ht
∥et∥2

]
+ EIt

[
Γt +Bt

∣∣∣Jt] .
Now, taking expectations over the whole stochasticity we obtain

E
[
f(xt+1)

]
≤ E

[
f(xt)−

(
αHt −

L

2
α2
Ht

)
∥∇f(xt)∥2 + Γt +Bt +

L

2
α2
Ht
∥et∥2

]
.

Rearranging the terms and assume that 1
1−LαHt/2

> 0, we have
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(
αHt −

L

2
α2
Ht

)
E∥∇f(xt)∥2 ≤ E

[
f(xt)− f(xt+1) + Γt +Bt +

L

2
α2
Ht
∥et∥2

]
and

E∥∇f(xt)∥2 ≤ E

[
1

αHt(1− L
2αHt)

(
f(xt)− f(xt+1) + Γt +Bt

)
+

αHtL

2(1− L
2αHt)

∥et∥2
]

≤ E

[
1

αHt(1− L
2αHt)

(
f(xt)− f(xt+1) + Γt +Bt

)
+

αHtL

2(1− L
2αHt)

σ2
f

]
.

Proof [Proof of Theorem 1] Suppose that the learning rate αHt is a constant α = c/
√
T , for c > 0,

1− L
2α = 1

A > 0. Then, by summing Equation 14 from t = 0 to T − 1, we have

min
t

E∥∇f(xt)∥2 ≤ 1

T

T−1∑
t=0

E∥∇f(xt)∥2

≤ 1

1− L
2α

(
1

αT

(
f(x0)− f(xT ) +

T−1∑
t=0

(E [Bt + Γt])

)
+

L

2
ασ2

f

)

=
1

1− L
2α

(
1

c
√
T

(
∆f +

T−1∑
t=0

(E [Bt + Γt])

)
+

Lc

2
√
T
σ2
f

)

=
A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Bt + Γt]

)
+

Lc

2
σ2
f

)
. (22)

We note that a batch It is sampled from a memory Mt ⊂ M which is a random vector whose
element is a datapoint d ∈ P ∪ C. Then, taking expectation over It ⊂ Mt ⊂ P ∪ C implies that
E[Bt] = 0. Therefore, we get the minimum of expected square of the norm of gradients

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E[Γt]

)
+

Lc

2
σ2
f

)
.

Lemma 8 Suppose that It ∩ Jt = ∅, Taking expectation over It ⊂Mt and Jt ⊂ C, we have

min
t

E∥∇h|M∪C(x
t)∥2 ≤

√
2∆h|M∪C

L

T
σh|M∪C

, (23)

where ∆h|M∪C
and σh|M∪C

is the version of loss gap and the variance for h on M ∪C, respectively.
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Proof [Proof of Lemma 8] To simplify the proof, we assume that learning rates αHt , βHt are a
same fixed value β = c′/

√
T . The assumption is reasonable, because it is observed that the RHS

of Equation 14 is not perturbed drastically by small learning rates in 0 < αHt , βHt ≤ 2/L ≪ 1.
Let us denote the union of Mt over time 0 ≤ t ≤ T − 1 as M =

⋃
tMt. By the assumption, it is

equivalent to update on M ∪ C. Then, the non-convex finite sum optimization is given as

min
x∈Rd

h|M∪C(x) =
1

ng + |M |
∑

i∈M∪C
hi(x), (24)

where |M | is the number of elements in M . This problem can be solved by a simple SGD algorithm
[25]. Thus, we have

min
t

E∥∇h|M∪C(x
t)∥2 ≤ 1

T

T∑
t=0

E∥∇h|M∪C(x
t)∥2 ≤

√
2∆h|M∪C

L

T
σh|M∪C

. (25)

Lemma 9 For any C ⊂ D ⊂M ∪ C, define ω2
h|D as

ω2
h|D = sup

x
Ej∈D∥∇hj(xt)−∇h|M∪C(x

t)∥2].

Then, we have

E∥∇gJt(xt)∥2 ≤ E∥∇h|M∪C(x
t)∥2 + sup

C⊂D⊂M∪C
ω2
h|D . (26)

Proof [Proof of Lemma 9] We arrive at the following result by Jensen’s inequality

sup
x
EJt⊂C∥∇gJt(xt)−∇h|M∪C(x

t)∥2 = sup
x
EJt⊂C

[
∥Ej∈Jt [∇hj(xt)]−∇h|M∪C(x

t)∥2
]

(27)

≤ sup
C⊂D⊂M∪C

sup
x
EJt⊂D

[
∥Ej∈Jt [∇hj(xt)]−∇h|M∪C(x

t)∥2
]

(28)

≤ sup
C⊂D⊂M∪C

[
sup
x
Ej∈D[ ∥∇hj(xt)−∇h|M∪C(x

t)∥2]
]

(29)

= sup
C⊂D⊂M∪C

ω2
h|D . (30)

By the triangular inequality, we get

E∥∇gJt(xt)∥2 ≤ E∥∇gJt(xt)−∇h|M∪C(x
t)∥2 + E∥∇h|M∪C(x

t)∥2 (31)

≤ E∥∇h|M∪C(x
t)∥2 + sup

C⊂D⊂M∪C
ω2
h|D . (32)
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For continual learning, the model x0 reaches to an ϵ-stationary point of f(x) when we have
finished to learn P and start to learn C. Now, we discuss the frequency of transfer and interference
during continual learning before showing Lemma 2. It is well known that the frequencies between
interference and transfer have similar values (the frequency of constraint violation is approximately
0.5 for AGEM) as shown in Appendix D of [2]. Even if memory-based continual learning has a
small memory buffer which contains a subset of P , random sampling from the buffer allows to have
similar frequencies between interference and transfer.

In this paper, we consider two cases for the upper bound of E[Γt], the moderate case and the
worst case. For the moderate case, which covers most continual learning scenarios, we assume
that the inner product term ⟨∇fIt(xt),∇gJt(xt)⟩ has the same probabilities of being positive (trans-
fer) and negative (interference). Then, we can approximate E[⟨∇fIt(xt),∇gJt(xt)⟩] ≈ 0 over all
randomness. For the worst case, we assume that all ⟨∇fIt(xt),∇gJt(xt)⟩ has negative values.
Proof [Proof of Lemma 2] For the moderate case, we derive the rough upper bound of E[Γt]:

E [Γt] = E

[
β2
Ht
L

2
∥∇gJt(xt)∥2 − βHt(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩

]
(33)

≈ E

[
β2
Ht
L

2
∥∇gJt(xt)∥2

]
(34)

= O

(
E
[
β2L

2
∥∇gJt(xt)∥2

])
(35)

By plugging Lemma 9 into E[Γt], we obtain that

E[Γt] ≤ O

(
E
[
β2L

2
∥∇gJt(xt)∥2

])
(36)

= O

(
E
[
β2L

2
∥∇h|M∪C(x

t)∥2 + β2L

2
sup

C⊂D⊂M∪C
ω2
h|D

])
. (37)

We use the technique for summing up in the proof of Theorem 1, then the cumulative sum of
catastrophic forgetting term is derived as

T−1∑
t=0

E[Γt] ≤
T−1∑
t=0

β2L

2
O

(
E
[
∥h|M∪C(x

t)∥2
]
+ sup

C⊂D⊂M∪C
ω2
h|D

)
(38)

≤ β2L

2

T−1∑
t=0

O

(
1

β

[
h|M∪C(x

t)− h|M∪C(x
t+1)

]
+

Lβ

2
σ2
h|M∪C

+ sup
C⊂D⊂M∪C

ω2
h|D

)
(39)

≤ β2L

2
O

(
1

β
∆h|M∪C

+
TLβ

2
σ2
h|M∪C

+ T sup
C⊂D⊂M∪C

ω2
h|D

)
(40)

= O

(
β∆h|M∪C

+
TLβ3

2
σ2
h|M∪C

+ Tβ2 sup
C⊂D⊂M∪C

ω2
h|D

)
. (41)

Now, we consider the randomness of memory choice. Let D∗ be as follows:

D∗ = argmax
C⊂D⊂P∪C

β∆h|D +
TLβ3

2
σ2
h|D . (42)
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Then, we obtain the following inequality,

T−1∑
t=0

E[Γt] ≤ O

(
β∆h|D∗ +

TLβ3

2
σ2
h|D∗ + Tβ2 sup

C⊂D⊂M∪C
ω2
h|D

)
(43)

≤ O

(
β∆h|D∗ +

TLβ3

2
σ2
h|D∗ + Tβ2 sup

C⊂D⊂P∪C
ω2
h|D

)
. (44)

Rearranging the above equation, we get

T−1∑
t=0

E[Γt] ≤ O

(
T

(
Lβ3

2
σ2
h|D∗ + β2 sup

C⊂D⊂P∪C
ω2
h|D

)
+ β∆h|D∗

)
. (45)

For the moderate case, we provide the derivations of the convergence rate for two cases of β
as follows.

When β < α = c/
√
T , the upper bound always satisfies

T−1∑
t=0

E[Γt]√
T
≤ 1√

T
O

(
1

T

(
Lβ

2
σ2
h|D∗ +

1√
T

sup
C⊂D⊂P∪C

ω2
h|D

)
+

1√
T
∆h|D∗

)
< O

(
1

T 3/2
+

1

T

)
.

For β ≥ α = c/
√
T , we cannot derive a tighter bound, so we still have

T−1∑
t=0

E[Γt]√
T
≤ 1√

T
O

(
T

(
Lβ3

2
σ2
h|D∗ + β2 sup

C⊂D⊂P∪C
ω2
h|D

)
+ β∆h|D∗

)
= O

(√
T +

1√
T

)
.

For the worst case, we assume that there exists a constant cf,g which satisfies cf,g∥∇gJt(xt)∥ ≥
∥∇fIt(xt)∥.

E [Γt] = E

[
β2
Ht
L

2
∥∇gJt(xt)∥2 − βHt(1− αHtL)⟨∇fIt(xt),∇gJt(xt)⟩

]
(46)

≤ E

[
β2
Ht
L

2
∥∇gJt(xt)∥2 + βHt(1− αHtL)∥∇fIt(xt)∥∥∇gJt(xt)∥

]
(47)

≤ E
[
β2L

2
∥∇gJt(xt)∥2 + βcf,g∥∇gJt(xt)∥2

]
(48)

= O
(
E
[(
β2 + β

)
∥∇gJt(xt)∥2

])
. (49)

By plugging Lemma 9 into E[Γt], we obtain that

E[Γt] ≤ O
(
E
[(
β2 + β

)
∥∇gJt(xt)∥2

])
(50)

= O

((
β2 + β

)
E
[
∥∇h|M∪C(x

t)∥2 + sup
C⊂D⊂M∪C

ω2
h|D

])
. (51)
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We use the technique for summing up in the proof of Theorem 1, then the cumulative sum of
catastrophic forgetting term is derived as

T−1∑
t=0

E[Γt] ≤
T−1∑
t=0

(
β2 + β

)
O

(
E
[
∥h|M∪C(x

t)∥2
]
+ sup

C⊂D⊂M∪C
ω2
h|D

)
(52)

≤
(
β2 + β

) T−1∑
t=0

O

(
1

β

[
h|M∪C(x

t)− h|M∪C(x
t+1)

]
+

Lβ

2
σ2
h|M∪C

+ sup
C⊂D⊂M∪C

ω2
h|D

)
(53)

≤
(
β2 + β

)
O

(
1

β
∆h|M∪C

+
TLβ

2
σ2
h|M∪C

+ T sup
C⊂D⊂M∪C

ω2
h|D

)
(54)

= O

(
(β + 1)∆h|M∪C

+
TLβ2(β + 1)

2
σ2
h|M∪C

+ Tβ(β + 1) sup
C⊂D⊂M∪C

ω2
h|D

)
. (55)

For the worst case, we provide the derivations of the convergence rate for two cases of β as
follows.

When β < α = c/
√
T , the upper bound always satisfies

T−1∑
t=0

E[Γt]√
T
≤ 1√

T
O

(
Lc+

√
T√

T
σ2
h|D∗ + (

√
T + c) sup

C⊂D⊂P∪C
ω2
h|D +

√
T + c√
T

∆h|D∗

)
< O

(
1

T
+

1√
T

+ 1

)
.

For β ≥ α = c/
√
T , we cannot derive a tighter bound, so we still have

T−1∑
t=0

E[Γt]√
T
≤ 1√

T
O

(
T

(
Lβ2(β + 1)

2
σ2
h|D∗ + β(β + 1) sup

C⊂D⊂P∪C
ω2
h|D

)
+ (β + 1)∆h|D∗

)
= O

(√
T +

1√
T

)
.

Even if we consider the worst case, we still have O(1) for the cumulative forgetting E[Γt] when
β < α. This implies that we have the theoretical condition for control the forgetting on f(x) while
evolving on C. In the main text, we only discuss the moderate case to emphasize f(x) can be
converged by the effect of transfer during continual learning, but we have also considered the worst
case can be well treated by our theoretical condition by keeping the convergence of f(x) over time
as follows.

Corollary 10 Let βHt < α = c√
T

for all t. Then we have the convergence rate

min
t

E∥∇f(xt)∥2 ≤ O

(
1√
T

)
. (56)

Otherwise, f(x) is not guaranteed to converge when β ≥ α and might diverge at the rate O(
√
T ).

Proof [Proof of Corollary 10]
By Lemma 2, we have

T−1∑
t=0

E[Γt]√
T

< O

(
1

T 3/2
+

1

T

)
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for β < α for the moderate case. Then, we can apply the result into RHS of Equation 4 in Theorem
1 as follows.

min
t

E∥∇f(xt)∥2 ≤ A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)

=
A/c√
T

(
∆f +

Lc2

2
σ2
f

)
+

A/c√
T

T−1∑
t=0

E[Γt]

= O

(
1

T 3/2
+

1

T
+

1

T 1/2

)
= O

(
1√
T

)
.

In addition, we have the convergence rate of f(x) for the worst case as follows:

min
t

E∥∇f(xt)∥2 = O(1), (57)

which implies that f(x) can keep the convergence while evolving on C.

Proof [Proof of Corollary 3] To formulate the IFO calls, Recall that T (ϵ)

T (ϵ) = min {T : min E∥∇f(xt)∥2 ≤ ϵ}.

A single IFO call is invested in calculating each step, and we now compute IFO calls to reach an
ϵ-accurate solution.

A√
T

(
1

c

(
∆f +

T−1∑
t=0

E [Γt]

)
+

Lc

2
σ2
f

)
→ ϵ.

When β < α, we get

IFO calls = O

(
1

ϵ2

)
.

Otherwise, when β ≥ α, we cannot guarantee the upper bound of stationary decreases over time.
Then, we cannot compute IFO calls for this case.

D.7. Remarks

Surprisingly, we observe Et[Bt] = 0 by Lemma 5. It should be also noted that the individual trial
with a randomly given M0 cannot cancel the effect of Bt. We discuss more details of overfitting to
memory in Appendix E.

The convergence rate with respect to the marginalization on M0 in Corollary 10 exactly match
the usual nonconvex SGD rates. As empirically shown in stable A-GEM and stable ER-Reservoir
[20], the condition of βHt < α theoretically implies that decaying step size is a key solution to
continual learning considering we can pick any arbitrary observation points. In addition, it should
be also noted that the selection rules for M0 with various memory schemes are important to perturb
the convergence rate based on the mean value in Equation 56 for each trial. This is why memory
schemes matters in continual learning in terms of variance. Please see more details in Appendix E.
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Appendix E. Overfitting to replay Memory

In Lemma 7, we show the expectation of stepwise change of upper bound. Now, we discuss the
distribution of the upper bound by analyzing the random variable Bt. As Bt is computed by getting

Bt = (Lα2
Ht
− αHt)⟨∇f(xt), et⟩+ βHt⟨∇gJt(xt), et⟩.

The purpose of our convergence analysis is to compute the upper bound of Equation 14, then we
compute the upper bound of Bt.

Bt ≤ (Lα2
Ht
− αHt)∥∇f(xt)∥∥et∥+ βHt∥∇gJt(xt)∥∥et∥.

It is noted that the upper bound is related to the distribution of the norm of et. We have already know
that E[et] = 0, so we consider its variance, Var(∥et∥) in this section. Let us denote the number of
data points of P in a memory M0 as mP . We assume that M0 is uniformly sampled from P . Then
the sample variance, Var(∥et∥) is computed as

Var(∥et∥) =
nf −mP

(nf − 1)mP
σ2
f

by the similar derivation with Equation 27. The above result directly can be applied to the variance
of Bt. This implies mt is a key feature which has an effect on the convergence rate. It is noted that
the larger mP has the smaller variance by applying schemes, such as larger memory. In addition,
the distributions of et and ∇fIt(xt) are different with various memory schemes. Therefore, we can
observe that memory schemes differ the performance even if we apply same step sizes.
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