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ABSTRACT

Deep learning video compression outperforms its hand-craft counterparts with en-
hanced flexibility and capacity. One key component of the learned video codec
is the autoregressive entropy model conditioned on spatial and temporal priors.
Operating autoregressive on raster scanning order naively treats the context as
unidirectional. This is neither efficient nor optimal considering that conditional
information probably locates at the end of the sequence. We thus introduce an
entropy model based on a masked image modeling transformer (MIMT) to learn
the spatial-temporal dependencies. Video frames are first encoded into sequences
of tokens and then processed with the transformer encoder as priors. The trans-
former decoder learns the probability mass functions (PMFs) conditioned on the
priors and masked inputs, and then it is capable of selecting optimal decoding or-
ders without a fixed direction. During training, MIMT aims to predict the PMFs
of randomly masked tokens by attending to tokens in all directions. This allows
MIMT to capture the temporal dependencies from encoded priors and the spatial
dependencies from the unmasked tokens, i.e., decoded tokens. At inference time,
the model begins with generating PMFs of all masked tokens in parallel and then
decodes the frame iteratively from the previously-selected decoded tokens (i.e.,
with high confidence). In addition, we improve the overall performance with more
techniques, e.g., manifold conditional priors accumulating a long range of infor-
mation, shifted window attention to reduce complexity. Extensive experiments
demonstrate the proposed MIMT framework equipped with the new transformer
entropy model achieves state-of-the-art performance on HEVC, UVG, and MCL-
JCV datasets, generally outperforming the VVC in terms of PSNR and SSIM.

1 INTRODUCTION

Videos continue to grow exponentially as demand for various video applications increases on so-
cial media platforms and mobile devices. Traditional video compression codecs, such as HEVC
and VVC, are still moving toward more efficient, hardware-friendly, and versatile. However, their
framework still followed a hybrid coding framework that remained unchanged decades ago: spatial-
temporal prediction coding plus transformation-based residual coding.

Neural video compression surged to outperform handcraft codecs by optimizing the rate-distortion
loss in an end-to-end manner. One line of earlier work replaces traditional coding modules, in-
cluding motion estimation, optical-flow-based warping, and residual coding modules with neural
networks. Recently, residual coding has been proved to be suboptimal compared with context cod-
ing. Moreover, a pixel in frame xt is related to all pixels in the previously decoded frames x<t and
pixels already decoded at xt. Due to the huge space, it is impossible for traditional video codecs to
explore the correlation between all rules using handcrafted rules explicitly.

Using the entropy model to exploit the spatial-temporal dependencies from the current and past
decoded frames can vastly reduce data redundancies. The transformer is rising for computer vi-
sion tasks, including low-level image analysis. Inspired by the language-translation model, VCT
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(Mentzer et al., 2022) for the first time uses a transformer as the conditional entropy model to predict
the probability mass function (PMF) from the previous frames. VCT uses the estimated probability
to losslessly compress the quantized latent feature map ŷt without direct warping or residual coding
modules. The better the transformer predicts the PMFs, the fewer bits are required for the video
frames.

For VCT, the transformer decoder is an autoregressive model which regards video frames naively as
sequences of tokens and decodes the current frame yt sequentially in a raster scanning order (i.e.,
token-by-token). We find this strategy neither optimal nor efficient, and thus, we propose a masked
image modeling transformer (MIMT) using bidirectional attention. During training, MIMT aims
to optimize a proxy task similar to the mask prediction in BERT (Devlin et al., 2018) and BEIT
(Bao et al., 2021) to predict the PMFs of masked tokens. At inference, MIMT adopts a novel non-
sequential autoregressive decoding method to predict the image in a few steps. Each step keeps the
most confident (smallest entropy) token for the next iteration.

Our contributions are summarized as follows: (1) We design an entropy model based on a bi-
directional transformer MIMT to compress the spatial-temporal redundancy in video frames. MIMT
is trained on masked image modeling tasks. It can capture temporal information from past frames
and spatial information from the decoded tokens at inference time. (2) More techniques are in-
troduced to make our video compression model versatile. We employ manifold priors, including
the recurrent latent prior, to accumulate an extended range of decoded frames. To further reduce
MIMT complexity, we introduce alternating transformer layers with non-overlapping shifted win-
dow attention. (3) The proposed MIMT achieves state-of-the-art compression results with all these
improvements. It generally outperforms the last H.266 (VTM) in terms of PSNR and SSIM. The
bitrate saving over H.266 (VTM) is 29.6% on the UVG dataset in terms of PSNR.

2 RELATED WORK

Video Compression. Lu et al. (2019) developed the DVC model with all modules in the traditional
hybrid video codec replaced by the network. DVC-Pro is proposed with a more advanced entropy
model and deeper network (Lu et al., 2020). Agustsson et al. (2020) extended optical-flow-based
estimation to a 3D transformation by adding a scale dimension. Hu et al. (2020) considered rate-
distortion optimization when encoding motion vectors. In Lin et al. (2020), a single reference frame
is extended to multiple reference frames. Yang et al. (2020) proposed a residual encoder and decoder
based on RNN to exploit accumulated temporal information.

Deviated from the residual coding, DCVC (Li et al., 2021) employed contextual coding to compen-
sate for the shortness of the residual coding scheme. Mentzer et al. (2022) proposed simplifying the
”hand-craft” video compression network of explicit motion estimation, warp, and residual coding
with a transformer-based temporal model. Contemporary work from Li et al. (2022) uses multiple
modules, e.g., learnable quantization and parallel entropy model, to improve significantly the com-
pression performance, which surpasses the latest VVC codec. AlphaVC (Shi et al., 2022) introduced
several techniques, e.g., conditional I-frame and pixel-to-feature motion prediction, to effectively
improve the rate-distortion performance.

Masked Image Modeling. Masked language modeling, first proposed in BERT (Devlin et al.,
2018), has revolutionized the field of natural language processing, significantly when scaling to large
datasets and huge models (Brown et al., 2020). The success in NLP has also been replicated in vision
tasks by masking patches of pixels (He et al., 2022) or masking tokens generated by a pretrained
dVAE (Bao et al., 2021; Xie et al., 2022). Recently, these works have also been extended to other
domains to learn good representations for action recognition (Tong et al., 2022; Feichtenhofer et al.,
2022), video prediction (Gupta et al., 2022), and image generation (Chang et al., 2022; Wu et al.,
2022).

3 METHOD

As shown in Fig. 1, we encode a sequence of (RGB) video frames {xt}Tt=1 into latent tokens
{yt}Tt=1, using a CNN-based image encoder. Next, we get a temporal sequence {ŷt−1, . . . , ŷ1}
from the decoded frames buffer. We use decoded sequence to compress yt with the transformer
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Figure 1: The core of the proposed video compression framework is a MIMT entropy model used
to fully exploit the spatial-temporal correlation among video frames. The estimated parameters are
generated from the side information prior st, recurrent prior rt−1, and the last decoded latent ŷt−1.

entropy model for non-sequential autoregressive. At the receiver side, we recover ŷt and recon-
struct frames {x̂t}Tt=1 with a CNN-based image decoder by feeding with the quantized latent tokens
{ŷt}Tt=1.

3.1 PRELIMINARY

Given the true PMF p (yt) and the estimated PMF q (yt), we use arithmetic coding (AC) (Langdon,
1984) to transmit {yt}Tt=1 with expected bit-rate of H(p, q) which is expressed as the cross entropy:

H(p, q) = Eyt∼p [− log2 q (yt | c)] , (1)
with c as the conditional information of yt, e.g., hyper-prior, spatial autoregressive context.

The expected bit-rate can be reduced if yt has higher certainty. We can encode more frequently
occurring values with fewer bits, and hence improve the efficiency. For this purpose, video coding
exploits temporal relationship from previous frames {yt−1, . . . ,y1} to reduce the estimated bit-rate:

H (p, q) = Eyt∼p [− log2 q (yt | yt−1, . . . ,y1, c)] . (2)

Our main idea is to parameterize q (yt | yt−1, . . . ,y1, c) as a conditional distribution using a MIMT
to minimize the cross-entropy H(p, q).

3.2 CNN-BASED IMAGE ENCODER/DECODER

Video is transformed with a CNN-based image encoder to reduce dimensionality. Each frame xt ∈
RH×W×3 is represented as a grid of tokens yt ∈ Rh×w×dC . The image encoder downsamples the
raw image spatially and increases the channel dimension, yielding (h,w, dC) dimensional tokens
where (h,w) are 16× smaller than (H,W ). We reconstruct image x̂t with a decoder D(ŷt).

One straightforward way is to train E,D using standard neural image compression. But this in-
dependent transformation without any temporal hints would lay heavy burdens on the conditional
coding transformer, considering that the previously decoded frame x̂t−1 loses rich information as it
only contain 3 channels. Thus, it is also not optimal to learn temporal contexts merely from x̂t−1.
Following the contextual encoder-decoder (Sheng et al., 2021; Li et al., 2022), we also build the
image encoder E and decoder D using motion vt with little bit-stream overhead:

yt = E(xt | fcontext(ŷt−1, v̂t)), x̂t = D(ŷt|fcontext(ŷt−1, v̂t)) (3)
where vt is estimated from optical flow network fmv(xt,xt−1), and fcontext(ŷt−1, v̂t)) generates
multi-scale warped feature map aligned in the t-frame space.

3.3 MASKED IMAGE MODELING TRANSFORMER ENTROPY MODEL

Compressing the current frame yt can be formulated as a sequential autoregressive. Let yt =[
yi
t

]N
i=1

denote the latent tokens obtained by feeding the image xt to the encoder, where N is the

3



Published as a conference paper at ICLR 2023

Swin Transformer Decoder

Convolution Parameter Network

M M M M

0 1 2 3 4 5 876 9 position
embedding
latent

embedding

Last frame
Recurrent prior

𝒚"!"#
𝒓!"#

Sw
in

Transform
er 

Encoder

Hyper-prior 𝒔!

+ + + + + + + +++

0
1

2
3

4
5

6

+

+

+

+

+

+

+

K, V

Q

𝝁!" 𝝁!# 𝝁!$ 𝝁!%𝝁!& 𝝁!'𝝁!(𝝁!)𝝁!*𝝁!+

𝝈!" 𝜎!# 𝜎!$ 𝜎!%𝜎!& 𝜎!'𝜎!(𝜎!)𝝈!*𝝈!+

𝒚!"
# flatten

…

…

…

…

……

Figure 2: MIMT overview. During training, some of the tokens are masked, and the task is to predict
the PMFs of masked tokens. At inference, the model begins with predicting all masked tokens and
keeping the most certain ones, which are put back in sequence for the next prediction. We do this
iteratively until all tokens are decoded.

length of the flattened token matrix. Given already transmitted tokens y<i
t , the transformer learns to

predict the probability distribution of next index, i.e., q(yi
t). This allows us to directly minimize:

RAR(yt) = Eyt∼p

[
−

N∑
i=1

log2 q
(
yi
t | yt−1, . . . ,y1,y

<i
t

)]
. (4)

As illustrated in Fig. 3, sequential autoregressive model can only make predictions based on the
observed pixels (left upper part of the target pixel) due to the inductive bias caused by the strict
adherence to the unidirectional scanning order. The fixed scanning order may achieve suboptimal
performance. For example, if the informative condition is located at the end of the autoregressive
sequence, it is difficult for the model to take full advantage of such relevant information.

We propose a bi-directional non-sequential transformer entropy model. The training task of the
transformer is masked image modeling. The strategy is mask-then-predict which is straightfor-
ward: during training, we randomly mask some proportion of image tokens and feed the cor-
rupted sequence to the transformer. Fig. 2 shows the overview of our transformer entropy model.
M = [mi]

N
i=1 is the corresponding mask. We randomly sample a subset (0% ∼ 100%) of tokens

and replace them with a special learnable [M] token. The token yi
t is replaced with [M] if mi = 1,

otherwise, if mi = 0, yi
t will be left intact.

Denote yM
t as the masked sequence by applying M to yt. The optimization objective is to minimize

the cross entropy of the predicted PMFs and the true distribution, i.e., the expected bit rate:

Rmask(yt) = Eyt∼p

[
− log2 q

(
yt | yt−1, . . . ,y1,y

M
t

)]
. (5)

We aim to fully exploit the temporal correlations from video frames {yt−1, . . . ,y1}. In concrete, we
feed manifold inputs to the MIM transformer and let the model learn complementary information
from the rich temporal/spatial inputs which have different characteristics. Side information st is
decoded from ẑt which is a hierarchical spatial estimation of yt; ŷt−1 is most correlated latent with
yt in the past; rt−1 is from a recurrent network with convolution layers and ConvLSTM cells. Due
to the recurrent structure, rt−1 is generated based on all previous latents {ŷt−2, . . . , ŷ1}.
After transformer encoding, we feed the rich encoded priors into a multi-layer bidirectional trans-
former to predict the PMFs of the masked tokens, where the cross-entropy between the ground-truth
distribution and the predicted distribution is

Rmask(yt) = Eyt∼p

[
− log2 q

(
yt | st, ŷt−1, rt−1,y

M
t

)]
. (6)

Notice the key difference to autoregressive modeling: the conditional dependency in MIMT is bidi-
rectional that allows PMF prediction to utilize richer contexts in the current frame. For decoding,

4



Published as a conference paper at ICLR 2023

decoded

to be decoded

not decoded

1 2 3 4 5 6 16…

unidirectional context

1 2 3 4 5 6 16…

bi-directional context
…

𝑠 = 3 𝑠 = 4 𝑠 = 8

𝑠 = 0 𝑠 = 1 𝑠 = 2
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

flatten

flatten

Figure 3: Left: Compared to the autoregressive model with a unidirectional context, MIM trans-
former benefits from the bi-directional context information. Right: With a pre-trained MIM trans-
former, we can decode yt in a few steps. Each step recovers a portion of tokens based on the decoded
ones. Only the most certain tokens with the largest entropy are kept for the next iteration.

PMFs of tokens are iteratively predicted with the MIM transformer following a decoded ratio sched-
uler at each step as shown below.

3.4 ITERATIVE DECODING SCHEDULER

Algorithm 1: MIMT Iterative Decoding
Input: ŷt−1, rt−1, γ(i), n, Bs ; // Bs is

the bitstream. n is step.
Output: x̂t ; // reconstructed image
/* Initialization */
Decode v̂t from Bs using arithmetic decoder ;
Decode ẑt from Bs using arithmetic decoder ;
Get st by pass ẑt to hyper-prior decoder;
i← 0,M← 1 ;
/* iterative decoding */
while i ≤ n do

(µ̂t, σ̂t)←MIMT(yM
t , rt−1, st, ŷt−1) ;

i← i+ 1 ;
Select ⌊γ(i)N − γ(i− 1)N⌉ tokens by

(7);
Decode the selected tokens from Bs with
(µ̂t, σ̂t);

Replace the masked token [M] in yM
t with

the decoded tokens ;
rt ← R(rt−1,ht−1) ; // recurrent net

ŷt ← yM
t ; // M = 0

x̂t ← D(ŷt | fcontext(ŷt−1, v̂t)) ;

At receiver side, we first decode the optical flow
v̂t and the hyper-prior ẑt before decoding the
latent ŷt. Since we do not make any assump-
tions about the distribution of v̂t and ẑt, a non-
parametric, fully factorized entropy model is
used for decoding (Ballé et al., 2018).

With the pre-trained MIMT, we can decode the
current frame yt in one step assuming all to-
kens in yM̄

t are [M] token. But the PMFs ob-
tained from all [M] tokens are not optimal esti-
mations because the spatial context information
in the current frame is totally ignored. Thus it
would introduce a great bit-rate cost for arith-
metic coding. Instead, we decompose the one-
step decoding into several iterations in Fig. 3.

Let γ(i) = sin(i · π2 ), where i ∈{
0, 1

n , . . . ,
n−1
n , 1

}
, be a decoded ratio

scheduler that determines the number of tokens
to be recovered at each step. n = 8 by default.
The scheduler is monotonically increasing and
γ(0) → 0, γ(1) → 1. At i = 0, we start with
all tokens in yM

t are [M]. Only the most certain
⌊γ(1) ·N⌉ tokens with the smallest entropy
are kept for the next iteration. The entropy of
a token is accumulated along the channel:

H(ŷi
t) = − log2

dC∏
j=1

p(µi,j
t ), p(µi,j

t ) = ci,jt (µi,j
t +

1

2
)− ci,jt (µi,j

t −
1

2
) (7)

where dC is dimension of tokens; ci,jt (·) is the cumulative function of Gaussian distribution
N

(
µi,j
t , σi,j

t

2
)

.

We iteratively replenish yM
t with the decoded tokens until all tokens being decoded. The scheduler

is consistent with the intuition that video decoding follows a flow of information from coarse to fine.
In the beginning, the model decodes the “sketch” of the image with small entropy. The “sketch” is
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Figure 4: Transformer encoder and decoder with shifted-window attention. W-MSA: windowed
multi-head self-attention. SW-MSA: shifted windowed multi-head self-attention. W-MCA: win-
dowed multi-head cross attention. SW-MCA: shifted windowed multi-head cross attention.

easy to predict from frame redundancies. Gradually, with more decoded context, the model takes
small steps to tweak the details considering the slow slop of sine around 1.

3.5 IMPLEMENTATION DETAILS

Shifted window attention. The global self-attention of the transformer is computationally unaf-
fordable for video compression with long sequences. We use shifted window attention Liu et al.
(2021) in both transformer encoder and decoder to alleviate this problem, as visualized in Fig. 4.
The transformer encoder makes use of an interchange of shifted windows and thus, the computa-
tional cost is greatly reduced since self-attention is considered within local windows. In contrast to
SW-MSA which uses the same input as the key, query and value, SW-MCA uses the encoded priors
of {st, ŷt−1, rt−1} as the key and value, while using yM

t as the query.

Optimization loss. Rate-distortion loss is optimized throughout the training process:

LRD = R(ŷt)︸ ︷︷ ︸
rate (latents)

+ R(ẑt)︸ ︷︷ ︸
rate (hyper-latents)

+ R(v̂t)︸ ︷︷ ︸
rate (optical flow)

+λ · d(xt − x̂t)︸ ︷︷ ︸
distortion

, (8)

where d(·) represents the mean square error or MS-SSIM; λ is a hyperparameter used to control the
rate-distortion trade-off. We train four models with different λ values {256, 512, 1024, 2048}. By
default, we train models with MSE loss. When using the MS-SSIM metric, the model is fine-tuned
with the MS-SSIM loss. More training details are described in the Appendix.

4 EXPERIMENTS

Dataset. We use Vimeo-90k (Xue et al., 2019) for training. The videos are randomly cropped
into 256 × 256 patches. The test videos include HEVC Class B, UVG (Mercat et al., 2020), and
MCL-JCV (Wang et al., 2016) datasets. All three datasets have a resolution of 1920× 1080.

Baselines. We compare MIMT with widely acknowledged baselines, e.g., x265, HM, VTM codecs.
x265 is implemented with the commercial FFmpeg, whereas HM and VTM are standard versions
that can achieve much better performance but are extremely slow. We further obtains reported results
from the following learned codecs: DVCPro (Lu et al., 2020), FVC (Hu et al., 2021), DCVC (Li
et al., 2021), C2F (Hu et al., 2022), VCT (Mentzer et al., 2022), and DMC (Li et al., 2022).

Metric. The common PSNR and MS-SSIM are evaluated for all models(Wang et al., 2004) in RGB.

we set the GoP size as 32 for all datasets and use learned model (Cheng et al., 2020) for I frame
compression. We center crop 1080p image into 1790× 1024 to make it divisible by 256.
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Figure 5: RD performance on UVG, MCL-JCV, and HEVC-B dataset.

DVCPro FVC DCVC HM C2F DMC MIMT
UVG +227.0% +108.6% +95.8% +40.5% +16.0% −18.2% −29.6%

MCL-JCV +180.8% +71.0% +66.1% +45.4% +19.6% −6.4% −13.0%
HEVC-B +209.8% +108.3% +49.8% +40.4% +14.2% −5.1% −25.5%
Average +205.8% +95.9% +70.5% +42.1% +16.6% −9.9% −22.7%

Table 1: BD-rate calculated by PSNR with respect to the anchor VTM.

5 RESULTS

5.1 RATE-DISTORTION PERFORMANCE

In Fig. 5, we plot the rate-distortion of our method and the baseline methods introduced in Section
4. We see that our MIMT outperforms most of these baselines across different datasets in terms
of PSNR and SSIM. DMC is the best-performed competing method with a hybrid spatial-temporal
entropy model. For MIMT, higher quality can be obtained with less bit rate cost under the same
quality. This verifies the effectiveness of our entropy model in exploiting the temporal redundancies
among video frames as well as spatial correlations among intra-frame tokens.

As shown in Table 1 and 2, we make quantitative metric with BD-rate Bjontegaard (2001) computed
from PSNR-BPP and SSIM-BPP, respectively. The best traditional codec VTM is used as the anchor.
From Table 1, we can find that DMC Li et al. (2022) is the only baseline method that surpasses VTM
with 9.9% bite-rate saving. Our MIMT improves this performance further and it achieves an average
of 22.7% bitrate saving over VTM on all datasets. From the perspective of SSIM, the improvement
of MIMT is even larger, which is 56.3% bit rate saving over VTM. We notice that C2F and DMC
also outperform VTM in terms of MS-SSIM.

5.2 ABLATION STUDIES

We conduct a series of ablation studies to demonstrate the effectiveness of different components.

Entropy coding. The MIMT uses a dynamic strategy to determine the encoding/decoding order
for auto-regressive. Other strategies would be a raster scan order autoregressive entropy model like
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DVCPro FVC DCVC HM C2F DMC MIMT
UVG +68.1% +10.1% +33.6% +36.9% −20.1% −35.1% −40.0%

MCL-JCV +37.8% +15.0% +4.7% +43.7% −9.1% −46.8% −64.7%
HEVC-B +61.7% +60.9% +31.0% +36.7% +12.7% −48.1% −64.2%
Average +55.8% +28.6% +23.1% +39.1% −5.5% −43.3% −56.3%

Table 2: BD-rate calculated by SSIM with respect to the anchor VTM.

Modules Ablation Option UVG MCL-JCV HEVC-B Average
MIMT auto-regressive (full) +5.2% +6.9% +7.1% +6.4%
MIMT auto-regressive (block) +16.6% +19.3% +22.8% +19.5%
MIMT checkerboard +15.1% +17.7% +19.2% +17.3%

contextual non-contextual
+13.0% +18.4% +19.5% +16.9%encoder/decoder encoder/decoder

Table 3: Ablations on the entropy model and the contextual encoder/decoder. The first column is
the original design and the second column is the optional modules. The last four columns show the
BD rate increase over the anchor of the complete MIMT model.

VCT (Mentzer et al., 2022), or a parallel-friendly checkerboard entropy model (He et al., 2021). For
fair comparisons, both auto-regressive and checkerboard models use the same transformer encoder-
decoder network, but they train and predict differently. For the auto-regressive model, we train the
transformer with a self-attention mask to ensure causality similar to Vaswani et al. (2017), and then
we predict each token one by one in raster scan order. We make two variants of auto-regressive:
the full variant means operating on all 16 × 16 tokens, and the block variant means splitting the
tokens into 4 × 4 non-overlapping blocks similar to VCT. No windowed attention mask is applied
for autoregressive (block). As for the checkerboard, we predict the first half tokens with all input
tokens masked, and then use the decoded tokens to predict the rest.

In Table 3, we calculate the BD-rate increase after ablations. In the first row, the MIMT entropy
performs better than the full auto-regressive with +6.4% bitrate savings. The time-cost of auto-
regressive (full) decoding is prohibitive for practical usage. As an alternative, auto-regressive (block)
partitions the tokens into sub-blocks and decodes them in parallel. Although it can speed up greatly,
it builds on the assumption that all blocks are independent, which is not necessarily true as concluded
by VCT (Mentzer et al., 2022). In this way, the performance of autoregressive (block) degrades
obviously with +19.5% bitrate increase. The parallel checkerboard entropy model is slightly better
but still has a +17.3% increase. This is intuitively reasonable because the checkerboard model could
be considered a simplified case of MIMT with fixed encoding/decoding order.

We follow the good practice to use a flow-based transformation coding (Sheng et al., 2021; Li et al.,
2021; 2022). In the last row of Table 3, we conduct an ablation study on the image encoder by
removing the temporal context. The results show the contextual encoder provides significant bitrate
savings of +16.9% over the non-contextual encoder with independent image compression.

Figure 6: Decoding scheduler.

Decoding scheduler. The masked scheduler
is a non-trivial design for encoding/decoding.
The default scheduler is a sine function. We
further explore two alternatives, i.e., linear,
and exponential functions. The sine is
concave, whereas the exponential is convex.
A sine scheduler is in line with such intu-
itions: due to the temporal redundancy, the cur-
rent frame has high similarities with previous
frames. In the beginning, we can take a large
step with high certainty. In the last few steps,
we have to cope with pixels of large entropy
where we should take small steps to make more precise estimations. We adjust the number of steps
from 6 to 12. As shown in Fig. 6, the results demonstrate that the sine performs consistently
better than the others. The linear function provides decent results but is inferior to the sine.
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The exponential performs poorly. We provided further visualization in the Appendix, Section
C. Increasing the number of steps can improve the performance, but for steps larger than 8, the gains
are marginal and it will introduce computational overhead for training and inference.

hyper-prior last frame recurrent prior UVG MCL-JCV HEVC-B Average
st ŷt−1 rt−1

✓ ✓ % +8.6% +11.3% +13.5% +11.1%

✓ % ✓ +9.2% +14.9% +15.6% +13.2%

% ✓ ✓ +11.7% +17.3% +16.6% +15.2%
✓ ✓ ✓ 0% 0% 0% 0%

Table 4: Ablations on the manifold inputs of MIMT. The figure in the table denotes the BD-rate
increase over the full model used as the anchor.

Manifold inputs. MIMT takes three different kinds of inputs: side information st from hyper
prior, temporal prior from the last decoded frame ŷt−1, and temporal recurrent prior rt−1. We
conduct ablation studies to verify these priors for entropy modeling. As shown in Table 4, hyper-
prior st providing hierarchical information brings the most significant BD-rate improvements of
+15.2%. ŷt−1 is the most temporally correlated frame in the past and it achieves +13.2% gains.
By accumulating a long range of temporal information, the recurrent prior rt−1 can effectively
compensate for the overall performance with +11.1% BD-rate.

5.3 DECODING EFFICIENCY

Table 5 compares the model complexity in the number of parameters, MACs (multiply-accumulate
operations), encoding time, and decoding time with learned codecs. The test video frames are
1080p and we use the publicly available source code of DVC, SSF, DCVC, and DMC. We deploy
all models on a server with an NVIDIA P40 GPU. The time consumption includes bit-stream writing
and reading with arithmetic coding. Note that all models are not optimized for coding efficiency.

In Table 5, we find that the decoding speed of DVC is moderate even without a sequential/recurrent
network. DCVC is high of high complexity for encoding/decoding because it employs a sequential
autoregressive context model. DMC splits the latents along the channel-wise and spatial-wise direc-
tions to accelerate the autoregressive. The proposed MIMT equipped with shifted window attention
and non-sequential decoding strategy is comparable with DMC, in terms of model complexity and
encoding and decoding time. For the other three variants of MIMT, the number of parameters is the
same but they are trained differently, thus leading to varying MACs requirements. Not surprisingly,
the parallel-friendly checkerboard is the most efficient consuming only 798 ms for decoding. The
full autoregressive model is prohibitive slow at decoding, and the block auto-regressive reduces the
time-cost remarkably to 969 ms by partitioning the latent into small blocks for parallel decoding.

6 CONCLUSIONS

In this work, we propose a masked image modeling transformer for deep video compression. Fol-
lowing the proxy task in pretrained language/image model, the transformer is trained to fully exploit
the temporal correlation among frames and spatial tokens in a few autoregressive steps. The MIMT
differs from the conventional autoregressive (raster scanning order) in two ways: more flexible bidi-
rectional attention and more efficient parallel decoding. Visualization and qualitative metric on
standard datasets demonstrate our method outperforms VTM in terms of both PSNR and SSIM. Our
work provides new insights into the use or extension of the transformer in video compression.
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A NETWORK

Image encoder E, decoder D. The image encoder and decoder are not the main contributions of our
work. We develop our model heavily dependent on the contextual encoding backbone from (Sheng
et al., 2021; Li et al., 2022). We use 4 strided convolutional layers for the encoder, resulting in a
total factor of 16× downsampling. For the decoder, we use transposed convolutions and add residual
blocks at low resolutions. Another critical module is the context network, called the temporal context
mining (TCM) module in (Sheng et al., 2021). It generates 1×, 2×, and 4× downsampled context by
warping the feature of the last frame and the predicted optical flow. These contexts are concatenated
with the image encoder/decoder at the corresponding scale for temporal reference.

Transformer Encoder, Decoder. We map the input frame of (256, 256, 3) to (16, 16, 192) latent
with image encoder. We flatten the 2D grid latent in to sequence (1, 16×16, 192). Thus, the dimen-
sion of input ŷt−1 is (1, 256, 192). The output of hyper-prior decoder st is flatten into (1, 256, 96),
and the output of ConvLSTM is (1, 256, 192). We project priors into dC = 768 dimensional with a
linear projection layer before feeding to the transformer. These priors are separately processed with
a transformer encoder and then concatenated together for temporal mixture with a joint transformer
encoder. W-MSA and SW-MSA blocks have another input from the output of the joint encoder. As
shown in Table 6, we show the architecture of the transformer encoder and decoder. We use cross
attention, i.e., W-MCA and SW-MCA layers, to encourage information mixing of spatial-temporal
context and the current frame. The key and value in the cross-attention block are from the output of
the joint encoder, where the continuing output of the decoder is the query.

The basic building layer of the transformer is the shifted window attention. The decoder alternate
between the W-MSA layer and SW-MSA layer using the output of the joint encoder as the key and
value. The window size of W-MSA and SW-MSA is 4. The number of attention heads is 8 for every
attention layer. We use two layers of MLP with input size, hidden size, and output size all 768.

Hyper-prior Encoder, Decoder. The hyper-prior network compresses and stores a bitstream used
as the hierarchical prior st (Ballé et al., 2018). The encoder downsamples the latent yt. At the
receiver side, the decoder recovers it by upsampling, as shown in Table 7.

ConvLSTM. We use a ConvLSTM module (Shi et al., 2015) to aggregate temporal priors of all
previous frames before yt−1. We employ convolution with one-step LSTM, as described in Table 7.

Multi-frame training. We can apply multi-frame (up to 7 frames) and patch-size (256 × 256) for
training. Using long video sequences for training can alleviate the accumulated errors propagating
throughout inter-frame coding. In the first stage, we use two consecutive frames, including one I
frame and one P frame, to train our model for 1 M steps using the hyper-prior entropy model without
MIMT. This stage targets a good image coder-decoder that can faithfully reconstruct the image with
less emphasis on the bit rate cost. Then we add the MIMT entropy model to make a better bit-rate
estimation and use two consecutive frames to minimize the rate-distortion loss for 1 M steps. Finally,
we extend the length of the training video sequence to 7 frames for 300 K steps. The learning rate
is set as 5e-5. We set the batch size as 8, using the Adam optimizer on a single V100 GPU.
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Encoder for st Encoder for ŷt−1 Encoder for rt−1 Joint Encoder Decoder
out: (1, 256, 768) out: (1, 256, 768) out: (1, 256, 768) out: (1, 3× 256, 768) out: (1, 256, 2× 192)

MLP MLP MLP MLP Conv(768, 2× 192, 1, 1, 0)
Layer Norm Layer Norm Layer Norm Layer Norm MLP
SW-MSA SW-MSA SW-MSA SW-MSA Layer Norm

Layer Norm Layer Norm Layer Norm Layer Norm → SW-MCA
MLP MLP MLP MLP Layer Norm

W-MSA W-MSA W-MSA W-MSA SW-MSA
Layer Norm Layer Norm Layer Norm Layer Norm Layer Norm

Linear(192, 768) Linear(192, 768) Linear(192, 768) MLP
in: (1, 256, 192) in: (1, 256, 192) in: (1, 256, 192) in: (1, 3× 256, 768) Layer Norm

→ W-MCA
Layer Norm

W-MSA
Layer Norm

Linear(192, 768)
in: (1, 256, 192)

Table 6: Transformer architecture. Each column is a transformer model, and each row corresponds
to a layer in the module. Note that we omit the skip connection in the table. We only display one
attention block in the table. A learnable positional embedding is added at the input of each module.
In practice, encoder st, ŷt−1, and rt have 2 blocks; joint encoder has 4 blocks; decoder has 4 blocks.

Hyper-prior Encoder Hyper-prior Decoder ConvLSTM ResBlock
out: zt (1, 96, 4, 4) out: st (1, 192, 16, 16) out: rt−1 (1, 256, 192) out: (1, 192, 16, 16)
Conv(96, 96, 5, 2, 2) ConvTranspose(96, 192, 3, 1, 1, 0) ht−2 → LSTM(192, 192, 1) skip connection

ReLU() ReLU() reshape ReLU()
Conv(96, 96, 5, 2, 2) ConvTranspose(96, 96, 5, 2, 2, 1) ResBlock Conv(192, 192, 3, 1, 0)

ReLU() ReLU() ReLU() ReLU()
Conv(192, 96, 3, 1, 1) ConvTranspose(96, 96, 5, 2, 2, 1) Conv(192, 192, 3, 1, 1) Conv(192, 192, 3, 1, 0)
in: yt (1, 192, 16, 16) in: ẑt (1, 96, 4, 4) in: yt−2 (1, 192, 16, 16) in: (1, 192, 16, 16)

Table 7: Hyper-prior encoder/decoder and ConvLSTM architecture. Conv(input channels, out-
put channels, kernel size, stride, padding). ConvTranspose(input channels, output channels, ker-
nel size, stride, padding, output padding). LSTM(input size, hidden size, num layers).

B RECURRENT PRIOR

Exploiting inter-frame redundancy has always been a critical consideration for video compression.
Generally, a deep learning model can use two consecutive frames {yt,yt−1} (Lu et al., 2019; Li
et al., 2021), three consecutive frames {yt,yt−1,yt−2} (Mentzer et al., 2022), four consecutive
frames {yt,yt−1,yt−2,yt−3} (Hu et al., 2021), or all previous frames using recurrent network
(Ma et al., 2019; Yang et al., 2020). We use a one-step ConvLSTM to aggregate all previous frames
before yt−1. From Table 3, it can be discovered that recurrent prior rt−1 bring 11.1% bitrate savings.
One alternative to simplify the recurrent prior is to remove the ConvLSTM and use ŷt−2 instead.
An ablation study is conducted in Table 8. The second row shows that ŷt−2 help to save significant
bitrate. But there are still 3.9% bitrate saving improvements. This result implies that ŷt−1, ŷt−2

contains most temporal context we need to compress yt, but there is still room for improvement if
we exploit a longer range of frames. This observation is consistent with the conclusion from FVC
(Hu et al., 2021) and RLVC (Yang et al., 2020).

C VISUALIZATION OF DECODING

In Fig.7, we visualize the intermediate results of the iterative decoding process. At the k-th step,
the transformer entropy model predicts the PMFs of undecoded tokens, and we directly fill the non-
decoded tokens with the predicted mean µt of PMFs. The quality of the intermediate image can
intuitively reflect the entropy prediction ability of the MIMT model.

In the first column, zero tokens of yt are decoded, i.e., 0 bpp for yt. The bit cost on vt and zt
is 0.006 and 0.007, respectively. MIMT can predict a coarse estimation of the xt from encoded
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Inputs for Entropy Model UVG MCL-JCV HEVC-B Average
st, ŷt−1 +8.6% +11.3% +13.5% +11.1%

st, ŷt−1, ŷt−2 +2.2% +4.1% +5.4% +3.9%
st, ŷt−1, rt−1 0% 0% 0% 0%

Table 8: Ablations on the recurrent prior rt−1 of MIMT.

decode step=0 
bpp=0.013  PSNR=22.159

decode step=1
bpp=0.015  PSNR=22.979

decode step=5
bpp=0.051  PSNR=26.129

decode step=6
bpp=0.058  PSNR=30.542

decode step=7
bpp=0.062  PSNR=35.247

…

…

…

…

Figure 7: Illustration of decoding process on Jockey in UVG dataset. The first row is the recon-
structed images at different steps. The second row shows zoom-in regions in the reconstructed
images. The third row plots the pixel-to-pixel loss with respect to the ground-truth image. Brighter
red represents a higher loss. The fourth row shows the decoded tokens position, where at the begin-
ning no tokens are decoded (blue) and at last, all tokens are decoded (yellow).

priors ŷt−1, ẑt, rt−1. Although the image is blurred without details, we can be aware of the rough
background, the main instances of image, etc. The follow-up images show that as we decode more
tokens, the model gets more context, and the current frame is refined progressively.

We can find that the model decodes images following an easy-to-hard process. Considering the high
temporal redundancy of frame sequences, a large portion of pixels, mostly background, is easy to
predict. The model starts from the tokens with the smallest entropy (e.g., sky and ground) to get
context information. In the beginning, we can take large steps because these tokens consume a little
bitrate. Gradually, when it ”knows” more about the image, it refines the large-entropy tokens (e.g.,
the fast-moving billboard and horseshoe) which are hard to predict. We should take a small step to
make more accurate estimations. This is analogous to the behaviors of a painter who starts with a
sketch and then progressively refines it by filling in or tweaking the details. This dynamic autore-
gressive strategy differs from the raster scanning order might encounter a hard-to-easy dilemma and
result in more bit-stream consumption.

D DECODING EFFECIENCY

We obtain the opensource code of DVC 1, SSF 2, DCVC 3, and DMC 4 for decoding efficiency
comparison.

1https://github.com/GuoLusjtu/DVC
2https://github.com/InterDigitalInc/CompressAI
3https://github.com/microsoft/DCVC/tree/main/NeurIPS2021
4https://github.com/microsoft/DCVC/tree/main/ACMMM2022
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E FULL-SIZED RATE-DISTORTION PLOTS

In the following, we show full-size versions of Fig. 5 for better readability.
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Figure 8: RD performance on UVG dataset in terms of PSNR.
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Figure 9: RD performance on MCL-JCV dataset in terms of PSNR.
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Figure 10: RD performance on HEVC-B dataset in terms of PSNR.
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Figure 11: RD performance on UVG dataset in terms of SSIM.
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Figure 12: RD performance on MCL-JCV dataset in terms of SSIM.
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Figure 13: RD performance on HEVC-B dataset in terms of SSIM.
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