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ABSTRACT

Over recent years, the Transformer has become a fundamental building block for
sequence modeling architectures. Yet at its core is the use of self-attention, whose
memory and computational cost grow quadratically with the sequence length N ,
rendering it prohibitively expensive for long sequences. A promising approach is
top-k attention, which selects only the k most relevant tokens and achieves per-
formance comparable to vanilla self-attention while significantly reducing space
and computational demands. However, causal masks require the current query
token to only attend to past tokens, preventing existing top-k attention method
from efficiently searching for the most relevant tokens in parallel, thereby limiting
training efficiency. In this work, we propose ZETA, leveraging Z-Order Curves
for Efficient Top-k Attention, to enable parallel querying of past tokens for entire
sequences. We first theoretically show that the choice of key and query dimensions
involves a trade-off between the curse of dimensionality and the preservation of
relative distances after projection. In light of this insight, we propose reducing
the dimensionality of keys and queries in contrast to values and further leverage
Z-order curves to map low-dimensional keys and queries into one-dimensional
space, which permits parallel sorting, thereby largely improving the efficiency for
top-k token selection. Experimental results demonstrate that ZETA matches the
performance of standard attention on the synthetic MULTI-QUERY ASSOCIATIVE
RECALL task and outperforms attention and its variants on LONG RANGE ARENA
and WIKITEXT-103 language modeling.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become indispensable for sequence modeling across var-
ious domains (OpenAI et al., 2024; Zeng et al., 2024a;b; 2023; Fang et al., 2022; 2025), including
natural language processing (NLP) (Devlin et al., 2019; Brown et al., 2020; OpenAI et al., 2024;
Jiang et al., 2024), computer vision (Dosovitskiy et al., 2021; Ramesh et al., 2021; Brooks et al.,
2024), etc. The foundation of Transformer models is the self-attention mechanism. This mecha-
nism (Bahdanau et al., 2015), inspired by recurrent neural networks (RNNs) and their ability to con-
struct representations from all elements in a sequence, has revolutionized numerous fields, enabling
breakthroughs in tasks such as language modeling (Radford et al., 2019), machine translation (Ott
et al., 2018), text generation (Brown et al., 2020), image classification (Touvron et al., 2021) and
video generation (Brooks et al., 2024). However, self-attention has a quadratic complexity in both
memory and computation as the sequence length N increases, which presents a significant challenge
when scaling to long sequences (Child et al., 2019; Beltagy et al., 2020). This makes the direct ap-
plication of self-attention in large-scale problems computationally prohibitive for many real-world
applications, particularly when long sequences are involved (Tay et al., 2021).

Recent advances have explored strategies to mitigate the inefficiencies of vanilla self-attention. One
such approach is top-k attention, which focuses computation on a subset of the most relevant to-
kens, significantly reducing memory and computation costs while maintaining competitive perfor-
mance (Kitaev et al., 2020; Gupta et al., 2021; Bertsch et al., 2023; Mao et al., 2024). However,

∗Corresponding author: Boyu Wang.

1



Published as a conference paper at ICLR 2025

existing top-k attention methods (Kitaev et al., 2020; Zhuoran et al., 2021) typically apply causal
masking after selecting the top-k tokens, causing earlier tokens (i ≪ N ) to often attend to nothing
as their top-k relevant tokens may include future tokens that are masked out by the causal mask.
Alternatively, Mao et al. (2024) process input tokens by token to exclude masked-out keys from
the k-nearest neighbors search, preventing future tokens from influencing currently generated ones.
Consequently, with causal masks, current top-k attention approaches fail to fully leverage the paral-
lel computation abilities of modern accelerators, limiting their efficiency in long-sequence modeling.

To overcome the limitations of existing top-k attention methods, we introduce ZETA, a novel model
designed to search for the top-k tokens within chunked one-dimensional (one-dimensional) sorted
key sequences projected via Z-order curves. Specifically, our approach strikes a balance between
mitigating the ”curse of dimensionality” and preserving the relative distance of token represntations
after projection by carefully selecting a lower dimensionality for keys and queries in contrast to
values. This reduction allows the query and key to map to a one-dimensional space using Z-order
curves, preserving proximity. As a result, ZETA efficiently performs top-k token selection in paral-
lel within this one-dimensional space with accelerators. Additionally, since the aforementioned top-
k search is based on the Euclidean metric for low dimensional data, directly applying the traditional
dot-product based softmax function is not appropriate. To address this, we propose an Adaptive
Cauchy-Softmax mechanism that replaces the exponential function in the attention operation with
a trainable Cauchy kernel (Billingsley, 1986). This enables dynamic adjustment of receptive fields
across layers, providing greater flexibility in capturing both short and long-range dependencies.

Extensive empirical evaluations show that ZETA matches the performance of standard self-attention
on the Associative Recall task and consistently outperforms existing attention variants on the Long-
Range Arena (LRA) and WikiText-103 datasets. We summarize our key contributions as follows:

• Efficient Parallel Top-k Attention: We introduce ZETA, a novel model that enables top-k
attention to operate in parallel across entire sequences, significantly improving training and
inference efficiency with a time complexity of O(N logN).

• Dimensionality Selection for Key and Query Pairs: We theoretically show that the di-
mensionality of keys and queries decides the trade-off between the curse of dimensionality
and the preservation of relative distances for keys and queries.

• Z-order Curve Integration: By leveraging Z-order curves, we enable efficient top-k to-
ken selection in one-dimensional space, allowing the use of parallel sorting algorithms on
GPUs for faster attention computation.

• Adaptive Cauchy-Softmax Mechanism: We introduce Adaptive Cauchy-Softmax, a Soft-
max variant with trainable parameters based on the Cauchy kernel, dynamically adjusting
receptive fields to enhance attention’s flexibility.

2 RELATED WORKS

Efficient Transformer The Transformer architecture (Vaswani et al., 2017) is foundational for se-
quence modeling, but its quadratic complexity limits efficiency with long sequences. Various ef-
ficient variants (Tay et al., 2022; 2020; Chen et al., 2021; Qin et al., 2022b; Zhang et al., 2024)
have been proposed as alternatives, mainly categorized into sparse, low-rank, and linear transform-
ers. Sparse transformers, such as BigBird (Zaheer et al., 2020) and Longformer (Beltagy et al.,
2020), restrict attention to local windows or global tokens to achieve linear complexity. SparseAx-
ial (Ho et al., 2020) further enhances this by combining sparse attention with axial mechanisms
for high-dimensional inputs. Reformer (Kitaev et al., 2020) locality-sensitive hashing to handle
variable-length sequences efficiently. Low-rank transformers like Linformer (Wang et al., 2020) re-
duce the attention matrix to a lower-dimensional space, reducing memory and computation costs.
Linear transformers such as Performer (Choromanski et al., 2021) use kernel-based approximations
for linear-time complexity, while Nyströmformer (Xiong et al., 2021) leverages Nyström decompo-
sition for near-linear performance.

Top-k Attention (Gupta et al., 2021) falls under the category of sparse attention, reducing atten-
tion complexity by selecting only the top-k most relevant tokens at each layer, thereby focusing
computational resources on the most critical interactions. Unlimiformer (Bertsch et al., 2023) en-
ables transformers to handle arbitrarily long sequences by chunking inputs and using a retrieval

2



Published as a conference paper at ICLR 2025

mechanism to attend to relevant past contexts. Similarly, IceFormer (Mao et al., 2024) improves
transformer efficiency by integrating a k-nearest-neighbor (KNN) search mechanism that focuses
on the KNN results as the most relevant tokens during inference, bypassing the need to compute the
full attention matrix. However, with causal masks, these approaches can not compute the outputs
of a long sequences in parallel, making them less efficient for training models from scratch by not
fully exploiting the parallel computing power of GPUs. In contrast, ZETA performs KNN-based
searches for relevant tokens in parallel across the entire sequence on GPUs using chunking tech-
niques, enabling efficient training and inference with a time and space complexity of O(N logN).

3 METHODOLOGY

3.1 PRELIMINARIES

Attention has proven to be a fundamental building block in modern deep learning, particularly in
natural language processing and sequence modeling tasks. It allows a model to focus on specific
parts of the input sequence, thereby capturing dependencies within the sequence more effectively.
In the standard formulation of attention (Vaswani et al., 2017), given a set of queries Q ∈ RN×dQ ,
keys K ∈ RN×dK , and values V ∈ RN×dV , the attention scores are computed as

Attention(Q,K,V ) = softmax
(
QKT /

√
dK

)
V , (1)

where dK , dQ and dV is the dimension of the keys, queries and values, respectively. It is common
to use the same value for all three.

Top-k Attention approaches aim to enhance the efficiency and flexibility of traditional self-attention
mechanisms by focusing attention to only the most relevant tokens in a sequence. Both methods
reduce the computational overhead associated with self-attention, especially for long sequences, by
selectively attending to the most important tokens rather than computing attention scores across the
entire sequence. This process lowers the computational complexity from O(N2) in traditional self-
attention to O(N · k), where N is the sequence length and k is the number of selected tokens. The
top-k highest scores are selected for each query:

Iq =
{
i | qKT

i /
√

dK ≥ τk

}
(2)

where Iq represents the set of indices corresponding to the top-k highest attention scores for the
query q, τk is the threshold defined as the k-th highest attention score. The attention is then re-
stricted to the tokens in this subset, reducing the number of operations required for long sequences.
Specifically, the attention score for the top-k tokens is recalculated using the self-attention mecha-
nism but limited to the selected indices:

Attentiontop-k(q,K,V ) =
∑
i∈Iq

softmax
(
qKT

i /
√
dK

)
Vi (3)

where q denotes the query vector, Ki and Vi denote the key and value vectors corresponding to the
top-k relevant tokens, respectively.

Z-order Curves (Dugundji, 1966), also known as Morton codes, provide a way to map multi-
dimensional data into a one-dimensional space while preserving locality, whereas other dimension-
ality reduction methods (Abdi & Williams, 2010; McInnes et al., 2018) are not designed for map-
ping data to a 1D space. This approach is valuable in tasks that require efficient spatial indexing
or key-query matching, such as attention. By maintaining the relative proximity of data points after
projection, Z-order curves ensure that points that are close together in the original multi-dimensional
space remain close in the projected one-dimensional space.

The Z-order curve interleaves the binary representations of each coordinate in a multi-dimensional
point. For a point in the d-dimensional space with coordinates x = (x1, x2, . . . , xd), where each
xi is a binary number, the Z-order curve computes a scalar value Z by interleaving the bits of each
coordinate. Given the binary representation of xi as bi1bi2 . . . bin, the Z-order curve is expressed as:

Z = b11b21 . . . bd1b12b22 . . . bd2 . . . b1nb2n . . . bdn (4)
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where n refers to the number of bits used to represent each coordinate xi in its binary form. Through
this interleaving of bits, the Z-order curve creates a scalar value that allows efficient sorting or
indexing of points while approximately maintaining their original spatial relationships.

The primary advantage of Z-order curves is their ability to preserve locality. In other words,
nearby points in the original multi-dimensional space have similar Z-values in the projected one-
dimensional space. This property enables efficient search and selection processes in attention mech-
anisms or spatial indexing, where key-query pairs can be processed more efficiently in the one-
dimensional space without significantly losing the locality information from the higher-dimensional
space. Z-order curves are designed to preserve locality, and hence not suitable for dot-product
similarity measures, which does not reflect locality.

3.2 SEARCHING FOR THE TOP-k ATTENDED TOKENS IN ONE-DIMENSIONAL SPACE

Since we project key and query vectors into a one-dimensional space using Z-order curves, using
a large dK can still distort locality (as shown in Figure 3) and compromise the preservation of
relative distances. Thus we ask whether dK can be reduced in a way such that even after mapping
to one dimension, relative distances between tokens are maintained. Importantly, the key and query
dimensions dK and dQ do not have to match the dimension of the values dV . This is because
dV should remain large to capture more semantic information, as seen with Gaussian distributions,
where higher dimensionality increases the measure of information entropy (Cover & Thomas, 2006).
Hence, as long as the relative distances between queries and keys are preserved, dK and dQ can be
reduced. The following theoretical analysis provides insights into the selection of dK .

3.2.1 THEORETICAL ANALYSIS ON dK

We first introduce the Johnson–Lindenstrauss Lemma (Johnson et al., 1986), which states that data
in high-dimensional space can be projected into a much lower-dimensional subspace using random
projections while approximately preserving the pairwise distances between the points. Since random
projections can preserve locality, this provides justification for setting a smaller dK with trainable
projection functions for keys and queries, which could also preserve locality.

Lemma 3.1. (Johnson–Lindenstrauss Lemma) For any 0 < ϵ < 1 and any integer m, let d be a
positive integer such that d = Ω( lnm

ϵ2 ). Then for any set x of m points in RD, there exists a map
f : RD → Rd such that for all xi, xj ∈ X ,

(1− ϵ)∥xi − xj∥2 ≤ ∥f(xi)− f(xj)∥2 ≤ (1 + ϵ)∥xi − xj∥2 (5)

The following assumption then provides a mathematical depiction that attention weights are con-
strained within an m-dimensional simplex, and the learnable similarity function Γ outputs the atten-
tion scores, ensuring the most relevant tokens are emphasized during the information aggregation
process. This reflects the primary goal of attention: to aggregate critical information for more accu-
rate predictions.

Assumption 3.2. Let α ∈ ∆m−1 be an element of the m-dimensional simplex, defined as
∆m−1 ≜ {α ∈ Rm | αi ≥ 0,

∑m
i=1 αi = 1}. Assume that hattn equipped with α can achieve

an optimal learnable similarity critic function Γ, where the attention scores are given by α =
softmax (Γ (fk(xi), fq(x))), such that Γ is trained to be optimal to have the minimal expected risk:
minα ∥hattn(x, Sx;α)− y∥, where hattn denotes the attention-based hypothesis, x is the input, and
Sx is the context.

Theorem 3.3 highlights the importance of choosing dK carefully, as it controls for a trade-off be-
tween locality preservation and the curse of dimensionality. Larger dK allow for more detailed
feature capture at the cost of the high-dimensional curse, leading to increased complexity. On the
other hand, a smaller dK loses locality between tokens, which is crucial for efficient query. The
bounds provided give valuable insights into the underlying mechanisms of attention and can guide
future designs of more efficient attention models. For simplicity, we assume WLOG that keys and
queries share the same projection functions, as Kitaev et al. (2020).

Theorem 3.3. Let X ∈ Rd, Y ∈ RD, and D be a distribution over X ×Y for which the conditional
probability function, h : Rd → RD, is a l-Lipschitz function. Let h denote a hypothesis, and hattn
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denote the one-layer attention model to aggregate the predictions of a sample set S ∼ Dm to predict
for another i.i.d sample x. Specifically, here we assume the same linear map for a key mapping fk
and a query mapping fq as f : Rd → [−B,B]dK where B is the bound of projection of x by f ,
and we assume the value mapping fv be the Bayes optimal rule h∗ = E[Y |X = x], which is the
hypothesis that minimizes LD(h) over all functions. Then, the expected risk of the regression tasks
LD(h) = E(x,y)∼D∥h(x)− y∥ with h as hattn can be upper bounded by

E
S∼Dm

[LD(hattn)] ≤ LD(h
∗) +

4lc
√
dKBm−1/(dK+1)√
1−

√
C lnm
dK

This indicates that dK should be carefully chosen rather than simply being set as equal to dV (as is
common practice). Empirically, we show that the dimension of query and key can decreased without
degrading performance, more specifically in Figure 2b in Section 4.2 which we later discuss.

3.2.2 TOP-k SEARCH IN ONE DIMENSION

As the sequence length becomes extremely large, iterating through the entire context history to
search for the top k tokens becomes infeasible. Ideally, searching should be efficient and aim to
achieve the optimal time complexity of O(N logN), similar to general sorting problems with arbi-
trary inputs. To achieve this, we map both keys and queries into a one-dimensional space using the
Z-order curve and sort them with a sorting operation that can be executed in parallel on an accelera-
tor, e.g. the torch.sort operator in PyTorch (Paszke et al., 2019). The insertion position of a query
in the key sequence can then be found using a binary search (e.g. with torch.searchsorted),
allowing us to retrieve the top-k attended tokens using a window centered on the insertion position.

Specifically, the key and query dimensions are set to be significantly smaller than that of the values,
i.e. dK = dQ ≪ dV . While values need a high dimensionality to carry rich semantic information,
keys and queries primarily serve to preserve relative distances, which can be achieved with much
lower dimensionality as argued by Lemma 3.1. To facilitate the fast retrieval of queries from keys,
we leverage sorting, which can be efficiently parallelized, after mapping queries and keys into one-
dimensional space via the Z-order curve. We define Q,K ∈ RB×N×dK , where B is the batch size
and N is the sequence length. The Z-order transformation is applied as follows:

Qz = Z-order(Q), Kz = Z-order(K)

where Qz and Kz are the one-dimensional representations of Q and K, respectively.

With causal masks, directly collecting the top-k tokens from the entire sequence is not guaranteed
to have plenty of tokens to make inference. For instance, for a query at position 32 in a sequence of
length 2048, selecting the top 16 tokens from the entire sequence followed by causal masking would
leave approximately 32

2048 × 16 = 1
4 tokens to attend to, effectively leaving no tokens available for

the query. Consequently, the query at this position would not attend to anything, rendering top-k
attention ineffective. To enable parallel k-nearest neighbors (kNN) searching considering causal
masks, we first sort the Z-order keys and divide them into chunks. For query i in the m-th chunk
(where m = ⌊i/M⌋ and M is the chunk size), we restrict search to the first m chunks, indexing
the original unsorted keys from 0 to m × M − 1 in the sorted list. This ensures that future keys
j ∈ {j : j > m×M} are excluded, in accordance with the causal mask requirements. This process
is performed in parallel for every query.

Next, we perform the nearest neighbor search in these one-dimensional Z-order spaces. For each
query, the insertion position is first found using a binary search and followed by selecting the nearest
keys using a window of size K centered around the insertion point to collect top-k tokens as Iq ,
denoting the indices of the k-nearest neighbors. This ensures efficient and accurate retrieval while
maintaining the constraints imposed by causal masking.

3.3 ADAPTIVE CAUCHY-SOFTMAX

Top-k token searching relies on a similarity metric between data points, and we prefer the
Euclidean metric for top-k attention with small dK for two main reasons. First, as illus-
trated in Figure 1, Euclidean distance is more effective for low-dimensional data in top-k
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methods: it reliably identifies the correct class in one-dimensional classification tasks, lead-
ing to accurate predictions, whereas the dot product can be misleading (samples in the

0

Class: -1 Class: +1

Misclassified 
Area

Figure 1: Illustration of attention using Eu-
clidean distance vs. dot product. Eu-
clidean distance correctly classifies points
into classes ±1, while the dot product leads
to a misclassified area.

misclassified area will be classified as “+1” using
the dot-product metric). Second, k-NN search is typ-
ically based on the Euclidean metric, while using the
dot-product requires normalization that loses token
magnitudes.

To better align with the Euclidean measure for low-
dimensional representations, we propose the Adap-
tive Cauchy Softmax function, to replace the expo-
nential function in traditional attention mechanisms.
The Cauchy kernel, with its heavier tails, ensures
that distant tokens retain influence, overcoming the limitations of the exponential function, which
suppresses distant tokens (Shen et al., 2023). This allows the attention mechanism to capture both
local and global dependencies, with the shape of the kernel determining how key vectors influence
the query. Specifically, the Adaptive Cauchy-Softmax between a query vector q and keys K is
computed as:

softmaxc(q,K) =
γ
π

[
∥q −Ki∥2 + γ2

]−1∑
j∈Iq

γ
π [∥q −Kj∥2 + γ2]

−1 =

[
∥q −Ki∥2 + γ2

]−1∑
j∈Iq

[∥q −Kj∥2 + γ2]
−1 (6)

where γ is a trainable parameter that controls the shape of the distribution. By training a task-specific
γ for each attention layer, the model adjusts receptive fields dynamically. We define γ2 as the output
of a sigmoid function applied to a trainable parameter, to ensure a range of [0, 1], with smaller values
sharpening attention and improving focus on relevant inputs (Qin et al., 2022a; Zhang et al., 2024),
while larger values allow for smoother attention. The adaptive Cauchy softmax effectively handles
long-range dependencies, preventing entropy collapse (Zhai et al., 2023) or explosion (Zhang et al.,
2024) and adaptively balancing attention across the sequence.

3.4 SPARSE ATTENTION WITH Z-ORDER CURVE FOR EFFICIENT KNN RETRIEVAL

Instead of calculating full attention scores, which is computationally expensive and memory in-
tensive, we compute sparse attention scores by leveraging the Z-order curve for efficient nearest
neighbor retrieval. ZETA is then computed as below, according to Equation 6:

AttentionZETA(Q,K,V ) =
∑
i∈Iq

softmaxc (Q,Ki)Vi (7)

where Ki and Vi are the corresponding keys and values for the indices i ∈ Iq . As a result of
the sparsity of top-k, most of the tokens will not join the predictions, which stops the gradient
back-propagated through the low-probabilities tokens and fails to leverage this current prediction’s
information. We append the mean vector of the history tokens to the top-k tokens matrix using
cumsum function in Iq , to keep the attention from assigning zero probability, which can be regarded
as smoothing in n-gram language model (Jurafsky & Martin, 2024).

4 EXPERIMENTAL RESULTS

We evaluate ZETA’s performance on several aspects: ZETA’s ability to solve the synthetic MULTI-
QUERY ASSOCIATIVE RECALL (MQAR) task (Arora et al., 2024a), long sequence modeling abil-
ity on the LONG RANGE ARENA (LRA) benchmark and auto-regressive language modeling on
WIKITEXT-103. Then we conduct extensive analysis experiments: an ablation study examining
the influence of dimensionality on attention model performance (Section 4.2), ablations on various
Euclidean-based Softmax operators (Section 4.3), the empirical results of locality preservation using
Z-order curves (Section 4.4) and an ablation study over the number of k in ZETA (Section 4.5).

4.1 EMPIRICAL VALIDATION

Associative Recall. Associative recall tasks (Arora et al., 2024a) have been popular for testing the
ability of language models to look up information in their context. Broadly, they involve feeding
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Figure 2: Experiments on Associative Recall: (a) Model Accuracy (b) Performance of Transformer
with varying dK across different model dimensions; even with low dK , the model achieves near-
perfect performance (c) Comparison of different Euclidean-based Softmax operators across varying
key-query dimensions dK (d) Ablation on k in ZETA.

auto-regressive model pairs of key-value associations and then prompting the model to produce the
correct completion upon being shown a previously seen key. The MULTI-QUERY ASSOCIATIVE
RECALL (MQAR) task is a particular formulation of this task that requires the model to memorize
multiple associations (Arora et al., 2024a). We evaluate the performance of various models on the
Associative Recall task, a classical sequence-to-sequence task that requires the model to recall the
first token associated with a target token after processing a long sequence. The task is tests the
ability of models to capture long-range dependencies and to maintain information over time.

We compare the performance of four models: a vanilla Transformer, Performer (Choromanski et al.,
2021), BASED (Arora et al., 2024b), and ZETA, with different model dimensions (32, 64, 128, and
256). As illustrated in Figure 2a, accuracy increases as the model dimension grows. Attention and
Based models show strong performance with higher dimensions, achieving nearly perfect accuracy
for dimensions larger than 64. ZETAfollows a similar trend and achieves competitive performance,
especially for larger model dimensions, with perfect accuracy at dimension 256. In contrast, the
Performer struggles, showing significantly lower accuracy across all dimensions.

Long Range Arena (LRA). The LONG RANGE ARENA (LRA) benchmark (Tay et al., 2021) is
a comprehensive suite designed to evaluate the performance of models on long sequence tasks. It
includes tasks that span across multiple domains, such as natural language processing, image classi-
fication, and mathematical reasoning. LRA focuses on sequence classification, challenging models
to efficiently process longer input sequences while capturing long-range dependencies, providing an
ideal testbed for Transformer models and their efficient variants.

Table 1: Test perplexity (lower is better) on
WIKITEXT-103.

Model Params Test PPL
Vanilla Transformer 125M 26.2
Performer 125M 26.8
Reformer 125M 25.6
AFT-conv 125M 28.2
Linear Transformer 125M 30.2
RFA-Gaussian 125M 27.5
CosFormer 125M 23.1
ZETA 124M 26.3

LRA consists of five key tasks: LISTOPS, TEXT,
RETRIEVAL, IMAGE, and PATHFINDER. Each
task evaluates different aspects of long-range de-
pendency handling such as the ability to handle
mathematical reasoning tasks on long sequences of
operations (LISTOPS), capture dependencies over
long textual inputs (TEXT), retrieve relevant ele-
ments from a long sequence (RETRIEVAL) and cap-
ture spatial dependencies (IMAGE). PATHFINDER
presents a difficult problem where models must dis-
tinguish between connected and disconnected paths
within maze-like patterns. A modified version of
PATHFINDER, called PATHFINDER-X, is also in-
cluded where the patterns are presented in a larger image (256×256 compared to 32×32) but has
yet to be solved by existing attention-based methods.

We evaluate various Transformer-based models, including several linear and efficient variants,
trained from scratch on the LRA sequence classification tasks. For each model, we adopt the same
hyperparameter settings provided by the official LRA benchmark (Tay et al., 2021) to ensure a fair
comparison. Results are summarized in Table 2, which compares the performance of the models
across all five tasks, along with their average accuracy, showing that ZETA significantly outper-
forms other attention-based models.
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Table 2: Results of the Transformer and various variants on LRA. We consistently outperform the
next closest competitor (Zhu & Soricut, 2021).

Model ListOps Text Retrieval Image Pathfinder Average
Transformer 36.37 64.27 57.46 42.44 71.40 54.39
Reformer 37.27 56.10 53.40 38.07 68.50 50.67
Sparse Trans 17.07 63.58 59.59 44.24 71.71 51.24
Sinkhorn Trans 33.67 61.20 53.83 41.23 67.45 51.29
Linformer 35.70 53.94 52.27 38.56 76.34 51.36
BigBird 36.05 64.02 59.29 40.83 74.87 55.01
Linear Trans. 16.13 65.90 53.09 43.40 75.30 50.76
Performer 18.01 65.40 53.82 42.77 77.05 51.41
Nyströmformer 41.28 58.38 65.40 37.54 71.76 54.87
H-Transformer-1D 49.53 78.69 63.99 46.05 68.78 61.41
Top-k Attention 38.12 63.72 59.14 × × 53.66
IceFormer 41.53 60.01 66.02 40.46 74.42 56.49
cosFormer 37.90 63.41 61.36 43.17 70.33 55.23
Skyformer 39.25 64.70 82.06 40.77 70.73 59.50
Hedgehog 37.15 64.60 82.24 40.15 74.16 59.66

ZETA 42.52 64.52 77.92 64.39 68.20 63.51

Autoregressive Language Modeling. Furthermore, we evaluate several models on the
WIKITEXT-103 (Merity et al., 2017), a widely used benchmark for language modeling containing
over 100 million tokens extracted from high-quality Wikipedia articles characterized by a large vo-
cabulary and long-range dependencies. This makes it a challenging benchmark for testing a model’s
ability to predict the next token in a sequence. We use perplexity (PPL) as the primary evaluation
metric, where lower scores indicate a better ability to capture the sequential structure within natural
language text. Table 1 shows a vanilla Transformer1 to achieve a test perplexity of 26.2. How-
ever, linear approximation models such as the Linear Transformer (Qin et al., 2022a) struggle to
compete, with higher perplexity values of 30.2 on the test set. The table further compares several
other models, including efficient attention mechanisms like Performer (Choromanski et al., 2021),
Reformer (Kitaev et al., 2020), and CosFormer (Qin et al., 2022b). Notably, CosFormer achieves the
lowest perplexity on the test set with a score of 23.1, outperforming all other models. Reformer also
shows competitive results, achieving a perplexity of 25.6, improving on the Vanilla Transformer.
ZETA achieves a perplexity of 26.3, comparable to the Vanilla Transformer.

The results highlight the trade-offs between using conventional transformers, linear transformers,
and models adopting approximate attention mechanisms like ZETA. It reinforces the importance
of balancing computational efficiency with model performance, particularly in the context of long-
sequence language modeling tasks, especially as the information necessary to solve a task becomes
sparsely located within long contexts.

4.2 EFFECT OF VARYING dK ON ASSOCIATIVE RECALL TASK

We next evaluate the effect of different key-query dimensions dK on the Transformer model’s per-
formance for MQAR. The model dimensions are varied between {32, 64, 128, 256} while adjusting
dK to values {1, 2, 3, 8, 32}. As shown in Figure 2b, the performance remains near-perfect even
with low dK values, such as dK = 2. The model achieves close to 100% accuracy across all model
dimensions, except for the smallest dimension (dK = 1), where performance slightly drops for
lower model dimensions. This demonstrates that the Transformer is capable of handling long-range
dependencies in the Associative Recall task, even with relatively low key-query dimensionality.

These results suggest that reducing dK does not significantly impair the model’s ability to recall in-
formation in sequence tasks. In fact, maintaining a low dK can provide computational savings with-
out sacrificing performance, especially when model dimensions are large. This indicates that while
random projections—such as those used in the Johnson-Lindenstrauss Lemma—approximately pre-
serve distances, trainable projection networks fk and fq can better adapt to task-specific data and
more effectively retain locality even with a low dK . For instance, by setting dK as low as 3, we

1We use an auto-regressive Transformer based on Biderman et al. (2023) for comparision.
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reduce it from the typical head dimension (normally 32, i.e. feature dimension as 512 with 8 heads).
We can further mitigate information loss by configuring fk and fq as two-layer neural networks
rather than single-layer ones.

4.3 PERFORMANCE OF EUCLIDEAN-BASED SOFTMAX OPERATORS

We further evaluate the performance of transformers with various Euclidean-based Softmax op-
erators on MQAR. Specifically, we compare Negative Euclidean, Cauchy Softmax (our proposed
method), and Inverse Euclidean operators. The goal of this experiment is to test how these different
formulations of Softmax handle varying key-query dimensions dK in terms of accuracy.

As shown in Figure 2c, the proposed Cauchy Softmax consistently outperforms the other operators
across all values of dK . It achieves near-perfect accuracy for dK ≥ 2, whereas Negative Euclidean
shows a drop in accuracy for lower dK values. Inverse Euclidean, while performing comparably at
higher dimensions, struggles significantly at lower values of dK (e.g., dK = 1).

These results highlight the advantage of using the Cauchy distribution for a smaller dK , as it allows
for better handling of long-range dependencies and achieves more stable performance across various
key-query dimensions. The heavier tails of the Cauchy distribution enable distant tokens to retain
non-negligible influence, which is crucial for tasks like Associative Recall where long-range token
relationships are important.

4.4 LOCALITY PRESERVATION AFTER Z-ORDER CURVE PROJECTION

Figure 3: The effect of dimensional-
ity reduction before and after Z-order
curves projection on locality preserva-
tion for different sample sizes.

Next, we evaluate how well Z-order curve projections
preserve locality across different dimensions and sam-
ple sizes. Specifically, we test the locality preserva-
tion by measuring the overlap between the top-64 nearest
neighbors before and after projection, with sample sizes
N ∈ {512, 1024, 2048}.

Figure 3 shows the relationship between locality preser-
vation and the dimensionality dK . As dK increases,
the overlap between the top-64 nearest neighbors dimin-
ishes for all sample sizes, indicating a decrease in locality
preservation. Lower dK values exhibit a higher level of
locality preservation across all sample sizes. However,
for larger sample sizes, such as N = 2048, the drop in
locality preservation is more pronounced as the dimen-
sionality increases. We select dK = 3 for ZETA.

These results highlight the importance of choosing an appropriate dK for maintaining locality, es-
pecially for larger datasets where higher dimensionality can lead to distortions in spatial proximity
after a projection.

4.5 THE EFFECTS OF k IN ZETA

As an ablation study, we explore the effect of varying k in the attention mechanism of ZETA. The
goal of this experiment is to analyze how different values of k influence the model’s performance on
the associative recall task across different model dimensions.

Figure 2d shows ZETA to achieve near-perfect accuracy across all model dimensions (32, 64, 128,
and 256) for different values of k ranging from 16 to 48. In most of our experiments, we set k = 32,
as it provides a good balance between performance and computational efficiency. Interestingly,
there is little variation in accuracy between different values of k, indicating that ZETA is robust to
changes in this parameter.

4.6 EFFICIENCY BENCHMARKING

In order to better understand the effectiveness of ZETA, we further conduct an experimental study to
demonstrate its computational efficiency in comparison to existing attention methods. In particular,
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we compare with a naive attention implementation from PyTorch (based on Vaswani et al. (2017))
as well as an IO-aware Flash-Attention (Dao et al., 2022; Dao, 2024). Our implementation is based
on Triton.
Table 3: Time (in milliseconds) for different operations to compute for a fixed-sized batch of varying
sequence length. Our method outperforms a naive attention implementation across all lengths while
also outperforming Flash-Attention by a signficant margin as the sequence length increases.

Method Torch Attention Mamba Flash Attention ZETA

Input Length FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD

4096 44.3 117.9 7.1 14.0 3.4 29.2 5.6 38.2
8192 OOM OOM 11.8 23.0 12.8 111.5 11.0 76.4
16384 OOM OOM 23.5 45.7 50.4 437.7 21.7 152.6
32768 OOM OOM 47.3 91.8 198.2 1733.5 43.0 304.8
65536 OOM OOM 94.0 183.7 805.3 7044.1 85.8 608.2

Table 4: Memory consumption (in MB) for different operations to compute for a fixed-sized batch
of varying sequence length. Our method outperforms a naive attention implementation across all
lengths while only marginally trailing a highly optimized Flash Attention implementation.

Method Torch Attention Mamba Flash Attention ZETA

Input Length FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD FWD FWD+BWD

4096 17268.1 25972.1 574.2 632.2 886.1 1784.1 1314.1 1926.1
8192 OOM OOM 904.2 1020.2 1528.1 3324.1 2382.1 3606.1
16384 OOM OOM 1564.2 1776.2 2812.1 6404.1 4520.1 6968.2
32768 OOM OOM 2884.2 3200.2 5380.1 12564.1 8796.2 13692.2
65536 OOM OOM 5524.2 6048.2 10516.1 24884.1 17348.2 27140.3

Table 3 indicates the time required for both a forward pass as well as a forward-backward pass using
our efficient ZETA implementation as well as the aforementioned attention implementations. We
observe that our implementation significantly outspeeds a naive implementation of attention and do
not suffer from out of memory issues while also outperforming Flash-Attention for long sequences,
with a widening gap as the sequence length increases. This indicates both the computational effi-
ciency of our method as well as serves as an empirical validation of the O(N logN) complexity of
ZETA which we previously justify theoretically. Furthermore, if we compare with Mamba (Gu &
Dao, 2024), we demonstrate that ZETA has a faster forward pass while the forward-backward pass
maintains a similar relative performance as the sequence length increases.

Table 4 meanwhile shows that ZETA uses less memory than a naive attention implementation while
also only slightly utilizing more memory than a highly optimized Flash Attention implementation.
Nevertheless, in comparison to a sequence model such as Mamba, all attention models predictably
use more memory due to the use of softmax-type operations.

5 CONCLUSION

In this paper, we presented ZETA, a model designed to enhance the efficiency of top-k attention by
leveraging Z-order curves for parallel token selection in one-dimensional space, reducing both time
and space complexity to O(N logN). By carefully selecting the dimensionality of key and query
pairs, ZETA effectively preserves relative distances, improving both locality and computational effi-
ciency. Our comprehensive experiments on synthetic associative recall, LRA, and WIKITEXT-103
demonstrate that ZETA consistently matches or outperforms traditional attention mechanisms, mak-
ing it particularly well-suited for long-sequence tasks that demand scalability and efficiency. Addi-
tionally, the introduction of the Adaptive Cauchy-Softmax mechanism enhances ZETA’s flexibility,
enabling it to handle long-range dependencies more effectively and efficiently. Overall, ZETA offers
a robust, scalable, and efficient solution for sequence modeling, combining adaptive token selection
with dynamic softmax to optimize performance across a range of tasks and datasets.
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jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

13

https://openreview.net/forum?id=6RR3wU4mSZ
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/2303.08774


Published as a conference paper at ICLR 2025

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
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A THEORETICAL ANALYSIS

The recent paper, Reformer, proposed the Shared-QK Transformer that shares the linear projection
layer for keys and queries. It reduces the number of parameters and memory space while not affect-
ing the model performance. https://arxiv.org/abs/2001.0445a very simple but efficient technique.

Lemma A.1 (Johnson–Lindenstrauss Lemma). For any 0 < ϵ < 1 and any integer m, let d be a
positive integer such that d = Ω( lnm

ϵ2 ). Then for any set x of m points in RD, there exists a map
f : RD → Rd such that for all xi, xj ∈ X ,

(1− ϵ)∥xi − xj∥2 ≤ ∥f(xi)− f(xj)∥2 ≤ (1 + ϵ)∥xi − xj∥2. (8)

Assumption A.2. Let α ∈ ∆m−1 be an element of the m-dimensional simplex, defined as
∆m−1 ≜ {α ∈ Rm | αi ≥ 0,

∑m
i=1 αi = 1}. Assume that hattn equipped with α can achieve

an optimal learnable similarity function Γ, where the attention scores are given by α =
softmax(Γ(fk(xi), fq(x))), such that Γ is trained to be optimal to have the minimal expected risk:
minα ∥hattn(x, Sx;α)− y∥, where hattn denotes the attention-based hypothesis, x is the input, and
Sx is the context.

Lemma A.3. Let α ∈ Rm, ∀h1 : Rm → R and ∀h2 : Rm → R. Assume that h1(α) ≤ h2(α). Then
minα h1(α) ≤ minα h2(α).

Proof. Let α1 = argminα h1(α) and α2 = argminα h2(α). Then, h1(α2) ≤ h2(α2) due to
condition h1(α) ≤ h2(α). We also have h1(α1) ≤ h1(α2) due to condition α1 achieving the
minimum of h1. To sum up, we have h1(α1) ≤ h2(α2).

Lemma A.4. (Shalev-Shwartz & Ben-David, 2014) Let C1, . . . , Cr be a collection of subsets of
some domain set, X . Let S be a sequence of m points sampled i.i.d. according to some probability
distribution, D, over X . Then,

ES∼Dm

 ∑
i:Ci∩S=∅

P[Ci]

 ≤ r

me
.

Proof. From the linearity of expectation, we can rewrite

ES

 ∑
i:Ci∩S=∅

P[Ci]

 =

r∑
i=1

P[Ci]ES [1Ci∩S=∅] .

Next, for each i we have

ES [1Ci∩S=∅] = PS [Ci ∩ S = ∅] = (1− P[Ci])
m ≤ e−P[Ci]m.

Combining the preceding two equations, we get

ES

 ∑
i:Ci∩S=∅

P[Ci]

 ≤
r∑

i=1

P[Ci]e
−P[Ci]m ≤ rmax

i
P[Ci]e

−P[Ci]m.

Finally, by elementary calculus, max
a

ae−ma ≤ 1
me , concluding the proof.

Theorem A.5. Let X ∈ Rd, Y ∈ RD, and D be a distribution over X ×Y for which the conditional
probability function, h : Rd → RD, is a l-Lipschitz function. Let h denote a hypothesis, and hattn

denote the one-layer attention model to aggregate the predictions of a sample set S ∼ Dm to predict
for another i.i.d sample x. Specifically, here we assume the same linear map for a key mapping fk
and a query mapping fq as f : Rd → [−B,B]dK where B is the bound of projection of x by f ,
and we assume the value mapping fv be the Bayes optimal rule h∗ = E[Y |X = x], which is the
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hypothesis that minimizes LD(h) over all functions. Then, the expected risk of the regression tasks
LD(h) = E(x,y)∼D∥h(x)− y∥ with h as hattn can be upper bounded by

ES∼Dm [LD(hattn)] ≤ LD(h
∗) +

4lc
√
dKBm−1/(dK+1)√
1−

√
C lnm
dK

.

Proof. ES [LD(h)] is the root mean square error (RMSE) between the prediction and y conditioned
on a sampled set S and an additional example (x, y), such that the label of π1(x) is different from
y. In other words, we first sample m examples, Sx = {x1, . . . , xm}, according to DX , and an
additional example, (x, y). It follows that

ES [LD(hattn)] = ESx∼Dm
X ,x∼DXEy∼DY|X min

α
∥hattn(x, Sx;α)− y∥

= ESx∼Dm
X ,x∼DXEy∼DY|X min

α
∥

m∑
i=1

αih
∗(xi)− y∥

≤ ESx∼Dm
X ,x∼DXEy∼DY|X

[
min
α

∥
m∑
i=1

αih
∗(xi)− h∗(x)∥+ ∥h∗(x)− y∥

]

= LD(h
∗) + ESx∼Dm

X ,x∼DXEy∼DY|X min
α

∥
m∑
i=1

αih
∗(xi)− h∗(x)∥,

where αi is the attention score between xi and x. The inequality follows the Cauchy-Schwarz
inequality and Lemma A.3.

ESx∼Dm
X ,x∼DXEy∼DY|X min

α
∥

m∑
i=1

αih
∗(xi)− h∗(x)∥ ≤ ESx∼Dm

X ,x∼DXEy∼DY|X min
α

m∑
i=1

αi∥h∗(xi)− h∗(x)∥

≤ ESx∼Dm
X ,x∼DXEy∼DY|X

[
l ·min

α

m∑
i=1

αi∥xi − x∥

]
≤ ESx∼Dm

X ,x∼DXEy∼DY|X

l ·min
α

m∑
i=1

αi
∥f(xi)− f(x)∥√

1−
√

C lnm
dK



= ESx∼Dm
X ,x∼DXEy∼DY|X

l ·min
α

m∑
i=1

αi
∥ki − q∥√
1−

√
C lnm
dK


The first inequality follows from the Cauchy-Schwarz inequality; the second inequality follows from
the l-Lipschitzness of h∗; the third inequality follows from the Johnson–Lindenstrauss Lemma,

where we define ϵ in the Johnson–Lindenstrauss Lemma as ϵ =
√

C lnm
dK

, where C is a constant;
ki = f(xi) and q = f(x). It is obvious that

min
α

m∑
i=1

αi∥ki − q∥ = ∥kπ1(q) − q∥

where kπ1(q) is the closest ki to q. Thus we have

ESx∼Dm
X ,x∼DXEy∼DY|X min

α

∥∥∥∥∥
m∑
i=1

αih
∗(xi)− h∗(x)

∥∥∥∥∥ = ESx∼Dm
X ,x∼DXEy∼DY|X

l · ∥kπ1(q) − q∥√
1−

√
C lnm
dK

.


Fix some ζ = 2B/T . For some integer T , let r = T dK and C1, . . . , Cr be the cover of the set X
using boxes of length ζ. Namely, for every (ξ1, . . . , ξd) ∈ [T ]d, there exists a set Ci of the form
{k : ∀j, kj ∈ [2B(ξj − 1)/T, 2Bξj/T ]}.

For each k, q in the same box we have ∥k − q∥ ≤
√
dKB ζ. Otherwise, ∥k − q∥ ≤

√
dKB.

Therefore,
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ESx,x

[∥∥kπ1(q) − q
∥∥] ≤ ES

P
 ⋃
i:Ci∩Sx=∅

Ci

√dKB + P

 ⋃
i:Ci∩Sx ̸=∅

Ci

Bζ
√

dK

 ,

and by combining Lemma A.4 with the trivial bound

P[
⋃

i:Ci∩Sx ̸=∅

Ci] ≤ 1,

we get that

Ex,Sx

[
∥kπ1(q) − q∥

]
≤
√

dKB
( r

me
+ ζ
)
.

Since the number of boxes is r = (1/ζ)dK , it follows that

ESx,x

[∥∥kπ1(q) − q
∥∥] ≤√dKB

(
2dK ζ−dK

me
+ ζ

)
.

Setting ζ = 2m−1/(dK+1) and noting that

2dK ζ−d

me
+ ζ =

2dK2−dKmdK/(dK+1)

me
+ 2m−1/(dK+1)

= m−1/(dK+1)

(
1

e
+ 2

)
≤ 4m−1/(dK+1),

then combining the preceding with previous results, we obtain

ES [LD(hattn)] ≤ LD(h
⋆) +

4lc
√
dKBm−1/(dK+1)√
1−

√
C lnm
dK

.

B AN ILLUSTRATIVE EXAMPLE OF EFFICIENT TOP-k SELECTION VIA
Z-ORDER CURVE CHUNKING

In ZETA, the chunking process is a crucial step for efficient key-query matching in large-scale
attention mechanisms. The process begins by projecting the high-dimensional keys into a one-
dimensional space using Z-order curves, which preserve spatial locality. These projections create a
linear representation of the keys, as shown in the second row of the figure.

After projection, the keys are radix sorted in O(N) into ascending order of their Z-order integer val-
ues, enabling efficient binary searching in O(N) for the most relevant keys in the one-dimensional
space. Sorting ensures that keys that are spatially close in the original multi-dimensional space
remain close in the projected space, making the retrieval process computationally efficient.

Next, the sorted keys are partitioned into chunks. Each chunk contains a fixed number of keys,
and queries are matched with the keys within their respective chunks. This chunk-based structure
facilitates parallel processing, where each query can efficiently search for its top-k nearest keys
within a local subset of the sorted key space. For instance, in the figure, the 5th query retrieves its
top-4 keys from the chunks containing its most relevant keys.

This chunking approach significantly reduces the computational overhead compared to searching
the entire key space for each query, while leveraging the locality-preserving properties of Z-order
curves. The result is a scalable and efficient mechanism for top-k selection in ZETA, ensuring both
speed and accuracy for attention-based tasks.

The pseudo-code in Algorithm 1 outlines the ZETA Top-k Attention mechanism, which combines
Z-order curve projections with chunk-based sorting to efficiently identify and retrieve the top-k
nearest neighbors while maintaining causal constraints. It provides a structured approach to reduce
computational overhead by limiting the search space to relevant chunks, ensuring both efficiency
and adherence to sequence masking requirements.
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Figure 4: Illustration of the chunking process in ZETA: Keys are projected into one-dimensional
space using Z-order curves, sorted, and partitioned into chunks for efficient retrieval of top-k keys
for each query.

C EXPERIMENTS DETAILS

The ZETA model configuration generally involves setting the number of chunks to values such as
4, 8, 16, 32 depending on the sequence length, which provides a flexible way to handle different
input scales effectively. This chunking strategy facilitates parallelism in processing, allowing for ef-
ficient memory use and computational speedup during attention operations. The hidden dimension,
dV , is typically set to 256 or 512 with 8 attention heads when working with LRA datasets. However,
for larger and more complex datasets such as WIKITEXT-103, the hidden dimension is increased to
dV = 768 with 12 attention heads to ensure that the model has sufficient capacity to learn intricate
long-range dependencies effectively. Additionally, the dimensions of keys and queries are kept sig-
nificantly lower at dK = dQ = 3, which aids in reducing the computational burden and mitigates
the “curse of dimensionality” while still preserving enough information for efficient attention com-
putation. This choice of dimensions strikes a balance between model efficiency and effectiveness,
making ZETA well-suited for long-sequence modeling tasks.
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Algorithm 1: ZETA Top-k Attention Using Z-order Curves and Chunking
Data: Keys K of size M × d, sequence length N , chunk size M , query index i, top-k value k
Result: Top-k nearest keys for each query

Step 1: Z-order Curve Projection;
for each key vector in K do

Project each d-dimensional key vector into a one-dimensional representation using Z-order
curve projection;

end
Step 2: Sorting of Keys;
Sort the projected one-dimensional keys in ascending order;
Step 3: Chunk Division;
Divide the sorted keys into multiple chunks based on the chunk size M ;
Step 4: Chunk-wise Causal Masking;
for each query at position i do

Determine chunk index m =
⌊

i
M

⌋
;

Search only in the first m chunks for the top-k keys to attend to;
Exclude keys from positions j > m×M ;

end
Step 5: Nearest Neighbor Search;
for each query do

Perform nearest neighbor search within the selected chunks to find top-k tokens;
Collect the indices of the nearest neighbors Iq while maintaining causal constraints;

end
return Top-k nearest keys for each query

D I/O-AWARE ZETA OPTIMIZED WITH TRITON

Our Triton implementation of ZETA focuses on improving the efficiency of sparse attention through
customized kernel programming. We leverage Triton to create specialized GPU kernels for top-k
sparse attention. The sparse topk attention kernel and its corresponding backward pass kernel
sparse topk attention backward kernel are implemented using the Triton JIT (Just-In-Time)
compiler. This approach allows for significant speedup by optimizing memory access patterns and
reducing I/O overhead during the computation. The kernel is tuned to different configurations,
like “block size” and “num warps”, which directly influence how GPU resources are allocated.
Especially, we compute the mean vector of history tokens in the block of the current kernel, instead
of computing global mean vectors, which effectively reduce overheads. he @triton.autotune
decorator is used to evaluate multiple kernel configurations for optimal performance, making sure
that GPU resources are well-utilized depending on sequence length and other parameters.

One key challenge addressed is efficient indexing for large tensors in the backward and forward
computations. In Triton, indexing is achieved via program IDs, tl.program id(), that are used to
identify which part of the workload is being computed by each block or thread, ensuring that paral-
lelism is effectively exploited. The Triton kernel computes Cauchy Softmax for top-k KV pairs for
each query, employing a specialized kernel to access only the most relevant k keys during the atten-
tion process. This reduces the computational complexity compared to a full attention mechanism,
and Triton’s low-level bit manipulation operations (tl.load and tl.store) are used for fast data
retrieval.

The sparse Attention Mechanism is computed by considering only the top-k keys per query, which
significantly reduces the computational load. The sparse topk attention kernel involves effi-
cient gathering of keys and values based on top-k indices. The indices are pre-computed in a sorted
order, which enables efficient retrieval without scanning the entire key space.

The Triton kernel also includes custom backward functions to handle the gradient flow. The back-
ward kernel sparse topk attention backward kernel computes gradients for each parameter in-
volved in the sparse attention operation, including q, k, v and the learnable parameter γ. Triton’s
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tl.atomic add is used to accumulate gradients, ensuring that all updates to shared memory locations
are synchronized.

During the forward pass, intermediate values such as the Euclidean distances and normalization
constants are stored. These values are reused in the backward pass, which reduces redundant com-
putations and accelerates the training process.

By using Triton, we managed to reduce the I/O overhead that traditional PyTorch operations faced,
especially during backward computations. Furthermore, we used fused kernels to mitigate the over-
head associated with multiple indexing operations. This fusion helps in reducing the number of
kernel launches, which translates to reduced latency and faster execution, as Triton allows more
control over memory coalescing and efficient block-wise operations.

Overall, the Triton-based implementation in ZETA allows for a more scalable sparse attention mech-
anism that retains the benefits of locality preservation through Z-order Curves while significantly
reducing computational and I/O bottlenecks. This makes the ZETA attention more suitable for long-
sequence tasks where traditional transformers are too resource-intensive.

E GRADIENT DERIVATION FOR THE BACKWARD PASS OF TRITON ZETA

E.1 UPDATED ATTENTION MECHANISM WITH SPARSE ATTENTION

We introduce sparse attention by computing values and keys from an index set Ii of top-k tokens
specific to each query qi. The unnormalized attention scores are defined as:

Sij =
1

Dij + ε
, for j ∈ Ii (9)

where:

• Dij = ∥qi − kj∥2

• ε = γ2 is a trainable scalar parameter

Define:

δij = Dij + ε (10)

The steps of the attention mechanism are:

1. Compute Pairwise Distances:

Dij = ∥qi − kj∥2, for j ∈ Ii (11)

2. Compute Unnormalized Attention Scores:

Sij =
1

δij
, for j ∈ Ii (12)

3. Normalize Attention Weights:

Zi =
∑
j∈Ii

Sij (13)

Aij =
Sij

Zi
, for j ∈ Ii (14)

4. Compute Output:
oi =

∑
j∈Ii

Aijvj (15)

Our goal is to compute the gradients of the output oi with respect to qi, kj , vj , and ε, considering
the sparse attention.
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E.2 GRADIENTS WITH RESPECT TO Q, K, V, AND ε

The gradient of the output oi with respect to vj is:

∂oi

∂vj
=

{
Aij , if j ∈ Ii
0, otherwise

(16)

Derivative of Dij with respect to qi and kj:

∂Dij

∂qi
= 2(qi − kj), for j ∈ Ii (17)

∂Dij

∂kj
=

{
−2(qi − kj), if j ∈ Ii
0, otherwise

(18)

Derivative of Sij:

First, compute the derivative of Sij with respect to δij :

∂Sij

∂δij
= − 1

δ2ij
, for j ∈ Ii (19)

Compute the derivative of δij with respect to Dij and ε:

∂δij
∂Dij

= 1, for j ∈ Ii (20)

∂δij
∂ε

= 1, for j ∈ Ii (21)

Now, compute the derivative of Sij with respect to Dij and ε:

∂Sij

∂Dij
= − 1

δ2ij
, for j ∈ Ii (22)

∂Sij

∂ε
= − 1

δ2ij
, for j ∈ Ii (23)

Derivative of Sij with respect to qi and kj:

∂Sij

∂qi
= −2(qi − kj)

δ2ij
, for j ∈ Ii (24)

∂Sij

∂kj
=

{
2(qi−kj)

δ2ij
, if j ∈ Ii

0, otherwise
(25)

Derivative of Zi with respect to Sij:

∂Zi

∂Sij
= 1, for j ∈ Ii (26)

Derivative of Aij with respect to Sij:

∂Aij

∂Sij
=

Zi − Sij

Z2
i

, for j ∈ Ii (27)
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Derivative of Aij with respect to Sil for l ̸= j:

∂Aij

∂Sil
=

−Sij

Z2
i

, if l ∈ Ii

0, otherwise
(28)

Gradient of oi with respect to Sil:

∂oi

∂Sil
=
∑
j∈Ii

vj
∂Aij

∂Sil
(29)

=
vl − oi

Zi
, for l ∈ Ii (30)

Gradient with Respect to qi:

∂oi

∂qi
=
∑
l∈Ii

∂oi

∂Sil
· ∂Sil

∂qi
(31)

= −2
∑
l∈Ii

vl − oi

Zi
· (qi − kl)

δ2il
(32)

Gradient with Respect to kj :

∂oi

∂kj
=

{
2
vj−oi

Zi
· (qi−kj)

δ2ij
, if j ∈ Ii

0, otherwise
(33)

The total gradient with respect to kj is:

∂L

∂kj
=
∑
i:j∈Ii

(
2
∂L

∂oi
· vj − oi

Zi
· (qi − kj)

δ2ij

)
(34)

Gradient with Respect to ε:

∂oi

∂ε
=
∑
l∈Ii

∂oi

∂Sil
· ∂Sil

∂ε
(35)

= −
∑
l∈Ii

vl − oi

Zi
· 1

δ2il
(36)

The total gradient with respect to ε is:

∂L

∂ε
= −

∑
i

(
∂L

∂oi

∑
l∈Ii

vl − oi

Zi
· 1

δ2il

)
(37)

E.3 SUMMARY OF GRADIENT COMPUTATIONS

1. Compute Dij , δij , Sij , Zi, Aij , and oi:
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Dij = ∥qi − kj∥2, for j ∈ Ii (38)
δij = Dij + ε, for j ∈ Ii (39)

Sij =
1

δij
, for j ∈ Ii (40)

Zi =
∑
j∈Ii

Sij (41)

Aij =
Sij

Zi
, for j ∈ Ii (42)

oi =
∑
j∈Ii

Aijvj (43)

2. Compute Gradient with Respect to V:

∂L

∂vj
=
∑
i:j∈Ii

∂L

∂oi
·Aij (44)

3. Compute Gradient with Respect to Q:

∂L

∂qi
= −2

(
∂L

∂oi

)∑
j∈Ii

vj − oi

Zi
· (qi − kj)

δ2ij
(45)

4. Compute Gradient with Respect to K:

∂L

∂kj
=
∑
i:j∈Ii

(
2
∂L

∂oi
· vj − oi

Zi
· (qi − kj)

δ2ij

)
(46)

5. Compute Gradient with Respect to ε:

∂L

∂ε
= −

∑
i

 ∂L

∂oi

∑
j∈Ii

vj − oi

Zi
· 1

δ2ij

 (47)

E.4 IMPLEMENTATION NOTES

• Sparse Attention Index Set Ii:
– Ii is the set of indices that query qi attends to, which is collected from Z-order Curve

projected sequences.
– The attention computations and gradient updates are performed only over j ∈ Ii.

• Numerical Stability:
– The addition of ε ensures that δij > 0 if ε > 0, preventing division by zero.
– Ensure that ε remains positive during training, possibly by parameterizing ε = exp(θ)

where θ is unconstrained.
• Efficient Computation:

– Utilize sparse matrix representations to handle the index sets Ii efficiently.
– Use vectorized operations and appropriate masking to perform computations only over

the valid indices.

F LIMITATIONS

Given that our method is a top-k attention mechanism, there are some shared limitations between our
method and that of prior work that deals with attention, such as there still potentially being higher
chances to ignore attention to important information (with low attention scores) than full attention
methods given the use of only the top-k tokens.
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G ADDITIONAL EXPERIMENTS

G.1 ABLATION ON ATTENTION PERFORMANCE WITH VARYING dK ON LRA

We expand on the ablation study presented in Figure 2(b), focusing on the ListOps and Image tasks
from the Long Range Arena (LRA) benchmark. Specifically, we examine the impact of varying the
dimensionality of the keys and queries (dK) on attention performance. The results are summarized
in Table 5.

Our experimental findings indicate that the performance remains relatively consistent for dK ≥ 3,
whereas a noticeable decline is observed for dK < 3. This supports our hypothesis that, unlike value
vectors, the keys and queries predominantly encode positional information rather than intricate se-
mantic features. As such, reducing dK to a small value allows us to effectively lower computational
costs without incurring a significant loss in performance. This insight guided our selection of dK
values in subsequent experiments.

dK 1 2 3 32 64 128

ListOps 31.04 34.79 36.06 36.19 36.32 36.37
Image 37.6 40.23 42.64 42.72 42.51 42.44

Table 5: Performance metrics for different values of dK .

G.2 PERFORMANCE OF ZETA USING DIFFERENT SIMILARITY METRIC

We utilize Euclidean distance for k-nearest neighbor (k-NN) searches to identify the top-k attended
tokens, as it is particularly well-suited for this purpose. In contrast, dot-product similarity cannot
be directly employed for k-NN searches without normalization, as highlighted in (Mao et al., 2024).
Our experimental results also indicate that normalized dot-product similarity performs worse than
Euclidean distance, as demonstrated in additional MQAR experiments below.

Specifically, Euclidean distance-based methods, such as Negative Euclidean with traditional softmax
and Cauchy Softmax, consistently outperform dot-product-based methods for top-k attention when
using a small dimensionality (dk ≤ 4), which is the setting adopted in ZETA.

dk 1 2 3 4

Negative Euclidean 64.6 99.4 99.4 99.3
Inverse Euclidean 22.9 81.3 99.6 99.9
Cauchy Softmax 74.5 99.6 99.5 99.2

Normalized Dot Prod 62.6 92.6 99.3 99.1

Table 6: Performance using various different similarity metrics
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