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Abstract

We study contextual online pricing with biased offline data. For the scalar price elas-
ticity case, we identify the instance-dependent quantity δ2 that measures how far the
offline data lies from the (unknown) online optimum. We show that the time length
T , bias bound V , size N and dispersion λmin(Σ̂) of the offline data, and δ2 jointly
determine the statistical complexity. An Optimism-in-the-Face-of-Uncertainty
(OFU) policy achieves a minimax-optimal, instance-dependent regret bound
Õ
(
d
√
T ∧ (V 2T + dT

λmin(Σ̂)+(N∧T )δ2
)
)
. For general price elasticity, we estab-

lish a worst-case, minimax-optimal rate Õ
(
d
√
T ∧ (V 2T + dT

λmin(Σ̂)
)
)

and provide
a generalized OFU algorithm that attains it. When the bias bound V is unknown,
we design a robust variant that always guarantees sub-linear regret and strictly
improves on purely online methods whenever the exact bias is small. These results
deliver the first tight regret guarantees for contextual pricing in the presence of bi-
ased offline data. Our techniques also transfer verbatim to stochastic linear bandits
with biased offline data, yielding analogous bounds.

1 Introduction

Contextual online pricing [11, 2] models the real-world task in which a firm, upon observing customer-
specific features, sets a price, observes the resulting demand, and then adjusts future prices to
maximize long-term revenue. A central challenge here is to continuously balance exploitation—using
the current estimated optimal pricing strategy to maximize immediate revenue—with exploration—
testing alternative prices to improve those estimates. Importantly, most firms already maintain
extensive historical pricing logs—data that are free to use and impose no opportunity cost on current
revenue. Leveraging these logs can shorten the costly exploration phase, reduce the risk of customer
churn from sub-optimal prices, and provide valuable information on rare or infrequent contexts.
Motivated by these observations, recent work [31] introduced the framework of Contextual Online
Pricing with Offline Data (C-OPOD) and showed that if the offline data are unbiased—that is, drawn
from the same distribution as the forthcoming online data—incorporating them enables an online
policy to outperform purely online learning approaches.

In practice, distributional shifts are ubiquitous. For instance, historical iPhone pricing data often
differ from current patterns because of competitor moves, product upgrades, and evolving economic
conditions, making the no-shift assumption unrealistic. Recent research therefore starts to explore
the use of biased offline data. In the degenerate K-armed bandit setting (with no context and finite
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actions), recent work [10] showed that, given offline data and information of the bias, one can design
an algorithm that outperforms the canonical online method and attains matching upper and lower
regret bounds.

However, the method and results of [10] do not translate directly to contextual online pricing,
where contextual information, a continuous action space, and pricing-specific structure must be
accommodated; a naive extension incurs sub-optimal regret (see discussions under Theorem 1). To
fill this gap, in this work, we formulate and study the Contextual Online Pricing with Biased Offline
Data (CB-OPOD) problem.

1.1 Main contributions

Impossibility Result. We first demonstrate in Corollary 1 that, with access to an offline pricing
dataset only, no policy can uniformly outperform the contextual online pricing algorithm in [2]
without further information on the discrepancy between the offline and online data distributions.

Algorithm design and analysis. To sidestep the impossibility result, we start by assuming the firm
knows a bias bound V on the true distributional shift between the offline and online data distributions.
We develop algorithms and regret guarantees for two scenarios: 1. the scalar price-elasticity case that
the market-baseline feature is d1-dimensional, while the price-elasticity feature is scalar (d2 = 1),
and 2. the general CB-OPOD setting that further permits d2 > 1.

1. For the scalar price elasticity setting, we identify the first instance-dependent quantity δ2 that
measures how far the offline data lies from the (unknown) optimal price strategy and governs
the statistical complexity of CB-OPOD. We propose the Contextual Online–Offline Pricing
with Optimism (CO3) algorithm with a novel three-ellipsoid constructed confidence set. Our
algorithm achieves a minimax-optimal, instance-dependent regret bound Õ

(
d1
√
T ∧ (V 2T +

d1T

λmin(Σ̂)+(N∧T )δ2
)
)

, where λmin(Σ̂) measures the dispersion of the offline data and N denotes its

sample size. Under certain conditions, this can be tightened to O(δ2T ). Our results also recover
the OPOD regret in [7] when V = 0 while improving the bounds and relaxing the offline data
assumptions in [31]. We provide a summary in Table 1 and detailed descriptions in Section 3.

2. For the general CB-OPOD setting, we propose the General Contextual Online-Offline Pricing
with Optimism (GCO3) algorithm and establish a minimax-optimal, worst-case regret bound
Õ
(
(d1 + d2)

√
T ∧ (V 2T + (d1+d2)T

λmin(Σ̂)

)
. This result provides the first guarantee for general

CB-OPOD with either biased or unbiased offline data. In addition, our techniques apply directly
to the stochastic linear bandit setting, thereby subsuming the result for the K-arm bandit setting
[10]. These results are summarized in Table 1 and discussed in details in Sections 4.1.

Robustness result. If the bias bound V is unknown ahead, we propose the Robust Contextual
Online-Offline Pricing with Optimism (RCO3) algorithm for the general CB-OPOD setting. By
choosing a parameter α ∈ (0, 1

2 ), RCO3 can achieve regret no larger than Õ
(
T 1−α

)
and also Õ

(
Tα
)

regret when Vtrue is relatively small. To the best of our knowledge, this is the first robust algorithm
for CB-OPOD. These findings are summarized in Table 1 and explained in details in Section 4.2.

1.2 Related work

In this section, we provide a brief overview of closely related work and defer a comprehensive
discussion to Appendix B.

Online learning with external (biased) information. Online learning with offline information
attracts growing attention. [24, 19, 7, 29, 31] show that one can achieve improved regret when
utilizing unbiased offline data appropriately. [23, 32, 30, 10, 14] further consider the case where
offline data can be biased. Meanwhile, Bayesian methods such as Thompson sampling (TS) can
leverage biased offline data to construct the prior for online learning, but misspecified priors may
lead to regret bounds worse than purely online approaches [20, 16, 26], e.g., an additional O(ϵT 2)
when the prior is off by ϵ, which exceeds the bound in Table 1.
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Setting Offline data Bias bound V Regret

N [7] I V = 0 Õ
(√

T ∧ T
λmin(Σ̂)+(N∧T )δ2

)
S [31] I, F V = 0 Õ

(
d1
√
T ∧ d2

1T
(N∧T )δ2

)
S (Theorem 1) I V is known Õ

(
d1
√
T ∧ (V 2T + d1T

λmin(Σ̂)+(N∧T )δ2
)
)

G (Theorem 3) I V is known Õ
(
(d1 + d2)

√
T ∧ (V 2T + (d1+d2)T

λmin(Σ̂)
)
)

G (Theorem 5) I V is unknown Õ
(
Tα + V 2

trueT
)

if V 2
true ≲ T−α

Table 1: Summary of our results and the most related work on online pricing with offline data.
Here, N denotes Non-contextual online pricing, S denotes Scalar price elasticity, G denotes General
contextual online pricing, I denotes I.i.d. demand fluctuations and F denotes Fixed pricing policy.

Online pricing. Online pricing has also garnered significant interest. Under linear demand function,
[15] and [2] establish Θ̃(

√
T ) minimax regret bound in the non-contextual and contextual settings,

respectively. Built on these, [7] study the impact of unbiased offline data in the non-contextual setting
and [31] extend this to the contextual setting with a fixed policy that collects offline data. It is worth
noting that in [31], due to the fixed policy used to collect offline data, the minimax regret is worsened,
and cannot recover the non-contextual result in [7]. This is because the fixed policy may limit the
offline data dispersion and the regret incorporates the randomness in the offline data. In contrast, we
make no such assumptions on the offline data, which allows a tighter minimax regret over all possible
offline data, and it also recovers the non-contextual setting [7] when offline data is unbiased.

1.3 Notations

Throughout this paper, we use ∥ · ∥ to denote the Euclidean norm. We use O(·), Θ(·), and Ω(·) to
denote upper, tight, and lower bounds on growth rates, respectively; analogously, Õ(·), Θ̃(·), and
Ω̃(·) further hides the logarithmic factors. We also use A ≲ B, A ≳ B and A ≍ B to indicate
A ∈ O(B), A ∈ Ω(B) and A ∈ Θ(B), respectively. For any a, b ∈ R, we denote a∧ b = min{a, b}.
Given a matrix M , we let λmin(M) and λmax(M) represent the smallest and largest eigenvalues of
M , respectively. We denote Proj[a,b](c) := argminx∈[a,b] |x− c| for any a, b, c ∈ R.

2 Problem setup and preliminaries

In this section, we introduce the model of the CB-OPOD problem. We also present an impossibility
result that emphasizes the importance of information on the offline data.

Online model. Consider a firm that sells products over a horizon of T periods. In each period
t = 1, 2, . . . , T , the firm observes contextual information (e.g., category, brand, origin, and other
attributes) about the incoming product. We denote by xt ∈ Rd1 the feature vector affecting baseline
demand, and by yt ∈ Rd2 the vector governing price elasticity. We assume that the online feature
sequence {(x1, y1), (x2, y2), . . . , (xT , yT )} is independently and identically distributed (i.i.d.) with
support in a set X × Y ⊂ Rd. In period t, the firm sets a price pt (potentially based on historical
data), after which the random demand Dt is observed. We adopt the following linear demand model
[21, 2, 4]:

Dt = α⊤
∗ xt + β⊤

∗ ytpt + ϵt, ∀t ∈ [T ], (1)

where θ∗ := (α∗, β∗) ∈ Θ† ⊆ Rd1+d2 denotes the unknown demand parameter that lies in a set
Θ†, and {ϵt}t≥1 is an sequence of independent random demand fluctuations with zero mean and is
R−subgaussian. We highlight that linear demand model is both classic [15, 5, 21] and actively studied
[2, 4, 25, 18]. Moreover, [5] show that a semi-myopic policy based on a linear model converges to the
optimal policy for an unknown (possibly nonlinear) true model under suitable regularity conditions
and attains minimax-optimal regret. Therefore, in this work we focus on the linear demand model (1).
Extending our results to general nonlinear models and analyzing model misspecification are left for
future work.
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For the demand (1), the first term α⊤
∗ xt represents the baseline market size, and β⊤

∗ yt represents
the price sensitivity. For a fixed parameter θ = (α, β) ∈ Θ† and context (x, y) ∈ X × Y , the firm’s
expected revenue from charging price p is given by rθ(p, x, y) = p(α⊤x+ β⊤yp). Then, the firm’s
single-period optimal price and optimal expected revenue are defined as

p∗θ(x, y) = argmax
p≥0

rθ(p, x, y) and r∗θ(x, y) = max
p≥0

rθ(p, x, y). (2)

Next, we introduce the following assumption on the online model.

Assumption 1. For online model, we assume

1. Θ† and X × Y are compact sets and there exist positive constants αmax, βmax, xmax and ymax

such that ∥α∥ ≤ αmax, ∥β∥ ≤ βmax, ∥x∥ ≤ xmax and ∥y∥ ≤ ymax for all (α, β) ∈ Θ† and
(x, y) ∈ X × Y .

2. E[x1x
⊤
1 ] and E[y1y⊤1 ] are positive definite.

3. There exist positive constants lα, uα, lβ and uβ such that lα ≤ α⊤x ≤ uα and lβ ≤ −β⊤y ≤ uβ

for all (α, β) ∈ Θ†, (x, y) ∈ X × Y . Consequently, the optimal price satisfies p∗θ(x, y) =

− α⊤x
2β⊤y

∈ [l, u] for any (α, β) ∈ Θ†, where l = lα
2uβ

and u = uα

2lβ
.

Assumption 1 is a standard regularity condition in contextual-pricing studies [2, 4, 18]. In the case
d2 = 1, Assumption 1 further guarantees a constant ymin > 0 such that |y| ≥ ymin for every y ∈ Y .

Offline data model. In practice, the firm does not know the exact values of (α∗, β∗), but has access
to a pre-existing offline dataset prior to the online learning process. Suppose this dataset consists of
N samples {(x̂n, ŷn, p̂n, D̂n)}n∈[N ], where (x̂n, ŷn) ∈ X × Y for all n ∈ [N ]. For each n ∈ [N ],
the demand realization D̂n under the historical price p̂n is generated according to the linear model:

D̂n = α′⊤
∗ x̂n + β′⊤

∗ ŷnp̂n + ϵ̂n,

where θ′∗ := (α′
∗, β

′
∗) ∈ Θ† are the unknown offline demand parameters. The fluctuations {ϵ̂n}n∈[N ],

independent of features and prices {(x̂n, ŷn, p̂n)}n∈[N ], form a sequence of independent, zero-mean
R-subgaussian random variables, and are the only source of randomness in the offline dataset. We

use Σ̂ =

[
Σ̂x,x Σ̂x,y

Σ̂y,x Σ̂y,y

]
=
∑N

n=1

[
x̂nx̂

⊤
n x̂np̂nŷ

⊤
n

ŷnp̂nx̂
⊤
n ŷnp̂

2
nŷ

⊤
n

]
to denote the offline Gram matrix.

Pricing policies and performance metrics. We consider the design and analysis of pricing policies
for a firm that does not know the true θ∗ nor the distribution of the i.i.d. online feature {(xt, yt)}t∈[T ].
At the time t, the firm proposes the price pt as an output of a policy function πt that takes all the
historical information by time t− 1 and the current feature (xt, yt) as input arguments. That is,

pt = πt({(x̂n, ŷn, p̂n, D̂n)}n∈[N ], {(xs, ys, ps, Ds)}s∈[t−1], xt, yt).

We denote Π as the set of all such policies π = (π1, π2, . . . ). The set Π includes all policies that
are feasible for the firm to execute. For any policy π ∈ Π, the regret of π, denoted by Rπ

θ′
∗,θ∗

(T ), is
defined as the difference between the optimal expected revenue generated by the clairvoyant policy
that knows the exact value of θ∗ and the expected revenue generated by pricing policy π, i.e.,

Rπ
θ′
∗,θ∗

(T ) = E
[ T∑

t=1

r∗θ∗(xt, yt)− rθ∗(pt, xt, yt)
]
.

The expectation is taken with respect to two sources of randomness: 1) the randomness in online
features {(xt, yt)}t∈[T ] and 2) the randomness from both offline and online fluctuations {ϵ̂n}n∈[N ]

and {ϵt}t∈[T ]. We treat the offline feature–price tuples {(x̂n, ŷn, p̂n)}n∈[N ] as deterministic, imposing
no distributional assumptions. Consequently, our regret is defined conditional on the realized offline
data. An unconditional bound can be easily obtained by taking an additional expectation over the
offline feature–price tuples and applying standard concentration inequalities to the data-dependent
terms in our regret bounds.
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An impossibility result. We first present an impossibility result on the CB-OPOD problem without
any information on the bias of the offline data.
Corollary 1 (Impossibility Result). Under Assumption 1, for any policy π ∈ Π without the prior
knowledge on the exact bias Vtrue = ∥θ′∗ − θ∗∥, we have sup(θ′

∗,θ∗)∈Θ†×Θ† Rπ
θ′
∗,θ∗

(T ) ∈ Ω(
√
T ).

Corollary 1 states that, even with access to an offline dataset, any algorithm will face a worst-case
scenario where it cannot outperform the purely online algorithm [2] without additional information
or constraints on the discrepancy between the offline and online models. In practice, a bias bound
V ≥ ∥θ′∗ − θ∗∥ can be estimated with robust ML techniques [6] or via cross-validation [9]. Hence
the above lower bound is conservative, motivating the study of more practically relevant settings that
admit tighter regret guarantees. Corollary 1 follows directly from Theorem 4, so we omit the proof.

3 Scalar price elasticity

In this section, we assume that the firm has access to a bias bound V prior to the online phase. We
focus on the setting d2 = 1, where the price elasticity is a scalar. For this setting, we make the
following assumption on the offline data.

Assumption 2. There exists a positive constant c > 0 such that λmin(Σ̂x,x) ≥ cN.

Assumption 2 implies that the offline market base-demand features are sufficiently well-covered.
We remark that Assumption 2 is directly satisfied by choosing c = 1 for the OPOD problem [7].
Furthermore, [31] assumes that {x̂n}n∈[N ] and {xt}t∈[T ] are i.i.d., which implies that Assumption 2
holds with high probability. Hence, our Assumption 2 is no stronger than those in [7, 31].

Importantly, we first define the offline empirical price strategy p̂(x, y) and introduce the generalized
distance δ2 between p̂(x, y) and the true optimal price strategy p∗θ∗(x, y) as follows:

p̂(x, y) := Â⊤x/y, ∀(x, y) ∈ X × Y and δ2 := Ex,y[(p̂(x, y)− p∗θ∗(x, y))
2], (3)

where Â := Σ̂−1
x,xΣ̂x,y = argminα∈Rd

∑N
n=1(α

⊤x̂n − ŷnp̂n)
2 represents the ordinary least–squares

estimator that best fits the linear relation Â⊤x̂n ≈ ŷnp̂n in the L2 sense. To the best of our knowledge,
our definitions of p̂(x, y) and δ2 are the first to expose the intrinsic connection between contextual
offline data and online pricing. In the special case where the problem reduces to OPOD (i.e., no
context and all features equal to 1), p̂(x, y) simplifies to the classical average price p̂ = N−1

∑N
n=1 p̂n

[7]. Choosing appropriate forms for p̂ and δ2 is critical; Appendix C.1 provides a detailed discussion.

The quantity δ2 measures the deviation of the offline data from the (unknown) optimal pricing strategy,
and thus plays a crucial role in guiding the algorithm’s behavior: a small δ2 suggests the algorithm
can primarily rely on the offline data for exploitation, whereas a large δ2 indicates the need for
additional online exploration. Since δ2 is unknown, adapting to it introduces challenges in both the
algorithm design and the regret analysis. We elaborate on these issues in the next subsection.

3.1 The CO3 algorithm: upper and lower regret bounds

Building on the above definitions, we propose the Contextual Online–Offline Pricing with Optimism
(CO3) algorithm, which follows the celebrated Optimism in the Face of Uncertainty (OFU) principle
[1]. In contrast to traditional OFU methods and online pricing approaches with unbiased offline data
[7, 31], which typically rely on a single confidence ellipsoid, our CO3 algorithm incorporates the
biased offline dataset by constructing a confidence set as the intersection of three ellipsoids at time t:

Ct =
{
θ ∈ Rd1+d2 : ∥θ − θ̂t,N∥Σt,N

≤ wt,N , ∥θ − θ̂t,N∥ ≤ ŵt,N , ∥θ − θ̂t∥Σt
≤ wt

}
, (4)

where Σt is the online Gram matrix, Σt,N the combined online–offline Gram matrix, and θ̂t and
θ̂t,N are the corresponding least-squares estimators (see Appendix A). We choose the constants
(wt,N , ŵt,N , wt) properly to ensure that that θ∗ ∈ Ct with high probability (cf. Lemma 5). Then, the
CO3 algorithm proceeds in two stages: (i) an offline test to decide whether to rely on the offline
empirical pricing strategy p̂ during the online phase; and (ii) otherwise, pricing optimistically with
respect to Ct.
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Algorithm 1 CO3 Algorithm

Input: Offline data {(x̂n, ŷn, p̂n, D̂n)}n∈[N ], regularization parameter λ, {(wt,N , ŵt,N , wt)}t≥0

defined in Appendix A with ϵ = 1/T 2 and bias bound V .
1: if minθ∈C0∩Θ†

∑N
n=1(p̂(x̂n, ŷn) − p∗θ(x̂n, ŷn))

2 ≤ Nx2
maxy

2
max

y2
minλmin(E[xxT ])

max{V 2, 1
λmin(Σ̂)

} and

max{V 2, 1
λmin(Σ̂)

} ≤ T−1/2 then ▷ evaluating if p̂ by itself is enough
2: Charge pt = Proj[l,u](p̂(xt, yt)) for t ∈ [T ].
3: else
4: for t = 1, 2, . . . , T do
5: Observe context vector (xt, yt);
6: if Ct−1 ∩Θ† ̸= ∅ then
7: Compute (pt, θ̃t) = argmaxp∈[l,u],θ∈Ct−1∩Θ† p · (α⊤xt + βytp);
8: Charge price pt; ▷ optimism with respect to Ct
9: else Charge pt = l;

10: end if Observe Dt.
11: end for
12: end if

We highlight that the three-ellipsoid confidence set in Algorithm 1 is designed to capture the best
of three worlds. (1) Online safety. The constraint ∥θ − θ̂t∥Σt ≤ wt follows as the classical purely
online algorithm, thus guaranteeing regret no larger than Õ(

√
T ). (2) Offline-boosted estimation.

The Euclidean condition ∥θ − θ̂t,N∥ ≤ ŵt,N leverages the offline data to sharpen the estimate of θ∗.
(3) Aggressive exploitation. Intuitively, a large δ2 implies that the offline data lie far from the true
optimum, so pricing decisions close to p∗ simultaneously promote exploration and exploitation. The
ellipsoid ∥θ − θ̂t,N∥Σt,N

≤ wt,N , paired with the UCB pricing rule (Line 7 of Algorithm 1), allows
the algorithm to set prices well away from the offline estimate p̂ (see Lemma 9), thereby exploiting
the market more aggressively when δ2 is large. Earlier pricing work with unbiased offline data [7, 31]
relies on a single ellipsoid ∥θ − θ̂t,N∥Σt,N

≤ wt,N , which can perform worse than purely online
algorithm when the offline data is biased. The work on K-armed bandit with biased offline data [10]
employs two confidence intervals; however, their technique does not extend to contextual pricing with
infinitely many actions and fails to capture the dependence on the instance-dependent quantity δ2.

With unbiased offline data, [7] showed a sharp phase transition governed by δ2: (1) when the offline
data is highly informative— specifically, δ2 ≲ 1/λmin(Σ̂) ≲ T−1/2— offline data alone suffice, so
online exploration is unnecessary; (2) otherwise, a larger δ2 boosts both exploration and exploitation.
We extend this principle to the biased setting: (i) if the offline data remain informative despite
the shift, i.e. δ2 ≲ max{V 2, 1/λmin(Σ̂)} ≲ T−1/2, then simply deploying the empirical policy p̂
achieves regret O(δ2T ); (ii) otherwise, a larger δ2 accelerates both exploitation and exploration,
leading to a lower overall regret. Since δ2 is unknown, in order to adapt to the two regimes, we
introduce an offline testing phase (Line 1 of Algorithm 1)—new for contextual pricing with biased
offline data—to determine whether employing p̂ is sufficient. The following theorem provides an
upper bound on the regret of Algorithm 1.
Theorem 1. Let π be Algorithm 1. Under Assumptions 1 and 2, for any possible (θ′∗, θ∗) ∈ Θ† ×Θ†

such that ∥θ′∗ − θ∗∥ ≤ V and for any T ≥ 1,

Rπ
θ′
∗,θ∗

(T ) ∈

 O
(
δ2T

)
, if δ2 ≲ max{V 2, 1

λmin(Σ̂)
} ≲ T−1/2;

O
(
d1
√
T log T ∧ (V 2T + d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V 2T log T+d1T log2 T

λmin(Σ̂)+(N∧T )δ2

)
, otherwise.

We first remark that the regret of Algorithm 1 always satisfies Rπ
θ′
∗,θ∗

(T ) ∈ Õ(
√
T ), ensuring that

the algorithm is never worse than a purely online strategy. Theorem 1 refines the regret guarantee in
line with above insights (i)–(ii). If the offline data is further well conditioned—specifically when
λmin(Σ̂) ≍ λmax(Σ̂), a condition commonly satisfied in price experiments [2, Lemma 1]—the regret
scales as Õ

(
d1
√
T ∧ (V 2T + d1T

λmin(Σ̂)+(N∧T )δ2
)
)

and improves further to O(δ2T ) in a special corner

regime. Crucially, smaller bias bounds V and larger dispersion λmin(Σ̂) of offline data yield lower
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regret. In particular, if the bias bound is small with V 2 ∈ O(T−1/2), the regret becomes strictly
smaller than Õ(

√
T ) whenever either of the following holds: λmin(Σ̂) ∈ Ω(

√
T ), indicating strong

dispersion that sharpens the estimate of θ∗; or (N ∧ T ) δ2 ∈ Ω(
√
T ), meaning the offline data is

sufficient and far from the optimum with a large distance, thus accelerating both exploration and
exploitation. Conversely, when the bias bound is large, i.e., V 2 ∈ Ω(T−1/2), Algorithm 1 cannot
beat the baseline rate Õ(

√
T ).

When V = 0, Theorem 1 reproduces the OPOD bound of [7] and improves upon the C-OPOD bound
of [31]: if N,λmin(Σ̂) → ∞, our theorem 1 implies zero regret, whereas [31] yields O(log2 T ) at
best. We remark that the techniques and results developed for the degenerate K-armed bandit [10] do
not carry over. Applying their method directly here yields a regret term V T (rather than the sharper
V 2T ) and cannot capture the dependence on the key quantity δ2, as they fail to exploit the special
structure of CB-OPOD. We summarize the main technical challenges and highlights in Appendix C.1
and provide the full proof in Appendix E.

Lower bound. To establish a lower bound, we first specify the admissible policy class

Π◦ =
{
π ∈ Π : sup

(θ′
∗,θ∗)∈Θ†×Θ†

Rπ
θ′
∗,θ∗

(T ) ≤ K0

√
T (log T )λ0 , for some constant K0, λ0

}
.

Π◦ contains every policy whose regret is uniformly bounded by Õ(
√
T ) over all pairs of offline and

online demand parameters. Given offline data, V ≥ 0 and δ2, we define

J :=
{
(θ′∗, θ∗) ∈ Θ† ×Θ† : ∥θ′∗ − θ∗∥ ≤ V, Ex,y[(p̂(x, y)− p∗θ(x, y))

2] ∈ [(1− ξ)δ2, (1 + ξ)δ2]
}
.

This class contains problem instances with specified bias upper bound V and (approximate) gener-
alized distance δ2. The following theorem provides a lower bound on the regret for every π ∈ Π◦,
which incurs on some instance in J .

Theorem 2. Under Assumptions 1 and 2, ∀π ∈ Π◦ and any ξ ∈ (0, 1),

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈

Ω
(
δ2T

)
if δ2 ≲ max{V 2, 1

λmin(Σ̂)
} ≲ T−1/2;

Ω̃
(√

T ∧ V 2T + T
λmin(Σ̂)+(N∧T )δ2

)
otherwise,

As discussed under Theorem 1, when the offline data is well conditioned, the lower bound in Theorem
2 matches the upper bound of Theorem 1 up to a linear factor in d1. Key technical challenges and
highlights are summarised in Appendix C.2 and the full proof appears in Appendix E.

4 General price elasticity

In this section we extend both the algorithmic design and the regret analysis to the general CB-OPOD
setting with price elasticity of arbitrary dimension d2 ∈ Z+.

4.1 The GCO3 algorithm: upper and lower regret bounds

Building on the idea of CO3, we propose the General Contextual Online–Offline Pricing with Opti-
mism (GCO3) algorithm. Unlike CO3, GCO3 incorporates the biased offline dataset by constructing
the confidence set as the intersection of only two ellipsoids.

Algorithm 2 GCO3 Algorithm
Input: Same input as Algorithm 1.

for t = 1, 2, . . . , T do
Same procedure as the for-loop of Algorithm 1, except for updating C̄t ={

θ ∈ Rd1+d2 : ∥θ − θ̂t,N∥ ≤ ŵt,N , ∥θ − θ̂t∥Σt ≤ wt

}
.

end for

The confidence set C̄t keeps the regret at most Õ(
√
T ) while fully exploiting the offline data to refine

the estimate of θ∗, giving the optimal dependence on the bias bound V , the dispersion λmin(Σ̂),
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and the horizon T . For the general CB-OPOD problem, however, a clean analogue of the instance-
dependent distance δ2 is still unknown; such a quantity may not exist in every online-with-offline
setting. In the K-armed bandit case, for example, [10] show that the fundamental difficulty is
governed solely by V and a term of the same order as λmin(Σ̂). Defining an appropriate distance
metric for richer contextual environments remains an attractive open problem. The following theorem
gives an upper bound on the regret of Algorithm 2.

Theorem 3. Let π be Algorithm 2. Under Assumption 1, for any possible (θ′∗, θ∗) ∈ Θ†×Θ† such that

∥θ′∗− θ∗∥ ≤ V and for any T ≥ 1, Rπ
θ′
∗,θ∗

(T ) ∈ O
(
(d1+d2)

√
T log T ∧ (V 2T + (d1+d2)T log T

λmin(Σ̂)
)
)
.

As with Algorithm 1, Algorithm 2 never performs worse than the baseline Õ(
√
T ) rate. Theorem 3

sharpens this statement. If the bias bound is small with V 2 ∈ O(T−1/2) and the dispersion is strong
with λmin(Σ̂) ∈ Ω(

√
T ), the offline data are informative and Algorithm 2 attains regret strictly below

Õ(
√
T ). Conversely, when either the bias bound is large, i.e., V 2 ∈ Ω(T−1/2) or the dispersion is

weak, i.e., λmin(Σ̂) = O(
√
T ), the offline data add little value and the Algorithm 2 cannot improve

on Õ(
√
T ). Theorem 3 is proved by adapting the argument for Theorem 1; see Appendices E.1.1

and E.1.2. Because the steps are nearly identical, the proof is omitted. Notably, the design of
Algorithm 2 and its regret–upper-bound analysis extend seamlessly to the stochastic linear bandit
with biased offline data, thereby recovering the K-armed bandit result of [10]. Further details appear
in Appendix I.

Lower bound. Given V ≥ 0, we define J̄ :=
{
(θ′∗, θ∗) ∈ Θ† ×Θ† : ∥θ′∗ − θ∗∥ ≤ V

}
. The next

theorem provides a regret lower bound that every policy π ∈ Π◦ must incur on some instance in J̄ .

Theorem 4. Under Assumption 1, ∀π ∈ Π, sup(θ′
∗,θ∗)∈J̄ Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧
(
V 2T + T

λmin(Σ̂)

))
.

The regret upper bound of GCO3 in Theorem 3 matches the lower bound of Theorem 4 up to a linear
factor in dimension (d1 + d2). The full proof appears in Appendix G.

4.2 Robustness

We now consider the setting in which the firm does not know the bias bound V . The objective is
to design a policy whose regret is sub-linear for every exact bias Vtrue, and that beats the Õ(

√
T )

benchmark whenever Vtrue is small. When the offline dispersion is weak, i.e. λmin(Σ̂) = O(
√
T ),

Theorem 4 shows that such performance is impossible. We therefore focus on the well-conditioned
regime in which λmin(Σ̂) = Θ(T β) for some β > 1

2 . We next introduce the Robust Contextual
Online–Offline Pricing with Optimism (RCO3) algorithm and explain the intuition behind its design.

Algorithm 3 RCO3 Algorithm
Input: Test length T ′ and all inputs of Algorithm 1 except the bias bound V .

for t = 1, 2, . . . , T ′ do
Charge pt uniformly from {l, u};

end for
Calculate θ̂′∗ = (α̂′

∗, β̂
′
∗) = θ̂0,N and θ̂∗ = θ̂T ′ .

if ∥θ̂′∗ − θ̂∗∥ ≤ 2f , where f is defined in Lemma 14 then
Charge pt = argmaxp∈[l,u] p · (α̂′⊤

∗ xt + β̂′⊤
∗ ytp) for t = T ′ + 1, . . . , T .

else
Run pure online algorithm [2] for t = T ′ + 1, . . . , T .

end if

Algorithm 3 starts with a test phase of length T ′ = Θ(Tα) for some α ∈ (0, 1
2 ). Choosing α < 1

2

keeps the test regret O(T ′) = o(
√
T ), while α > 0 prevents linear growth of total regret. Prices in

this phase are sampled uniformly, producing an estimate of θ∗. With this estimate we test whether the
exact bias satisfies Vtrue ≳ T−α/2: if Vtrue ∈ Ω(T−α/2), the algorithm switches to a pure-online
policy; if Vtrue ∈ O(T−α/2), it relies on the offline regression estimate θ̂′∗ and prices accordingly.
The next theorem specifies the admissible choices of T ′ and bounds the regret of Algorithm 3.
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Theorem 5. Given β > 1/2, the optimal choices of α is α ∈ (max{0, 1 − β}, 1
2 ). Let π be the

Algorithm 3. Under Assumption 1, for any T ≥ 1, and for any possible value of (θ′∗, θ∗) ∈ Θ† ×Θ†,

Rπ
θ′
∗,θ∗

(T ) ∈
{
O
(
(d1 + d2)

√
T log T

)
, if V 2

true ≳ T−α;

Õ
(
Tα + V 2

trueT
)
, otherwise.

Theorem 5 shows that the optimal test length, T ′ = Θ(Tα), lies in the interval α ∈
(
max{0, 1 −

β}, 1
2

)
. Within this range there is no dominant choice–ultimately it depends on risk tolerance.

Choosing a smaller α reduces regret whenever V 2
true ≲ Tα−1, but raises the worst-case rate to

T 1−α. Fixing α, the regret as a function of V 2
true exhibits three distinct phases. Phase 1: when

V 2
true ≲ Tα−1, the offline data is highly informative and the regret is dominated by the T ′ test period.

Phase 2: for Tα−1 ≲ V 2
true ≲ Tα the value of the offline data wanes; the regret rises and peaks

around V 2
true ≍ T−α. Phase 3: once V 2

true ≳ T−α the test phase correctly detects the shift and the
algorithm reverts to pure-online behaviour, so the regret falls back to Õ(

√
T ). This phase transition

is visualised in Figure 1. To the best of our knowledge, Theorem 5 provides the first robust guarantee
for CB-OPOD. The proof appears in Appendix H.

Figure 1: Piecewise regret bound as a function of exact bias square V 2
true

5 Numerical experiments

In this section, we conduct numerical experiments on synthetic data to assess our algorithms, leaving
experiments on real data for future work. Specifically, we evaluate CO3 (or GCO3 when d2 >
1) against four baselines: 1) UCB: a pure online UCB policy that ignores the offline data, 2)
UCB-Offline: the UCB policy of [7, 31], which forms its single confidence ellipsoid from the
combined offline and online data, 3) TS: a pure online Thompson-sampling policy and 4) TS-Offline:
Thompson-sampling with a prior fitted to the offline data.

We randomly generate two online models: 1) a scalar price elasticity case with d2 = 1 and 2)
a general case with d2 = 5. In both cases the offline data is drawn from a market with exact
bias Vtrue = Θ(T−5/16) and dispersion λmin(Σ̂) = Θ(T ). We compare CO3/GCO3 against four
baselines under two bias-bound settings: a tight bound V = 1.1Vtrue and a loose bound V = 10Vtrue.
Every configuration is averaged over 20 independent trials with T = 1000 rounds; shaded bands
indicate 2-sigma error bars. Figures 2(a)–(b) reveal several trends. First, UCB-Offline and TS-
Offline rely uncritically on the biased offline data and accumulate regret faster than the pure-online
baselines, illustrating the danger of ignoring distributional shift. Second, when the bias bound is tight
(V = 1.1Vtrue), CO3/GCO3 decisively outperform every baseline, in line with Theorems 1 and 3.
Finally, even under a loose bound (V = 10Vtrue), CO3/GCO3 track the performance of UCB and
incur no additional regret, demonstrating the algorithms’ “never-worse” safety property.

We next evaluate RCO3 in the general setting with d2 = 5. A single online model is randomly
generated and fixed, and ten independent offline datasets are generated, each with dispersion
λmin(Σ̂) = Θ(T ) but different exact biases V 2

true ∈ Θ(T−n/5) for n = 0, . . . , 9. For every
offline-online instance we run RCO3 with a test phase of length T ′ = Θ(T 1/4) (α = 1/4) and
compare it to the pure-online UCB baseline, repeating each policy 20 times. Figure 2(c) reports the
mean cumulative regret at T = 5000 with a 2-sigma error bar as a function of Vtrue. The empirical
pattern matches Theorem 5. When V 2

true ≲ T−3/4 the offline data is highly informative and RCO3
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outperforms UCB. As the bias increases to the intermediate range T−3/4 ≲ V 2
true ≲ T−1/4, the value

of the offline data diminishes; the regret of RCO3 rises and peaks near V 2
true ≍ T−1/4, where the

test phase is just able to detect the shift. We highlight that the percentage drop in regret for small bias
(V 2

true ≲ T−3/4) is comparable to the percentage increase for large bias (T−3/4 ≲ V 2
true ≲ T−1/4),

even though the absolute loss in the latter case is higher. For larger biases
(
V 2
true ≳ T−1/4

)
the test

correctly rejects the offline data and the regret of RCO3 returns to the UCB level.

(a) Scalar elasticity (b) General elasticity (c) Robustness of RCO3

Figure 2: Performances of CO3, GCO3, and RCO3 compared with baseline algorithms.

6 Conclusion

We study contextual online pricing with biased offline data (CB-OPOD). For the scalar price elas-
ticity case, we introduce an instance-specific metric δ2 that quantifies the gap between the offline
data and the (unknown) online optimal pricing strategy and an optimism-based policy attains the
instance–optimal regret Õ

(
d1
√
T ∧ (V 2T + d1T

λmin(Σ̂)+(N∧T )δ2
)
)
. For general price elasticity, we

show that the worst-case minimax rate reduces to Õ
(
(d1+d2)

√
T ∧ (V 2T + (d1+d2)T

λmin(Σ̂)
)
)

and provide
a matching algorithm. When bias bound V is unknown, we introduce a robust variant that retains
sub-linear regret and outperforms purely online policies whenever the true bias is small. Our analysis
carries over verbatim to stochastic linear bandits with biased offline data.

Future work includes extending to general nonlinear demand models, studying model misspecification,
sharpening the dimension dependence in the CB-OPOD lower bound and, more broadly, developing
a suitable instance-specific distance metric for general online-with-offline learning. Applying our
theoretical results to real-world datasets is also a promising avenue for future research.
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A Additional notations

This section summarizes the notation used for algorithmic construction and the theoretical analysis.

Scalars
L

√
x2
max + y2maxu

2

Gram Matrices

Σt λI +
∑t

s=1

[
xsx

⊤
s xspsy

⊤
s

yspsx
⊤
s ysp

2
sy

⊤
s

]
Σt,N Σt + Σ̂

Estimators
θ̂t argminθ∈Rd1+d2

{
λ∥θ∥2 +

∑t
s=1(Dt − (α⊤xt + β⊤ytpt))

2
}

θ̂t,N

argmin
θ∈Rd1+d2

{
λ∥θ∥2 +

N∑
n=1

(D̂n − (α⊤x̂n + β⊤ŷnp̂n))
2

+

t∑
s=1

(Dt − (α⊤xt + β⊤ytpt))
2
}

Confidence radius

wt

√
λ ·
√
α2
max + β2

max +

√
2 log(3/ϵ) + (d1 + d2) log

(
1 + tL2

(d1+d2)λ

)

wt,N

λ
√
α2
max + β2

max√
λ+ λmin(Σ̂)

+
λmax(Σ̂)V√
λ+ λmax(Σ̂)

+

√
2 log(6/ϵ) + (d1 + d2) log

(
1 +

tL2

(d1 + d2)λ

)
+R

√
d1 + d2 +R

√
2 log(6/ϵ)

ŵt,N
λ
√

α2
max+β2

max

λ+λmin(Σ̂)
+ V +

√
2 log(6/ϵ)+(d1+d2) log

(
1+ tL2

(d1+d2)λ

)
√

λ+λmin(Σ̂)
+

R
√
d1+d2+R

√
2 log(6/ϵ)√

λ+λmin(Σ̂)

B Additional related work

Online learning with external (biased) informations Online learning problems have attracted
significant attention in recent years, and a growing body of work explores how external information
can improve online learning. One line of research assumes that the external information is unbiased,
demonstrating that it can yield lower regret than purely online approaches [24, 19, 7, 29, 31]. Another
line focuses on potentially biased external information, aiming to design algorithms that perform no
worse than purely online methods, yet can outperform them when the external information closely
aligns with the online model [23, 32, 30, 10].

Among this second line of work, [23, 30] study online learning with a (biased) loss predictor,
assuming that for each time t, one has access to a loss predictor mt for the i.i.d. true loss lt. They
measure bias as T E[∥m1 − l1∥2] and show that if this bias grows more slowly than T , the regret can
be further reduced. However, with only offline data, it is impossible to generate a predictor whose
bias grows more slowly than T , since offline data cannot forecast online fluctuations. Consequently,
this approach does not guide us in designing an algorithm that meets the aforementioned goal.

Another line of research focuses on hybrid transfer reinforcement learning, including both empirical
work [12] and theoretical work [8, 22]. In the theoretical results, [8] studies offline data containing
only transitions (no rewards) from another Markov decision process (MDP), while [22] examines
offline data from an MDP with the same reward function but different transitions. Neither scenario
reduces to our setting. Moreover, these works typically focus on bounding E[∥qk − q∗∥∞] or the
sample complexity required to learn an ϵ-optimal policy. In contrast, our work uses regret as the
performance metric.

Bayesian policies assume a known prior distribution for unknown parameters and update their beliefs
through online observations, making them popular for leveraging offline data in online learning.
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Thompson sampling (TS) is a well-known method of this type. However, prior work [20, 16, 26]
demonstrates that a misspecified prior can lead to higher regret bounds than those of purely online
TS. In particular, [26] shows that TS with a misspecified prior of magnitude ϵ can incur an additional
O(ϵT 2) regret. This exceeds our results in Table 1, where the additional regret is on the order of
O
(
V 2T + T

λmin(Σ̂)

)
, and the total regret never grows faster than O(

√
T ).

[32] studies contextual bandits but does not improve on the standard online regret and require a
restrictive offline log (see also [10, Appendix A.1]). By extending our Algorithm 2 and analysis to
the stochastic linear bandit with biased offline data, we obtain regret upper bounds that subsume the
K-armed result of [10]; see Appendix I for details.

Online pricing Online pricing has also garnered significant interest in recent years. In this setting,
a firm is initially uncertain about the parameters of the demand model and uses price experimentation
to learn them through empirical market responses. [15] establish a Θ̃(

√
T ) minimax regret bound

for the non-contextual online pricing problem, and [2] extend this result to the contextual setting.
Building on [15], [7] study the regret when the firm also has access to an offline dataset from the same
market. Subsequently, [31] integrate unbiased offline data with contextual online pricing but assume
that the offline data are i.i.d. and generated by a fixed policy. This assumption can be unrealistic
when the offline data come from an online pricing algorithm that dynamically adjusts its prices.
Moreover, under a fixed pricing policy, they implicitly assume limited dispersion of offline prices
and features, resulting in a larger minimax regret than ours and preventing them from recovering the
non-contextual result of [7].

In contrast, our approach imposes no additional assumptions on the offline data and allows it to come
from an entirely different market. We further achieve a tighter minimax regret bound, and by setting
the valid bias bound V = 0, our framework recovers the non-contextual setting of [7].

C Technical challenges and highlights

In this section we offer a detailed technical comparison between our results and the existing analyses
of online pricing and argue the technical challenges and highlights of our setting. The discussion is
organised into two parts: 1) derivation of the regret upper bound and 2) derivation of the regret lower
bound.

C.1 Upper bound

A central difficulty in deriving a fine-grained regret upper bound that depends on the generalized
distance δ2 is to identify a valid empirical offline price policy. In OPOD, [7] implicitly set this policy
to the sample mean 1

N

∑N
n=1 p̂n, but offered no intuition for its validity. In the CB-OPOD setting

that policy is no longer appropriate. We show that a valid empirical policy naturally arises as the
solution to

Â = argmin
α∈Rd

N∑
n=1

(α⊤x̂n − ŷnp̂n)
2 = Σ̂x,xΣ̂x,y

and the valid empirical offline policy is defined as p̂(x, y) = Â⊤x
y . When the problem reduces to

OPOD (all features equal to 1), this policy simplifies to p̂(x, y) = p̂ = 1
N

∑N
n=1 p̂n, recovering the

classical choice. Thus (3) reveals the more general structure underlying offline pricing data.

Although our formulation of the distance δ2 (3) aligns with that in [31], our choice of p̂ differs.
Specifically, [31] assumes that the offline data are i.i.d. under a single offline pricing policy p̂,
an assumption that can be unrealistic when data are generated by a dynamically changing online
algorithm. In contrast, we define p̂ after collecting the offline data, without imposing further
restrictions on how the data are obtained.

The quantities p̂(x, y) and δ2 are central to linking contextual offline data to online pricing per-
formance. In particular, Lemma 9 (Appendix D) shows how δ2 affects the accuracy of the online
parameter estimate. While the statement of Lemma 9 resembles [7, Lemma 2], our proof is funda-
mentally different: it accounts for contextual covariates and explicitly captures the dependence on
feature dimension.
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Beyond this, although our proof strategy follows the general blueprint of [7], handling
high-dimensional covariates together with biased offline data introduces substantial new techni-
cal challenges. While [31] also study a contextual setting, they impose restrictive assumptions on the
offline data and derive a looser upper bound; consequently, most of their arguments do not extend to
our more general framework.

C.2 Lower bound

Previous lower-bound proofs for contextual online pricing [2, 31] use the multivariate van Trees
inequality with a carefully chosen vector function C(θ). To apply the inequality, they inflate the
offline feature dimension to T (or T + N ), destroying the original geometry of the offline Gram
matrix and yielding bounds that depend on the dimension while obscuring the effect of offline
dispersion, which is too conservative. We propose a new construction of C(θ) that works without
feature augmentation, preserves the true dispersion of the offline Gram matrix, and produces sharper
bounds for contextual pricing with biased offline data. How to simultaneously capture the explicit
dependence on the ambient dimension remains open and is left for future work.

Furthermore, obtaining the optimal dependence on the bias bound V simuteneously with the optimal
dependence on the time T , dispersion λmin(Σ̂), generalized distance δ2 and offline sample size N is
a distinctive contribution of this work and substantially complicates the analysis; see Appendices F
and G for details.

D Preliminaries

This section collects several results that are useful throughout the proof.

D.1 Preliminary linear algebra results

To begin with, in this subsection, we collect several linear algebra results.
Lemma 1. Given a positive semi-definite matrix M ∈ Rd×d, a positive constant λ > 0 and an
integer k ∈ Z, the spectrum of M(M + λId)

kM is {λ2
i (λi + λ)k}i∈[d], where {λi}i∈[n] is the

spectrum of M.

Proof. Because M is positive semi-definite, there exist an eigen-decomposition M = QDQ−1.
Therefore, we have

M(M + λI)kM = QDQ−1(Q(D + λId)Q
−1)kQDQ−1

= QD(D + λId)
kDQ−1.

D(D + λId)
kD is a diagonal matrix whose diagonal entries are {λ2

i (λi + λ)k}i∈[d], thereby com-
pleting the proof of Lemma 1.

Lemma 2. Let A,B : Rd → R be two quadratic functions of the form

A(x) = (x− uA)
⊤QA(x− uA) + cA, B(x) = (x− uB)

⊤QB(x− uB) + cB ,

where QA, QB are positive definite matrixes and cB ≥ 0. Define xA = argminx A(x) and
xA+B = argminx

(
A(x) +B(x)

)
. Then, we have

A
(
xA+B

)
+B

(
xA+B

)
−A(xA) ≥

λmin(Q
−1/2
B QAQ

−1/2
B )

1 + λmin(Q
−1/2
B QAQ

−1/2
B )

·B(xA).

Proof. Because xA = argminx A(x), xA+B = argminx
(
A(x) +B(x)

)
, we have

xA = uA and QA(xA+B − uA) +QB(xA+B − uB) = 0.

Let δ = uA−uB and θ = xA+B −uB . Then, the above equalities imply that QA(θ−δ)+QBθ = 0,
which further implies that θ = (QA +QB)

−1QAδ. Therefore, we have

A
(
xA+B

)
+B

(
xA+B

)
−A(xA)
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=(xA+B − uA)
⊤QA(xA+B − uA) + (xA+B − uB)

⊤QB(xA+B − uB) + cB

=(θ − δ)⊤QA(θ − δ) + θ⊤QBθ + cB

=δ⊤QBθ + cB

=δ⊤QB(QA +QB)
−1QAδ + cB .

Next, we will find the the largest possible c such that the following inequality holds:

x⊤(QB(QA +QB)
−1QA − cQB)x ≥ 0, ∀x ∈ Rd.

We define M = Q
1/2
B (QA +QB)

−1
QAQ

−1/2
B . For two matrices M and N , we write M ⪰ N if

M −N is positive semidefinite. Then the condition QB (QA +QB)
−1

QA ⪰ cQB is equivalent to
Q

1/2
B (QA +QB)

−1
QAQ

−1/2
B ⪰ cI , which simplifies to M ⪰ cI . Therefore, the largest possible

largest c is λmax(M). Meanwhile, by defining N = Q
−1/2
B QAQ

−1/2
B , we have QA = Q

1/2
B NQ

1/2
B

and QA +QB = Q
1/2
B (I +N)Q

1/2
B . Therefore, we have

M = (I +N)−1N.

Because N commutes with I +N , i.e. N(I +N) = (I +N)N , N and I +N are simultaneously
diagonalizable, which implies

λi(M) =
λi(N)

1 + λi(N)
.

Because N is positive semi-definite, we have

c = λmin(M) =
λmin(N)

1 + λmin(N)
=

λmin(Q
−1/2
B QAQ

−1/2
B )

1 + λmin(Q
−1/2
B QAQ

−1/2
B )

.

Finally, because cB ≥ 0, we have

A
(
xA+B

)
+B

(
xA+B

)
−A(xA) =δ⊤QB(QA +QB)

−1QAδ + cB

≥
λmin(Q

−1/2
B QAQ

−1/2
B )

1 + λmin(Q
−1/2
B QAQ

−1/2
B )

δ⊤QBδ + cB

≥
λmin(Q

−1/2
B QAQ

−1/2
B )

1 + λmin(Q
−1/2
B QAQ

−1/2
B )

(δ⊤QBδ + cB)

=
λmin(Q

−1/2
B QAQ

−1/2
B )

1 + λmin(Q
−1/2
B QAQ

−1/2
B )

B(xA),

which finishes the proof of Lemma 2.

Lemma 3. Let x ∈ Rd1 and y ∈ Rd2 be random vectors with finite second moments. Assume that
E[xx⊤] is invertible. Then

E[yy⊤]− E[yx⊤]E[xx⊤]−1E[xy⊤] ⪰ 0.

Proof. Let z = y − E[yx⊤]E[xx⊤]−1x. Notice that

E[zz⊤] =E[(y − E[yx⊤]E[xx⊤]−1x)(y − E[yx⊤]E[xx⊤]−1x)⊤]

=E[yy⊤]− E[yx⊤E[xx⊤]−1E[xy⊤]]− E[E[yx⊤]E[xx⊤]−1xy⊤]

+ E[E[yx⊤]E[xx⊤]−1xx⊤E[xx⊤]−1E[xy⊤]]
=E[yy⊤]− E[yx⊤]E[xx⊤]−1E[xy⊤].

Because E[zz⊤] ⪰ 0, we complete the proof of Lemma 3.
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D.2 Preliminary contextual online pricing results

In this subsection, we collect several preliminary lemmas related to online pricing with offline data.
All proofs of these lemmas are postponed to the end of this subsection.

First, we present three lemmas that apply to the general contextual online pricing setting, i.e.,
X × Y ⊆ Rd1 × Rd2 with d2 ∈ Z+.
Lemma 4. Under Assumption 1, for all (x, y) ∈ X × Y, θ, θ′ ∈ Θ†, we have

|p∗θ(x, y)− p∗θ′(x, y)| ≤

√
y2maxu

2
α + x2

maxu
2
β∥θ − θ′∥

2l2β
.

Lemma 5. Recall the confidence set Ct defined in (4). Under Assumption 1, with probability at least
1− δ we have θ∗ ∈ Ct ∩Θ† for all t ∈ N.
Lemma 6. Consider Algorithm 1 and assume Assumption 1 holds. Then, for any ξ ∈ (0, e−2), the
following event occurs for every t ∈ [T ] with probability at least 1− ξ.

sup
θ∈Ct∩Θ†

Ex

[
N∑

n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+

t∑
s=1

(
(α− α∗)

⊤
x+ (β − β∗)

⊤
yps(x)

)2
| Ft−1

]
≤ Kη2t ,

(5)

where ps is any empirical pricing function in period s ∈ [t] that is (s − 1)–measurable, K is an
absolute constant, and η2t = w2

t,n + (d1 + d2) log T + log(t/ξ).

The remaining lemmas specialize to the scalar price elasticity setting, i.e., d2 = 1.

Lemma 7. Under Assumption 1, and with δ2 defined in (3), we obtain δ2 ≤ 2β2
maxx

4
maxy

2
max

l2βc
2 + 2u2.

Lemma 8. Given the offline data {(x̂n, ŷn, p̂n)}n∈[N ] and any α ∈ Rd1 and β ∈ R, we have

N∑
n=1

(α⊤x̂n + βŷnp̂n)
2 ≥

N∑
n=1

(α⊤x̂n + βÂ⊤x̂n)
2,

where Â is defined in equation (3).

Lemma 9. Suppose δ2 ≥
√

C̄Kη2
T

N and Nδ2 ≥ λmin(Σ̂), where C̄ > 0 is a constant. Under
Assumptions 1 and 2, there exists a positive constant C such that if θ∗ ∈ Ct for each t ∈ [T ], two
sequences of events {Ut,1 : t ∈ [T ]} and {Ut,2 : t ∈ [T ]} hold, where

Ut,1 =

{
Ext,yt [(p̂(xt, yt)− pt(xt, yt))

2] ≥ (
1

4
∧ lβly

2
min

8y2maxuβu
)δ2
}

Ut,2 =

{
Ext [∥θ̃t − θ∗∥2] ≤

CKη2t−1

λmin(Σ̂) + (N ∧ (t− 1))δ2

}
Lemma 10. Given the offline dataset {(xn, yn, pn)}Nn=1, which satisfies Assumption 2, and under
Assumption 1, we have

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ∗(x̂n, ŷn))
2 ≤ Nx2

maxy
2
max

y2minλmin(E[xxT ])
Ex,y[(p̂(x, y)− p∗θ∗(x, y))

2] and

N∑
n=1

(p̂(x̂n, ŷn)− p̂n)
2 ≤ max{c, 2(x2

max + u2y2max)}
cy2min

· λmin(Σ̂).

D.2.1 Proof of Lemma 4

For any x, y ∈ X × Y and θ, θ′ ∈ Θ†, we have

|p∗θ(x, y)− p∗θ′(x, y)| = | α⊤x

−2β⊤y
− α′⊤x

−2β′⊤y
| = |α

′⊤xβ⊤y − α⊤xβ′⊤y

2β⊤yβ′⊤y
|
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≤ |α
′⊤xβ⊤y − α⊤xβ′⊤y

2l2β
|

≤ |α
′⊤xβ⊤y − α⊤xβ⊤y + α⊤xβ⊤y − α⊤xβ′⊤y

2l2β
|

≤ ∥α− α′∥xmaxuβ + ∥β − β′∥ymaxuα

2l2β

≤

√
y2maxu

2
α + x2

maxu
2
β∥θ − θ′∥

2l2β
,

thereby completing the proof of Lemma 4.

D.2.2 Proof of Lemma 5

We prove Lemma 5 by showing that each of the following events holds with probability at least
1 − ϵ/3: (1) ∥θ∗ − θ̂t,N∥Σt,N

≤ wt,N , (2) ∥θ∗ − θ̂t,N∥ ≤ ŵt,N and (3) ∥θ∗ − θ̂t∥Σt
≤ ŵt. Since

event (3) follows directly from [17, Theorem 20.5], we omit its proof and focus on proving events (1)
and (2) in what follows.

(1) ∥θ∗ − θ̂t,N∥Σt,N
≤ wt,N with probability at least 1− ϵ/3.

θ∗ − θ̂t,N = θ∗ − Σ−1
t,N

( N∑
n=1

[ x̂n

ŷnp̂n

]
D̂i +

t∑
s=1

[ xt

ytpt

]
Di

)
= θ∗ − Σ−1

t,N

( N∑
n=1

[ x̂n

ŷnp̂n

]([
x̂⊤
n p̂nŷ

⊤
n

]
θ′∗ + ϵ̂n

)
+

t∑
s=1

[ xt

ytpt

]([
x⊤
t pty

⊤
t

]
θ∗ + ϵt

))
= Σ−1

t,N

(
λθ∗ + Σ̂(θ∗ − θ′∗) +

N∑
n=1

[ x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[ xt

ytpt

]
ϵt

)
. (6)

Then, we have

∥θ∗ − θ̂t,N∥Σt,N
≤ λ∥θ∗∥Σ−1

t,N
+ ∥Σ̂(θ∗ − θ′∗)∥Σ−1

t,N
+ ∥

N∑
n=1

[
x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[
xt

ytpt

]
ϵt∥Σ−1

t,N

≤ λ∥θ∗∥V −1
0,N

+ ∥Σ̂(θ∗ − θ′∗)∥V −1
0,N

+ ∥
N∑

n=1

[
x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[
xt

ytpt

]
ϵt∥Σ−1

t,N

≤
λ
√
α2
max + β2

max√
λ+ λmin(Σ̂)

+
λmax(Σ̂)V√
λ+ λmax(Σ̂)

+ ∥
N∑

n=1

[
x̂n

ŷnp̂n

]
ϵ̂n∥V −1

0,N︸ ︷︷ ︸
T1

+ ∥
t∑

s=1

[
xt

ytpt

]
ϵt∥Σ−1

t︸ ︷︷ ︸
T2

,

where the last inequality holds by following Lemma 1 with k = −1. Then, by [17, Theorem 20.3],
with probability at least 1− ϵ/6, the term T2 can be bounded as follows:

∥
t∑

s=1

[
xt

ytpt

]
ϵt∥Σ−1

t
≤

√
2 log(6/ϵ) + (d1 + d2) log

(
1 +

tL2

(d1 + d2)λ

)
. (7)

Next, we use the following lemma to provide a high probability upper bound of term T1.
Lemma 11 (Theorem 1 in [13]). Let w = (w1, . . . , wN )T be a vector of independent, mean-zero,
R-subgaussian random variables. Let M ∈ RN×N be a positive semi-definite matrix. For any t ≥ 0,

P(w⊤Mw > R2(Tr(M) + 2
√
Tr (M2) t+ 2∥M∥2t)) ≤ exp(−t).

Then, let w = (ϵ̂1, . . . , ϵ̂N )T and M = A⊤(AA⊤ + λI)−1A, where A ∈ R(d1+d2)×N and An =[
x̂n

ŷnp̂n

]
for every n ∈ [N ]. Consider the singular value decomposition of A: A = UΣV ⊤. We
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have

M = A⊤ (AA⊤ + λI
)−1

A =
(
V Σ⊤U⊤) [U (ΣΣ⊤ + λI

)−1
U⊤
] (

UΣV ⊤)
= V Σ⊤ (ΣΣ⊤ + λI

)−1
ΣV ⊤.

Therefore, the nonzero eigenvalues of M are

λi(M) =
σ2
i (A)

σ2
i (A) + λ

, 1 ≤ i ≤ r,

where r ≤ d1 + d2 denotes the rank of A and {σi(A)}i∈[r] denotes the nonzero singular values

of A. Therefore, we have ∥M∥2 = maxi∈[r]
σ2
i (A)

σ2
i (A)+λ

≤ 1, Tr(M) ≤ r · 1 ≤ d1 + d2 and

Tr(M2) ≤ d1 + d2. Therefore, by Lemma 11 and choosing t = log(6/ϵ), with probability at least
1− ϵ/6, we have

w⊤Mw ≤ R2(Tr(M) + 2
√
Tr (M2) log(6/ϵ) + 2∥M∥2 log(6/ϵ))

≤ R2((d1 + d2) + 2
√
(d1 + d2) log(6/ϵ) + 2 log(6/ϵ))

≤ (R
√
d1 + d2 +R

√
2 log(6/ϵ))2.

Therefore, we have proved that with probability at least 1− ϵ/3,

∥θ∗ − θ̂t,N∥Σt,N
≤
λ
√

α2
max + β2

max√
λ+ λmin(Σ̂)

+
λmax(Σ̂)V√
λ+ λmax(Σ̂)

+

√
2 log(6/ϵ) + (d1 + d2) log

(
1 +

tL2

(d1 + d2)λ

)
+R

√
d1 + d2 +R

√
2 log(6/ϵ) = wt,N .

(2) ∥θ∗ − θ̂t,N∥ ≤ ŵt,N with probability at least 1− ϵ/3. By equation (6), we have

∥θ∗ − θ̂t,N∥ ≤ λ∥Σ−1
t,Nθ∗∥+ ∥Σ−1

t,N Σ̂(θ∗ − θ′∗)∥+ ∥Σ−1
t,N

N∑
n=1

[
x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[
xt

ytpt

]
ϵt∥

≤ λ∥V −1
0,Nθ∗∥+ ∥V −1

0,N Σ̂(θ∗ − θ′∗)∥+ ∥Σ−1
t,N

N∑
n=1

[
x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[
xt

ytpt

]
ϵt∥

(i)
≤ λ∥θ∗∥

λ+ λmin(Σ̂)
+

λmax(Σ̂)V

λ+ λmax(Σ̂)
+

1√
λ+ λmin(Σ̂)

∥
N∑

n=1

[
x̂n

ŷnp̂n

]
ϵ̂n +

t∑
s=1

[
xt

ytpt

]
ϵt∥Σ−1

t,N

≤
λ
√
α2
max + β2

max

λ+ λmin(Σ̂)
+ V +

1√
λ+ λmin(Σ̂)

(
∥

N∑
n=1

[
x̂n

ŷnp̂n

]
ϵ̂n∥V −1

0,N
+ ∥

t∑
s=1

[
xt

ytpt

]
ϵt∥Σ−1

t

)
,

where (i) holds by following Lemma 1 with k = −2. Therefore, combining the above upper bounds
for the terms T1 and T2, with probability at least 1− ϵ/3,

∥θ∗ − θ̂t,n∥ ≤
λ
√
α2
max + β2

max

λ+ λmin(Σ̂)
+ V +

√
2 log(6/ϵ) + (d1 + d2) log

(
1 + tL2

(d1+d2)λ

)
√
λ+ λmin(Σ̂)

+
R
√
d1 + d2 +R

√
2 log(6/ϵ)√

λ+ λmin(Σ̂)
= ŵt,N ,

thereby completing the proof of Lemma 5.

D.2.3 Proof of Lemma 6

The proof of Lemma 6 mirrors the argument in [31, Lemma 2.5] but under weaker assumptions.
Whereas [31] requires all offline covariates {(x̂n, ŷn)}n∈[N ] to be i.i.d. and the noise sequence
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{ϵj}j∈[t] to be almost surely bounded, our analysis imposes neither condition. Consequently,
Lemma 6 holds in a strictly more general setting.

First, we restate the Freedman’s inequality as follows:

Lemma 12 (Freedman’s inequality [3]). Suppose Z1, Z2, . . . , Zt is a martingale difference sequence
with |Zi| ≤ B for all i = 1, . . . , t. Then for any ξ < 1/e2, with probability at least 1− (log2 t)ξ, we
have

t∑
i=1

Zi ≤ 4

√√√√ t∑
i=1

Var[Zi | Z1, . . . , Zi−1] log
(
1/ξ
)
+ 2B log

(
1/ξ
)
.

Let Dθ(x, y, p) := E [Dt | xt = x, yt = y, pt = p; θ∗ = θ] = α⊤x + β⊤y · p. For any (x, y) ∈
X × Y, p ∈ [l, u] and θ, θ′ ∈ Θ†, we have

|Dθ(x, y, p)−Dθ′(x, y, p)| = |(α− α′)⊤x+ (β − β′)⊤yp|

≤ ∥θ − θ′∥ ·
√
∥x∥22 + ∥y∥2p2

≤ L ∥θ − θ′∥ ,

where L is defined in Appendix A. The diameter of the demand parameter set Θ† ∈ Rd1+d2 ,
diam(Θ†), is definded as

diam(Θ†) = sup
θ,θ′∈Θ†

diam(Θ†) ≤ 2
√
α2
max + β2

max.

By a standard covering-number result for d-dimensional balls [28], the minimum number of points
needed to cover a (2d)-dimensional ball of radius diam(Θ†)

2 with balls of radius 1
Lt is at most

(1 + diam(Θ†)Lt)2d. Consequently, there exists a set Σt of cardinality at most (1 + diam(Θ†)Lt)2d

which satisfies

∥v∥ ≤ diam(Θ†)

2
+

1

Lt
, ∀v ∈ Σt and ∀θ ∈ Θ†,∃v ∈ Σt : ∥θ − v∥ ≤ 1

Lt
.

For any θ ∈ Θ†, (x, y) ∈ X × Y, p ∈ [l, u], take v to be the closest point to θ in Σt, we have

(Dθ(x, y, p)−Dθ∗(x, y, p))
2
= (Dθ(x, y, p)−Dv(x, y, p) +Dv(x, y, p)−Dθ∗(x, y, p))

2

≤ 2 (Dθ(x, y, p)−Dv(x, y, p))
2
+ 2 (Dv(x, y, p)−Dθ∗(x, y, p))

2

≤ 2L2∥θ − v∥22 + 2 (Dv(x, y, p)−Dθ∗(x, y, p))
2

≤ 2

t2
+ 2 (Dv(x, y, p)−Dθ∗(x, y, p))

2

For each fixed v ∈ Σt, let Yv,t =
(
Dv(xt, yt, pt)−Dθ∗(xt, yt, pt)

)2
. Since

∥Yv,t∥ ≤ L2∥v − θ∗∥2 ≤ L2(diam(Θ†) +
2

Lt
)2 ≤ (Ldiam(Θ†) + 2)2 := B

for all t ∈ [T ], we apply Lemma 12. In particular, if ξt
|Σt| ≤ 1

e2 , then with probability at least

1− (log2 t)
ξt
|Σt| , the following holds:

t∑
s=1

E [Yv,s | Fs−1]−
t∑

s=1

Yv,s ≤ 4

√√√√ t∑
s=1

Var [Yv,s | Fs−1] log (|Σt| /ξt) + 2B2 log (|Σt| /ξt) .

By applying a union bound over all v ∈ Σt in the inequality above, we conclude that, with probability
at least 1− ξt log2 t, the following holds:

t∑
s=1

E [Yv,s | Fs−1]−
t∑

s=1

Yv,s ≤ 4

√√√√ t∑
s=1

Var [Yv,s | Fs−1] log (|Σt| /ξt) + 2B2 log (|Σt| /ξt)
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≤ 4

√√√√ t∑
s=1

E
[
Y 2
v,s | Fs−1

]
log (|Σt| /ξt) + 2B2 log (|Σt| /ξt)

≤ 8B

√√√√ t∑
s=1

E [Yv,s | Fs−1] log (|Σt| /ξt) + 2B2 log (|Σt| /ξt) , ∀v ∈ Σt.

This implies
√√√√ t∑

s=1

E [Yv,s | Fs−1]− 4B
√
log (|Σt| /ξt)

2

≤ 18B2 log (|Σt| /ξt) +
t∑

s=1

Yv,s,

which further implies

68B2 log (|Σt| /ξt) + 2

t∑
s=1

Yv,s ≥
t∑

s=1

E [Yv,s | Fs−1] =

t∑
s=1

E
[
(Dv (x, y, ps)−Dθ∗ (x, y, ps))

2 | Fs−1

]
,

Then, with probability at least 1− ξt log2 t, for any θ ∈ Θ†,
t∑

s=1

E
[
(Dθ (x, y, ps)−Dθ∗ (x, y, ps))

2 | Fs−1

]
≤ 2

t∑
s=1

E
[
(Dv (x, y, ps)−Dθ∗ (x, y, ps))

2 | Fs−1

]
+

2

t

≤ 136B2 log (|Σt| /ξt) + 4

t∑
s=1

Yv,s +
2

t
. (8)

where v is the closest point to θ in Σt. By the definition of Ct, for all θ ∈ Ct ∩Θ†, we have
t∑

s=1

Yv,s ≤ 2

t∑
s=1

Yθ,s + 2

t∑
s=1

(Dv(xt, yt, pt)−Dθ(xt, yt, pt))
2

≤ 2

t∑
s=1

Yθ,s +
2

t
. (9)

Then, by equations (8) and (9), with probability at least 1− ξt log2 t, for any θ ∈ Ct ∩Θ†,

Ex

[
N∑

n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+

t∑
s=1

(
(α− α∗)

⊤
x+ (β − β∗)

⊤
yps(x, y)

)2
| Ft−1

]

=

N∑
n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+

t∑
s=1

E
[
(Dθ (x, y, ps)−Dθ∗ (x, y, ps))

2 | Fs−1

]
≤

N∑
n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+ 136B2 log (|Σt| /ξt) + 8

t∑
s=1

Yθ,s +
10

t

≤8

(
N∑

n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+

t∑
s=1

Yθ,s

)
+ 136B2 log (|Σt| /ξt) +

10

t
.

Then, by choosing ηt =
ξ
t3 , we have

∞∑
t=1

ξt log2 t ≤
∞∑
t=2

ξ

t2
≤ ξ.

Therefore, with the definition of Ct and Lemma 5, with probability at least 1 − ξ − ϵ, for any
θ ∈ Ct ∩Θ†,

Ex

[
N∑

n=1

(
(α− α∗)

⊤
x̂n + (β − β∗)

⊤
ŷnp̂n

)2
+

t∑
s=1

(
(α− α∗)

⊤
x+ (β − β∗)

⊤
yps(x, y)

)2
| Ft−1

]
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≤16w2
t,n + 136B2 log (|Σt| /ξt) +

10

t

≤16w2
t,n + 136B2((d1 + d2) log(1 + diam(Θ†)Lt) + log(t3/ξ)) +

10

t

≤K(w2
t,n + (d1 + d2) log T + log(t/ξ)),

where K is a uniform constant such that the last inequality holds. Therefore, we finish the proof of
Lemma 6.

D.2.4 Proof of Lemma 7

δ2 = Ex,y[(p̂(x, y)− p∗θ∗(x, y))
2] = Ex,y[(

Σ̂y,xΣ̂
−1
x,xx

y
− p∗θ∗(x, y))

2]

≤ 2Ex,y[(
Σ̂y,xΣ̂

−1
x,xβx

βy
)2] + 2u2

≤
2β2

maxx
2
max∥Σ̂y,xΣ̂

−1
x,x∥2

l2β
+ 2u2

≤ 2β2
maxx

4
maxy

2
maxu

2

l2βc
2

+ 2u2,

thereby completing the proof Lemma 7.

D.2.5 Proof of Lemma 8

N∑
n=1

(α⊤x̂n + βŷnp̂n)
2 −

N∑
n=1

(αx̂n + βÂ⊤x̂n)
2

=2βα⊤
N∑

n=1

x̂n

(
ŷnp̂n − Â⊤x̂n

)
+ β2

N∑
n=1

[
(ŷnp̂n)

2 −
(
Â⊤x̂n

)2]

=β2
N∑

n=1

[
(ŷnp̂n)

2 −
(
Â⊤x̂n

)2]
, (10)

where the last equality holds by the definition of Â. Let v = (ŷ1p̂1, . . . , ŷnp̂N )⊤ ∈ RN , X =
(x̂1, . . . , x̂N )⊤ ∈ RN×d1 and U be the subspace spanned by the columns of X , the term (10) can be
reformulated as β2(∥v∥2 − ∥ΠU (v)∥2). Because ∥v∥ ≥ ∥ΠU (v)∥, we have

N∑
n=1

(α⊤x̂n + βŷnp̂n)
2 −

N∑
n=1

(α⊤x̂n + βÂ⊤x̂n)
2 ≥ 0,

thereby completing the proof of Lemma 8.

D.2.6 Proof of Lemma 9

Let ∆αt := α̃t − α∗ and ∆βt := β̃t − β∗. When equation (5) holds, we have

Ex,y

[
N∑

n=1

(
∆α⊤

t x̂n +∆βtŷnp̂n
)2

+

t−1∑
s=1

(
∆α⊤

t x+∆βtyps(x, y)
)2 | Ft−1, xt

]
≤ Kη2t−1, ∀t ∈ [T ].

(11)

We now prove Lemma 9 by considering the following four cases.

Case 1: ∆βt = 0. By equation (11), we have

Kη2t−1 ≥ ∆α⊤
t Σ̂x,x∆αt + (t− 1)∆α⊤

t E[xx⊤]∆αt
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≥
(
λmin(Σ̂x,x) + (t− 1)λmin(E[xx⊤])

)
∥∆αt∥2

≥
(
(cN ∨ λmin(Σ̂)) + (t− 1)λmin(E[xx⊤])

)
∥∆αt∥2,

where the last inequality holds by Assumption 2 and the fact that Σ̂x,x is a principal submatrix of Σ̂.
Then, we have

∥θ̃t − θ∗∥2 = ∥∆αt∥2 ≤
Kη2t−1

(cN ∨ λmin(Σ̂)) + (t− 1)λmin(E[xx⊤])
(12)

≤
Kη2t−1

λmin(Σ̂) + (N ∧ (t− 1))λmin(E[xx⊤])

≤
C1Kη2t−1

λmin(Σ̂) + (N ∧ (t− 1))δ2
, (13)

where C1 = max{1,
2β2

maxx4
maxy2

maxu2

l2
β
c2

+2u2

λmin(E[xx⊤])
} and the last inequality holds by following Lemma 7.

Then, by inequality (12), we have

Ex,y[(p̂(x, y)− pt(x, y))
2] ≥1

2
Ex,y[(p̂(x, y)− p∗(x, y))2]− Ex,y[(p

∗(x, y)− pt(x, y))
2]

(i)
≥1

2
δ2 −

(y2maxu
2
α + x2

maxu
2
β)∥θ̃t − θ∗∥2

4l4β

≥1

2
δ2 −

(y2maxu
2
α + x2

maxu
2
β)C1Kη2t−1

4l4βcN

(ii)
≥ δ2

4
,

where (i) holds by Lemma 4 and (ii) holds since the assumption that δ2 ≥ (y2
maxu

2
α+x2

maxu
2
β)C1Kη2

T

l4βcN
.

Case 2: ∆βt ̸= 0, γt ≥
√

4x2
maxy

2
maxu

2

c2 ∨
√

4y2
maxu

2

λmin(E[xx⊤])
. By equation (11) and Lemma 8, we have

Kη2t−1 ≥
N∑

n=1

(
∆α⊤

t x̂n +∆βtÂx̂n

)2
+

1

2
Ex,y

[
t−1∑
s=1

(
∆α⊤

t x
)2]− Ex,y

[
t−1∑
s=1

(
∆β⊤

t yps(x, y)
)2]

≥(cN ∨ λmin(Σ̂))∥∆αt + Â∆βt∥2 +
(t− 1)λmin(E[xx⊤])∥∆αt∥2

2
− (t− 1)y2maxu

2∥∆βt∥2

≥(cN ∨ λmin(Σ̂))

(
∥∆αt∥2

2
− x2

maxy
2
maxu

2

c2
∥∆βt∥2

)
+

(t− 1)λmin(E[xx⊤])∥∆αt∥2

2

− (t− 1)y2maxu
2∥∆βt∥2

≥ (cN ∨ λmin(Σ̂))∥∆αt∥2

4
+

(t− 1)λmin(E[xx⊤])∥∆αt∥2

4
,

where the last inequality holds because γt ≥
√

4x2
maxy

2
maxu

2

c2 ∨
√

4y2
maxu

2

λmin(E[xx⊤])
. Then, we have

∥θ̃t − θ∗∥2 = (1 +
1

γ2
t

)∥∆αt∥2 ≤
4Kη2t−1(1 +

1
γ2
t
)

(cN ∨ λmin(Σ̂)) + (t− 1)λminE[xx⊤]

≤
4Kη2t−1(1 + ( c2

4x2
maxy

2
maxu

2 ∧ λmin(E[xx⊤])
4y2

maxu
2 ))

(cN ∨ λmin(Σ̂)) + (t− 1)λminE[xx⊤]
(14)

≤
4Kη2t−1(1 + ( c2

4x2
maxy

2
maxu

2 ∧ λmin(E[xx⊤])
4y2

maxu
2 ))

λmin(Σ̂) + (N ∧ (t− 1))λmin(E[xx⊤])

≤
C2Kη2t−1

λmin(Σ̂) + (N ∧ (t− 1))δ2
, (15)
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where C2 = 4(1 + ( c2

4x2
maxy

2
maxu

2 ∧ λmin(E[xx⊤])
4y2

maxu
2 ))C1. Then, by inequality (14), and proceeding as in

Case 1, we have

Ex,y[(p̂(x, y)− pt(x, y))
2] ≥1

2
δ2 −

(y2maxu
2
α + x2

maxu
2
β)C2Kη2t−1

4l4βcN
≥ δ2

4
,

where the last inequality holds since the assumption that δ2 ≥ (y2
maxu

2
α+x2

maxu
2
β)C2Kη2

T

l4βcN
.

Case 3: ∆βt ̸= 0, γt ≤
√

4x2
maxy

2
maxu

2

c2 ∨
√

4y2
maxu

2

λmin(E[xx⊤])
and ∥∆αt + ∆βtÂ∥2 ≥

lβly
2
min

8uβu((1+
lβl

2uβu ))x2
max

· δ2(∆βt)
2. By equation (11) and Lemma 8, we have

Kη2t−1 ≥
N∑

n=1

(
∆α⊤

t x̂n +∆βtÂx̂n

)2
≥ cN∥∆αt + Â∆βt∥2 ≥ clβly

2
min

8uβu((1 +
lβl

2uβu
))x2

max

·Nδ2(∆βt)
2,

which implies

∥θ̃t − θ∗∥2 = (1 + γ2
t )(∆βt)

2 ≤
C3Kη2t−1

Nδ2
(16)

(i)
≤

2C3Kη2t−1

λmin(Σ̂) +Nδ2
≤

2C3Kη2t−1

λmin(Σ̂) + (N ∧ (t− 1))δ2
,

where C3 =
8uβu((1+

lβl

2uβu ))x2
max

clβly2
min

(1+(
4x2

maxy
2
maxu

2

c2 ∨ 4y2
maxu

2

λmin(E[xx⊤])
)) and (i) holds since the assumption

that Nδ2 ≥ λmin(Σ̂). Then, by inequality (16), and proceeding as in Case 1, we have

Ex,y[(p̂(x, y)− pt(x, y))
2] ≥ δ2

2
−

(y2maxu
2
α + x2

maxu
2
β)C3Kη2t−1

4l4βNδ2
≥ δ2

4
,

where the last inequality holds since the assumption that δ2 ≥
√

(y2
maxu

2
α+x2

maxu
2
β)C3Kη2

t−1

l4βN
.

Case 4: ∆βt ̸= 0, γt ≤
√

4x2
maxy

2
maxu

2

c2 ∨
√

4y2
maxu

2

λmin(E[xx⊤])
and ∥∆αt + ∆βtÂ∥2 ≤

lβly
2
min

8uβu((1+
lβl

2uβu ))x2
max

· δ2(∆βt)
2. By optimizing the left hand of inequality (11) with respect to

∆αt, we have

Kη2t−1 ≥ min
α∈Rd1

Ex,y

[
N∑

n=1

(
α⊤x̂n +∆βtŷnp̂n

)2
+

t−1∑
s=1

(
α⊤x+∆βtyps(x, y)

)2]
(i)
≥

(
min

α∈Rd1

N∑
n=1

(
α⊤x̂i +∆βtŷip̂i

)2)

+
λmin(E[xxT ]−1/2Σ̂x,xE[xxT ]−1/2)

(t− 1) + λmin(E[xxT ]−1/2Σ̂x,xE[xxT ]−1/2)
Ex,y

[
t−1∑
s=1

(
α̃⊤x+∆βtyps(x, y)

)2]
=(Σ̂y,y − Σ̂y,xΣ̂

−1
x,xΣ̂x,y)(∆βt)

2

+
λmin(E[xxT ]−1/2Σ̂x,xE[xxT ]−1/2)

(t− 1) + λmin(E[xxT ]−1/2Σ̂x,xE[xxT ]−1/2)
Ex,y

[
t−1∑
s=1

(
α̃⊤x+∆βtyps(x, y)

)2]

≥(Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y)(∆βt)

2 +

λmin(Σ̂)
λmax(E[xxT ])

(∆βt)
2

(t− 1) + λmin(Σ̂)
λmax(E[xxT ])

Ex,y

[
t−1∑
s=1

(
−Â⊤x+ yps(x, y)

)2]

≥(Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y)(∆βt)

2 +
cN(∆βt)

2

(t− 1)x2
max + cN

Ex,y

[
t−1∑
s=1

(
−Â⊤x+ yps(x, y)

)2]
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≥(Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y)(∆βt)

2 +
cN(∆βt)

2y2min

(t− 1)x2
max + cN

Ex,y

[
t−1∑
s=1

(p̂(x, y)− ps(x, y))
2

]
(ii)
≥(Σ̂y,y − Σ̂y,xΣ̂

−1
x,xΣ̂x,y)(∆βt)

2 +
cN(t− 1)δ2y2min(∆βt)

2

(t− 1)x2
max + cN

(
1

4
∧ lβl

8uβu
)

(iii)
≥
(
λmin(Σ̂) +

cN(t− 1)δ2y2min

(t− 1)x2
max + cN

(
1

4
∧ lβl

8uβu
)

)
(∆βt)

2,

where α̃ := argminα∈Rd1

∑n
i=1

(
α⊤x̂i +∆βtŷip̂i

)2
= −Â∆βt. (i) follows from Lemma 2; (ii) is

obtained by induction and (iii) holds because Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y is the the Schur complement of

Σ̂x,x in Σ̂. Because xy
x+y ≥ x∧y

2 , there exists a positive constant C4 such that

∥θ̃t − θ∗∥2 = (1 + γ2
t )(∆βt)

2 ≤
C4Kη2t−1

λmin(Σ̂) + (N ∧ (t− 1))δ2
,

To provide an upper bound on Ex,y[(p̂(x, y)− pt(x, y))
2], we have

(∆βt)
2Ex,y[(−Â⊤x+ ypt(x, y))

2]

=Ex,y[(Â
⊤x∆βt +∆βtypt(x, y))

2]

≥1

2
Ex,y[(−∆α⊤

t x+∆βtypt(x, y))
2]− Ex,y[(∆α⊤

t x+∆βtÂ
⊤x)2]

(i)
≥ lβl

2uβu
Ex,y[(−∆α⊤

t x+∆βtyp
∗(x, y))2]− Ex,y[(∆α⊤

t x+∆βtÂ
⊤x)2]

≥ lβl(∆βt)
2

4uβu
Ex,y[(−Â⊤x+ yp∗(x, y))2]− (1 +

lβl

2uβu
)Ex,y[(∆α⊤

t x+∆βtÂ
⊤x)2]

≥ lβl(∆βt)
2y2minδ

2

4uβu
− (1 +

lβl

2uβu
)Ex,y[(∆α⊤

t x+∆βtÂ
⊤x)2],

where (i) holds by following the similar argument in [7, EC.12] and the above inequality implies

Ex,y[(Â
⊤x+ ypt(x, y))

2] ≥ lβly
2
minδ

2

4uβu
− (1 +

lβl

2uβu
)
Ex,y[(∆α⊤

t x+∆βtÂ
⊤x)2]

(∆βt)2

≥ lβly
2
minδ

2

4uβu
− (1 +

lβl

2uβu
)
x2
max∥∆αt +∆βtÂ∥2

(∆βt)2
≥ lβly

2
minδ

2

8uβu
,

where the last ineqaulity holds because ∥∆αt+∆βtÂ∥2 ≤ lβly
2
min

8uβu((1+
lβl

2uβu ))x2
max

·δ2(∆βt)
2. Therefore,

we have

Ex,y[(p̂(x, y)− pt(x, y))
2] ≥ 1

y2max

Ex,y[(Â
⊤x+ ypt(x, y))

2] ≥ lβly
2
minδ

2

8y2maxuβu
,

thereby finishing the proof of Lemma 9.

D.2.7 Proof of Lemma 10

By the definition of p̂(·, ·), we have

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ∗(x̂n, ŷn))
2 =

N∑
n=1

(
Â⊤x̂n

ŷn
− α⊤

∗ x̂n

2β∗ŷn
)2

≤ 1

y2min

(Â− α∗

2β∗
)⊤

(
N∑

n=1

x̂nx̂
⊤
n

)
(Â− α∗

2β∗
)

≤ Nx2
max

y2min

∥Â− α

2β
∥2
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≤ Nx2
max

y2minλmin(E[xxT ])
(Â− α∗

2β∗
)⊤E[xxT ](Â− α

2β
)

≤ Nx2
max

y2minλmin(E[xxT ])
E[(Â⊤x− α⊤

∗ x

2β∗
)2]

≤ Nx2
maxy

2
max

y2minλmin(E[xxT ])
Ex,y[(p̂(x, y)− p∗θ∗(x, y))

2].

Meanwhile, we have
N∑

n=1

(p̂(x̂n, ŷn)− p̂n)
2 =

N∑
n=1

(
Â⊤x̂n

ŷn
− p̂n)

2 ≤ 1

y2min

N∑
n=1

(−Â⊤x̂n + ŷnp̂n)
2

=
1

y2min

min
v∈Rd1

N∑
n=1

(u⊤x̂n + ŷnp̂n)
2.

Recall that Σ̂ =
∑N

i=1

[
x̂nx̂

⊤
n x̂np̂nŷ

⊤
n

ŷnp̂nx̂
⊤
n p̂2nŷ

2
n

]
=

[
Σ̂x,x Σ̂x,y

Σ̂y,x Σ̂y,y

]
. On one hand, by Assumption

2, we have

min
v∈Rd1

N∑
n=1

(u⊤x̂n + ŷnp̂n)
2 ≤ 2N(x2

max + u2y2max) ≤
2(x2

max + u2y2max)

c
· λmin(Σx,x).

On the other hand, we have

min
v∈Rd1

N∑
n=1

(u⊤x̂n + ŷnp̂n)
2 = Σ̂y,y − Σ̂y,xΣ̂

−1
x,xΣ̂x,y = λmin(Σ̂y,y − Σ̂y,xΣ̂

−1
x,xΣ̂x,y).

Therefore, we have
N∑

n=1

(p̂(x̂n, ŷn)− p̂n)
2 ≤

max{1, 2(x2
max+u2y2

max)
c }

y2min

·min{λmin(Σx,x), λmin(Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y)}

=
max{c, 2(x2

max + u2y2max)}
cy2min

· λmin(Σ̂),

where the last equality holds because Σ̂y,y − Σ̂y,xΣ̂
−1
x,xΣ̂x,y is the Schur complement of Σ̂x,x in the

matrix Σ̂. Therefore, we complete the proof of Lemma 10.

E Proof of Theorem 1

We first present the Lemma 13 that establishes an upper bound for Algorithm 1 without checking the
condition

min
θ∈C0

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ(x̂n, ŷn))
2 ≤ Nx2

maxy
2
max

y2minλmin(E[xxT ])
max{V 2,

1

λmin(Σ̂)
} and max{V 2,

1

λmin(Σ̂)
} ≤ T−1/2

(17)

and defer the proof of Lemma 13 to the end of this section.
Lemma 13. Let π be the Algorithm 1 without checking the condition (17), for any (θ′∗, θ∗) ∈
{(θ′, θ) ∈ Θ† ×Θ† : ∥θ′ − θ∥ ≤ V }, we have

Rπ
θ′
∗,θ∗

(T ) ∈ O

(
d1
√
T log T ∧ (V 2T +

d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d1T log2 T

λmin(Σ̂) + (N ∧ T )δ2

)
.

By Lemma 5, if θ∗ ∈ C0, for any θ ∈ C0, we have

∥θ − θ∗∥ ≤ 2w0,N =
λ
√

α2
max + β2

max

λ+ λmin(Σ̂)
+ V +

√
2 log(6T 2)√
λ+ λmin(Σ̂)

+
R
√
d1 + 1 +R

√
2 log(6T 2)√

λ+ λmin(Σ̂)
.
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which implies that if λmin(Σ̂) ≥
√
T , there exists constant L0 > 0 such that

∥θ − θ∗∥2 ≤ L0(V
2 +

d1 + log T

λmin(Σ̂)
), ∀θ ∈ C0. (18)

Let A be the event {minθ∈C0

∑N
n=1(p̂(x̂i, ŷi)−p∗θ(x̂i, ŷi))

2 ≤ Nx2
maxy

2
max

y2
minλmin(E[xxT ])

max{V 2, 1
λmin(Σ̂)

}}.
We now prove Theorem 1 by consider the following four cases.

Case 1: max{V 2, 1
λmin(Σ̂)

} ≥
√
T . In this case, the condition (17) does not hold. Then, by Lemma

13, the regret is bounded by

O

(
d
√
T log(T ) ∧ (V 2T +

dT log(T )

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d2T log2(T )

λmin(Σ̂) + (N ∧ T )δ2

)
.

Case 2: δ2 ≤ max{V 2, 1
λmin(Σ̂)

} ≤
√
T . In this case, if θ∗ ∈ C0, we have

min
θ∈C0

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ(x̂n, ŷn))
2 ≤

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ∗(x̂n, ŷn))
2

≤ Nx2
maxy

2
max

y2minλmin(E[xxT ])
Ex,y[(p̂(x, y)− p∗(x, y))2]

≤ Nx2
maxy

2
max

y2minλmin(E[xxT ])
max{V 2,

1

λmin(Σ̂)
},

where the second inequality holds by following Lemma 10. Therefore, if θ∗ ∈ C0, event A happens.
Then, we have

Rπ
θ′
∗,θ∗

(T ) = P(A) ·
T∑

t=1

E
[
r∗θ∗ (xt, yt)− rθ∗ (xt, yt, pt) | A

]
+ P(A∁) ·

T∑
t=1

E
[
r∗θ∗ (xt, yt)− rθ∗ (xt, yt, pt) | A∁

]
≲ Tδ2 + 1.

Case 3: max{V 2, 1
λmin(Σ̂)

} ≤
√
T and δ2 ≥ KNx2

maxy
2
max

y2
minλmin(E[xxT ])

(V 2 + d1+log T

λmin(Σ̂)
). The constant K

will be specified later. In this case, if θ∗ ∈ C0, there exists θ̃ ∈ C0 such that

min
θ∈C0

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ(x̂n, ŷn))
2

≥1

2

N∑
n=1

(p̂(x̂n, ŷn)− p∗θ∗(x̂n, ŷn))
2 −

N∑
n=1

(p∗
θ̃
(x̂n, ŷn)− p∗θ∗(x̂n, ŷn))

2

(i)
≥ KNx2

maxy
2
max

2y2minλmin(E[xxT ])
(V 2 +

d1 + log T

λmin(Σ̂)
)−

N(y2maxu
2
α + x2

maxu
2
β)∥θ̃ − θ∗∥2

4l4β

(ii)
≥ KNx2

maxy
2
max

2y2minλmin(E[xxT ])
(V 2 +

d1 + log T

λmin(Σ̂)
)−

NL0(y
2
maxu

2
α + x2

maxu
2
β)

4l4β
(V 2 +

d1 + log T

λmin(Σ̂)
)

≥ KNx2
maxy

2
max

4y2minλmin(E[xxT ])
(V 2 +

d1 + log T

λmin(Σ̂)
)

>
Nx2

maxy
2
max

4y2minλmin(E[xxT ])
max{V 2,

1

λmin(Σ̂)
}.

where (i) holds by following Lemma 4, (ii) holds because of ineqaulity (18) and the last two

inequalities holds because we choose K = max{5, L0(y
2
maxu

2
α+x2

maxu
2
β)y

2
minλmin(E[xxT ])

4l4βx
2
maxy

2
max

}. The above
inequality implies event A does not happen. Therefore, we have

Rπ
θ′
∗,θ∗

(T ) = P(A) ·
T∑

t=1

E
[
r∗θ∗ (xt, yt)− rθ∗ (xt, yt, pt) | A

]
+ P(A∁) ·

T∑
t=1

E
[
r∗θ∗ (xt, yt)− rθ∗ (xt, yt, pt) | A∁

]

27



≲ ϵT +O

(
d1
√
T log T ∧ (V 2T +

d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d1T log2 T

λmin(Σ̂) + (N ∧ T )δ2

)

∈ O

(
d1
√
T log T ∧ (V 2T +

d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d1T log2 T

λmin(Σ̂) + (N ∧ T )δ2

)
.

Case 4: max{V 2, 1
λmin(Σ̂)

} ≤
√
T and max{V 2, 1

λmin(Σ̂)
} ≤ δ2 ≤ KNx2

maxy
2
max

y2
minλmin(E[xxT ])

(V 2 +
d1+log T

λmin(Σ̂)
). In this case, we have

δ2T ≲ V 2T +
d1T + T log T

λmin(Σ̂)

≲ d1
√
T log T ∧ (V 2T +

d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d1T log2 T

λmin(Σ̂) + (N ∧ T )δ2
.

Therefore, no matter if event A holds or not, we have

Rπ
θ′
∗,θ∗

(T ) ∈ O

(
d1
√
T log T ∧ (V 2T +

d1T log T

λmin(Σ̂)
) ∧ λmax(Σ̂)V

2T log T + d1T log2 T

λmin(Σ̂) + (N ∧ T )δ2

)
,

thereby completing the proof of Theorem 1.

E.1 Proof of Lemma 13

E.1.1 Regret is O(d1
√
T log T )

For any t ≥ 1, suppose θ∗ ∈ Ct−1, then from the definition of (pt, θ̃t), we have

r∗θ∗(xt, yt)− rθ∗(xt, yt, pt) = p∗θ∗(xt, yt)(α
⊤
∗ xt + β∗ytp

∗
θ∗(xt, yt))− pt(α

⊤
∗ xt + β∗ytpt)

≤ pt(α̃
⊤
t xt + β̃tytpt)− pt(α

⊤
∗ xt + β∗ytpt)

≤ u∥At∥V −1
t−1

∥θ̃t − θ∗∥Vt−1

≤ 2uwt−1∥At∥V −1
t−1

≤ max{2u, 2u(uα + uβu)}wT

(
∥At∥V −1

t−1
∧ 1
)
,

where we define At =
[
x⊤
t , ytpt

]⊤ ∈ Rd1+1 and the last equality holds because |r(θ, x, p)| ≤
u(uα + uβu) and wT ≥ max{1, wt}. Therefore, we have

T∑
t=1

r∗θ∗(xt, yt)− rθ∗(xt, yt, pt) ≤ max{2u, 2u(uα + uβu)}wT

√
T

√√√√ T∑
t=1

(
∥At∥2V −1

t−1

∧ 1

)
(i)
≤ max{2u, 2u(uα + uβu)}wT

√
T

√
2(d1 + 1) log

(
(d1 + 1)λ+ TL2

(d1 + 1)λ

)
(ii)
∈ O(d1

√
T log T ).

where (i) follows from [17, Lemma 19.4], and we use the same notation L =
√
x2
max + y2maxu

2 as in
the proof of Lemma 6. Moreover, (ii) holds because wt ∈ O

(√
(d1 + 1) log T

)
by setting δ = 1/T 2.

Therefore, we have that the expected regret of Algorithm 1 without checking the condition (17) is
bounded as

T∑
t=1

E[r∗θ∗(xt, yt)− rθ∗(xt, yt, pt)] ∈ O(d1
√
T log T ) + 2u(uα + uβu)

T∑
t=1

1

T 2
∈ O(d1

√
T log T ).
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E.1.2 Rerget is O
(
V 2T + d1T log T

λmin(Σ̂)

)
By subsection E.1.1, it is trivial if λmin(Σ̂) ≤ T 1/2. If λmin(Σ̂) ≥ T 1/2, for any t ≥ 1, suppose
θ∗ ∈ Ct−1, then from the definition of (pt, θ̃t), we have

r∗θ∗(xt, yt)− rθ∗(xt, yt, pt) = p∗θ∗(xt, yt)(α
⊤
∗ xt + β∗ytp

∗
θ∗(xt, yt))− pt(α

⊤
∗ xt + β∗ytpt)

= −(β∗yt)(p
∗
θ̃t
(xt, yt)− p∗θ∗(xt, yt))

2

(i)
≤

uβ(y
2
maxu

2
α + x2

maxu
2
β)∥θ̃t − θ∗∥2

4l4β
(19)

≤
uβ(y

2
maxu

2
α + x2

maxu
2
β)ŵ

2
t,n

4l4β

(ii)
∈ O

(
V 2 +

d1 log T

λmin(Σ̂)

)
,

where (i) holds by following Lemma 4 and (ii) holds because ŵt,n ∈ O
(
V +

√
d1 log T√
λmin(Σ̂)

) by setting

δ = 1/T 2. Therefore, we have that the expected regret of Algorithm 1 without checking the condition
(17) is bounded as

T∑
t=1

E[r∗(θ∗, xt)− r(θ∗, xt, pt)] ∈ O

(
V 2T +

d1T log T

λmin(Σ̂)

)
+ 2u(uα + uβu)

T∑
t=1

1

T 2

∈ O

(
V 2T log T +

d1T log T

λmin(Σ̂)

)
.

E.1.3 Regret is O
(

λmax(Σ̂)V 2T log T+d1T log2(T )

λmin(Σ̂)+(N∧T )δ2

)
By subsection E.1.1, it is trivial if λmin(Σ̂) + (N ∧ T )δ2 ≲ T 1/2 log T . By subsection E.1.2,
it is trivial if λmin(Σ̂) ≳ (N ∧ T )δ2. Therefore, if λmin(Σ̂) + (N ∧ T )δ2 ≳ T 1/2 log T and
λmin(Σ̂) ≲ (N ∧ T )δ2, we have λmin(Σ̂) ≲ Nδ2 and δ2 ≳ log T√

N
. Then, by inequality (19) and

applying Lemma 9, for any t ≥ 1, suppose θ∗ ∈ Ct−1, we have
T∑

t=1

E[r∗θ∗(xt, yt)− rθ∗(xt, yt, pt)] ∈ O

(
T∑

t=1

η2T
λmin(Σ̂) + (N ∧ t)δ2

)
+ 2u(uα + uβu)

T∑
t=1

1

T 2

∈ O

(
T∑

t=1

λmax(Σ̂)V
2 + d1 log T

λmin(Σ̂) + (N ∧ t)δ2

)
+ 2u(uα + uβu)

T∑
t=1

1

T 2
,

where the last inequality holds because η2T ∈ O(w2
T,N ) ∈ O(λmax(Σ̂)V

2 + d1 log T ). If T ≤ N ,
we have

O

(
T∑

t=1

λmax(Σ̂)V
2 + d1 log T

λmin(Σ̂) + (N ∧ t)δ2

)
∈ O

(
T∑

t=1

λmax(Σ̂)V
2 + d1 log T

tδ2

)

∈ O

(
T∑

t=1

λmax(Σ̂)V
2 log T + d1 log

2(T )

δ2

)

∈ O

(
T∑

t=1

λmax(Σ̂)V
2T log T + d1T log2(T )

(N ∧ T )δ2

)

∈ O

(
λmax(Σ̂)V

2T log T + d1T log2(T )

λmin(Σ̂) + (N ∧ T )δ2

)
.

If T ≥ N , we have

O

(
T∑

t=1

λmax(Σ̂)V
2 + d1 log T

λmin(Σ̂) + (N ∧ t)δ2

)
∈ O

(
N∑
t=1

λmax(Σ̂)V
2 + d1 log T

λmin(Σ̂) + tδ2

)
+O

(
T∑

t=N+1

λmax(Σ̂)V
2 + d1 log T

λmin(Σ̂) +Nδ2

)
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∈ O

(
N∑
t=1

λmax(Σ̂)V
2 + d1 log T

tδ2

)
+O

(
λmax(Σ̂)V

2T + d1T log T

λmin(Σ̂) +Nδ2

)

∈ O

(
λmax(Σ̂)V

2 log(N) + d1 log T log(N)

δ2

)
+O

(
λmax(Σ̂)V

2T + d1T log T

λmin(Σ̂) +Nδ2

)

∈ O

(
λmax(Σ̂)V

2T log T + d1T log2(T )

(N ∧ T )δ2

)
,

thereby completing the proof of Lemma 13.

F Proof of Theorem 2

For simplicity, we provide the proof under the assumption that

ϵt
i.i.d.∼ N (0, 1) and ϵ̂n

i.i.d.∼ N (0, 1).

The proof proceeds in two principal steps F.1 and F.2. In the first step F.1, we will show that for any
policy π ∈ Π, we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧max{ T

δ−2 + V −2
,

T

δ−2 + (N ∧ T )δ2 + λmin(Σ̂)
}
)
.

In the second step F.2, we will show that for any admissible policy π ∈ Π◦, if either of the following
conditions holds: 1) V 2 ∈ Ω(T−1/2), or 2) λmin(Σ̂) ∈ O(

√
T ) and δ2 ∈ O(T−1/2), we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω̃(
√
T ).

Therefore, if δ2 ≲ max{V 2, 1
λmin(Σ̂)

} ≲ T−1/2, we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧max{ T

δ−2 + V −2
,

T

δ−2 + λmin(Σ̂)
}
)

∈ Ω(δ2T ),

where the first inequality holds because (n ∧ T )δ2 ≤ Tδ2 ≲
√
T .

If δ2 ≳ T−1/2 and V 2 ≲ T−1/2, we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧max{ T

V −2
,

T

(N ∧ T )δ2 + λmin(Σ̂)
}
)

∈ Ω
(√

T ∧ V 2T +
T

(N ∧ T )δ2 + λmin(Σ̂)

)
.

If max{V 2, 1
λmin(Σ̂)

} ≲ δ2 ≲ T−1/2, we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧max{ T

V −2
,

T

λmin(Σ̂)
}
)

Ω
(√

T ∧ V 2T +
T

λmin(Σ̂)

)
∈ Ω

(√
T ∧ V 2T +

T

(N ∧ T )δ2 + λmin(Σ̂)

)
.

Therefore, combining all the cases analyzed above completes the proof of Theorem 2.

F.1 Details for step 1

Let Ht = (ε̂1, . . . , ε̂N , ε1, . . . , εt−1, x1, . . . , xt−1, y1, . . . , yt−1) denotes the history before time
t − 1. We define w = (θ′∗, θ∗) ∈ J . Then, we first apply the multivariate van Trees inequality to
provide part of the lower bound in Theorem 2. Given w ∈ J , Ht has the Fisher information matrix:

Iπ
t (Ht) = Eπ

θ′
∗,θ∗

It(Ht),
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where

It(Ht) =


∑N

i=1 x̂ix̂
⊤
i

∑N
i=1 x̂ip̂iŷi 0 0∑N

i=1 p̂iŷix̂
⊤
i

∑N
i=1 p̂

2
i ŷ

2
i 0 0

0 0
∑t−1

i=1 xix
⊤
i

∑t−1
i=1 xipiyi

0 0
∑t−1

i=1 piyix
⊤
i

∑t−1
i=1 p

2
i y

2
i

 .

Given a prior distribution q(·) for w on a subspace W1 ⊆ J , which we shall specify later, by applying
the multivariate van Trees inequality, we obtain

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ≥ sup
w∈W1

Rπ
θ′
∗,θ∗

(T ) ≥ lβ

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ(xt, yt))
2]

= lβ

T∑
t=1

Ext,ytEqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2]

≥ lβ

T∑
t=1

Ext

[
(Eq[C(w)⊤

∂p∗
θ∗ (xt,yt)

∂w ])2
]

I(q) + EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)]
,

where I(q) =
∫
W1

(∑2d1+2
j=1

∑2d1+2
k=1

∂
∂wj

(Cj(w)q(w))
∂

∂wk
(Ck(w)q(w))

)
1

q(w)dw and C(·) :

R2d1+2 → R2d1+2 is a function of w that are waiting to be specified later. In what follows, we will
specify the subspace W1, prior q and functions C(·) to achieve part of the desired lower bound.

We consider the subspace W1 defined as follows:

{(θ′∗, θ∗) ∈ R2d1+2 | θ∗ − ϵV ≤ θ′∗ ≤ θ∗ + ϵV and θ̄ − ϵδ ≤ θ∗ ≤ θ̄ + ϵδ}

where there always exist θ̄ and ϵ such that W1 ⊆ J . We choose the prior q(·) defined on the W1 as
follows:

q(θ′∗, θ∗) =
1

ϵ2d1+2V d1+1δd1+1
cos2

(
π (β′

∗ − β∗)

2ϵV

)
cos2

(
π
(
β∗ − β̄

)
2ϵδ

)

·
d1∏
i=1

cos2

(
π
(
α′
∗,i − α∗,i

)
2ϵV

)
cos2

(
π (α∗,i − ᾱi)

2ϵδ

)
.

In the following, we provide lower bounds by choosing 3 different functions C(·).

Step 1.1: If we choose C(w) = (0, 0, α∗, 2β∗), then the following calculation applies:

EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)] =

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(α⊤
∗ xj + 2β∗yjpj)

2]

≤ 4u2
β

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2];

Ext,yt

[
(Eq[C(w)⊤

∂p∗θ∗(xt, yt)

∂w
])2
]
= Ext,yt

[
(Eq[

α⊤
∗ xt

2β∗yt
])2
]
∈ Ω(1);

I(q) ∈ O((1 +
1

δ
+

1

V
)2).

The above three inequalities imply that

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2] ∈ Ω

(
T∑

t=1

1

O((1 + 1
δ + 1

V )2) +
∑t−1

j=1 EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))2]

)

∈ Ω

(
T

δ−2 + V −2 +
∑T

t=1 EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))2]

)
.
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Then, by the fact ([31, EC.18]) that

x2 + bx+ c ≥ 0 for b > 0, c < 0, x ≥ 0 implies x ≥ 1√
2 + 1

min

{√
|c|, 2|c|

b

}
, (20)

we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ T

δ−2 + V −2

)
. (21)

Step 1.2: If we choose C(w) = (α∗, 2β∗, α∗, 2β∗), then the following calculation applies:

EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)]

=

N∑
i=1

(α⊤
∗ x̂i + 2β∗ŷip̂i)

2 +

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(α⊤
∗ xj + 2β∗yjpj)

2]

≤4u2
β

N∑
i=1

(p∗θ∗(x̂i, ŷi)− p̂i)
2 + 4u2

β

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2]

≤8u2
β

N∑
i=1

(p∗θ∗(x̂i, ŷi)− p̂(x̂i, ŷi))
2 + 8u2

β

N∑
i=1

(p̂(x̂i, ŷi)− p̂i)
2 + 4u2

β

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2]

≲Nδ2 + λmin(Σ̂) +

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2],

where the last inequality holds by Lemma 10. We also have

Ext,yt

[
(Eq[C(w)⊤

∂p∗θ∗(xt, yt)

∂w
])2
]
= Ext,yt

[
(Eq[

α⊤
∗ xt

2β∗yt
])2
]
∈ Ω(1) and I(q) ∈ O((1 +

1

δ
)2).

The above inequalities imply that

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2]

∈Ω

(
T∑

t=1

1

O((1 + 1
δ )

2) +Nδ2 + λmin(Σ̂) +
∑t−1

j=1 EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))2]

)

∈Ω

(
T

δ−2 +Nδ2 + λmin(Σ̂) +
∑T

t=1 EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))2]

)
.

Therefore, by the fact (20), we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ T

δ−2 +Nδ2 + λmin(Σ̂)

)
. (22)

Step 1.3: If we choose C(w) = (−Â, 1,−Â, 1), then the following calculation applies:

EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)] =

N∑
i=1

(−Â⊤x̂i + ŷip̂i)
2 +

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(−Â⊤xj + yjpj)
2]

≤y2max

N∑
i=1

(p̂(x̂i, ŷi)− p̂i)
2 + y2max

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(p̂(xj , yj)− pj)
2]

≲λmin(Σ̂) + (t− 1)δ2 +

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2],
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where the last inequality holds by Lemma 10. We also have

Ext,yt

[
(Eq[C(w)⊤

∂p∗θ∗(xt, yt)

∂w
])2
]
= Ext,yt

[
(Eq[

Â⊤xt

2β∗yt
+

α⊤
∗ xt

2β2
∗yt

])2

]
∈ Ω(1) and I(q) ∈ O((1 +

1

δ
)2).

The above inequalities imply that
T∑

t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2] ∈ Ω

(
T

δ−2 + Tδ2 + λmin(Σ̂) +
∑T

t=1 EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))2]

)
.

Therefore, by the fact (20), we have

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ T

δ−2 + Tδ2 + λmin(Σ̂)

)
. (23)

Combining the lower bounds in (22) and (23), we obtain

sup
(θ′

∗,θ∗)∈J
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ T

δ−2 + (N ∧ T )δ2 + λmin(Σ̂)

)
. (24)

F.2 Details for step 2

In this step, we show that if either of the following conditions holds:

1. V ∈ Ω(T−1/4), or

2. λmin(Σ̂) ∈ O(
√
T ) and δ2 ∈ O(T−1/2),

then for any admissible policy π ∈ Πo, there exists (θ′∗, θ∗) ∈ Θ† ×Θ† satisfying ∥θ − θ̂∥ ≤ V and
Ex,y[(p̂(x, y)− p∗θ∗(x, y))

2] ∈ Θ(δ2) such that

Rπ
θ′
∗,θ∗

(T ) ∈ Ω

( √
T

(log T )λ0

)
.

We first define two vectors of offline demand parameters and two vectors of online demand parameters
as follows:

θ′1 = (α′
1, β

′
1), θ1 = (α1, β1), θ′2 = (α′

2, β
′
2), θ2 = (α2, β2).

We consider Pπ
1 and Pπ

2 to be the probability measures induced by a common policy π, with two
different sets of demand parameters (θ′1, θ1) and (θ′2, θ2), respectively. Formally, for each i = 1, 2,

Pπ
i

(
D̂1, . . . D̂N , x1, . . . , xT , y1, . . . , yT , D1, . . . , DT

)
=PX (x1, . . . , xT )PY (y1, . . . , yT )

N∏
i=1

ϕ
(
D̂i − (α̂⊤x̂i + β̂ŷip̂i)

)
·

T∏
t=1

ϕ
(
Dt − (α⊤xt + βytpt)

)
,

where PX (x1, . . . , xT )PY (y1, . . . , yT ) denotes the probability measure of online features and

ϕ(x) = 1√
2π

e
−x2

2 is the density function of the standard normal distribution. Therefore, we have

KL (Pπ
1 , P

π
2 ) =

1

2

N∑
i=1

[
(α′

1 − α′
2)

⊤
x̂i + (β′

1 − β′
2)ŷip̂i

]2
+

1

2

T∑
t=1

Eπ
θ′
1,θ1

[(
(α1 − α2)

⊤
xt + (β1 − β2)ytpt

)2]
.

(25)

Step 2.1: When V ∈ Ω(T−1/4), we set

θ′1 = θ′2, α2 = (1−∆)α1, β2 = (1− 2∆)β1,

where ∆ < 1/2 and (θ′1, θ1) satisfies ∥θ′1 − θ1∥ ≤ V and Ex,y[(p̂(x, y) − p∗θ1(x, y))
2] ∈ Θ(δ2).

Then, by equation (25), we have

KL (Pπ
1 , P

π
2 ) =

∆2

2

T∑
t=1

Eπ
θ′
1,θ1

[(
α⊤
1 xt + 2β1ytpt

)2]
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≤ 2∆2u2
β

T∑
t=1

Eπ
θ′
1,θ1

[(
pt − p∗θ1(xt, yt)

)2]
. (26)

Then, we define two sequences of intervals I1,t and I2,t for all t ∈ [T ] as follows:

Ii,t =

[
p∗θi(xt, yt)−

∆l

4(1− 2∆)
, p∗θi(xt, yt) +

∆l

4(1− 2∆)

]
,∀i ∈ [2].

For any (x, y) ∈ X × Y , we have

|p∗θ1(x, y)− p∗θ2(x, y)| =
∆

1− 2∆
p∗θ1(x, y) ≥

∆l

1− 2∆
,

which implies I1,t ∩ I2,t = ∅ for every t ∈ [T ]. Then, we have

Rπ
θ′
1,θ1

(T ) +Rπ
θ′
2,θ2

(T ) ≥ lβ

(
T∑

t=1

Eπ
θ′
1,θ1

[(
pt − p∗θ1(xt, yt)

)2]
+

T∑
t=1

Eπ
θ′
2,θ2

[(
pt − p∗θ2(xt, yt)

)2])

≥ ∆2l2lβ
16(1− 2∆)2

T∑
t=1

(Pπ
1 (pt /∈ I1,t) + Pπ

2 (pt /∈ I2,t))

≥ ∆2l2lβ
16(1− 2∆)2

T∑
t=1

(Pπ
1 (pt /∈ I1,t) + Pπ

2 (pt ∈ I1,t))

≥ ∆2l2lβ
32(1− 2∆)2

T exp(−KL (Pπ
1 , P

π
2 )). (27)

By the definition of admissible policy, we have

Rπ
θ′
1,θ1

(T ) +Rπ
θ′
2,θ2

(T ) ≤ 2K0

√
T (log T )λ0 . (28)

Therefore, combining inequalities (26), (27) and (28), we have

Rπ
θ′
1,θ1

(T ) ≥ lβ

T∑
t=1

Eπ
θ′
1,θ1

[(
pt − p∗θ1(xt, yt)

)2] ≥ lβ
2∆2u2

β

KL (Pπ
1 , P

π
2 )

≥ lβ
2∆2u2

β

log

( √
T∆2l2lβ

64K0(1− 2∆)2(log T )λ0

)
.

Then, by setting ∆2 ∈ Θ( (log T )λ0
√
T

) such that
√
T∆2l2lβ

64K0(1−2∆)2(log T )λ0
> 1, we have Rπ

θ′
1,θ1

(T ) ∈

Ω(
√
T

(log T )λ0
)

Step 2.2: When V ∈ O(T−1/4), λmin(Σ̂) ∈ O(
√
T ) and δ2 ≤ l2

2 T
−1/2, we set

θ′1 = θ1, θ′2 = θ2, α1 − α2 = −Â(β1 − β2) and β2 = (1−∆)β1,

and (θ′1, θ1) satisfies Ex,y[(p̂(x, y)− p∗θ1(x, y))
2] ∈ Θ(δ2). Then, by equation (25), we have

KL (Pπ
1 , P

π
2′) ≤

1

2

N∑
i=1

[
(α1 − α2)

⊤
x̂i + (β1 − β2) ŷip̂i

]2
+

1

2

T∑
t=1

Eπ
θ′
1,θ1

[(
(α1 − α2)

⊤
xt + (β1 − β2) ytpt

)2]

≤ ∆2y2maxβ
2
max

2

N∑
i=1

(p̂i − p̂(x̂i, ŷi))
2 +

∆2y2maxβ
2
max

2

T∑
t=1

Eπ
θ′
1,θ1

[
(p̂(xt, yt)− pt)

2
]

≲ ∆2

(
λmin(Σ̂) + Tδ2 +

T∑
t=1

Eπ
θ′
1,θ1

[
(p̂(xt, yt)− pt)

2
])

. (29)

Then, we define two sequences of price function classes I1,t and I2,t for all t ∈ [T ] as follows:

Ii,t = {pt : X × Y → [l, u], Ex,y[(pt(x, y)− p∗θi(x, y))
2] ≤ ∆2l2

32(1−∆)2
},∀i ∈ [2].
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For any (x, y) ∈ X × Y , we have

Ex,y[(p
∗
θ1(x, y)− p∗θ2(x, y))

2] = Ex,y[(
α⊤
1 x

2β1y
− α⊤

2 x

2β2y
)2]

= Ex,y[(
α⊤
1 x

2β1y
− (α1 + Â∆β1)

⊤x

2(1−∆)β1y
)2]

=
∆2

4(1−∆)2
· Ex,y[(

α⊤
1 x+ β1Â

⊤x

β1y
)2]

=
∆2

4(1−∆)2
· Ex,y[(2p

∗
θ1(x, y)− p̂(x, y))2]

≥ ∆2

4(1−∆)2
·
(
Ex,y[p

∗
θ1(x, y)

2]− 1

2
Ex,y[(p

∗
θ1(x, y)− p̂(x, y))2]

)
≥ ∆2

4(1−∆)2
(l2 − δ2) ≥ ∆2l2

8(1−∆)2
,

where the last inequality holds because δ2 ≤ l2

2 T
−1/2 ≤ l2

2 . which implies I1,t ∩ I2,t = ∅ for every
t ∈ [T ]. Then, we have
Rπ

θ′
1,θ1

(T ) +Rπ
θ′
2,θ2

(T )

≥lβ

(
T∑

t=1

Eπ
θ′
1,θ1

[(
pt − p∗θ1(xt, yt)

)2]
+

T∑
t=1

Eπ
θ′
2,θ2

[(
pt − p∗θ2(xt, yt)

)2])

≥lβ

(
T∑

t=1

Eπ
θ′
1,θ1,Ft−1

[
Ex,y

[(
pt(x, y)− p∗θ1(x, y)

)2]]
+

T∑
t=1

Eπ
θ′
2,θ2,Ft−1

[
Ex,y

[(
pt(x, y)− p∗θ2(x, y)

)2]])

≥ ∆2l2lβ
32(1−∆)2

(
T∑

t=1

(Pπ
1 (pt /∈ I1,t) + Pπ

2 (pt /∈ I2,t))

)

≥ ∆2l2lβ
32(1−∆)2

(
T∑

t=1

(Pπ
1 (pt /∈ I1,t) + Pπ

2 (pt ∈ I1,t))

)

≥ ∆2l2lβ
64(1−∆)2

T exp(−KL (Pπ
1 , P

π
2 )). (30)

Therefore, combining inequalities (29), (30) and (28), we have

Rπ
θ′
1,θ1

(T ) ≥ lβ

T∑
t=1

Eπ
θ′
1,θ1

[(
pt − p∗θ1(xt, yt)

)2]
≳

1

∆2
KL (Pπ

1 , P
π
2 )− Tδ2 − λmin(Σ̂)

≥ 1

∆2
log

( √
T∆2l2lβ

128K0(1−∆)2(log T )λ0

)
− Tδ2 − λmin(Σ̂).

Then, because δ2 ≤ l2

2 T
−1/2 and λmin(Σ̂), we can always set ∆2 ∈ Θ( (log T )λ0

√
T

) such that
√
T∆2l2lβ

64K0(1−2∆)2(log T )λ0
> 1 and Rπ

θ′
1,θ1

(T ) ∈ Ω(
√
T

(log T )λ0
).

G Proof of Theorem 4

The proof of Theorem 4 is similar to that of Theorem 2. Hence, we only highlight the key differences
here. For simplicity, we provide the proof under the assumption that

ϵt
i.i.d.∼ N (0, 1) and ϵ̂n

i.i.d.∼ N (0, 1).

Let Ht = (ε̂1, . . . , ε̂N , ε1, . . . , εt−1, x1, . . . , xt−1, y1, . . . , yt−1) denotes the history before time
t − 1. We define w = (θ′∗, θ∗) ∈ J̄ . Then, we first apply the multivariate van Trees inequality to
provide part of the lower bound in Theorem 4. Given w ∈ J̄ , Ht has the Fisher information matrix:

Iπ
t (Ht) = Eπ

θ′
∗,θ∗

It(Ht),
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where

It(Ht) =


∑N

i=1 x̂ix̂
⊤
i

∑N
i=1 x̂ip̂iŷ

⊤
i 0 0∑N

i=1 ŷip̂ix̂
⊤
i

∑N
i=1 ŷip̂

2
i ŷ

⊤
i 0 0

0 0
∑t−1

i=1 xix
⊤
i

∑t−1
i=1 xipiy

⊤
i

0 0
∑t−1

i=1 yipix
⊤
i

∑t−1
i=1 yip

2
i y

⊤
i

 .

Given a prior distribution q(·) for w on a subspace W1 ⊆ J̄ , which we shall specify later, by applying
the multivariate van Trees inequality, we obtain

sup
(θ′

∗,θ∗)∈J̄
Rπ

θ′
∗,θ∗

(T ) ≥ sup
w∈W1

Rπ
θ′
∗,θ∗

(T ) ≥ lβ

T∑
t=1

Ext

[
(Eq[C(w)⊤

∂p∗
θ∗ (xt,yt)

∂w ])2
]

I(q) + EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)]
,

where I(q) =
∫
W1

(∑2d1+2d2

j=1

∑2d1+2d2

k=1
∂

∂wj
(Cj(w)q(w))

∂
∂wk

(Ck(w)q(w))
)

1
q(w)dw and C(·) :

R2d1+2d2 → R2d1+2d2 is a function of w that are waiting to be specified later. In what follows, we
provide lower bounds by specifing two different the subspaces W1, priors q and functions C(·) to
achieve part of the desired lower bound.

Step 1: We consider the subspace W1 defined as follows:

{(θ′∗, θ∗) ∈ R2d1+2d2 | θ∗ − ϵV ≤ θ′∗ ≤ θ∗ + ϵV and θ̄ − ϵV ≤ θ∗ ≤ θ̄ + ϵV }

where there always exist θ̄ and ϵ such that W1 ⊆ J̄ . We choose the prior q(·) defined on the W1 as
follows:

q(θ′∗, θ∗) =
1

ϵ2d1+2d2V 2d1+2d2

d1∏
i=1

cos2

(
π
(
α′
∗,i − α∗,i

)
2ϵV

)
cos2

(
π (α∗,i − ᾱi)

2ϵV

)

·
d2∏
j=1

cos2

(
π
(
β′
∗,j − β∗,j

)
2ϵV

)
cos2

(
π
(
β∗,j − β̄j

)
2ϵV

)
.

We choose C(w) = (0, 0, α∗, 2β∗), then the following calculation applies:

EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)] =

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(α⊤
∗ xj + 2β⊤

∗ yjpj)
2]

≤ 4u2
β

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))
2];

Ext,yt

[
(Eq[C(w)⊤

∂p∗θ∗(xt, yt)

∂w
])2
]
= Ext,yt

[
(Eq[

α⊤
∗ xt

2β⊤
∗ yt

])2
]
∈ Ω(1);

I(q) ∈ O((1 +
1

V
)2).

The above three inequalities imply that

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2] ∈ Ω

(
T∑

t=1

1

O((1 + 1
V )2) +

∑t−1
j=1 EqEπ

θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))2]

)

∈ Ω

(
T

V −2 +
∑T

t=1 EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))2]

)
,

which implies

sup
(θ′

∗,θ∗)∈J̄
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ V 2T
)
.
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Step 2: Let θ̃ = (α̃, β̃) be the eigenvector of Σ̂ corresponding to the eigenvalue λmin(Σ̂), normal-
ized so that ∥θ̃∥2 = ∥α∗∥2 + 4∥β∗∥2. We define

δ2 := Ex,y[((α∗ − α̃)⊤x)2] + u2Ex,y[((2β∗ − β̃)⊤y)2].

Because we have no restriction on δ2, we focus on the case that 1
λmin(Σ̂)

≲ δ2 ≲ T−1/2 and consider
the subspace W1 defined as follows:

{(θ′∗, θ∗) ∈ R2d1+2d2 | θ∗ − ϵV ≤ θ′∗ ≤ θ∗ + ϵV and θ̄ − ϵδ ≤ θ∗ ≤ θ̄ + ϵδ},

where there always exist θ̄ and ϵ such that W1 ⊆ J̄ and 1
λmin(Σ̂)

≲ δ2 ≲ T−1/2. We choose the prior
q(·) defined on the W1 as follows:

q(θ′∗, θ∗) =
1

ϵ2d1+2d2V d1+d2δd1+d2

d1∏
i=1

cos2
(
π (α̂i − αi)

2ϵV

)
cos2

(
π (αi − ᾱi)

2ϵδ

)

·
d2∏
i=1

cos2

π
(
β̂i − βi

)
2ϵV

 cos2

(
π
(
βi − β̄i

)
2ϵδ

)
.

We choose C(w) = (α̃, β̃, α̃, β̃), then the following calculation applies:

EqEπ
θ′
∗,θ∗

[C(w)⊤It(Ht)C(w)]

=λmin(Σ̂) +

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(α̃⊤xj + β̃⊤yjpj)
2]

≤λmin(Σ̂) + 4TEx,y[((α∗ − α̃)⊤x)2] + 4u2TEx,y[((2β∗ − β̃)⊤y)2] + 2

t−1∑
j=1

EqEπ
θ′
∗,θ∗

[(α⊤
∗ xj + 2β⊤

∗ yjpj)
2]

≤λmin(Σ̂) + 4Tδ2 + 8u2
β

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2];

Ext,yt

[
(Eq[C(w)⊤

∂p∗θ∗(xt, yt)

∂w
])2
]
∈ Ω(1); and I(q) ∈ O((1 +

1

δ
)2).

The above three inequalities imply that

T∑
t=1

EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))
2]

∈Ω

(
T∑

t=1

1

O((1 + 1
δ )

2) + λmin(Σ̂) + tδ2 +
∑t−1

j=1 EqEπ
θ′
∗,θ∗

[(pj − p∗θ∗(xj , yj))2]

)

∈Ω

(
T

δ−2 + λmin(Σ̂) + Tδ2 +
∑T

t=1 EqEπ
θ′
∗,θ∗

[(pt − p∗θ∗(xt, yt))2]

)
,

which implies

sup
(θ′

∗,θ∗)∈J̄
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧ T

δ−2 + λmin(Σ̂) + Tδ2

)
∈ Ω

(√
T ∧ T

λmin(Σ̂)

)
,

where the last inequality holds because 1
λmin(Σ̂)

≲ δ2 ≲ T−1/2. Hence, combining the two lower
bounds obtained in the above steps, we have

sup
(θ′

∗,θ∗)∈J̄
Rπ

θ′
∗,θ∗

(T ) ∈ Ω
(√

T ∧
(
V 2T +

T

λmin(Σ̂)

))
,

thereby completing the proof of Theorem 4.
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H Proof of Theorem 5

We begin by presenting Lemma 14, which establishes how closely the empirical bias ∥θ̂′∗ − θ̂∗∥
approximates the exact bias ∥θ′∗ − θ∗∥ and defer the proof of Lemma 14 to the end of this section.

Lemma 14. Let {(D̂n, x̂n, ŷn, p̂n)}Nn=1 denote the offline data and {(Dt, xt, yt, pt)}T
′

t=1 the obser-
vations collected during the test phase of Algorithm 3. Under Assumption 1, if T ′ = Ω(log T ), then
with probability at least 1− 2ϵ

3 , we have

|∥θ′∗ − θ∗∥ − ∥θ̂′∗ − θ̂∗∥| ≤f and

f :=
λ
√
α2
max + β2

max

λ+ λmin(Σ̂)
+

R
√
d1 + d2 +R

√
2 log(3/ϵ)√

λ+ λmin(Σ̂)

+
λ
√
α2
max + β2

max

λ+ λmin(ΣT ′)
+

R
√
d1 + d2 +R

√
2 log(3/ϵ)√

λ+ λmin(ΣT ′)
,

(31)

where ΣT ′ :=
∑T ′

t=1

[
xt

ytpt

] [
x⊤
t pty

⊤
t

]
. With probability at least 1 −

exp(−T ′(u−l)2λmin(E[yy⊤])
32L2 ), we have

λmin(ΣT ′) ≥ T ′(u− l)2λmin(E[yy⊤])
8

.

Because 0 < α < 1/2 < β, with probability at least 1− exp(−T ′(u−l)2λmin(E[yy⊤])
32L2 ), the quantity f

introduced in Lemma 14 satisfies

f ∈ Θ(

√
d1 + d2 +

√
log T√

Tα
). (32)

Fix α ∈ (0, 1
2 ) and set T ′ = Tα. We now prove Theorem 5 by consider the following three cases.

Case 1: Vtrue > 3f. In this case, by triangle inequality and Lemma 14, with probability at least
1− 2

3T 2 − exp(−T ′(u−l)2λmin(E[yy⊤])
32L2 ),

∥θ̂′∗ − θ̂∗∥ ≥ Vtrue − |Vtrue − ∥θ̂′∗ − θ̂∗∥| > 2f.

Therefore, we have

Rπ
θ′
∗,θ∗

(T ) ≲ Tα + (d1 + d2)
√
T log T ≲ (d1 + d2)

√
T log T.

Case 2: Vtrue ≤ f. In this case, by triangle inequality and Lemma 14, with probability at least
1− 2

3T 2 − exp(−T ′(u−l)2λmin(E[yy⊤])
32L2 ),

∥θ̂′∗ − θ̂∗∥ ≤ Vtrue + |Vtrue − ∥θ̂′∗ − θ̂∗∥| ≤ 2f.

Therefore, by inequality (19), we have

Rπ
θ′
∗,θ∗

(T ) ≲ Tα + (T − Tα)E[∥θ̂′∗ − θ∗∥2]

≲ Tα + TE[∥θ̂′∗ − θ′∗∥2] + V 2
trueT

≲ Tα + V 2
trueT +

T (d1 + d2 + log T )

λmin(Σ)
,

where the last inequality holds by following inequality (34).

Case 3: f < Vtrue ≤ 3f. In this case, by inequality (32), we have

Rπ
θ′
∗,θ∗

(T ) ≲ max

{
(Tα + V 2

trueT +
T (d1 + d2 + log T )

λmin(Σ)
), (d1 + d2)

√
T log T

}
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≲ Tα + V 2
trueT +

T (d1 + d2 + log T )

λmin(Σ)
.

Combining the three cases above, we obtain that for any α ∈ (0, 1
2 ),

Rπ
θ′
∗,θ∗

(T ) ∈

O
(
(d1 + d2)

√
T log T

)
, if V 2

true ≳ T−α;

O
(
Tα + V 2

trueT + T (d1+d2+log T )
λmin(Σ)

)
, otherwise.

When β ≥ 1, T
λmin(Σ) ∈ O(1) and

Rπ
θ′
∗,θ∗

(T ) ∈

{
O
(
(d1 + d2)

√
T log T

)
, if V 2

true ≳ T−α;

Õ
(
Tα + V 2

trueT
)
, otherwise.

Hence no single value of α ∈ (0, 1
2 ) is uniformly optimal: a smaller α yields lower regret when

V 2
true ≤ Tα−1, but increases the worst-case regret to T 1−α when V 2

true = Θ(T−α).

For β ∈ ( 12 , 1) and any α ∈ (0, 1− β], we have

Rπ
θ′
∗,θ∗

(T ) ∈

O
(
(d1 + d2)

√
T log T

)
, if V 2

true ≳ T−α;

Õ
(
V 2
trueT + T (d1+d2+log T )

λmin(Σ)

)
, otherwise.

In this regime, choosing α = 1− β is optimal: for any Vtrue, the resulting regret is no greater than
that obtained with any α ∈ (0, 1− β).

For β ∈ ( 12 , 1) and α ∈ [1 − β, 1
2 ), no single choice is strictly preferred, for the same trade-off

discussed in the β > 1 case, and we have

Rπ
θ′
∗,θ∗

(T ) ∈

{
O
(
(d1 + d2)

√
T log T

)
, if V 2

true ≳ T−α;

Õ
(
Tα + V 2

trueT
)
, otherwise.

Therefore, we complete the proof of Theorem 5.

H.1 Proof of Lemma 14

|∥θ′∗ − θ∗∥ − ∥θ̂′∗ − θ̂∗∥| ≤ ∥θ′∗ − θ̂′∗∥+ ∥θ∗ − θ̂∗∥

For the first term ∥θ′∗ − θ̂′∗∥, with probability at least 1− ϵ/3,

∥θ′∗ − θ̂′∗∥ = ∥V −1
0,n

n∑
i=1

[
x̂i

ŷip̂i

]
(α′⊤

∗ x̂i + β′⊤
∗ ŷip̂i + ϵ̂i)− V −1

0,n

n∑
i=1

[
x̂i

ŷip̂i

]
(α′⊤

∗ x̂i + β′⊤
∗ ŷip̂i)− λV −1

0,n θ
′
∗∥

≤ λ∥V −1
0,n θ

′
∗∥+ ∥V −1

0,n

n∑
i=1

[
x̂i

ŷip̂i

]
ϵ̂i∥

≤ λ∥θ′∗∥
λ+ λmin(Σ̂)

+
R
√
d1 + d2 +R

√
2 log(3/ϵ)√

λ+ λmin(Σ̂)
(33)

≤
λ
√
α2
max + β2

max

λ+ λmin(Σ̂)
+

R
√
d1 + d2 +R

√
2 log(3/ϵ)√

λ+ λmin(Σ̂)
, (34)

where the last inequality follows from Lemma 11 and the same argument used in the proof of
Lemma 5.

Similarly, for fixed {(xt, yt, pt)}t∈[T ′], with probability at least 1− ϵ/3,

∥θ∗ − θ̂T ′∥ ≤
λ
√
α2
max + β2

max

λ+ λmin(ΣT ′)
+

R
√
d1 + d2 +R

√
2 log(3/ϵ)√

λ+ λmin(ΣT ′)
,
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where we define ΣT ′ :=
∑T ′

t=1

[
xt

ytpt

] [
x⊤
t pty

⊤
t

]
. For every t ∈ [T ′], we have

λmin

(
E[p2t ]E[yty⊤t ]− E[pt]2E[ytx⊤

t ]E[xtx
⊤
t ]

−1E[xty
⊤
t ]
) (i)
≥ (E[p2t ]− E[pt]2)λmin(E[yty⊤t ])

=
(u− l)2λmin(E[yy⊤])

4
.

where (i) holds by following Lemma 3. Also, by the definition of L in Appendix A, for every t ∈ [T ′],
we have

λmax(E[
[

xt

ytpt

] [
x⊤
t pty

⊤
t

]
]) ≤ L2,

Then, by following the matrix Chernoff inequaility [27, Theorem 5.1.1], with probability at least
1− exp(−T ′(u−l)2λmin(E[yy⊤])

32L2 ),

λmin(ΣT ′) ≥ T ′(u− l)2λmin(E[yy⊤])
8

,

thereby completing the proof of Lemma 14.

I Stochastic linear bandit with (biased) offline data

In this section, we outline that how our design of GCO3 and its regret–upper-bound analysis extend
seamlessly to the stochastic linear bandit with biased offline data.

Firstly, we specify the model of stochastic linear bandit with (biased) offline data problem.

Online model. Consider a learner who make decisions over a time horizon of T periods. In round t,
the learner is given the decision set At ⊂ Rd, from which it chooses an action at ∈ At and receives
reward

xt = θ⊤∗ at + ηt,

where θ∗ ∈ Rd denotes the unknown online parameter vector and {ηt}t≥1 is an sequence of
independent random noise with zero mean and R−subgaussian.

Offline data model. The learner have access to a pre-existing offline dataset prior to the online
learning process. Let this dataset consist of N samples {ân, x̂n}n∈[N ]. For each n ∈ [N ], the reward
realization x̂n under the historical action ân is generated according to the linear model

x̂n = θ′⊤∗ ân + η̂n,

where θ′∗ is the unknown offline parameter vector {η̂n}n∈[N ] is an sequence of independent random
noise with zero mean and R−subgaussian. We use Σ̂ =

∑N
n=1 ânâ

⊤
n to denote the offline Gram

matrix.

Policies and performance metrics. We consider the design and analysis of policies for a decision
maker (DM) that does not know the true θ∗. At the time t, the DM proposes the action at ∈ At as an
output of a policy function πt that takes all the historical information by time t− 1 and the current
feature At as input arguments. That is,

at = πt({(ân, x̂n)}n∈[N ], {(as, xs)}s∈[t−1],At).

We denote Π as the set of all such policies π = (π1, π2, . . . ). The set Π includes all policies that
are feasible for the DM to execute. For any policy π ∈ Π, the regret of π, denoted by Rπ

θ′
∗,θ∗

(T ), is
defined as the difference between the optimal expected reward generated by the clairvoyant policy
that knows the exact value of θ∗ and the expected reward generated by pricing policy π, i.e.,

Rπ
θ′
∗,θ∗

(T ) = E
[ T∑

t=1

max
a∈At

⟨θ∗, a⟩ −
T∑

t=1

xt

]
= E

[ T∑
t=1

⟨θ∗, a∗t ⟩ −
T∑

t=1

xt

]
,
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where we define a∗t := argmaxa∈At
θ⊤∗ a. The expectation is taken with respect to the both offline

and online random fluctuations {ϵ̂n}n∈[N ] and {ϵt}t∈[T ].

We assume the learner knows a bias bound V satisfying V ≥ ∥θ′∗ − θ∗∥ and impose the standard
condition that all online and offline parameter vectors—as well as all actions—are uniformly bounded.

Our algorithm π constructs at each round t the same confidence set as in Algorithm 2,

Ct =
{
θ ∈ Rd : ∥θ − θ̂t,N∥ ≤ ŵt,N , ∥θ − θ̂t∥Σt

≤ wt

}
and chooses the action at via the optimistic rule

(at, θ̃t) = argmax
a∈At

UCBt(a) and UCBt(a) = max
θ∈Ct−1

θ⊤a.

By Lemma 12, we have θ∗ ∈ Ct with high probability; hence

⟨θ∗, a∗t ⟩ ≤ UCBt(a
∗
t ) ≤ UCBt(at).

Applying [17, Eq. 19.10], we obtain

rt := ⟨θ∗, a∗t − at⟩ ≤ UCBt(at)− ⟨θ∗, at⟩ ≤ 2min{wt(1 ∧ ∥at∥V −1
t−1

)︸ ︷︷ ︸
T1

, ŵt,N∥at∥︸ ︷︷ ︸
T2

}.

Hence, summing over the T1 terms and invoking [17, Corollary 19.3], we obtain

Rπ
θ′
∗,θ∗

(T ) ∈ Õ(d
√
T ).

On the other hand, Lemma 5 gives ŵt,N ∈ Õ(V +
√
d√

λmin(Σ̂)
). Summing these T2 terms we obtain

Rπ
θ′
∗,θ∗

(T ) ∈ Õ(V T +

√
dT√

λmin(Σ̂)
).

Therefore, we have

Rπ
θ′
∗,θ∗

(T ) ∈ Õ
(
d
√
T ∧ (V T +

√
dT√

λmin(Σ̂)
)
)
. (35)

Some remarks about the result (35) are in order. For general contextual online pricing with biased
offline data, we obtain the regret bound Õ

(
d
√
T ∧ (V 2T + dT

λmin(Σ̂)
)
)
. Note that the factor (V 2 +

d
λmin(Σ̂)

) is the square of (V +
√
d√

λmin(Σ̂)
), in contrast to the stochastic linear bandit. This difference

stems from the special structure of the pricing problem, in which the regret can be bounded by the
second moment ∥θ̃ − θ∗∥2; see inequality (19). Finally, up to a

√
d factor, the bound in (35) matches

the minimax-optimal regret for the K-armed bandit with biased offline data established in [10].
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper provides the full set of assumptions and a complete (and correct)
proof for each theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specifies all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper reports error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provides sufficient information on the computer resources needed
to reproduce the experiments. All experiments can be conducted on a personal computer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of this work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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