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ABSTRACT

Medical time series (MedTS) such as EEG and ECG are critical for clinical diagno-
sis, yet existing deep learning approaches often struggle with two key challenges:
the misalignment between domain-specific physiological knowledge and generic
architectures, and the inherent low signal-to-noise ratio (SNR) of MedTS. To
address these limitations, we shift from a conventional model-centric paradigm
toward a data-centric perspective grounded in physiological principles. We pro-
pose Channel-Imposed Fusion (CIF), a method that explicitly encodes causal
inter-channel relationships by linearly combining signals under domain-informed
constraints, thereby enabling interpretable signal enhancement and noise suppres-
sion. To further demonstrate the effectiveness of data-centric design, we develop
a simple yet powerful model, Hidden-layer Mixed Bidirectional Temporal Con-
volutional Network (HM-BiTCN), which, when combined with CIF, consistently
outperforms Transformer-based approaches on multiple MedTS benchmarks and
achieves new state-of-the-art performance on general time series classification
datasets. Moreover, CIF is architecture-agnostic and can be seamlessly integrated
into mainstream models such as Transformers, enhancing their adaptability to
medical scenarios. Our work highlights the necessity of rethinking MedTS classi-
fication from a data-centric perspective and establishes a transferable framework
for bridging physiological priors with modern deep learning architectures. The
complete source code supporting this study is publicly available at the following
anonymous repository: anonymous link.

1 INTRODUCTION

Medical time series (MedTS) data, such as electroencephalogram (EEG) and electrocardiogram
(ECG) signals, are widely used in clinical settings to monitor patient health and play a crucial role
in diagnosing neurological and cardiovascular diseases |Arif et al.| (2024)); | Xiao et al.| (2023); Zhu
et al.[ (2025)); Wang et al.| (2024b; 2025b). Accurate classification of these signals enables early
anomaly detection, personalized treatment, and optimized therapy planning, ultimately improving
patient outcomes and healthcare efficiency |[Liu et al.|(2024a)); Tian et al.| (2023). With advances in
deep learning, CNN-based models like EEGNet Lawhern et al.| (2018)) can automatically extract
informative features from raw signals, significantly improving classification performance.

In recent years, Transformer models |Vaswani et al.|(2017), originally inspired by the self-attention
mechanismBahdanau et al.|(2014), have achieved remarkable progress in time series modeling, partic-
ularly in capturing long-range dependencies and global contextual information |Liu et al.{(2021);|Zhou
et al. (2021). By mapping sequential data into high-dimensional token embeddings, Transformers are
able to implicitly model complex temporal dependencies. Despite their success across a wide range
of time series tasks, applying Transformer architectures to MedTS classification still faces several
challenges, which can be summarized as follows: (1) Misalignment between domain-specific
knowledge and generic architectures. Mainstream time series models, such as Autoformer|Wu et al.
(2021)), Crossformer |[Zhang & Yan!(2022), and Reformer [Kitaev et al.[|(2019), have demonstrated
strong performance in general domains such as weather forecasting and finance. However, as illus-
trated in Fig. [T} these approaches fail to achieve comparable effectiveness in MedTS classification
tasks. This raises the urgent question of how to enhance the applicability of general-purpose models
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Figure 1: The results of various methods on the TDBrain dataset (EEG) are presented, where
+ indicates results reported by Medformer Wang et al.|(12024a)), and # indicates results reported by
MedGNN Fan et al.|(202)5). In addition, we highlight two main motivations of this work (Q1 and Q2).

in medical scenarios. Moreover, MedTS often encode critical physiological characteristics—for
example, conduction delays across ECG leads|Auricchio et al.|(2014) and rhythmic synchrony in
EEG signals |Palva & Palval (2014)); [Fries| (2015)—which inherently reflect channel-level relationships.
Unfortunately, such physiological dependencies are rarely considered in generic time series modeling
frameworks. (2) Overemphasis on model optimization while neglecting the intrinsic low SNR of
MedTsS. Unlike general-purpose time series tasks, MedTS are characterized by pronounced low-SNR
conditions |Del Rio et al.|(2011); Sraitih et al.|(2022)); Sharma| (2017); Mohd Apandi et al.| (2020); Jia
et al.|(2024), where noise and artifacts can easily overshadow critical physiological features. In such
conditions, complex Transformer architectures do not always succeed in stably extracting effective
representations, while simpler models (e.g., TCNs|Bai et al.| (2018))) may also experience more severe
performance degradation. Indeed, recent Transformer-based methods tailored for MedTS, such as
MedGNN [Fan et al.| (2025) and Medformer Wang et al.| (2024a)), primarily rely on architectural
innovations, yet they fall short in fundamentally addressing the low-SNR challenge. This raises
a key question: should breakthroughs in MedTS classification come from increasingly complex
architectures, or from more principled data processing and representation strategies?

To address the aforementioned limitations, we depart from the traditional model-centric paradigm that
relies on increasingly complex architectures to capture temporal dependencies, and instead propose a
data-centric approach grounded in the physiological properties of medical time series. Following
this principle, we introduce the Channel-Imposed Fusion (CIF) method, which explicitly encodes
prior causal structures into feature representations. Specifically, CIF constructs new features through
a linear combination of signals from different channels:

Tnew = aT + by, (D

where x and y denote signals from two distinct channels, and a and b are coefficients predefined based
on domain knowledge. When a and b take fixed values, they are not learned directly from patient
data, but instead derived from two domain-specific prior hypotheses: (1) Physiological Coupling
Hypothesis. For ECG signals, when two leads are highly correlated (e.g., P-wave polarity and
morphology are consistent Platonov|(2012)), setting a = b = 1 achieves in-phase summation, thereby
enhancing target signal components and improving the SNR. (2) Noise Suppression Hypothesis. In
EEG recordings, ocular artifacts such as blinks often appear highly correlated in frontal electrodes
Fpl and Fp2 Croft & Barry| (2000). To suppress such noise, we set a = 1,b = —1, applying a
differential fusion strategy to cancel common-mode interference. Here, the coefficients a and b
serve as symbolic encodings of interpretable physiological principles, rather than exact data-driven
estimates. When treated as learnable parameters, they can be fine-tuned under symbolic constraints
imposed by prior knowledge (e.g., enforcing a > 0,b > 0 under coupling, and @ > 0,b < 0 under
noise suppression). This design maintains the interpretability of directional relationships (e.g., signal
enhancement or cancellation) while allowing the model to adaptively adjust the magnitude of each
coefficient based on the training data.
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To emphasize the importance of data-centric approaches, we deliberately designed a simple
yet effective model—the Hidden-layer Mixed Bidirectional Temporal Convolutional Network (HM-
BiTCN)—to demonstrate that excellent performance does not necessarily require model complexity.
The combination of CIF and HM-BiTCN not only outperforms Transformer-based methods on
multiple medical datasets but also achieves new state-of-the-art (SOTA) results on general time series
classification benchmarks. More importantly, the CIF method is not limited to the HM-BiTCN
architecture itself; it exhibits strong transferability and can be seamlessly integrated into existing
Transformer architectures, enhancing their adaptability to MedTS data. Our main contributions are:

* Proposal of Channel-Imposed Fusion (CIF). We introduce CIF to explicitly model inter-
channel relationships in medical time series, particularly suitable for signals with well-
defined physiological structures such as EEG and ECG.

* Design of HM-BiTCN based on CIF. By integrating CIF into HM-BiTCN, our method
consistently outperforms existing SOTA models across multiple publicly available medical
and non-medical time series classification datasets.

* Methodological transferability. CIF is architecture-agnostic and can be seamlessly inte-
grated into mainstream models such as Transformers, compensating for the limitations of
traditional positional encodings in modeling channel-level correlations, and highlighting the
paradigm shift from a model-centric to a data-centric perspective.

2 RELATED WORK

Medical Time Series Classification. Medical time series analysis diverges fundamentally from
general time series forecasting Wu et al.| (2022a)); |[Lu et al| (2024)) by prioritizing pathological
signature decoding over temporal extrapolation, with modalities like EEG [Tang et al.| (2021); Yang
et al.|(2023); Qu et al.| (2020), ECG [Xiao et al.| (2023)); /Wang et al.| (2023); Kiyasseh et al.| (2021]),
and EMG [Xiong et al.| (2021); [Dai et al.| (2022)] encoding distinct clinical semantics. Early
methods were dominated by compact CNNs such as EEGNet|Lawhern et al.[(2018), which employs
depthwise separable convolutions to efficiently extract spatio—temporal features while providing
preliminary interpretability via feature-map visualization. Subsequently, temporal convolutional
networks (TCNs) |Bai et al.|(2018)); Lin et al.[(2019) leveraging dilated causal convolutions achieved
parallelizable computation and extended receptive fields, surpassing LSTM-based approaches Zhou
et al.| (2016)); Shen & Lee| (2016)); Hochreiter & Schmidhuber| (1997) on multiple medical signal
classification benchmarks. Hybrid architectures such as EEG-Conformer Song et al.| (2022) combined
convolutional front-ends with Transformer self-attention to capture both local and global dependencies
and enabled attention-based interpretability. More recently, fine-grained Transformer models such as
Medformer |Wang et al.| (20244a)) introduced cross-channel tokenization and dual-stage self-attention,
setting new SOTA accuracy on several public datasets. The latest MedGNN |Fan et al.| (2025)
further augments attention mechanisms with multi-resolution graph learning to jointly model spatial
multi-scale channel dependencies and temporal dynamics.

Model-centric Transformer-based time series methods. In time series analysis, Transformer-
based models learn complex dependencies through diversified architectural designs: the vanilla
Transformer Vaswani et al.| (2017) first introduced multi-head self-attention and sinusoidal positional
encoding to model temporal correlations globally; Informer Zhou et al.|(2021) employs ProbSparse
attention to select key time steps and compress sequence length, thereby reducing the computational
cost of long-range dependencies; Reformer Kitaev et al.| (2019) incorporates Locality-Sensitive
Hashing (LSH) to reduce attention complexity to ©(L log L), making it suitable for ultra-long
sequences; Autoformer Wu et al.|(2021) proposes an Auto-Correlation mechanism that aggregates
periodic subsequences to enhance the implicit capture of cyclic patterns; FEDformer [Zhou et al.
(2022)) performs seasonal-trend decomposition in the frequency domain and uses compressed Fourier
coefficients to enable cross-frequency attention interactions; Crossformer|Zhang & Yan|(2022) designs
a two-stage attention mechanism across time and feature dimensions to implicitly fuse multivariate
spatiotemporal couplings; iTransformer Liu et al.|(2024b)) innovatively treats time steps as channel
dimensions and applies standard attention to implicitly learn nonlinear inter-variable relationships;
PatchTST Nie et al.| (2023) segments continuous time steps into patch-based tokens and uses a
combination of local and global attention to capture multi-scale temporal patterns; Medformer Wang
et al.[(2024a)) introduces multi-granularity patch embeddings and cross-channel attention for medical
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signals, implicitly modeling the heterogeneous couplings of physiological metrics; and MedGNN [Fan|
(2025) combines graph attention with frequency-differential networks to incorporate medical
topological priors into implicit spatiotemporal dependency learning.

3 METHOD

3.1 CHANNEL-IMPOSED FUSION

As shown in Eq.[T] a linear combination of two channels can incorporate physiological priors to
construct more meaningful feature representations. For multi-channel data with N channels, we
select two subsets X and Y, each containing n < N channels. Each corresponding channel pair X;
and Y; is linearly fused to produce

X;eW:(LZ‘X,‘—‘rbi}/i, 1= 1,2,...,7’?/7 (2)

where a; and b; are the linear combination coefficients for the ¢-th pair of channels. Consequently, this
multi-channel fusion scheme requires n coefficients a; and n coefficients b; in total. By leveraging
physiological priors through such linear combinations across multiple channels, the model can
enhance its capability to capture salient physiological patterns .

SNR Improvement via Linear Channel Fusion. Details in Appendix[A] Consider two observed
signals 1 = s1 + €1 and 9 = S2 + €2, with zero-mean, mutually uncorrelated signal and noise
components. The CIF module performs a linear combination y = axq + bxo = as; + bss + aey + beo,
whose output SNR can be expressed as SNRoyy = Var(asy + bsa)/Var(aey + bea).

In the simple case where the signals and noises have equal variances o2 and o2, and correlations
p and ~, this reduces to SNRou, = SNR;y, - (a? + b? + 2abp)/(a? + b? + 2aby). Maximizing this
ratio yields two canonical modes: cooperative mode (p > ) with a = b, which amplifies correlated
signals, and differential mode (p < ) with a = —b, which suppresses correlated noise.

In the general case where signal and noise variances are unequal and may both be corre-
lated, let the signal vector [sq,s2]” and noise vector [}, ea]” have covariance matrices S =

o paslzasg} and N — o V01T

PO 51052 (o) YO0 e10e2 (o))

coefficients be w = [a,b]T. The output SNR is then SNR(w) = (w'Sw)/(wINw). Taking
the derivative with respect to w and setting it to zero yields the generalized eigenvalue prob-
lem Sw = ANw, where the eigenvalue A represents an achievable SNR. In the two-channel
case, \ satisfies the quadratic equation AN? + BA + C = 0, with A = 0% 03%(1 — ~?),

, respectively, and let the linear combination

B = — (02,02, + 02,02 — 2p70510520¢10¢2), and C = 02,0%(1 — p*). The maximum out-
put SNR is therefore SNRyax = Amax = [—B + VB2 —4AC|/(2A), and the corresponding

optimal coefficient ratio is (b/a) = (Amax02 — 021)/(p0s10s2 — AmaxY0c102). This two-channel
SNR maximization framework can be directly extended to multi-channel recordings by grouping
channels into corresponding pairs (z;, , ;, ), constructing for each pair the signal and noise covari-
ance matrices S and Ny, and solving Sywi = AN wy, to obtain the optimal fusion coefficients
wi = [ag, bk]T, which define the fused channel y, = apx;, + bpx;,. Such pairwise optimal linear
fusion exploits inter-channel signal correlations while suppressing correlated noise, thereby achieving
simultaneous SNR enhancement across all channels in a multi-channel system .

However, despite the fact that designing independent coefficients (a;, b;) for each channel pair can
maximize physiological interpretability and enhance the signal-to-noise ratio, this approach still
faces several practical challenges in real-world applications. The total number of parameters scales
linearly with the number of channels, reaching 2n, which can make parameter management and
optimization cumbersome as n increases. Moreover, if the coefficients are not learnable, each pair
must be manually adjusted, substantially increasing the workload and introducing potential human
bias. In addition, when the coefficients are uncertain or need to be searched over a range of candidate
values, the number of possible configurations grows exponentially (i.e., K2" for K candidate values
per coefficient), rendering exhaustive optimization practically infeasible.

To alleviate these issues, we adopt a simplified strategy in which a single coefficient a is applied
uniformly to the first n channels and a single coefficient b is applied to the remaining n channels,
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reducing the total number of parameters from 2n to 2. This substantially decreases the manual
adjustment and computational cost while retaining the core advantages of linear fusion. The simplified
fusion can be expressed as

X =aX,+bY;, i=1,...,n 3)
Although this strategy significantly reduces the parameter space and improves practical usability, it
comes with a trade-off: replacing pairwise coefficients (a;, b;) with global coefficients (a, b) reduces
micro-level interpretability and may limit the ability to selectively enhance high-signal channels.
Overall, this design provides a practical compromise between physiological fidelity, parameter
efficiency, and computational feasibility. For applications that require more fine-grained modeling,
intermediate strategies such as group-wise coefficients or learnable parameters can be employed to
balance interpretability and parameter efficiency.
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Figure 2: Reorders the channels , placing electrodes from the same functional region adjacently along

the input dimension to create an “functional region fusion” input layout. Panel (d) visualizes the
pairwise channel fusion process as the number of channels n varies.
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Figure 3: The implementation process of the Channel-Imposed Fusion method.

To align with the use of global coefficients (a, b), the subsequent stage of the CIF module reorders
channels according to physiological priors, ensuring that linear fusion operates on a physiologically
meaningful sequence and preserves functional relationships. In the first step, input channels are
reordered as shown in Figure[2b) to explicitly encode the physiological priors depicted in Figure[2Ja).
For EEG, channels are grouped by functional regions following the international 10-20 system Klem|
(1999), with anterior regions (frontopolar and frontal) placed at the beginning and posterior regions
(parietal and occipital) at the end, while preserving local spatial neighborhoods within each region as
much as possible. This "anterior-to-posterior" ordering is independent of specific electrode montages,
allowing application across datasets and enhancing the capture of spatial patterns related to the brain’s
anterior—posterior organization. For ECG, channels are grouped according to cardiac physiology:
limb leads (I, II, IIT) and augmented leads (aVR, aVL, aVF) are placed first, precordial leads (V1-V6)
in the middle, and other derived or vector leads (Vx, Vy, Vz) last. The precordial and vector leads
roughly follow the thoracic spatial trajectory—from proximal to distal, right to left, and anterior to
posterior—ensuring adjacent placement of leads capturing related cardiac activity, thereby enabling
effective fusion across functional regions or lead groups. This process, referred to as functional region
fusion (FRF), allows the CIF module to fully exploit cross-region spatial dependencies.
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In Figure 2] (d), we illustrate the specific physiological channel fusion relationships as the number of
channels n varies; for clarity, Figure f]provides a simplified schematic of this process. Specifically,
the anterior and posterior brain regions are first arranged according to physiological order, and then
the first n channels are fused with the last n channels. When n is less than half of the total number
of channels, fusion occurs across different functional regions; when n exceeds half, fusion occurs
within the same functional region. This approach relies on only a few tunable parameters—n, a, and
b—which control the number of channels affected by the CIF module. As n increases, more channels
are influenced while maintaining physiological diversity across channels. This flexible fusion strategy
provides a foundation for systematically exploring different channel subsets and integrating additional
physiological features, while also supporting subsequent parameter optimization.

3.2 HM-BITCN STRUCTURE DESIGN AND THEORETICAL ANALYSIS
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Figure 4: HM-BiTCN Architecture Diagram.

To demonstrate the advantages of data-centric approaches and to show that simple models can achieve
strong performance, as illustrated in Figure[d] (a), the conventional TCN only models unidirectional
causal relationships in time series. In contrast, our proposed HM-BiTCN (Figure[d](c)) extends the
traditional TCN by introducing bidirectional feature mixing, allowing each layer to capture both
forward and backward temporal dependencies. This design is complementary to CIF’s enhancement
along the channel dimension: CIF focuses on capturing inter-channel spatial relationships and
improving the signal-to-noise ratio, while HM-BiTCN strengthens feature extraction along the
temporal dimension. The combined enhancement across both channel and temporal dimensions
enables CIF+HM-BiTCN to more fully exploit the information contained in the data, achieving
superior performance. Importantly, when the parameters a and b in CIF are set to be learnable, they
are optimized jointly with HM-BiTCN’s structural parameters in an end-to-end training process,
thereby enabling unified channel- and time-domain feature enhancement. For further details, please
refer to Appendix [D]and Appendix [E]

4 EXPERIMENTS

Medical Time Series Datasets. (1) APAVA [Escudero et al.| (2006) is an EEG dataset where
each sample is assigned a binary label indicating whether the subject has Alzheimer’s disease. (2)
TDBRAIN jvan Dijk et al.| (2022) is an EEG dataset with a binary label assigned to each sample,
indicating whether the subject has Parkinson’s disease. (3) ADFTD Miltiadous et al.| (2023bfa) is
an EEG dataset with a three-class label for each sample, categorizing the subject as Healthy, having
Frontotemporal Dementia, or Alzheimer’s disease. (4) PTB [PhysioBank! (2000) is an ECG dataset
where each sample is labeled with a binary indicator of Myocardial Infarction. (5) PTB-XL
is an ECG dataset with a five-class label for each sample, representing various heart
conditions. Table 5] provides information on the processed datasets.The data processing methodology

is the same as that of Medformer[Wang et al|(2024a) and MedGNN (2025).
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Baselines. We compare with 12 state-of-the-art time series transformer methods: Autoformer
(2021)), Crossformer Zhang & Yan|(2022), FEDformer [Zhou et al.|(2022), Informer [Zhou et al.
(2021), iTransformer Liu et al.|(2024b), MTST [Zhang et al.| (2024)), Nonformer |Liu et al.| (2022
PatchTST Nie et al.| (2023), Reformer Kitaev et al.[(2019), vanilla Transformer [Vaswani et al.| (2017),
Medformer Wang et al.| (2024a), MedGNN (2025).

Implementation. We employ six evaluation metrics: accuracy, precision (macro-averaged), recall
(macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged), and AUPRC (macro-
averaged). The training process is conducted with five random seeds (41-45) on fixed training,
validation, and test sets to compute the mean and standard deviation of the models. All experi-
ments were conducted using an NVIDIA RTX 3090 GPU and implemented with PyTorch version
1.11.0[Paszke et al(2017). Following MedformerWang et al|(2024a) and MedGNN (2025),
we consider two dataset partitioning strategies: (i) Subject-Dependent Split, where samples from
the same subject may appear in both training and test sets, potentially causing information leakage;
and (ii) Subject-Independent Split, where each subject appears only in one of the train, validation,
or test sets, simulating real-world diagnostic scenarios while introducing inter-subject variability
challenges. The model is trained to minimize the supervised loss J£° = % va:l 0(9i,y;), where
£(;,y;) measures the discrepancy between the predicted labels g; and the ground-truth labels y;.
Specifically, the encoder fy : RT*C _ Rd maps each input x; to a latent representation h; = fo(x;),
which is then passed to the classifier g4 to produce the prediction §; = g¢(h;).

4.1 RESULTS OF SUBJECT-DEPENDENT

Table 1: Results of Subject-Dependent Setup. Results of the ADFTD dataset under this setup are
presented here.The best result is highlighted in bold, and the second-best is underlined.

Datasets Models Accuracy T Precision{ Recall FlscoretT AUROC?T AUPRC 1
Autoformer 87.83+1.62 87.63+1.66 87.22+197 87.38+179  96.59+088  93.82+1.64
Crossformer 89.35+1.32 89.00+144  88.79+137 88.88+140 97.52+058 95.45+1.03
FEDformer 77.63+237 76.76+2.17  76.68+248 76.60+246 91.67+134 84.94+2.11

ADFTD Informer 90.93+0.90 90.74+071  90.50+1.14  90.60+094  98.194027  96.51+049

(3-Classes) iTransformer 64.90+0.25 62.53+027  62.21+026 62.25+033 81.52+029  68.87+0.49

Reported MTST 65.08+0.69 63.85+080  62.71+064 63.03+058 81.36+056 69.34+0.89

P Nonformer 96.12+047 95.94+056  95.99+038  95.964+047  99.594009  99.08+0.16
PatchTST 66.26+0.40 65.08+041  64.97+051 64.95+042 83.07+045 71.70+0.61
Reformer 91.51+1.75 91.15+179  91.65+156 91.14+183  98.85+035 97.88+0.60
Transformer 97.00+0.43 96.87+053  96.86+036 96.86+044  99.75+004  99.42+0.07
Medformer 97.62+0.34 97.53+033  97.48+040 97.50+036  99.83+005  99.62+0.12
MedGNN 98.42+0.04 98.31+002  98.29+005 98.30+0.12  99.93+0.11

Medformer + CIF  98.87+0.26 98.77+027  98.86+0.27 98.814027  99.9640.01 99.9éi0.03
MedGNN + CIF 99.60-0.09 99.60+0.11  99.58+0.09 99.59+0.10  99.99+0.01  99.97-+0.01

Following Medformer Wang et al.|(2024a)), in this setup, the training, validation, and test sets are split
at the sample level. All samples from all subjects are randomly shuffled and assigned to the three sets
according to a predetermined ratio, so that samples from the same subject may appear simultaneously
in the training, validation, and test sets. This setup has limited applicability for MedTS-based disease
diagnosis in real-world scenarios and is typically used to quickly assess whether the dataset exhibits
cross-subject features. Results obtained under this setup are generally much higher than those from
the subject-independent setup, reflecting the upper bound of the dataset’s learnability.

We reproduced 12 baselines. Table[T|lists their reported results, and Table[I0]in Appendix [[]shows
our reproduced results. Experimental results show that integrating the CIF method into MedGNN and
Medformer outperforms existing approaches, fully demonstrating its effectiveness and superiority.

4.2 RESULTS OF SUBJECT-INDEPENDENT

Following Medformer |Wang et al.| (2024a)), in this setup, the training, validation, and test sets are
split based on subjects. All subjects and their corresponding samples are assigned to the training,
validation, and test sets according to a predetermined ratio or subject IDs, ensuring that samples from
the same subject appear in only one of these sets. This simulates real-world MedTS-based disease
diagnosis, aiming to train a model on subjects with known labels and then test it on unseen subjects
to determine whether they have a specific disease. All five datasets are evaluated using this setup.
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Table 2: Results of Subject-Independent Setup. The results we compare include those reported by
Medforme Wang et al.|(2024a) and MedGNN |Fan et al.| (2025). Additionally, we have reproduced all
the methods in the Table [11]to ensure a fairer comparison.The best result is highlighted in bold, and
the second-best is underlined.

Datasets Models Accuracy T PrecisionT RecallT Flscoret AUROCT AUPRC T
Autoformer 68.64+1.82 68.48+210 68.77+227 68.06+194  75.94+361  74.38+4.05
Crossformer 73.77+1.95 79.29+436  68.86+1.70 68.93+185  72.394333  72.05+3.65

APAVA FEDformer 74.94+2.15 74.59+150  73.56+355  73.51+339  83.72+197 82.94+237

(2-Classes) Informer 73.11+440 7517606  69.17+456  69.47+506  70.46+491  70.75+527

R ted iTransformer 74.55+1.66 T4.77+2.10  T1.76+172  72.30+1.79  85.59+1.55 84.39+157

eported  MTST 71.14+15  79.30+097 65274228 64.01+316  68.87+234  71.06+1.60
Nonformer 71.89+3.81 71.80+458  69.44+356 69.74+384  70.554296  70.78+4.08
PatchTST 67.03+1.65 78.76+128 59914202 55.97+310 65.65+028 67.99+0.76
Reformer 78.70+2.00 82.5043.95  75.00+161 75.93+182  73.94+140 76.04+1.14
Transformer 76.30+4.72 77.64+595  73.09+501  73.75+538  72.50+6.60 73.23+7.60
Medformer 78.74+0.64 81.11+084  75.40+066 76.31+071  83.20+091  83.66+0.92
MedGNN 82.60+0.35 87.70+022  78.93+009 80.25+0.16  85.93+0.26 -
HM-BiTCN + CIF  86.30+1.05 86.16+1.00 85.47+1.12 85.71+1.09 94.26+054 94.42+0.49
Autoformer 87.33+3.79 88.06+356  87.33+379 87.26+384 93.814+226 93.32+242
Crossformer 81.56+2.19 81.97+225  81.56+2.19 81.50+220 91.20+178  91.51+1.71

TDBrain FEDformer 78.13+1.98 78.52+191  78.13+198 78.04+201  86.56+186 86.48+1.99

(2-Classes) Informer 89.02+2.50 89.43+214  89.02+250 88.98+254 96.64+068  96.75+0.63

Reported iTransformer 74.67+1.06 T4.71+106  74.67+106 T4.65+106 83.37+1.14  83.73+1.27

p MTST 76.96+3.76 77.24+359  76.96+376 76.88+3.83 85274446 82.81+564
Nonformer 87.88+2.48 88.86+1.84  87.88+248 87.78+256  97.054+068  96.99+0.68
PatchTST 79.25+3.79 79.60+4.09  79.25+379  79.20+377  87.95+496 86.36+6.67
Reformer 87.92+2.01 88.64+140 87.92+201 87.85+208 96.30+054  96.40+045
Transformer 87.17+1.67 87.99+168 87.17+167 87.10+168 96.28+092  96.34+0.381
Medformer 89.62+0.81 89.68+078  89.62+081  89.62+081  96.414+035 96.51+0.33
MedGNN 91.04+0.09 91.15+0.12  91.04+020 91.04+008  96.74+0.04 -
HM-BiTCN + CIF  93.13+1.41 93.33+1.37  93.13+141  93.12+142  98.62+0.66 98.68-+0.63
Autoformer 45.25+1.48 43.67+194 42964203 42.59+185 61.02+182  43.10+230
Crossformer 50.45+231 45.57+163  45.88+182 45.50+170 66.45+203  48.33+205

ADFTD FEDformer 46.30+0.59 46.05+076  44.22+138 43.91+137 62.62+175 46.11+1.44

(3-Classes) Informer 48.45+1.96 46.54+168  46.06+1.84 45.74+138 65.87+127 47.60+1.30

R d iTransformer 52.60+1.59 46.79+127  47.28+129 46.79+1.13  67.26+1.16  49.53+1.21

eporte MTST 45.60+2.03 44704133 45.05+130 44.31+174  62.50+081  45.16+085
Nonformer 49.95+1.05 47.71+097 47.46+150 46.96+135 66.23+137 47.33+1.78
PatchTST 44.37+0.95 42.40+1.13  42.06+148 41.97+137  60.08+1.50 42.49+1.79
Reformer 50.78+1.17 49.64+149  49.89+167 47.94+069 69.17+158 S51.73+1.94
Transformer 50.47+2.14 49.13+183  48.01+153 48.09+159 67.93+159 48.93+20,2
Medformer 53.27+1.54 51.02+157  50.71+155  50.65+151  70.93+1.19  51.21+1.32
MedGNN 56.12+0.11 55.074+0.09  55.47+034 55.00+024  74.68+033 -
HM-BiTCN + CIF  58.56-+0.93 55.65+081 55.86+0.79 55.42+082 76.07+059 59.75+0.67
Autoformer 73.35+2.10 72114280  63.2443.17  63.69+384  78.54+348 74.25+353
Crossformer 80.1743.79 85.04+1.83  71.25+6290 72.75+7.19  88.55+345 87.31+325

PTB FEDformer 76.05+2.54 77.58+361  66.10+355 67.14+437 85934431 82.59+542

(2-Classes) Informer 78.69+1.68 82.87+1.02  69.19+290 70.84+347  92.094053  90.02+0.60

R ted iTransformer 83.89+0.71 88.25+1.18  76.39+101  79.06+106 91.18+1.16  90.93+0.98

eported  MTST 76.59+190  79.88+190 66.31+295 67384371  86.86+275 83.75+284
Nonformer 78.66+0.49 82.77+086  69.12+087 70.90+100 89.37+251 86.67+238
PatchTST 74.74+1.62 76.94+151  63.89+271 64.36+338  88.79+091  83.39+0.96
Reformer 77.96+2.13 81.72+161  68.20+335 69.65+388  91.13+074  88.42+1.30
Transformer 77.37+1.02 81.84+066 67.14+180 68.47+219  90.08+1.76  87.22+1.68
Medformer 83.50+2.01 85.194094  77.11+339  79.18+331  92.81+148 90.32+1.54
MedGNN 84.53+0.28 87.35+045  77.90+066 80.40+062  93.31+046 -
HM-BiTCN + CIF  88.29+145 90.66+148  83.21+202 85.59+196 94.28+093 93.78+1.11
Autoformer 61.68+2.72 51.60+1.64  49.10+152 48.85+227  82.04+144 51.93+1.71
Crossformer 73.30+0.14 65.06+035  61.23+033  62.59+014  90.02+006  67.43+0.22

PTB-XL  FEDformer 57.20+9.47 52384609  49.04+726 47.89+844 82134417 52.31+7.03

(5-Classes) Informer 71.43+032 62.64+060 59.12+047 60.44+043  88.65+009 64.76+0.17

Reported iTransformer 69.28+0.22 59.594045  54.62+0.18 56.20+0.19  86.71+0.10  60.27+021

p MTST 72.14+027 63.84+072  60.01+081 61.43+038 88.97+033 65.83+051
Nonformer 70.56+0.55 61.57+066  57.75+072 59.10+066  88.32+036  63.40+0.79
PatchTST 73.23+0.25 65.70+0.64  60.82+076 62.61+034 89.74+0.19  67.32+0.22
Reformer 71.72+0.43 63.12+1.02  59.20+075 60.69+0.18  88.80+024  64.72+047
Transformer 70.59+0.44 61.57+065  57.62+035 59.05+025 88.21+016 63.36+0.29
Medformer 72.87+0.23 64.14+042  60.60+046 62.02+037 89.66+0.13  66.39+0.22
MedGNN 73.87+0.18 66.26+029  61.13+029 62.54+020 90.21+0.15

HM-BiTCN + CIF  73.73+030 65.41+067  60.70+1.08 61.89+091  90.53+0.22 67.7§i0.75

Table 2] presents the results reported by various methods in the subject-independent setting, while
Table [11]shows the results of our reproduction of these methods. Our method achieves the highest
average scores across six metrics on four out of the five datasets. On PTB-XL, our method tops
AUROC and AUPRC and ranks second in Accuracy versus reported results, and ranks first in Accuracy,
Precision, AUROC, AUPRC, and second in Recall versus our reproduced results. Additionally, it is
worth noting that in the subject-independent, the F1 score of ADFTD is 55.42%, which is significantly
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lower than the 99.59% achieved in the subject-dependent setup. This comparison highlights the
challenges of the subject-independent setup, which better simulates real-world scenarios.

4.2.1 EFFICIENCY ANALYSIS
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Figure 5: Effectiveness and efficiency on two datasets (subject-based).

We evaluate the model efficiency in terms of accuracy, training speed, and memory footprint using
two datasets: APAVA and TDBRAIN. In Figure[5] a marker closer to the upper-left corner indicates
higher accuracy and faster training speed, while a smaller marker area corresponds to lower memory
usage. The results show that HM-BiTCN achieves the best overall performance among all baseline
methods, demonstrating its high efficiency and reliability across different application scenarios.

4.3 ABLATION STUDY

(1) Effectiveness of CIF: Table [3|demonstrates the excellent performance of combining HM-BiTCN
with CIF, confirming the compatibility of the HM-BiTCN with CIF. See Appendix [J.I]for details.
Appendix [F presents ablation studies on the HM-BiTCN architecture, the performance improvements
from integrating CIF into its components, and comparisons with the vanilla TCN structure.

Table 3: Exploring the Integration of HM-BiTCN Structure with CIF.

Datasets | APAVA | ADFTD | PTB | TDBRAIN | PTB-XL
Metrics | Accuracy  FlScore | Accuracy  Fl Score | Accuracy F1 Score | Accuracy — FlScore | Accuracy — Fl Score
w/ CIF 86.30+1.05  85.71+1.09 | 58.56+093 55.42+082 | 88.29+145 85.59+196 | 93.13+141  93.12+142 | 73.734+030 61.89+091

w/o CIF ‘82.49il.40 81.60+139 | 52.05+2220 49.48+270 | 81.87+187 75.84+320 | 84.90+260 84.76+274 | 72.92+088 61.49+082
Improvement | +3.81% +4.11% | +6.51% +5.94% | +6.42% +9.75% | +8.23% +8.36% | +0.81% +0.40%

(2) Hyperparameter Transfer and Adaptation: We evaluate the transferability of key hyperpa-
rameters (e.g., a, b, n) from HM-BiTCN to other models. If transferred settings underperform, we
further fine-tune them for adaptation. See Appendices[J.2)and [J.3] Figure [6]illustrates the outstanding
performance of CIF when combined with other models.

(3) Exploring alternative fusion strategies: In Appendix [G] we systematically evaluate several
fusion approaches, including the fusion using only the Fpl and Fp2 channels mentioned in the
Introduction, the fusion of a reduced set of left-right symmetric channels, and our further exploration
using canonical correlation analysis (CCA) for fusion. The experimental results demonstrate that CIF
exhibits strong scalability, maintaining performance advantages across different fusion strategies.

(4)Results on general time series classification tasks

To evaluate the performance of our method on general time series, we follow the design of
Medformer |Wang et al.| (2024a)) and test it on two human activity recognition (HAR) datasets:
FLAAP(13,123 samples, 10 classes) [Kumar & Suresh| (2022) and UCI-HAR(10,299 samples, 6
classes)|Anguita et al.|(2013). Additionally, to conduct a more comprehensive evaluation, following
TimeMixer++ |Wang et al.| (2025a)), we used 10 multivariate datasets from the UEA Time Series
Classification Archive (2018) for the assessment of classification tasks.
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Figure 6: The improvements achieved by various baselines when combined with the CIF method.

Table 4: Performance on the HAR and UCI-HAR non-medical time series datasets. Bold numbers
indicate the best results. * denotes the results reported by Medformer.

Crossformer * Reformer * Transformer * T

Dataset / Metric [Bai CNH* ]
ataset / Metric hang & Yan(2022]  [Kitaev et al J2019] [Vaswani et al.j2017] [Bai et al. f2018

ModernTCN * Medformer * HM-BiTCN HM-BiTCN + CIF

Mamba *
Luo & Wang - 2024]  |Gu & Dao “2023 \T/ang etal. "2024a (This work) (This work)

FLAAP Accuracy 75.841052 71.65+127 74.96+1.25 66.481.66 74.80+096 64.87+278 76441064 76.08+081 76.82+1.32
(10 Classes)  F1 Score 75.52+066 71144145 74494139 65.29+1.74 74.35+085 64.141270 76.25+065 75.54+094 76.39+1.18
UCI-HAR Accuracy 89.74x1.08 88.441202 88.86+1.65 93.08+095 91.44x101 87.78=110 91.65+074 93.72+073 93.78=-0.32
(6 Classes) ~ F1 Score 89.70+1.10 88.34:+1.98 88.80+167 93.19+088 91.47+098 87.72x110 91.61x075 93.69+0.76 93.74+034

As shown in Table ] and Fig.[7] the combination \
HM-BiTCN+CIF | }-75.8

of HM-BiTCN and CIF consistently outperforms
other architectures in general time series classifica-
tion, achieving a 5.5% improvement over the original
TCN and surpassing current SOTA methods. Al-
though CIF was originally designed for MedTsS, its in-
tegration with HM-BiTCN significantly outperforms
Transformer-based models in both medical and gen-
eral time series classification tasks, demonstrating the
effectiveness of our data-centric approach.

The results in Tables @] O} [B]and Figure [6] show that
CIF achieves significant improvements in MedTS
classification, while the gains on non-medical data are
relatively limited. This observation further demon-
strates that a data-driven perspective is particularly
effective for MedTS classification with physiological
characteristics.

5 CONCLUSION

" Averag”e Accur;cy (%) :

Figure 7: Average accuracy of various meth-
ods on the UEA dataset. More details in Ap-

pendix [H}

In this work, we propose a simple and effective method for medical time series classification, Channel-
Imposed Fusion (CIF), which explicitly encodes physiological causal relationships between channels
in the feature representations while enhancing the SNR of the original signals. Combined with the
simple HM-BiTCN architecture, CIF surpasses existing SOTA methods on multiple medical datasets
and performs strongly on general time series classification tasks, demonstrating that data-centric
design enables simple models to outperform more complex architectures. More importantly, CIF
exemplifies the shift from the traditional model-centric paradigm to a data-centric perspective, where
structured representations grounded in physiological priors are both efficient and scalable for medical
time series classification. CIF also exhibits strong transferability and can be seamlessly integrated
into mainstream models such as Transformers, enhancing their applicability in medical scenarios. We
hope this work encourages the community to reconsider the core of medical time series classification:
should it be driven primarily by data-centric strategies or by model-centric design or both?

10



Under review as a conference paper at ICLR 2026

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. A public
domain dataset for human activity recognition using smartphones. In Esann, volume 3, pp. 3,
2013.

Aniqa Arif, Yihe Wang, Rui Yin, Xiang Zhang, and Ahmed Helmy. Ef-net: Mental state recognition
by analyzing multimodal eeg-fnirs via cnn. Sensors, 24(6):1889, 2024.

Angelo Auricchio, Joost Lumens, and Frits W Prinzen. Does cardiac resynchronization therapy
benefit patients with right bundle branch block: cardiac resynchronization therapy has a role in
patients with right bundle branch block. Circulation: Arrhythmia and Electrophysiology, 7(3):
532-542, 2014.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Rodney J Croft and Robert J Barry. Removal of ocular artifact from the eeg: a review. Neurophysi-
ologie Clinique/Clinical Neurophysiology, 30(1):5-19, 2000.

Yuanchao Dai, Jing Wu, Yuanzhao Fan, Jin Wang, Jianwei Niu, Fei Gu, and Shigen Shen. Mseva:
A musculoskeletal rehabilitation evaluation system based on emg signals. ACM Transactions on
Sensor Networks, 19(1):1-23, 2022.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tiDE: Time-series dense encoder. Transactions on Machine Learning Research,
2023. ISSN 2835-8856.

B Aldecoa Sanchez Del Rio, T Lopetegi, and I Romero. Assessment of different methods to estimate
electrocardiogram signal quality. In 2011 Computing in Cardiology, pp. 609-612. IEEE, 2011.

J Escudero, Daniel Abdsolo, Roberto Hornero, Pedro Espino, and Miguel Lépez. Analysis of
electroencephalograms in alzheimer’s disease patients with multiscale entropy. Physiological
measurement, 27(11):1091, 2006.

Wei Fan, Jingru Fei, Dingyu Guo, Kun Yi, Xiaozhuang Song, Haolong Xiang, Hangting Ye, and Min
Li. Towards multi-resolution spatiotemporal graph learning for medical time series classification.
In Proceedings of the ACM on Web Conference 2025, pp. 5054-5064, 2025.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32, 2019.

Pascal Fries. Rhythms for cognition: communication through coherence. Neuron, 88(1):220-235,
2015.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In ICLR, 2022.

Alex Hanson, Koutilya Pnvr, Sanjukta Krishnagopal, and Larry Davis. Bidirectional convolutional
Istm for the detection of violence in videos. In Proceedings of the European conference on
computer vision (ECCV) workshops, pp. 0-0, 2018.

Simon S Haykin. Adaptive filter theory. Pearson Education India, 2002.

11



Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics: methodology
and distribution, pp. 162—190. Springer, 1992.

Ming Hu, Jianfu Yin, Jing Wang, Yuqi Wang, Bingliang Hu, and Quan Wang. Specslice-convlstm:
Medical hyperspectral image segmentation using spectral slicing and convlstm. In International
Conference on Pattern Recognition, pp. 211-225. Springer, 2024.

Ming Hu, Jianfu Yin, Zhuangzhuang Ma, Jianheng Ma, Feiyu Zhu, Bingbing Wu, Ya Wen, Meng
Wu, Cong Hu, Bingliang Hu, et al. beta-fft: Nonlinear interpolation and differentiated training
strategies for semi-supervised medical image segmentation. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 30839-30849, 2025.

Yifan Jia, Hongyu Pei, Jiaqi Liang, Yuheng Zhou, Yanfei Yang, Yangyang Cui, and Min Xiang.
Preprocessing and denoising techniques for electrocardiography and magnetocardiography: A
review. Bioengineering, 11(11):1109, 2024.

Steven M Kay. Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc.,
1993.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606-5615.
PMLR, 2021.

George H Klem. The ten-twenty electrode system of the international federation. the international
federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl., 52:3-6,
1999.

Prabhat Kumar and S Suresh. Flaap: An open human activity recognition (har) dataset for learning
and finding the associated activity patterns. Procedia Computer Science, 212:64-73, 2022.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In SIGIR, 2018.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
Brent J Lance. Eegnet: a compact convolutional neural network for eeg-based brain—computer
interfaces. Journal of neural engineering, 15(5):056013, 2018.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

Lei Lin, Beilei Xu, Wencheng Wu, Trevor W Richardson, and Edgar A Bernal. Medical time series
classification with hierarchical attention-based temporal convolutional networks: A case study of
myotonic dystrophy diagnosis. In CVPR workshops, volume 2, 2019.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

Xi Liu, Xinming Zhang, Tao Yu, Ruochen Dang, Jian Li, Bingliang Hu, Quan Wang, and Rong Luo.
Classification of self-limited epilepsy with centrotemporal spikes by classical machine learning
and deep learning based on electroencephalogram data. Brain Research, 1830:148813, 2024a.

12



Under review as a conference paper at ICLR 2026

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881-9893, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. International Confer-
ence on Learning Representations, 2024b.

Jiecheng Lu, Xu Han, Yan Sun, and Shihao Yang. Cats: Enhancing multivariate time series forecasting
by constructing auxiliary time series as exogenous variables. arXiv preprint arXiv:2403.01673,
2024.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Andreas Miltiadous, Emmanouil Gionanidis, Katerina D Tzimourta, Nikolaos Giannakeas, and
Alexandros T Tzallas. Dice-net: a novel convolution-transformer architecture for alzheimer
detection in eeg signals. IEEE Access, 2023a.

Andreas Miltiadous, Katerina D Tzimourta, Theodora Afrantou, Panagiotis Ioannidis, Nikolaos
Grigoriadis, Dimitrios G Tsalikakis, Pantelis Angelidis, Markos G Tsipouras, Euripidis Glavas,
Nikolaos Giannakeas, et al. A dataset of scalp eeg recordings of alzheimer’s disease, frontotemporal
dementia and healthy subjects from routine eeg. Data, 8(6):95, 2023b.

Ziti Fariha Mohd Apandi, Ryojun Ikeura, Soichiro Hayakawa, and Shigeyoshi Tsutsumi. An analysis
of the effects of noisy electrocardiogram signal on heartbeat detection performance. Bioengineering,
7(2):53, 2020.

Guy P Nason and Rainer von Sachs. Wavelets in time-series analysis. Philosophical transactions
of the royal society of London. Series A: Mathematical, Physical and Engineering Sciences, 357
(1760):2511-2526, 1999.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. /CLR, 2023.

Jaakko Matias Palva and Satu Palva. The correlation of the neuronal long-range temporal correlations,
avalanche dynamics with the behavioral scaling laws and interindividual variability. Criticality in
Neural Systems, pp. 105-126, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huangi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 936-951,
2023. URLhttps://aclanthology.org/2023.findings—emnlp.936/.

PhysioToolkit PhysioBank. Physionet: components of a new research resource for complex physio-
logic signals. Circulation, 101(23):e215-e220, 2000.

Pyotr G Platonov. P-wave morphology: underlying mechanisms and clinical implications. Annals of
Noninvasive Electrocardiology, 17(3):161-169, 2012.

Xiaodong Qu, Zepeng Hu, Zhaonan Li, and Timothy J Hickey. Ensemble methods and Istm outper-
formed other eight machine learning classifiers in an eeg-based bci experiment. In International
Conference on Learning Representations, 2020.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

Nand Sharma. Single-trial p300 classification using pca with Ida, qda and neural networks. arXiv
preprint arXiv:1712.01977, 2017.

13


https://aclanthology.org/2023.findings-emnlp.936/

Under review as a conference paper at ICLR 2026

Sheng-syun Shen and Hung-yi Lee. Neural attention models for sequence classification: Analysis and
application to key term extraction and dialogue act detection. arXiv preprint arXiv:1604.00077,
2016.

Yonghao Song, Qingqing Zheng, Bingchuan Liu, and Xiaorong Gao. Eeg conformer: Convolutional
transformer for eeg decoding and visualization. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 31:710-719, 2022.

Mohamed Sraitih, Younes Jabrane, and Amir Hajjam El Hassani. A robustness evaluation of machine
learning algorithms for ecg myocardial infarction detection. Journal of Clinical Medicine, 11(17):
4935, 2022.

Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost,
Daniel Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved
electroencephalographic seizure analysis. In International Conference on Learning Representa-
tions, 2021.

Ziwei Tian, Bingliang Hu, Yang Si, and Quan Wang. Automatic seizure detection and prediction
based on brain connectivity features and a cnns meet transformers classifier. Brain Sciences, 13(5):
820, 2023.

Hanneke van Dijk, Guido van Wingen, Damiaan Denys, Sebastian Olbrich, Rosalinde van Ruth,
and Martijn Arns. The two decades brainclinics research archive for insights in neurophysiology
(tdbrain) database. Scientific data, 9(1):333, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze, Wojciech
Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset.
Scientific data, 7(1):1-15, 2020.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Ju Shengtong, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. In ICLR 2025: The Thirteenth International Conference on Learning Representations.
International Conference on Learning Representations, 2025a.

Yihe Wang, Nan Huang, Taida Li, Yujun Yan, and Xiang Zhang. Medformer: A multi-granularity
patching transformer for medical time-series classification. arXiv preprint arXiv:2405.19363,
2024a.

Yihe Wang, Nadia Mammone, Darina Petrovsky, Alexandros T Tzallas, Francesco C Morabito,
and Xiang Zhang. Adformer: A multi-granularity transformer for eeg-based alzheimer’s disease
assessment. arXiv preprint arXiv:2409.00032, 2024b.

Yihe Wang, Nan Huang, Nadia Mammone, Marco Cecchi, and Xiang Zhang. Lead: Large foundation
model for eeg-based alzheimer’s disease detection. arXiv preprint arXiv:2502.01678, 2025b.

Zekai Wang, Stavros Stavrakis, and Bing Yao. Hierarchical deep learning with generative adversarial
network for automatic cardiac diagnosis from ecg signals. Computers in Biology and Medicine,
155:106641, 2023.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419-22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022a.

14



Under review as a conference paper at ICLR 2026

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows. In ICML, 2022b.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Qiao Xiao, Khuan Lee, Siti Aisah Mokhtar, Iskasymar Ismail, Ahmad Lugman bin Md Pauzi, Qiuxia
Zhang, and Poh Ying Lim. Deep learning-based ecg arrhythmia classification: A systematic review.
Applied Sciences, 13(8):4964, 2023.

Dezhen Xiong, Daohui Zhang, Xingang Zhao, and Yiwen Zhao. Deep learning for emg-based
human-machine interaction: A review. IEEE/CAA Journal of Automatica Sinica, 8(3):512-533,
2021.

Chaoqi Yang, M Brandon Westover, and Jimeng Sun. Manydg: Many-domain generalization for
healthcare applications. In The Eleventh International Conference on Learning Representations,
2023.

Kun Yi, Qi Zhang, Wei Fan, Longbing Cao, Shoujin Wang, Hui He, Guodong Long, Liang Hu,
Qingsong Wen, and Hui Xiong. A survey on deep learning based time series analysis with
frequency transformation. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V. 2, pp. 6206-6215, 2025.

Jianfu Yin, Nan Wang, Binliang Hu, Yao Wang, and Quan Wang. Degradation-aware deep unfolding
network with transformer prior for video compressive imaging. Signal Processing, 227:109660,
2025.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? AAAI, 2023.

Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arXiv
preprint arXiv:2207.01186, 2022.

Yitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang, and Mark Coates. Multi-resolution
time-series transformer for long-term forecasting. In International Conference on Artificial
Intelligence and Statistics, pp. 4222-4230. PMLR, 2024.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The Eleventh International Conference on Learning
Representations, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu. Attention-based
bidirectional long short-term memory networks for relation classification. In Proceedings of the

54th annual meeting of the association for computational linguistics (volume 2: Short papers), pp.
207-212, 2016.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268-27286. PMLR, 2022.

Feiyu Zhu, Jing Zhang, Ruochen Dang, Bingliang Hu, and Quan Wang. Mtnet: Multimodal trans-
former network for mild depression detection through fusion of eeg and eye tracking. Biomedical
Signal Processing and Control, 100:106996, 2025.

15



Under review as a conference paper at ICLR 2026

APPENDIX

THE USE OF LLM AND REPRODUCIBILITY STATEMENT

Large language models are only used for writing refinement. The complete source code supporting
this study is publicly available at the following anonymous repository: anonymous link,

A  EXPLANATION OF SNR OPTIMIZATION VIA CIF.

In analyzing the SNR improvement process of the CIF module, we consider two scenarios for the
two-channel signals: the first scenario assumes equal signal variances and equal noise variances
across the channels, while the second scenario represents the more general case where the signal and
noise variances differ between the two channels.

SCENARIO 1: EQUAL SIGNAL AND NOISE VARIANCES

Consider the linear combination of the two observed signals:
y = azy + bxo, 4)
where a and b are real coefficients. The observed signals are given by
T1=51+€, Tz=S2+ €, Q)
with zero-mean signal and noise components:
E[s;] =Ele] =0, i=1,2,
and mutually uncorrelated signal and noise components: Cov(s;,¢;) = 0.
The power of a zero-mean random signal is given by its variance:
P, = Var[s] = E[(s — E[s])?] = E[s?]. (6)

This is why, for zero-mean signals, the SNR can be expressed as a ratio of variances (or mean-square
values) Kay|(1993)).

For the linear combination of signals:
Var(asy + bsy) = a?Var(s;) + b*Var(sy) + 2ab Cov(sy, s2)
= a%0? + b%0? + 2ab(pa?) @)
=¢? (a2 +b? + 2abp),
where p = Corr(sy, $2).
Similarly, the noise power of the linear combination is:
Var(ae, + bez) = a*Var(e;) + b*Var(ez) + 2ab Cov(ey, €2)
= a%0? + b%0? + 2ab(vyo?) 8)
=0o2(a®+b* + 2aby),
where v = Corr(ey, €2).
Using the definition of SNR as the ratio of signal power to noise power:
20,2 4 12
st < Yol 0 g,
where SNR;, = 02/02.

> Remark: The zero-mean property ensures that the variance equals the mean-square value, which is
why SNR can be expressed as a ratio of variances Kay|(1993); |[Haykin| (2002).

a? +b? + 2abp
a? + b2 + 2aby’

C))

For SNR improvement relative to individual channels:
a® + b2 + 2abp
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* Difference Mode (ab < 0): p < v — suppress correlated noise while possibly attenuating
some correlated signal.

* Cooperative Mode (ab > 0): p > v — amplify correlated signals relative to less-correlated
noise.

Optimization via the ratio £ = a/b (explicit choice of a, b)
Because the output SNR
2 4 b2 4 2ab
a” + 6% + 2a0p (an
a? + b2 + 2aby

is homogeneous of degree zero in (a, b) (i.e. invariant under common scaling (a, b) +— (ca, cb),
¢ # 0), only the ratio & = a/b matters. Assume b # 0 and set

SNRout = SNRij -

a
k=—. 12
; (12)
Define s s )
b® + 2ab, k*+1+42k
Fk) = Gt = DT (13)
a? 4+ b% + 2aby k2 4+ 1+ 2ky
so that
SNRout = SNRyy, - F (k). (14)
We therefore study extrema of F'(k) to determine favorable relative weights a : b.
Let
N(k) = k? + 1+ 2kp, D(k) = k* + 1 + 2k~, (15)
so F(k) = N(k)/D(k). Then
N'(k) =2k + 2p, D'(k) = 2k + 2. (16)
Using the quotient rule,
N'(k)D(k) — N(k)D'(k)
F'(k) = 17
The numerator simplifies and factorizes as
N'(k)D(k) — N(k)D'(k) = 2(y = p)(k = 1)(k + 1), (18)

SO we obtain 2 )k — 1) (k4 1)
/ _ Y= P -
Frk) = (k2 +142k7)2 (19

Critical points and their nature
From equation [I9] the critical points satisfy
F(k)=0 < k=—-1,k=+1 or p=n. (20)

s Ifp>~y(0oy—p<0),then(k—1)(k+1)<Oforke (—1,1)and (k—1)(k+1)>0
fork > lork < —1. Hence F'(k) > O on (—1,1) and F’(k) < 0 outside, so

k =1 is a local maximum, k = —1 is a local minimum. 21

e If p <7 (soy — p > 0), the inequalities reverse: F’(k) < 0on (—1,1) and F’(k) > 0 for
|k| > 1, thus

k = —1 is a local maximum, k =1 is a local minimum. (22)

* If p = , then from equation T3] we have
F(k)=1, VkeR, (23)
so no choice of k changes the SNR.
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Interpretation in terms of a, b and explicit choice

Recall from equationthat k = a/b. The critical ratios k = +1 correspond to equal-magnitude
weights:
k=41 < a=10, k=—-1 < a=—-0. (24)

Since SNRyt in equation [11]is invariant to a common scaling of (a,b), we may fix a convenient
normalization:

Fix b = 1. Then k = a and the recommended choices are

Cooperative mode (p > v):  (a,b) = (1,1), (25)
Differential mode (p < v): (a,b) = (—1,1). (26)
Fix b = —1. Then k£ = a and the recommended choices are
Cooperative mode (p > v):  (a,b) = (—1,—1), (27)
Differential mode (p < v): (a,b) = (1, —1). (28)

Degenerate and neutral cases

* If p = , then by equation 23] we have
SNRout = SNRin, V(a,b) # (0,0), (29)

i.e. the linear combination cannot improve SNR (except for singular noise-cancellation
cases).

¢ The denominator in equation [I3] vanishes when
k2 +1+42ky =0, (30)
which corresponds to zero output noise variance. This is a nongeneric, degenerate configura-
tion (perfect noise cancellation).
From equation 2T}-equation 22] and equation[24] we conclude:
e If p > ~: the SNR is maximized (among equal-variance combinations) by equal-phase
combining a = b (cooperative mode).

o If p < ~: the SNR is maximized by equal-magnitude opposite-phase combining a = —b
(differential mode).

* If p = +: F(k) = 1 and no linear combining improves SNR, up to degenerate cases.

Remarks on the choice of (a,b) ranges. If the goal is to find the SNR extremum points, it is
sufficient to consider (a, b) combinations where a and b are either of the same sign (both positive or
both negative) or of opposite signs. For example, exploring (a, b) within the rectangle [—1, 1] x [—1, 1]
already includes the critical ratios k¥ = £1 and thus captures the SNR maxima and minima. While
this rectangle does not cover all possible & values (i.e., all real ratios a/b), it is enough to determine
the locations of the extremal points, thanks to the homogeneity of SNR in (a, b).

SCENARIO 2: UNEQUAL SIGNAL AND NOISE VARIANCES

Consider the general case with potentially unequal variances and nonzero correlations:

Var(s;) = 02, Var(sg) = 02, Cov(sy, $2) = pos10s2, a1
Var(e;) = o2, Var(ey) = 02, Cov(er,€e2) =y 0c10ea.

where:

* Signal and noise components are mutually uncorrelated
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Consider two observed signals
Yy =asy + bsy +ae; +bexy = 5, + ¢y

where the signal vector [s1, so]” has covariance

2
S o 041 PO 51052
= 2
POs1052 (o)
and the noise vector [ey, €3] has covariance
2
N = Oc1 706120—52
VOe10e2 o |’

with signal and noise mutually uncorrelated. Define the coefficient vector
_la
W=yl

_ Var(s,) w'Sw

~ Var(e,) wINw’

The output signal-to-noise ratio (SNR) is

SNR(w)

To maximize the SNR, we consider the derivative with respect to w:

iSNR _ 2Sw(w! ' Nw) — 2Nw(w!'Sw)
ow (WI'Nw)?
which leads to the generalized eigenvalue problem

Sw = ANw, )\ =SNR.

=0

For the 2 x 2 matrices, this can be written explicitly as
031 POs10s2| |G} _ 0521 Y0e10e2| |G
posi0s2 0 | |b Yoaoe 0k | |b]”

aagl + bpaslasQ = )\(aafl + b’yaﬂaiz)

which yields

apos10s + baf2 = Mayoeoe + bO’EQ).

The condition for a nontrivial solution (a, b) # 0 is
det(S — AN) =0,
which explicitly reads
(02 = X021 (02 = Aoly) = (pos1052 — Myo10e)? = 0.
Expanding the determinant, we obtain
THO% — OnATh — oR e + Mook

2 2 2 2.2 2 2
— P 0059 +2pYAC10520c10c2 — ANy 0,05 = 0.

Combining like terms yields the quadratic equation in A:

)\2‘7521032(1 - 72) - )\(031032 + 0520621 —2pY0510520610c2) + 031032(1 - :02) =0.

Define
A =0l 051 -9,
B= (05105 + 0502 —2p70610520000),
C =03 05(1-p).
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The generalized eigenvalue problem leads to the quadratic equation

AN +BA+C =0, (49)
whose solution is
—B+vB2-4A
\ = 54 C. (50)

Taking the positive sign yields the maximum output SNR:

—B++vB? - 4AC
SNRmax - )\max - * . (51)
24
The optimal linear combination coefficients [a, b]7 = Wy satisfy
b A111‘(1)(0'21 - 0'2>1 1
b_ O - L a#0. 52
a POs10s2 — )\max'yo'clo—d ' W Pt “ b/a‘ - # ( )

MULTI-CHANNEL LINEAR FUSION FOR SNR ENHANCEMENT

As shown in equation , the two-channel SNR maximization framework can be directly extended
to multi-channel recordings by performing corresponding pairwise fusion across multiple channel
subsets. Consider two subsets of n channels each,

XA = [Tiy,y--- ,Jci”]T, xXp = [T, .- ,xljn]T, (53)

where each channel may have correlated signal and noise components across channels.

For each corresponding channel pair (z;,,x;, ), k = 1,...,n, the optimal linear fusion coefficients
wy, = [ag, b]" (54)

are determined exactly as in the two-channel case by solving the generalized eigenvalue problem:
Sewi = A Npwy, (55)

where S; and N, are the signal and noise covariance matrices for the k-th pair, and Aj corresponds
to the maximum achievable SNR for that fused channel. The fused channel is then constructed as

Yk = apTs, + b, . (56)

By applying this pairwise optimal fusion to all n channel pairs, each channel independently reaches
its maximum SNR, ensuring that the multi-channel system as a whole achieves a simultaneous SNR
enhancement across all channels.

B DATA PREPROCESSING

Table 5: The information of processed datasets. The table shows the number of subjects, samples,
classes, channels, sampling rate, sample timestamps, modality of MedTS, and file size. Here, #-
Timestamps indicates the number of timestamps per sample.All data processing procedures follow

those of Medformer Wang et al|(2024a).

Datasets | #-Subject  #-Sample  #-Class  #-Channel  #-Timestamps  Sampling Rate ~ Modality  File Size

APAVA 23 5,967 2 16 256 256Hz EEG 186MB
ADFTD 88 69,752 3 19 256 256Hz EEG 2.52GB
TDBrain 72 6,240 2 33 256 256Hz EEG 571MB
PTB 198 64,356 2 15 300 250Hz ECG 2.15GB
PTB-XL 17,596 191,400 5 12 250 250Hz ECG 4.28GB
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Table 6: Datasets and mapping details of UEA dataset (Bagnall et al.| 2018)).

Dataset Sample Numbers(train set,test set)  Variable Number | Series Length
EthanolConcentration (261, 263) 3 1751
FaceDetection (5890, 3524) 144 62
Handwriting (150, 850) 3 152
Heartbeat (204, 205) 61 405
JapaneseVowels (270, 370) 12 29
PEMSSF (267, 173) 963 144
SelfRegulationSCP1 (268, 293) 6 896
SelfRegulationSCP2 (200, 180) 7 1152
SpokenArabicDigits (6599, 2199) 13 93
UWaveGestureLibrary (120, 320) 3 315

C IMPLEMENTATION DETAILS

We implement our method and all the baselines based on the Time-Series-Library projec from
Tsinghua University [Wu et al.| (2023)), which integrates all methods under the same framework and
training techniques to ensure a relatively fair comparison. The 12 baseline time series transformer
methods are Autoformer |Wu et al.| (2021)), Crossformer Zhang & Yan|(2022), FEDformer|Zhou et al.
(2022), Informer |Zhou et al.| (2021), iTransformer [Liu et al.| (2024b), MTST Zhang et al.[(2024),
Nonformer |Liu et al.| (2022)), PatchTST [Nie et al.| (2023)), Reformer |Kitaev et al.| (2019), vanilla
Transformer|Vaswani et al.|(2017), Medformer Wang et al.|(2024a), and MedGNN [Fan et al.| (2025).

Autoformer Autoformer Wu et al.|(2021)) employs an auto-correlation mechanism to replace self-
attention for time series forecasting. Additionally, they use a time series decomposition block to
separate the time series into trend-cyclical and seasonal components for improved learning. The raw
source code is available at https://github.com/thuml/Autoformer.

Crossformer Crossformer Zhang & Yan|(2022)) designs a single-channel patching approach for token
embedding. They utilize two-stage self-attention to leverage both temporal features and channel
correlations. A router mechanism is proposed to reduce time and space complexity during the cross-
dimension stage. The raw code is available at https://github.com/Thinklab-SJTU/
Crossformer.

FEDformer FEDformer|Zhou et al.|(2022)) leverages frequency domain information using the Fourier
transform. They introduce frequency-enhanced blocks and frequency-enhanced attention, which
are computed in the frequency domain. A novel time series decomposition method replaces the
layer norm module in the transformer architecture to improve learning. The raw code is available at
https://github.com/MAZiging/FEDformer.

Informer Informer Zhou et al.| (2021)) is the first paper to employ a one-forward procedure instead of
an autoregressive method in time series forecasting tasks. They introduce ProbSparse self-attention
to reduce complexity and memory usage. The raw code is available athttps://github.com/
zhouhaoyi/Informer2020.

iTransformer iTransformer Liu et al.|(2024b)) questions the conventional approach of embedding
attention tokens in time series forecasting tasks and proposes an inverted approach by embedding
the whole series of channels into a token. They also invert the dimension of other transformer
modules, such as the layer norm and feed-forward networks. The raw code is available at https
//github.com/thuml/iTransformer.

MTST MTST [Zhang et al.| (2024)) uses the same token embedding method as Crossformer and
PatchTST. It highlights the importance of different patching lengths in forecasting tasks and designs a
method that can take different sizes of patch tokens as input simultaneously. The raw code is available
athttps://github.com/networkslab/MTST.

Nonformer Nonformer |Liu et al.| (2022) analyzes the impact of non-stationarity in time series
forecasting tasks and its significant effect on results. They design a de-stationary attention module

'"https://github.com/thuml/Time-Series-Library
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and incorporate normalization and denormalization steps before and after training to alleviate the
over-stationarization problem. The raw code is available at https://github.com/thuml/
Nonstationary_Transformers.

PatchTST PatchTST Nie et al.| (2023) embeds a sequence of single-channel timestamps as a patch
token to replace the attention token used in the vanilla transformer. This approach enlarges the
receptive field and enhances forecasting ability. The raw code is available at https://github,
com/yuginie98/PatchTST

Reformer Reformer |Kitaev et al.|(2019)) replaces dot-product attention with locality-sensitive hashing.
They also use a reversible residual layer instead of standard residuals. The raw code is available at
https://github.com/lucidrains/reformer—-pytorchl.

Transformer Transformer |[Vaswani et al. (2017), commonly known as the vanilla trans-
former, is introduced in the well-known paper "Attention is All You Need." It can also be
applied to time series by embedding each timestamp of all channels as an attention token.
The PyTorch version of the code is available at https://github.com/jadore801120/
attention-is—-all-you—-need-pytorchl

Medformer Medformer Wang et al.| (2024a) uses cross-channel patch embedding to model spa-
tiotemporal dependencies.The raw code is available at https://github.com/DL4mHealth/
Medformer

MedGNN MedGNN |Fan et al| (2025) employs multi-resolution spatiotemporal graph learning
to extract dynamic features across multiple time scales. The raw code is available at https:
//github.com/aikunyi/MedGNN,

C.1 EVALUATION METRICS

For all methods, the optimizer used is Adam, with a learning rate of 1e-4. The batch size is set to
{32,32,128,128,128} for the datasets APAVA, TDBrain, ADFD, PTB, and PTB-XL, respectively.
Training is conducted for 100 epochs, with early stopping triggered after 10 epochs without im-
provement in the F1 score on the validation set. We save the model with the best F1 score on the
validation set and evaluate it on the test set. We employ six evaluation metrics: accuracy, precision
(macro-averaged), recall (macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged),
and AUPRC (macro-averaged). Both subject-dependent and subject-independent setups are imple-
mented for different datasets. Each experiment is run with 5 random seeds (41-45) and fixed training,
validation, and test sets to compute the average results and standard deviations.

To comprehensively and fairly evaluate the performance of each model in the classification task, we
select five evaluation metrics: Accuracy, Precision, Recall, F1 score, and AUROC. The definitions
and specific calculation formulas for each metric are presented below:

Accuracy measures the proportion of correct predictions out of the total number of predictions. It’s
calculated as: o
Number of correct predictions

Accuracy = —
y Total number of predictions

(57)

This metric is useful when the classes are balanced but may be misleading in cases of class imbalance.

Precision focuses on the quality of positive predictions and measures the proportion of correctly
predicted positive instances out of all instances predicted as positive. It’s especially useful when false
positives need to be minimized. The formula is:

True Positives

Precision = . 58
True Positives + False Positives (58)

Recall measures the proportion of actual positive instances that were correctly identified. It’s
important when false negatives are costly. The formula is:

Recall True Positives (59)
ecall = .
True Positives + False Negatives

It shows how well the model captures all relevant instances.

22


https://github.com/thuml/Nonstationary_Transformers
https://github.com/thuml/Nonstationary_Transformers
https://github.com/yuqinie98/PatchTST
https://github.com/yuqinie98/PatchTST
https://github.com/lucidrains/reformer-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/DL4mHealth/Medformer
https://github.com/DL4mHealth/Medformer
https://github.com/aikunyi/MedGNN
https://github.com/aikunyi/MedGNN

Under review as a conference paper at ICLR 2026

The F1 score is the harmonic mean of precision and recall, balancing the two when one is more
important than the other. It’s particularly useful when dealing with imbalanced datasets, as it accounts
for both false positives and false negatives. The formula is:

Precision x Recall
F1S =2 X . 60
core Precision + Recall (60)

It gives a single metric that reflects both precision and recall performance.

The Area Under the Receiver Operating Characteristic Curve (AUROC) measures the ability of a
model to distinguish between classes, defined as

1
AUROC = / TPR(FPR) d(FPR), (61)
0
where
TP+ FN’ ~ FP4+ TN’

The Area Under the Precision—Recall Curve (AUPRC) summarizes the trade-off between precision
and recall across different thresholds, defined as

1
AUPRC = / Precision(Recall) d(Recall), (62)
0
where TP Tp
PreCiSiOn = W, Recall = m
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D HM-BITCN STRUCTURE DESIGN AND THEORETICAL ANALYSIS

Modeling short-term and long-term dependencies in time series data is challenging. Traditional CNNs
excel at capturing local features but have limited receptive fields, hindering long-range dependency
learning. Transformer-based methods effectively model long-term dependencies, but their complex
design lacks interpretability, which is a key issue in medical time-series classification.To address these
limitations, TCNs use causal convolutions for explicit temporal modeling and dilated convolutions
to expand the receptive field, overcoming the constraints of traditional CNNs. Building on the
advantages of TCN, we propose the HM-BiTCN, which combines the benefits of dilated convolutions,
bidirectional causal convolution, and residual connections. This approach allows for better capture of
temporal dependencies while preserving causality.

D.1 DILATED CONVOLUTION

Dilated convolution expands the receptive field without significantly increasing computational cost|Yu
& Koltun| (2015). For a 1D input sequence © = [z1, 2, ..., ZT], its output is defined as y(t) =

Zf;ol x(t+1i-d) - w(i), where t is the current time step, k is the kernel size, d is the dilation factor,
and w(3) is the weight at the i-th position in the kernel. Increasing d effectively enlarges the receptive
field, enabling the network to capture longer-term temporal dependencies. When stacking multiple
dilated convolutional layers, the receptive field grows progressively. For the [-th layer, the receptive

field r; can be expressed as r; = k + (k — 1) 22;11 dj, where d; is the dilation factor of the j-th

layer. By gradually increasing d;, the network captures temporal dependencies across both global
and local scales, offering an effective way to model long-term dependencies in time series.

D.2 BIDIRECTIONAL CAUSAL CONVOLUTION STRUCTURE

In addition to dilated convolutions, HM-BiTCN introduces a bidirectional causal convolution struc-
ture, inspired by prior bidirectional temporal modeling approaches [Hanson et al.| (2018)); Hu et al.
(2024); Yin et al.| (2025). Unlike traditional TCNs that use only forward causal convolutions, our
architecture applies causal convolutions in both forward and backward directions, enabling the model
to capture dependencies from both past and future contexts while strictly preserving causality. The
Sforward causal convolution processes the input sequence z(t) in chronological order, producing
output Yorward () = Zf:ol 2(t — i - d) - Weorwara (), which depends only on current and past inputs.
For the backward causal convolution, we first reverse the input sequence as xgip(t) = z(T — t),
and then apply a causal convolution over this flipped sequence. This ensures that the model cap-
tures future-directed dependencies without introducing information leakage. The output is given by
Ybackward (t) = Zi:ol (T — (t —i-d)) - Woackward(?)- These two operations are implemented using
separate convolutional layers (convforward and convbackward), and their outputs are summed to
form the final bidirectional result: yu;(t) = Yrorward(t) + fip(Ybackwara(t)). By integrating both
directions under strict causality constraints, HM-BiTCN achieves superior temporal dependency
modeling compared to unidirectional causal approaches.

D.3 MULTI-SCALE FEATURE LEARNING AND RESIDUAL CONNECTIONS

To further improve the model’s capacity to capture dependencies at different temporal scales, HM-
BiTCN incorporates multi-scale feature learning and residual connections. Multi-scale Feature
Learning: In HM-BiTCN, we employ a hierarchy of dilation factors that decrease layer by layer
to capture temporal dependencies at multiple scales. Lower layers use larger dilation factors to
expand the receptive field, aggregating long-range information and smoothing short-term noise in
highly redundant medical time series; higher layers use smaller dilation factors to focus on local
dependencies and capture fine-grained features. This coarse-to-fine, global-to-local design enables
the network to extract broad patterns in its initial layers and refine precise details in its later layers,
thereby enhancing adaptability across a wide range of time series tasks. Residual connections:
Residual connections |[He et al.| (2016) are introduced between the dilated convolutional layers to
facilitate the efficient flow of information through the network. The residual connection is defined as
y = F(z) 4+ x, where F(z) is the convolutional output, and « is the input. This design alleviates the
vanishing gradient problem and improves the overall stability of the network during training.
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E

PSEUDOCODE OF CIF METHOD AND KEY COMPONENTS OF HM-BITCN

Algorithm 1 CIF Module (Channel-Imposed Fusion with Physiological Ordering)

Require: Input x.,,. € RBXT*C hyperparameters ¢, n, a, b > n must satisfy 1 <n < C (i.e.,

cannot exceed total number of channels)
Step 1: Physiological Channel Reordering (optional) > Only applied if channels have
physiology-consistent structure (e.g., ECG, EEG). For general/unstructured data, skip this step.
if PhysiologyStructured(,,.) then

Zene < PhysiologyReorder(Zey,.)
end if

Step 2: Split into front and back segments
if n > C then
Error: n cannot exceed total number of channels C'
end if
front < Tepel:,:, 0 > Front segment: first n channels

: back <+ Tepelty s, —n > Back segment: last n channels

: Step 3: Fusion
¢ Zpew  Clone(Zene)
. added < front - a + back - b

. if t > 0 then
Tnew|:s 1 : 0]  added
. else
Tnewl:s :, —n :| + added
end if

: return ¢,

Algorithm 2 Model with CCA-based Feature Interaction

Require: Encoded input ze,c € REXEXP task configs

1:
2:

17:
18:
19:

Initialize encoder and task-specific heads
procedure FORWARD(Zepc)
n <— number of CCA components
Xfront < first n features of xepe
Xpack < last n features of xepe
Lenc_new < Lenc (CIOHG)
Xtront_flar — reshape Xgon to [B - L, n]
Xback_flat ¢ reshape Xpaex to [B - L, n]
Without gradient:
CCA; < TorchCCA(n)
(XL Y1) < CCA, fit_transform( Xeion fiat; Xback flat)
corr_scores <— correlation coefficients for each canonical component
CCA5 < TorchCCA(n)
(X2Y?2) < CCA.fit_transform( Xpack_flat, X front_flat)
corr_scores2 < correlation coefficients for each canonical component
Tenc_new|:s 1 1 1] = Xfront * corr_scores + Xpack
Zenc_new s 5 — 7 1] 4 Xipront + Xback * corr_scores2
return Zepc new
end procedure
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Algorithm 3 TorchCCA: PyTorch-style Canonical Correlation Analysis (CCA)

Require: Input datasets X € RV*P1y ¢ RVxD2
Require: Number of components k, scaling flag scale, regularization reg
: Initialize TorchCCA(k, scale, reg)

2 procedure FIT(X, YY)
3: X,Y <+ CENTER_AND_SCALE(X,Y)
4: N < number of rows in X

. C X'x 7
5: rr N_-1 + reg-

y'y

6 Cyy < §y—7 +treg-I
7
8
9

X'y
Coy — Nt
C;ml/Q < (Cholesky(C,)~ 1) T
C’y_yl/2 — (Cholesky(ny)_l)T

. —1/2 —1/2T
100 T ¢+ Cui/*CayCry’

1:  (U,S8,VT) < SVD(T)

12: x_weights < first k columns of U

13: y_weights <« first k columns of V

14: corr_scores < first k singular values .S

15: end procedure

16: procedure TRANSFORM(X,Y)

17: X,Y < CENTER_AND_SCALE(X,Y)
18: X. <+ X -x_weights

19: Y.+ Y .y _weights

20: return X, Y,

21: end procedure

22: procedure FIT_TRANSFORM(X,Y)

23: FIT(X,Y)

24: return TRANSFORM(X, Y)

25: end procedure

26: procedure CENTER_AND_SCALE(X,Y)
27: X < X — mean(X)

28: Y + Y —mean(Y)

29: if scale then

30: X+ X/std(X)
31: Y + Y/std(Y)
32: end if

33: return X, Y
34: end procedure

Algorithm 4 BidirectionalCausalConv

Requlre Input z € REXCXT kernel size k, dilations dy, dj,
: Compute py < (k—1)- df

Compute pp + (k—1) - dp

xy < PadLeft(z, py)

ap, < PadLeft(Flip(x), pp)

ys < ConvlD(xz ¢, dilation = dy)

yp  Flip(Conv1D(xy, dilation = dp))

return yr + yp

AR A ol ey
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Algorithm 5 BidirectionalDilatedConvBlock

Require: Input x, channels C;,,, Cy,:, kernel size k, dilation d
if C;,, # Cyy or final layer then

2 res « ConvlD(x, kernel = 1)
3: else

4: res <— x

5: end if
6.

7

8

9

—_

x + GELU(x)

x + BidirectionalCausalConv(z, k, d, d)
x + GELU(z)

: ¢ « BidirectionalCausalConv(z, k, d, d)
10: return x + res

F ABLATION EXPERIMENTS OF THE HM-BITCN STRUCTURE

Table 7: The ablation experiments of the HM-BiTCN structure, where “Forward” indicates using
only the forward part, and “Backward” indicates using only the backward part.

Datasets Models CIF | Forward Backward | Accuracy t Precisiont Recallt Flscore? AUROCT AUPRC 1T
APAVA HM-BiTCN v 82.31+234 83.29+250  80.39+265 81.02+263 91.50+180 91.66+1.82
(2-Classes) HM-BiTCN v 79.45+351 80.69+3.04  77.14+447  77.58+475 87.95+382 88414374
HM-BiTCN v v 82.49+1.40 82.38+179  81.20+132  81.60+139  91.10+1.63  91.30+1.71

APAVA HM-BiTCN v/ v 80.43+5.60 80.46+523  79.56+598  79.50+597  89.23+444  89.62+425
(2-Classes) HM-BiTCN v v 79.39+3.44 79.49+376  78.09+294  78.35+333  87.6243.09  88.11+2091
HM-BiTCN v/ v v 85.16+1.55 84.76+162  85.33+127 84.82+149  94.06+107 94.214099

ADFTD HM-BiTCN v 53.32+135 52.01+154 51464219 51.21+199  70.78+178  53.16+220
(3-Classes) HM-BiTCN v 52.80+1.18 50.16+077  49.23+122  49.24+102  68.65+071  49.95+097
HM-BiTCN v v 52.05+2.22 50454300  50.40+255  49.48+270  69.43+284  50.99+3.15

ADFTD HM-BiTCN v v 56.06+0.47 53.21+103  53.54+136  52.82+133  72.93x088  55.71+1.03
(3-Classes) HM-BiTCN v v 56.54+133 54.28+096  54.63+106 53.91+111  73.46+1.17  56.12+1.61
HM-BiTCN v v v 58.56+0.93 55.65+081  55.86+079 55.42+t082  76.07+059  59.75+0.67

TDBrain HM-BiTCN v 87.23+2.87 87.75+248  87.23+287 87.17+293  95.55+160  95.73x1.60
(2-Classes) HM-BiTCN v 86.92+3.46 87.41+317  86.92+346 86.86+351 95.28+178  95.42+1.70
HM-BiTCN v v 84.90+2.60 86.02+200 84.90+260 84.76+274  93.94+192  94.20+185

TDBrain HM-BiTCN v v 93.29+1.73 93.34+173  93.29+173  93.29x173  98.50+063  98.56:0.60
(2-Classes) HM-BiTCN v v 93.69+1.52 93.83+142  93.69+152  93.68+153  98.56+067  98.59+0.64
HM-BiTCN v v v 93.13+1.41 93.33+137  93.13+141  93.12+142  98.62+066  98.68+0.63

PTB HM-BiTCN v 82.56+1.74 86.16+£151  74.91x288 77.24+292  95.69+064  94.56x0.76
(2-Classes) HM-BiTCN v 81.07+4.24 85.36+271  72.50+659 74331671  92.83+238 91.28+279
HM-BiTCN v v 81.87+1.87 86.50+124  73.49+200 75.84+320 94.20+029  93.04+0.45

PTB HM-BiTCN v v 87.33+1.41 90.26+124  81.64+204 84.19+197 96.21+130 95.67+152
(2-Classes) HM-BiTCN v v 84.35+228 87.42+207  77.54+330  79.98+341  91.25+192  90.42+2.28
HM-BiTCN v/ v v 88.29+1.45 90.66+148  83.21+202  85.59+196 94.28+093  93.78=1L.11

FLAAP HM-BiTCN v 70.81+231 72.58+133  69.81x279  70.07x224  95.89+028  76.90x1.21
(10-Classes) HM-BiTCN v 70.29+2.04 72774200  68.86+239 69.56+198 95.61+026 76.56+1.56
HM-BiTCN ' v 76.08+0.81 76.05+083  75.95+084 75.54+094  96.49x010  81.19+0.65

FLAAP HM-BiTCN v/ v 72.30+1.50 72.98+161  71.65+135 71.54+150 95924055  77.87+227
(10-Classes) HM-BiTCN v v 72.81+1.04 74.05+080  71.86+125 72124117 96.20+021  79.22+1.25
HM-BiTCN v v v 76.82+1.32 77.38+085  76.52+124  76.39+118  96.48+006 81.77+081

UCI-HAR HM-BiTCN v 91.94+098 92364090  92.02+096 91.98+093  99.30+008  97.31+047
(6-Classes) HM-BiTCN v 93.03+0.62 93.284063  93.12+060 93.05+062  99.36+0.19  97.72+046
HM-BiTCN v v 93.72+073 94.02+072  93.75+070 93.69+076  99.60+000  98.31+0.40

UCI-HAR HM-BiTCN v v 92.18+045 92421047  92.21x044  92.14x044  99.17x011  97.04x0.5
(6-Classes) HM-BiTCN v v 92.62+0.90 92.88+086  92.68+088 92.63+089  99.25+0.8  97.15+057
HM-BiTCN v/ v v 93.78+032 94.08+026  93.79+032  93.74+034  99.34x019  97.60+0.46

As described in Section 2 of the Methods, HM-BiTCN is constructed by adding a backward branch
to the vanilla TCN architecture; therefore, using only the Forward part is essentially equivalent to the
vanilla TCN structure.

From the table [/} it can be observed that when both the Forward and Backward parts of the HM-
BiTCN structure are used simultaneously, the performance drops significantly compared to using
only one of them individually. We speculate that this is mainly due to the presence of substantial
noise within medical time-series data. When both parts of the structure are applied at the same time,
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it is akin to capturing noise from two different directions simultaneously. Instead of enhancing the
representation, this leads to noise accumulation, which ultimately results in degraded performance.

However, after processing the data with CIF to improve the signal-to-noise ratio, the combination of
the Forward and Backward parts of the HM-BiTCN structure eventually outperforms the use of either
part alone. This result strongly demonstrates the feature-capturing capability of the HM-BiTCN when
both directions are utilized together. It indicates that once noise interference is effectively reduced,
the bidirectional structure of HM-BiTCN can better leverage its strengths, thereby improving overall
performance.

Further observations show that using only the Forward part of HM-BiTCN outperforms the Backward
part. This is closely related to the inherent unidirectionality of medical time-series signals such as EEG
and ECG, where information typically propagates forward in time (e.g., neural signal transmission in
EEG or atrial-to-ventricular activation in ECG). Such characteristics enable the Forward structure
to capture key features and temporal evolution more effectively, yielding better performance. This
finding not only deepens the understanding of medical signal processing but also provides insights
for optimizing HM-BiTCN in related applications.

To evaluate the performance of our method on general time series, we follow the design of
Medformer [Wang et al.| (2024a)) and test it on two human activity recognition (HAR) datasets:
FLAAP(13,123 samples, 10 classes) [Kumar & Suresh| (2022) and UCI-HAR(10,299 samples, 6
classes)|Anguita et al.|(2013)).

Additionally, on the non-medical datasets FLAAP and UCI-HAR, we observed that integrating
the bidirectional structure significantly improves performance. This indicates that in high-SNR
scenarios, bidirectional modeling can more effectively capture both forward and backward feature
information, enhancing overall model performance. In contrast, CIF provides relatively limited gains
on these high-SNR datasets. This observation further highlights the design advantage of CIF: it is
specifically tailored for low-SNR medical time series, explicitly fusing inter-channel physiological
information to enhance signal quality and discriminative power, while its marginal benefit is smaller
for low-noise non-medical data. Overall, these findings not only reveal the differential adaptability of
model architectures under varying data characteristics but also underscore the unique value of CIF in
complex medical scenarios.

G FURTHER EXPLORATION OF PHYSIOLOGICAL STRUCTURES

The parameters (a, b, t,n) in CIF are explicit
hyperparameters that can be directly set and ad-
justed based on experience. For example, Fig-
ure. [§|shows the corresponding locations of EEG
channels on the human brain, we have adjusted
the AFAVA dataset, which comprises 16 chan-
nels: C3, C4,F3,F4,F7,F8, Fpl, Fp2, 01,
02,P3, P4, T3, T4, T5, and T6. For the first
six channels, we performed pairwise fusion as
follows:

C3pew = a-C3+1b-CA4,
F3new =a-F3+0b- FA4,
Floew =a-F7+b- F8.

Here, the C3, F'3, and F7 channels correspond
to C4, F4, and F8, respectively, exhibiting
left-right physiological symmetry, and they also
belong to the same functional region. We refer
to this type of fusion as Left—Right Physiologi-
cal Symmetry Fusion (LR-PSF). In contrast, the
channel fusion strategy introduced earlier in this
paper, controlled by the hyperparameter n, reflects fusion across different functional regions, and is
therefore termed Functional Region Fusion (FRF).

Figure 8: Physiological Placement Diagram of
EEG Channels.
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Table 8: Results of Subject-Independent Setup. APAVA Dataset

Datasets ~ Models Accuracy T Precision? Recallt Flscoret AUROCT AUPRC*T
APAVA HM-BiTCN 82.49+1.40 82.38+179  81.20+132  81.60+139  91.10+1.63  91.30+1.71
(2-Classes) HM-BIiTCN + CIF (-Fpl + Fp2)  82.70+1.90 83.34+196  80.73+214  81.47+213  91.244225  91.62+2.08
HM-BiTCN + CIF (FRF) 86.30+1.05 86.16+1.09  85.47+112  85.71+1.09 94.26+054 94.42+0.49

HM-BiTCN + CIF (LR-PSF) 86.23+2.09 85.82+2.14  86.04+206 85.83+212  94.59+1.08 94.64+1.08

HM-BiTCN + CIF (CCA) 87.91+1.60 89.81+093  85.85+212 86.93+191  96.97+052  96.91-+0.49

Building on these two types of physiologically motivated fusion, we further introduce a data-driven
fusion mechanism based on Canonical Correlation Analysis (CCA) (For detailed
pseudocode, see CodePJ}). Specifically, for each input sample we first select the first n channels and
the last n channels, denoted as

Xfrnnt c RB xXLxn Xback c RB XL xn

where B is the batch size, L is the sequence length, and 7 is the number of paired channels. We then
reshape them into two matrices

Fe R(BL)an Be ]R(B’L)Xn7

by stacking all temporal positions and samples along the first dimension. We apply a CCA module to
these two matrices and obtain their canonical projections

F. B € R(BL)XH-

For each canonical component ¢ € {1,...,n}, we compute the Pearson correlation coefficient

between the corresponding canonical variables F&i) and Bﬁi), yielding a correlation score vector

pP= (pla s 7Pn)T € R™
These scores quantify the statistical dependence between the paired channels and are used as adaptive,
channel-wise fusion weights. Concretely, we broadcast p back to the original tensor shape and
construct two fused channel groups:

Xfront _ Xfront Op+ Xback’ Xback _ Xfront + Xback o) pl7

where © denotes element-wise (channel-wise) multiplication and p’ is another correlation score

vector obtained by swapping the roles of F and B in CCA. The fused tensors Xfront apd XPack are
then written back to the first and last n channels of the encoder input, respectively.

In this way, the proposed CCA-based fusion adaptively strengthens or attenuates each paired channel
according to its learned cross-channel correlation, providing a controllable and data-driven mechanism
that complements the physiologically defined LR-PSF and FRF fusion strategies.

We consider that a full theoretical and experimental treatment of CCA would require a more extensive
discussion. Therefore, here we present it solely as an exploratory method and do not include its
results in the main text.

We also examined the relationship between the Fp1 and Fp2 channels, as introduced in the Introduc-
tion. For this purpose, we conducted experiments using the following fusion approach:

Fplpew = —1-Fpl+1-Fp2,
which we refer to as CIF (—Fp1l + Fp2).

The results in the table[§]reveal that explicit fusion leveraging the prior knowledge of channels can
more effectively integrate channel features, thereby yielding more accurate classification outcomes.
Many previous methods, especially various general time series models, are unable to incorporate
such medical prior knowledge in a "controllable" manner.

H RESULTS ON GENERAL TIME SERIES

We compared our method with various approaches on the general time series UEA dataset. The
results of these methods were provided by TimeMixer++ Wang et al| (2025a). Experimental results
show that CIF can enhance the performance of HM-BiTCN on general time series classification tasks.
Moreover, the combination of HM-BiTCN with CIF achieves SOTA performance.
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Table 9: Full results for the classification task. *. in the Transformers indicates the name of *former.
We report the classification accuracy (%) as the result.

RNN TCN Transformers MLP CNN

Datasets / Models . R ' ] o X Time . HM-BiTCN
LSTMLSTNet LSS TCN Trans. Re. In. Pyra. Auto.Station. FED. ETS. Flow. iTrans.DLinearLightTS. TiDE TimesNet Mixer+ HM-BiTCN +CIF
\T997){018] {2022) {2019] {2017] {2019] {2021 {2021 {2021] {2022] {2022){2022)[2022b){024b] [2023] {2022] {2023] (2022a] {2025a] (Ours) (Ours)
EthanolConcentration| 32.3 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 28.1 31.2 33.8 28.1 326 29.7 27.1 357 39.9 31.9 323
FaceDetection 57.7 657 66.7 52.8 67.3 68.6 67.0 65.7 684 68.0 66.0 663 67.6 663 68.0 67.5 653 68.6 71.8 66.8 67.2
Handwriting 15.2 258 24.6 53.3 32.0 27.4 32.8 294 36.7 31.6 28.0 32.5 338 242 270 261 232 321 26.5 49.5 51.2
Heartbeat 722 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 737 737 712 716 756 75.1 751 746 78.0 79.1 74.6 71.5
JapaneseVowels | 79.7 98.1 98.4 98.9 98.7 97.8 98.9 984 962 992 984 959 989 96.6 962 962 956 984 97.9 97.8 98.3
PEMS-SF 39.9 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 809 86.0 83.8 879 751 884 869 89.6 91.0 82.6 86.1
SelfRegulationSCP1 | 68.9 84.0 90.8 84.6 92.2 90.4 90.1 88.1 84.0 89.4 887 89.6 925 902 873 898 892 91.8 93.1 89.7 91.1
SelfRegulationSCP2 |46.6 52.8 52.2 55.6 53.9 56.7 53.3 533 50.6 57.2 544 550 56.1 544 505 S5I.1 534 572 65.6 61.6 62.2
SpokenArabicDigits | 31.9 100.0100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0100.0 98.8 96.0 81.4 100.0 950 99.0 99.8 99.5 99.6
UWaveGestureLibrary| 41.2 87.8 85.9 88.4 85.6 85.6 85.6 83.4 859 87.5 853 85.0 86.6 859 821 803 849 853 88.2 92.1 92.8
Average Accuracy [48.6 71.8 709 70.3 719 71.5 72.1 70.8 71.1 727 70.7 71.0 73.0 70.5 675 704 69.5 73.6 753 74.6 75.8

I REPRODUCED RESULTS OF EXISTING METHODS

I.1 RESULTS OF SUBJECT-DEPENDENT

In Table we present the results of various models under the Subject-Dependent Setup on the
ADFTD (3-Classes) dataset. The results indicate that our proposed CIF method significantly improves
the performance of models, particularly in accuracy, F1 score, AUROC, and AUPRC metrics. Specifi-
cally, the combination of MedGNN + CIF outperforms MedGNN alone across all key performance
metrics, and similarly, Medformer + CIF surpasses Medformer in every critical evaluation metric.
These results convincingly demonstrate the effectiveness of the CIF method in enhancing model
performance. By integrating the CIF method, not only are the models’ performances significantly
improved across multiple evaluation metrics, but the broad applicability and substantial benefits
of the method across different model architectures are also highlighted. Notably, MedGNN + CIF
achieves a remarkable Accuracy of 99.60%, far surpassing other models, highlighting the advantage
of our approach in handling imbalanced datasets. Furthermore, MedGNN + CIF shows significant
improvements in F1 score and precision, indicating that the CIF method effectively enhances the
model’s ability to recognize both positive and negative samples. Thus, our experimental results
validate the effectiveness of the CIF method in boosting model generalization and precision.

Table 10: Results of Subject-Dependent Setup. The training, validation, and test sets are split based
on samples according to a predetermined ratio. Results of the ADFTD dataset under this setup are
presented here.

Datasets Models Accuracy T Precision{ RecallT Flscore? AUROCT AUPRC T
Autoformer 87.79+2.87 87.63+295 86.84+310 87.17+305 96.45+1.15  93.52+205

Crossformer 89.27+1.19 88.98+127  88.61+135 88.77+129 97.53+048 95.47+087

FEDformer 77.55+242 76. 714214  76.46+252 76.44+25  91.66+136 84.99+2.15

Informer 91.72+0.13 91.50+016  91.36+021 91.42+0.14  98.40+007 96.92+0.11

ADFTD iTransformer 64.60+0.77 62.22+064 61.95+035 61.87+041 81.46+029 68.81+039
(3-Classes) MTST 65.4340.79 64.47+065 63.49+055 63.71+055  81.67+051  69.74+0.69
Reproduced Nonformer 96.00+0.72 95.72+080  95.90+069 95.81+075  99.56+0.13  99.02+023
PatchTST 66.5540.48 65.61+060 65264078 65264060 83.27+033  71.96+0.44

Reformer 90.74+2.18 90.87+2.15  90.61+201  90.444225  98.69+050 97.57+0.85
Transformer 96.62+0.54 96.46+054  96.45+059 96.45+056  99.69+008  99.31+0.13

Medformer 95.76+1.03 95.54+110  95.62+105 95.58+1.08  99.53+0.18  99.09+0.36

Medformer + CIF  98.87+0.26 98.77+027  98.86+027 98.81+027 99.96+001  99.92+0.03

MedGNN 99.44+0.21 99.43+021 99.41+022  99.42+021  99.98+001  99.97+0.01

MedGNN + CIF 99.60-+0.09 99.60+0.11  99.58+0.09 99.59+0.10 99.99+0.01  99.97-+0.01

I.2  RESULTS OF SUBJECT-INDEPENDENT
Table 2] presents the results of various methods reported under the subject-independent setup, while

Table 11| shows the results of our reproduction of these methods. Our approach achieves the highest
scores on six metrics across four out of the five datasets. For the PTB-XL dataset, compared to the
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Table 11: Results of Subject-Independent Setup. The training, validation, and test sets are
distributed based on subjects according to a predetermined ratio/IDs. Results of the APAVA, TDBrain,
ADFTD, PTB, and PTB-XL datasets under this setup are presented here. Unfortunately, MedGNN
has only released the training parameters for the APAVA and ADFTD datasets.

Datasets Models Accuracy T Precision?T Recallt Flscoret AUROCT AUPRC 1
Autoformer 73.1847.33 73.87+672  73.01+6.10 72.40+7.03 81.64+724 81.10+7.75
Crossformer 72.7642.04 79.64+245 67414262 66.88+361 71.81+406 71.64+3.74
FEDformer 75.16+1.67 74.98+069  73.344297 73.50+290 83.89+154 83.27+1.62
Informer 72.2042.78 73.92+480 68.48+251 68.74+270  70.14+343  70.84+3.80
APAVA iTransformer 74.55+1.66 T4.77+210  71.76+172  72.30+179  85.59+155  84.39+1.57
(2-Classes) MTST 69.24+1.24 75.87+280  63.28+181 61.62+275  66.09+327  68.08+2.93
Reproduced Nonformer 71.81+420 7131440  70.15+338  70.38+374  71.54+273  72.7942.50
PatchTST 68.27+2.11 78.56+1.88  61.53+260 58.52+407 64.61+218 67.14+2.06
Reformer 78.4242.85 80.89+4.52  75.20+228  76.09+254  75.48+279  77.52+2.64
Transformer 75.53+4.28 76904505  72.14+487  72.64+544  72.30+6.04  73.04+7.15
Medformer 77.85+2.42 80.3143.21  74.38+249 75.21+267 80.85+380 81.62+3.24
MedGNN 77.4045.77 82.77+446  73.24+706 73.29+901  81.31+294  82.80+291
HM-BiTCN + CIF  85.16+155 84.76+1.62 85.33+127 84.82+149 94.06+1.07 94.21-+0.99
Autoformer 90.38+3.03 91.16+242  90.38+303 90.31+309 95.83+2.14 95.43+231
Crossformer 82.15+2.60 82.81+211  82.15+260 82.04+270 91.20+223 91.47+2.16
FEDformer 77.60+1.23 78.25+152  77.60+123 77.48+1.19 86.31+123 86.48+1.36
Informer 88.4242.99 89.01+245  88.42+299  88.36+305 96.54+090  96.66+0.85
TDBrain  iTransformer 74.69+1.02 74764104  74.69+102  74.67+£102  83.35+124  83.65+1.41
(2-Classes) MTST 77.67+3.58 78.97+437  77.67+358 77.45+355 86.47+484  84.99+643
Reproduced Nonformer 88.10+239  88.76+174  88.10+239 88.04+247  96.56+091  96.36+121
PatchTST 77.98+2.64 79.30+3.73  77.98+264 77.76+265 86.67+403 84.93+547
Reformer 88.50+2.30 89.01+180  88.50+230 88.45+235 96.10+063  96.19+055
Transformer 85.13+1.86 86.39+156  85.13+186 84.99+193  95.61+105 95.63+091
Medformer 88.77+1.24 88914111 88.77+124 88.76+125  96.38+034  96.44+030

MedGNN - - - - - -
HM-BiTCN + CIF  93.13+1.41 93.33+1.37  93.13+141  93.12+142  98.62+066 98.68+0.63
Autoformer 46.90+2.89 45.59+237 44914223 44.34+2520  63.49+244  45.63+229
Crossformer 50.18+1.97 4597+184 46304173  45.90+184 66.68+167 48.65+1.89
FEDformer 45.75+0.78 45.71+129 44274128 43.51+100 62.64+164 45.88+135
Informer 48.42+1.99 46.94+160 46.41+099 45.76+043  65.99+1.14 47.49+1.07
ADFTD iTransformer 52.85+1.36 46.97+105  47.31+103 46.84+078 67.46+096  49.90+0.89
(3-Classes) MTST 45.77+1.70 44394173 43.70+182  43.36+198 61.38+157 44.01+1.60
Reproduced Nonformer 50.81+1.06 48.71+140  48.55+147 48364138 66.95+154 48.08+1.82
PatchTST 43.32+0.53 41.95+038 41.45+126 40.75+162  60.21+029 42.494057
Reformer 51.2842.60 49.68+275  49.64+202 48.45+206 69.20+253  51.7443.24
Transformer 50.5340.94 49.31+087  48.57+123 48.42+128  67.98+090 49.07+135
Medformer 53.70+1.18 51.51+132  50.49+148 50.35+153  70.48+1.17  5091+1.13
MedGNN 50.22+321 48.65+372  47.50+457 47334440 67.18+439  48.84+4.11
HM-BiTCN + CIF  58.56+0.93 55.65+081 55.86+079 55.42+082 76.07+059 59.75+0.67
Autoformer 71.9942.74 69.60+3.85  61.50+423 61.43+507 74.29+189  70.26+2.00
Crossformer 78.06+3.44 81.5343.13  68.62+563 69.76+653  88.31+207 85.81+243
FEDformer 74.5442.27 77.99+4.10  63.14+329 63.28+436 84.63+427  80.91+555
Informer 79.59+0.65 83.33+077  70.58+095 72.58+108 92.77+048  90.89+057
PTB iTransformer 83.43+1.19 88.06+1.47  75.64+155 78.29+170 91.38+141  91.08+1.30
(2-Classes) MTST 75.5342.45 78.72+187  64.78+406 65.30+481 87.76+4.09  83.60+3.92
Reproduced Nonformer 78.93+146  82.48+153  69.68+215  71.50+256  90.54+059  87.78+1.46
PatchTST 75.2842.44 77.054244  64.86+405 65.41+528 88.11+259  82.65+287
Reformer 78.11+1.65 82.70+080  68.17+268 69.68+334 90.77+156  88.14+1.20
Transformer 76.43+1.98 81.254+1.15  65.64+329 66.44+439  90.21+124  87.28+149
Medformer 80.99+0.75 83.01+072  73.35+116  7547+121  93.10+1.18  90.69+1.04

MedGNN - - - - - -
HM-BiTCN + CIF  88.29+1.45 90.66+148 83.21+202 85.59+196 94.28+093 93.78+1.11
Autoformer 60.37+1.72 49.83+050  49.17+072 48.43+047 81.35+t056 50.83+0.72
Crossformer 73.15+0.17 64.624+031  61.28+045 62.49+034 89.94+015 67.14+029
FEDformer 56.01+10.27 51.614558  48.77+764 47.23+876  82.01+420 52.23+7.14
Informer 71.28+0.27 62.2840.53  59.18+054 60.38+038  88.57+0.09 64.57+0.18
PTB-XL iTransformer 69.18+0.33 59.44+048  54.84+025 56.44+023  86.65+0.17  60.27+0.44
(5-Classes) MTST 72.14+0.29 64.01+061  59.31+027 61.07+032  88.82+0.19  65.52+052
Reproduced Nonformer 70.51x079  61.42+103  58.15+057 59.31+063  88.20+043  63.33x0.77
PatchTST 73.1340.20 65.384054  60.61+056 62.39+027  89.66+0.16 66.97+0.24
Reformer 71.24+0.46 61.784079  59.67+099 60.51+065 88.67+021  64.29+0.29
Transformer 70.46+0.42 61.56+058  57.86+065 59.16+046  88.18+0.14  63.25+027
Medformer 72.94+0.15 64.39+032  59.98+049 61.61+033 89.67+0.10 66.25+025

MedGNN

HM-BIiTCN + CIF  73.73+0.30 65.41+067 60.70+1.08 61.89+091  90.53+022 67.75+0.75
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results reported by other methods, our method achieves the highest AUROC, with Accuracy ranking
second.

In comparison with our reproduced results, our method ranks first in Accuracy, AUROC, and AUPRC,
and second in Precision and Recall. Additionally, it is noteworthy that under the subject-independent
setup, the F1 score for ADFTD is 55.42%, significantly lower than the 99.59% F1 score achieved under
the subject-dependent setup. This comparison highlights the challenge of the subject-independent
setup, which better simulates real-world scenarios.

J ABLATION STUDY

J.1 MODULE STUDY OF CIF

We conduct experiments by integrating our Channel-Imposed Fusion principle with other methods.

In the CIF structure, there are four different hyperparameters. First, ¢ is the switch for forward and
backward feature fusion. When ¢ = 1, it replaces the forward features with the fused features; when
t = —1, it replaces the backward features with the fused features. The second hyperparameter, n,
determines the number of selected channels. Additionally, there are two scaling factors associated
with the channels: a, the scaling factor for the first n channels, and b, the scaling factor for the

remaining n channels. Both a and b can either be learnable or fixed parameters. We use 6 w©
represent learnable parameters, and B to represent non-learnable parameters.

Original & Learnable @ Frozen New

Channel 0 @/0 D R U LG Feature 0
Channel 1 m g bl ® Feature 1
Channel 2 L T T Tt i

—— e —— — —
Chamel 3 | | w8 Mkt AN Ay | | Feature 3
Chamel 4 | | m P O T N TE o | | Feature 4
> | A AV By | Feature s

PR A

Figure 9: The case of X" = X, ,cq is marked by setting { = 1.
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Figure 10: The case of Xj’-m” = Xuseq 1s marked by setting ¢ = —1.

Following the theoretical analysis of the parameters a and b in Appendix [A] we perform an evenly
spaced grid search over the range [—1, 1] x [—1, 1] and report the overall performance trends as these
hyperparameters vary.

The ablation study(Table [T2|[I3][I4) reveals that the performance of the CIF architecture is highly
sensitive to its hyperparameters, with optimal configurations varying significantly across datasets.
For the APAVA dataset (16 channels), the best results (86.30% accuracy, 94.26% AUROC) are
achieved using backward fusion (¢ = —1) on 9 selected channels (n = 9), where the first 7 channels
apply fixed reinforcement weights (¢ = —0.8, learnable) and the rest use fixed suppression weights
(b = —0.6, learnable). Conversely, the ADFTD dataset (19 channels) performs best (58.56% accuracy,
76.07% AUROC) with forward fusion (¢t = 1) over 10 selected channels (n = 10) using dynamically
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learned weights for negative suppression (@ = —0.19) and positive enhancement (b = 0.27). These
differences, also observed in PTB (APAVA: 78-85% accuracy vs. ADFTD: 50-58%), emphasize
the critical role of dataset-specific tuning. In particular, the number of selected channels (n) and
fusion direction () are pivotal, while adaptive weighting (a/b) further improves robustness. Overall,
the results highlight the necessity of careful hyperparameter optimization—especially in channel
selection and fusion strategy—for maximizing CIF performance across diverse medical time series
tasks.

Overall, the number of selected channels n and the fusion direction ¢ are the key factors influencing
performance, while the adaptive weights /b further enhance the robustness and generalization ability
of the model. Taken together, these results indicate that, for diverse medical time-series tasks, fully
leveraging the advantages of CIF requires careful and systematic optimization of hyperparameters
such as channel selection and fusion strategy.

Table 12: Ablation study of CIF structure hyperparameters on ADFTD dataset (19 Channels). We
use & 10 represent learnable parameters, and B 1o represent non-learnable parameters.

-

n a b Accuracy Precision Recall F1score AUROC AUPRC

- - - 52.05+222 50.45+3.00 50.40+255 49.48+270 69.43+284 50.99+3.15
10 -020® -030® 57.33+095 54.06+147 54.44+133 53.73+147 T4.82+136 58.24+1.78
10 -0258® -0408® 57.08+146 53.31+098 53.24+1.14 52.87+098 73.77+128 56.86+1.47
11 0208 -030® 56.68+130 53.04+200 53.45+203 52.84+230 73.81+155 57.34+1.46
10 -0.198 -0278 58.56+093 55.65+081 55.86+0.79 55.42+082 76.07+059 59.75-+0.67
7 0208 -0.608 56.36+058 53.91+1.10 54.34+103 53.78+091 74.1940690 56.62+1.28
9 -0208 -0.608 5520+150 53.05+1.14 53.21+106 52.76+1.02 73.09+1.13 55.50+1.71
10 0208 -0208 57.114092 55.04+143 55.53+157 54.58+129 75.13+133 58.47+143
11 0208 -0308 57.83+1.16 54.32+122 54.51+118 54.01+121 74.74+112 57.96+1.08
11 -0.188& -0258 57.00+132 53.00+228 53.17+194 52324219 73.97+189 57.00+1.93
-1.00€  -1.00€  51.29+1.14 49724146 49.95+165 49.35+144 69.13+082 51.01+1.19
-1.008  -1.008 50.46+157 48.50+1.19 48.68+129 48.20+138 68.18+1.08 49.73+1.24
-1.00€ 0808 50.62+2338 49344217 49.49+218 48.97+234 68.55+£178 50.5242.40
-1.008  -0.808 50.51+257 49.04+231 49.26+260 48.73+266 68.32+2.13 50.38+253
-1.00€8 0608 51.51+156 50.15+136 50.35+1.03 49.80+124 69.03+£092 51.09+1.48
-1.008  -0.608 51.09+205 49.84+197 50.24+216 49.33+184 69.04+185 51.154255
-1.00€8  -040€  51.17+127 48474103 48.45+136 47.83+138 68.20+079 49.55+1.06
-1.008 -040#® 53.59+101 52.164237 52.16+43.11 51.014324 70.77+229 53.1743.59
-1.008 -0408 51.27+091 48.14+091 48.28+1.15 47.66+1.18 67.95+105 48.92+1.71
-1.008 -0408 53.03+170 52414270 51.954309 50.35+343 70.69+234 52.99+3.58
-1.00€8  -020€  51.11+061 48.09+051 47.88+059 47.40+059 67.73+0.67 48.74+0.89
-1.00 8 -020€ 54.26+058 52.53+178 51.58+201 51.31+232 70.87+143 53.25+230
-1.008 0208 50214253 47754254 47.84+262 47.38+251 67.34+267 48.72+3.07
-1.008  -0208  5491+115 53.99+135 53.544+201 53.16+156 72.41+123 55.67+1.70
-1.008  -1.008 51.22+094 49.68+150 49.67+201 49.18+159 68.92+1.00 51.02+1.05
-1.008 -1.008  52.00+148 50.10+1.12 49.87+143 49.56+1.17 69.38+097 51.20+1.26
-1.008 -0.80# 52.20+150 49.88+171 49.90+185 49.69+1.75 69.44+136 51.39+1.69
-1.008 -0808 51.194206 47.57+130 47.61+179 47.18+1.62 67.52+178 48.94+1.69
-1.008  -060# 51.67+t142 47.79+092 47.97+122 47.49+121 67.89+131 49.35+1.62
-1.008 0608 51.15+178 47.524+070 47.29+1.10 46.62+071 67.69+150 48.90+1.31
-1.008 040 52.58+140 49.214248 49.35+180 48.504227 68.95+157 50.2642.08
-1.008  -040# 52.40+054 50.114226 49.92+2.13 48.874264 69.13+185 50.6242.47
-1.008 -0408  52.61+120 49.38+201 49.07+157 48.32+197 68.92+150 50.01+1.66
-1.008 0408 5247+146 49.68+196 49.59+170 48.30+221 68.60+1.70 49.58+221
-1.008 020 51.83+152 48.654257 48.79+205 48.164245 67.83+186 49.2142.17
-1.00€  -020€  52.14+135 50.704237 50.25+235 49.75+207 69.64+£173 51.0242.65
-1.008  -0208 52704114 50.10+1.76 49.66+142 48.99+171 69.22+1.06 50.20+1.09
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t n a b Accuracy Precision Recall F1score AUROC AUPRC

1 8 -1.008 -0208 52.64+073 49.69+278 50.02+194 4895+276 69.15+181 50.69+2.16
1 9 -1.00& -1.00€& 5335+153 49.43+075 49.65+054 49.05+1.03 69.05+060 51.18+0.44
1 9 -1.008 -1.008 53424239 50.34+198 50.23+185 49.47+221 69.43+140 51.76+1.87
1 9 -1.00& -080& 52.60+152 50.27+08 50.10+085 49.49+070 69.19+043 51.16+0.76
1 9 -1.008 -0808 5241+131 49.15+081 49.14+1220 48.13+143 68.53+045 50.22+0.82
1 9 -100® -060& 52.18+091 49.49+1.11 49.40+137 48.90+085 68.75+1.16 50.44+1.61
1 9 -1.008 -0608 51.92+160 49.03+083 48.73+078 48.13+088 68.31+040 49.95+0.46
1 9 -100® -040€ 51.34+070 49.72+034 49.90+042 49.32+042 68.67+031 50.21+0.90
1 9 -1.00€& -040€® 51.36+278 49.89+137 49.48+107 48.83+152 69.11+157 50.2241.88
1 9 -1.008 -0408 52244109 49.96+092 49.42+09 49.01+085 68.50+091 49.71+1.22
1 9 -1.008 -0408 51.23+251 50.34+095 49.68+070 48.94+137 69.81+124 51.01+1.47
1 9 -1.00€& -020€ 51.30+083 49.86+096 49.61+099 49.00+08 68.90+£099 50.08+1.43
1 9 -1.008 -020® 50.634205 49.20+198 48.76+1.75 48.08+147 68.55+1.89 49.46+235
1 9 -1.008 -0208 53.224254 51.76+290 50.85+3.02 50.22+338 69.92+250 51.51+3.36
1 9 -1.008 -0208 51.03+223 49.86+136 49.59+159 49.03+166 69.13+144 50.35+2.08
1 10 -1.00® -1.00€® 51.76+1.87 49.07+233 48944207 48.35+223 68.73+£156 50.3642.20
1 10 -1.008 -1.008 49944117 47.35+222 47.48+198 46.89+220 67.17+098 48.61+1.84
1 10 -1.00® -080€® 52944214 50.68+2.19 50.17+200 49.79+194 69.46+179 51.114+261
1 10 -1.008 -0808 52.13+200 49.49+273 49.51+254 48.81+272 68.65+1.77 50.42+2.08
1 10 -1.00® -0.60® 51.874+246 49.68+2.77 49.99+284 49241295 69.184201 51.03+2.77
1 10 -1.008 -0608 51.86+160 49.10+132 49.76+138 48.69+149 69.01+1.02 50.41+135
1 10 -1.008® -040® 52.66+1.03 47.97+150 48.38+097 47.34+141 68.12+1.15 49.01+1.38
1 10 -1.008® -040€® 5251428 51.494307 51.10+357 50.33+343 70.03+£322 51.80+4.02
1 10 -1.008 -0408 5241+103 48.62+193 49.14+160 47.99+175 68.41+1.13 49.39+137
1 10 -1.008 -0408 51.49+149 50.82+160 50.21+168 49.51+159 69.39+174 50.83+224
1 10 -1.008® -020€® 52931091 50.094250 49.23+1.64 48.63+198 69.06+£1.84 50.3442.30
1 10 -1.008® -0208® 54294240 52.85+243 51.05+191 50.86+226 71.264220 53.1242.65
1 10 -1.008 -0208 53.17+238 49.78+385 50.04+326 49.42+377 69.42+345 50.81+4.85
1 10 -1.008 -0208 52734306 51.96+278 51.07+284 50.37+3.15 70.70+2.84 52.46+347
1 11 -1.008® -1.008® 52.58+058 48.82+137 49.03+132 48.54+136 68.70+098 50.46+1.21
1 11 -1.008 -1.008 51.62+1.79 48.69+260 48.58+266 48.48+249 68.51+174 50.69+2.33
I 11 -1.00€ -080€ 5230+130 49.28+137 48.77+061 48.05+1.12 68.63+1.10 50.61+1.37
1 11 -1.008 -0808 53.35+223 49.09+226 49.08+2.12 47.91+225 68.62+160 50.38+1.64
1 11 -1.00® -0.60® 51.63+171 49.23+18 48.99+143 48.42+159 69.21+140 51.41+171
1 11 -1.008 -0608 52.79+204 48.88+326 49.16+206 48.29+278 68.38+251 50.14+2.64
1 11 -1.008 -040€® 51214203 48.89+147 48.68+096 47.98+1.63 68.61+£126 50.42+1.04
1 11 -1.008 -0408 52.76+132 48.29+335 48.87+277 47.83+361 68.48+272 50.29+3.06
1 11 -1.008 -0208® 52174207 49.95+195 49.34+179 48.76+2.17 69.64+189 51.36+1.79
1 11 -1.00® -020€& 5294+157 50.48+148 50.62+1.19 49.65+134 69.49+1.11 50.60+1.77
1 11 -1.008 -0208 52.86+1.18 49.30+291 49.10+2.10 48.35+269 69.00+191 50.58+221
1 11 -1.008 -0208 52.79+155 50.06+170 50.33+144 49.25+158 69.63+1.11 50.74+1.63
1 12 -1.00€ -1.00€ 52231070 49.02+130 48.85+139 48.42+179 69.42+128 51.53+1.57
1 12 -1.008 -1.008 52.87+091 48.84+1.15 48.80+1.09 48.17+161 69.83+151 51.81+1.39
1 12 -1.00& -080& 51.77+181 49.15+161 48.85+160 48.10+199 69.28+1.63 51.18+1.62
1 12 -1.008 -0.808 51.30+190 48.55+206 48.64+213 48.15+230 68.67+185 50.49+2.12
1 12 -1.00® -060€& 51.09+209 48.78+1.64 48.58+1.66 48.01+197 68.73+1.96 50.50+2.11
1 12 -1.008 -0608 50.75+202 48.16+249 47984248 47.38+242 68.05£2.19 49.60+2.52
1 12 -1.00€& -040€ 5024+148 47.38+171 47.13+£168 46.79+163 67.87+1.12 49.14+1.11
1 12 -1.008 -0408 49544295 47324266 47.10+2.16 46.00+248 67.31+£179 48.73+2.04
1 12 -1.00€ -020€ 50.92+156 48.17+185 48.04+163 47.63+168 68.12+1.42 49.36+1.84
1 12 -1.00® -020€® 51414232 49.464248 49.58+261 48.42+226 68.68+227 49.71+2.82
1 12 -1.008 -0208 51.05+158 48.59+239 48.22+178 47.63+173 68.61+148 49.90+1.68
1 12 -1.008 -0208 52.52+08 49.16+235 49.51+245 48.47+192 69.29+202 50.12+234
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Table 13: Ablation study of CIF structure hyperparameters on PTB dataset (15 Channels). We use
6w represent learnable parameters, and B 1o represent non-learnable parameters.

-1.00€  -090€  80.89+406 87.74+178 T1.49+625 73.24+785 93.83+239 93.331264
-1.008 -0908 82344322 87.35+206 74.12+514 76304562 94.0542.17 93.5442.08
-1.00€ 080 84.06+349 88914167 76494544 78.88+580 92.73+1.43 92.39+1.26
-1.008  -0.808 82.50+214 88.19+1.12 74.03+333 76.514367 94.334084 93.83+1.05
-1.00€¢  -0.70€®  81.44+404 87.88+4177 72.37+623 T4.28+732 92.35+177 91.86+1.50
-1.008 -0708 80.07+3.15 87.48+101 70.24+497 71.96+603 92.83+2.18 92.434224
-1 10 -1.00€  -1.00€¢ 79431339 85.0342.12 69.86+542 71.34+675 90.25+382 89.29+4.14
-1 10 -1.008 -1.008 82.20+1.035 86.48+1.03 74.07+147 76.53+161 92.05+225 91.2942.26
-1 10 -1.00€¢ -090€ 83.08+3.17 87.22+154 75414502 77.64+5690 90.27+383 89.89+3.83
-1 10 -1.008 -0908 80.74+3.10 86.14+121 71.72+494 73.63+585 92.44+150 91.53+1.55
-1 10 -1.00€ -0.80€# 78.96+354 86.024207 68.75+552 70.07+674 90.23+334 89.36+3.48
-1 10 -1.008 -0.808 79.20+345 85.98+063 69.31+583 70.58+697 93.24+160 92.07+1.78
-1 10 -1.00€ -070€ 82.37+189 87.63+088 74.00+303 76.44+321 93.05+190 92.39+1.83
-1 10 -1.008 -0.708  77.99+451 85.22+087 67.50+735 67.94+984 91.944385 90.81+3.67
-1 11 -1.00€  -1.00€ 81.63+£320 86314232 73.11+500 75.22+590 91.76+£2.02 90.82+2.04
-1 11 -1.008 -1.008 79.09+382 86.30+1.79 68.91+595 70.15+770 91.3543.78 90.46+3.63
-1 11 -1.00€  -090€  79.68+284 86.22+1.10 69.89+448 71.60+535 92.11+1.09 91.33+1.27
-1 11 -1.008  -0908 78444340 86.20+144 67.84+536 68.96+6.63 90.75+555 90.19+531
-1 11 -1.00€  -0.80€ 80.05+278 87.14+109 70.25+435 72.08+s508 92.86+282 92.27+286
-1 11 -1.008 -0.808 82.18+099 86.96+1.56 73.88+147 76.36+156 91.484329 90.85+331
-1 11 -1.008 -0.70® 80.82+207 85.724144 71.94+323 7T74.084362 89.25+275 88.51+2.83
-1 11 -1.008 -0.708  7820+254 84.96+172 67.72+395 69.00+5.18 90.29+0.65 89.5240.96

t n a b Accuracy Precision Recall F1score AUROC AUPRC
- - - - 81.87+187 86.50+124 73.49+290 75.84+320 94.20+029 93.04+045
1 8 021® -050@® 88.29+145 90.66+148 83.21+202 85.59+196 94.28+093 93.78+1.11
1 8 020€ -050€ 84.45+215 88.34+115 77.40+352 79.894351 93.15+£070 91.94+0.67
1 9 0228 -050€® 85.14+022 87.42+108 79.05+0s52 81.42+035 93.82+1.19 92.73+1.27
1 10 022&¢ -050€ 85.40+208 88.17+196 79.17+3.12 81.57+3.07 94.57+1.13 93.53+1.44
1 11 0228 -050€ 8447+0s84 88.024059 77.50+126 80.10+128 92.77+089 92.02+0.78
1 8 0238 -050® 83964541 87.13+396 76.89+8220 78.66+£951 92494291 91.1443.79
1 8 0258 -050® 85564209 88.96+1.77 79.03+3.03 81.61+3.14 93.61+111 93.07+1.03
-1 7 -1.00€  -1.00€ 82.57+0ss 86.88+094 74.58+126 77.09+135 93.75+130 92.74+1.65
-1 7 -1.008  -1.008 8226+327 86.11+238 74.28+493 76.48+544 92944237 91.53+275
-1 7 -1.00€  -090€ 81.49+397 86.49+289 72.81+600 74.78+687 93.41+180 92.62+2.04
-1 7 -1.008 -0908 7844+444 84944203 68.22+705 69.04+881 92.58+2.17 91.48+2.14
-1 7 -1.00€  -0.80#8 79944318 85354261 70.48+479 T72.26+6.02 93.43+149 92.30+1.61
-1 7 -1.008 -0808 80.57+470 85.894320 71.38+7.18 72.86+926 92.43+059 91.48+1.19
-1 7 -1.00€ -0.70€ 81.01+274 86.90+099 71.93+434 73.99+525 92.44+272 91.70+2.53
-1 7 -1.008 0708 83.64+1.03 87.21+054 76.36+171 78.88+1.65 93.50+094 92.83+0.73
-1 7 -1.008 -0.60# 80.22+147 86.35+148 70.72+2.19 72.82+257 92.61+147 91.70+1.77
-1 7 -1.008 -0608 81.73+277 86.55+178 73.24+432 75.45+482 90.80+1.65 90.14+1.62
-1 8 -1.00# -1.00€ 82.23+314 86.39+188 74.18+486 76.40+501 94.31+1.14 93.25+1.17
-1 8 -1.008 -1.008 80.07+1.79 84.284252 71.1042.50 73.16+2.85 93.63+095 92.04+1.42
-1 8 -1.008 -090#® 81.36+230 86.49+189 72.62+349 T74.87+381 92.14+256 91.19+268
-1 8 -1.008 -0908 79.96+146 84.20+1.84 70.924202 72.98+232 92.00+1.97 90.66+2.01
-1 8 -1.008 -080#® 80.34+193 86.14+165 71.004+3.00 73.07+340 91.44+264 91.01+255
-1 8 -1.008 -0808 77.08+430 84.12+323 66.14+666 66.44+924 89.684365 88.73+3.53
-1 8 -1.00® -0.70® 79.17+248 85.39+126 69.35+422 70.91+505 92.43+129 91.69+0.98
-1 8 -1.008 -0708 80.03+48 85.46+200 70.75+7.74 71.98+894 91.05+298 90.05+3.18
-1 9 -1.00® -1.00® 81.23+267 86.60+143 72.39+423 T4.524464 92.20+122 91.55+1.57
-1 9 -1.008 -1.008 80.05+478 86.50+2.17 70.45+740 71.734927 92.734093 91.87+1.14

9

9

9

9

9

9
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t n a b Accuracy Precision Recall F1score AUROC AUPRC

-1 12 -1.00@ -1.008 7827+304 86.34+1.19 67.54+480 68.65+6.04 91.52+268 90.92+248
-1 12 -1.008  -1.008 82.45+176 87.85+079 74.1043.00 76.55+305 92.78+1.02 92.30+082
-1 12 -1.008 -090€® 79.49+184 85.59+216 69.67+257 T1.57+317 91.80+1.78 90.84+1.96
-1 12 -1.008  -0908& 82.03+190 88.37+083 73.224306 75.64+342 93.21+167 92.67+1.74
-1 12 -1.00® -0.80# 80.02+282 86.84+262 70.214+4.03 72.15+465 91.42+095 90.99+1.27
-1 12 -1.008  -0808 81.67+324 87.404230 72.824486 75.004+575 92.56+1.50 91.81+1.68
-1 12 -1.00® -0.70 @ 80.32+495 87.364258 70.62+757 72.03+891 93.41+3.07 92.78+334
-1 12 -1.008  -0708  79.00+£1.99 87.524083 68.43+305 70.02+374 92.27+222 92.16+1.82
1 7 -1.008 -1.00€8 85.02+135 88.50+101 7827+199 80.88+1.99 95.79+074 95.11+0.72
1 7 -1.008 -1.008 84.81+184 88.77+120 77.864+3.06 80.434294 96.3341.03 95.64+1.19
1 7 -1.00® -090® 83.37+241 87.74+1.09 75.71+386 78.15+402 94.66+134 93.86+1.44
1 7 -1.008 -0908 83.70+162 87.88+1.13 76.194245 78.774+247 95.734089 95.00+0.68
1 7 -1.00® -080® 84.10+164 88.14+154 76.78+228 79.404+241 95.46+168 94.73+186
1 7 -1.008 -0.808 83.59+252 88.30+138 75.884399 78.38+401 93.55+1.14 93.01+142
1 7 -1.00® -070® 82.68+256 87.55+1.12 74.56+403 76.94+437 95.07+161 94.34+152
1 7 -1.008 -0708 86.59+196 89.57+134 80.67+3.11 83.144292 95.864099 95.33+1.08
1 7 -1.00® -060® 83.42+353 87.76+207 75784545 78.08+559 95.23+166 94.35+1.8
1 7 -1.008 -0608 84.09+280 87.38+149 77.124443 79.45+454 93.88+122 93.14+140
1 8 -1.00® -1.00® 82844254 84.33+258 76.30+390 78.32+372 94.66+1.53 92.85+1.97
1 8 -1.008 -1.008 81.17+165 84.79+121 72914268 75.10+291 94.65+108 92.31+2.18
1 8 -1.00® -090® 83.41+089 86.62+1.18 76.22+1.40 78.67+£140 94.87+100 93.35+1.07
1 8 -1.008 -0908 81.234207 84.90+155 73.00+335 75.14+3.64 94.30+154 92.69+2.04
1 8 -1.00® -0.80® 82754209 85.86+18 75.41+340 77.66+350 94.49+121 92.78+1.69
1 8 -1.008 -0808 8349+210 85.88+227 76.66+293 78.97+302 95.08+227 93.62+2.66
1 8 -1.00® -0.70® 82.144238 85.38+166 7T4.44+379 76.63+411 94.74+166 93.38+1.67
1 8 -1.008 -0708 83.04+170 85.52+190 76.05+252 78.33+258 94.25+134 92.44+150
1 8 -1.008 -0.60® 83.87+261 86.85+241 76.95+401 79264408 95204286 93.94+331
1 8 -1.008 -0608 84244201 87.41+167 77.34+297 79.81+300 94.88+096 93.38+1.20
1 9 -1.00® -1.008® 82.58+305 86.28+1.60 74.89+491 77.07+491 93.56+206 92.48+1.79
1 9 -1.008 -1.008 81.97+226 85.64+1.61 73.994346 76.26+377 93.68+1.04 92.21+127
1 9 -1.00® -090@® 81.24+288 84.95+t258 72.97+437 75.05+474 94.07+215 92.79+234
1 9 -1.008 -0908 83.23+1.06 86.49+205 75.95+1.17 78.42+132 93.78+186 92.82+2.05
1 9 -1.00® -080@® 81.84+215 86.93+144 73.30+£327 75.65+353 93.56+088 92.60+1.15
1 9 -1.008 -0808 8290+157 86.86+1.99 75.18+2.19 77.67+229 94.64+085 93.78+094
1 9 -1.00® -070® 83.52+203 86.44+285 76.45+250 78.89+276 93.94+129 92.76+171
1 9 -1.008 -0708 79.94+323 84.83+200 70.69+s500 72.45+58 93.59+156 92.47+1.42
1 9 -1.008 -0.608 81.79+350 87.48+174 73.12+552 75204604 94.39+157 93.3542.09
1 9 -1.008 -0608 8220+147 87.39+201 73.78+218 76.26+231 94.56+3.17 93.59+3.93
1 10 -1.00€ -1.00& 82.13+326 87.02+161 73.82+511 75974588 93.67+196 92.80+2.01
1 10 -1.008 -1.008 82.69+449 86.75+285 74.85+700 76.75+798 94.19+091 93.34+096
1 10 -1.00€ -090€ 81.80+220 86.99+263 73.17+306 75.57+348 92.92+169 92.09+2.04
1 10 -1.008 -0908& 86.15+141 88.87+092 80.15+2.16 82.62+205 95.97+065 95.32+0.57
1 10 -1.008& -080#® 82.52+243 87.71+190 74.194365 76.64+401 93.67+3.19 92.93+3.20
1 10 -1.008 -0808& 82.92+174 87.86+1.61 74.83+252 77.40+276 93.42+318 92.76+2.99
1 10 -1.00® -0.70® 84.52+147 88.524074 77.38+232 80.01+238 95.45+1.12 94.74+1.04
1 10 -1.008 -0708 83.00+147 87.124099 75.26+231 77.76+242 94.24+135 93.54+1.19
1 11 -1.00® -1.00® 83.24+222 87.34+129 75.60+3.43 78.054368 94.73+195 93.82+185
1 11 -1.008 -1.008 82.60+088 87.11+095 74.55+137 77.08+143 92.63+152 91.79+151
1 11 -1.00® -090€® 80.82+245 85.77+159 71.90+372 74.024424 93.53+182 92.37+1.58
1 11 -1.008 -0908 81.41+301 86.76+208 72.68+466 74.78+544 94.61+1.16 93.24+1.68
1 11 -100€¢ -080€® 8273+262 87.6642.10 74.59+393 77.01+430 94.59+065 93.61+0.69
1 11 -1.008 -0808 77.98+241 85.65+132 67.28+408 68.40+492 92.95+327 92.12+326
1 11 -100€ -070€ 83.28+398 87.984244 75.47+608 77.72+622 94.63+1.63 93.23+243
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t n a b Accuracy Precision Recall F1score AUROC AUPRC

I 11 -1.008 -0708 81.95+319 87.27+144 73434507 75.57+585 94.49+131 93.62+135
1 12 -1.00€ -1.00& 82.56+211 85784215 75.05+329 77.34+322 92.70+346 91.46+4.17
I 12 -1.008 -1.008 79.36+238 85.74+260 69.50+366 71.23+445 89.66+253 88.86+2.93
1 12 -1.00€ -090& 79.23+352 86.61+148 69.12+566 70.47+676 92.23+2.15 91.33+2.28
I 12 -1.008 -0908 82.68+277 88.63+129 74.20+425 76.64+470 94.50+222 94.05+222
1 12 -1.00# -0.80# 80.16+461 84.27+505 71.06+659 72.75+790 92.14+238 90.81+3.40
1 12 -1.008 -0808& 81.78+353 86.61+221 73.41+556 75.44+614 92.984244 92.10+242
1 12 -1.00® -0.70® 81.35+277 87.194253 72.42+421 74.62+455 94.66+1.02 93.97+137
1 12 -1.008 -0708 85.25+274 88.51+237 78.74+412 81.17+399 95.07+105 94.48+136

37



Under review as a conference paper at ICLR 2026

Table 14: Ablation study of CIF structure hyperparameters on APAVA dataset (16 Channels). We
use & to represent learnable parameters, and B 1o represent non-learnable parameters.

t n a b Accuracy Precision Recall F1score AUROC AUPRC

- - - - 82.49+140 82.38+179 81.20+132 81.60+139 91.10+1.63 91.30+1.71
-1 5 18 18 81.48+196 81.99+238 79.52+200 80.21+207 90.93+174 91.17+1.77
-1 6 16 16 84.00+237 84.33+261 82374244 83.02+250 92.67+257 92.87+2.55
-1 7 16 186 81.77+231 82.67+324 79.78+204 80.49+226 89.92+260 90.23+253
1 9 18 18 85.16+155 84.76+162 85.33+127 84.82+149 94.06+1.07 94.21+0.99
-1 10 16 16 82.60+1.82 82.30+2.04 81.92+229 81.92+195 91.94+155 92.16+1.50
-1 11 18 2B 78.98+097 78.57+1.09 77.60+093 77.93+097 87.29+093 87.35+0.96
1 6 -1.00#& -1.00€& 81.20+128 81.50+1.16 79.51+1.84 80.01+167 90.03+£1.00 90.28+1.03
1 6 -1.008 -1.008 81.24+1.16 81.57+095 79.56+181 80.05+1.62 90.294090 90.61+0.88
1 7 -1.00® -1.00® 81.33+224 81.36+252 79.71+222 80.244231 89.57+198 90.02+1.89
1 7 -1.00® -1.00® 81.33+224 81.36+2520 79.71+222 80.244231 89.57+198 90.02+1.89
1 7 -1.008 -1.008 81.62+258 81.63+295 80.094248 80.60+2.62 89.9442.18 90.33+2.07
1 7 -1.00® -090® 81.45+220 81.48+256 79.83+231 80.374+239 89.73+195 90.17+185
1 7 -1.008 -0908 81.58+227 81.72+266 79.88+221 80.474+233 89.674+201 90.10+1.93
1 7 -1.00® -080® 82.28+180 82.97+182 80.30+2.14 81.014+200 90.47+167 90.83+1.58
1 7 -1.008 -0.808 81.80+195 82.45+233 80.01+201 80.5942.07 89.90+161 90.35+1.53
1 7 -1.00® -070® 82.17+206 82.87+244 80.41+208 80.994216 90.51+176 90.91+1.64
1 7 -1.008 -0708 82.05+1.11 83.13+1.64 79.89+142 80.66+133 90.47+120 90.86+1.11
1 7 -1.00® -060® 82.38+1s55 83.21+212 80.41+174 81.12+169 90.96+120 91.26+1.16
1 7 -1008 -0608 82.19+149 83.02+215 80.23+161 80.93+160 90.81+126 91.15+1.18
1 7 -1.00® -050® 82.94+093 83.86+1.07 80.95+145 81.68+127 91.39+077 91.69+0.71
1 7 -1008 -0508 82.52+1.10 83.35+163 80.60+140 81.28+130 91.17+098 91.49+0.92
1 7 -1.00® -040@® 82.96+089 83.73t1.10 81.07x132 81.77+116 91.79+060 92.03-+0.60
1 7 -1.008 -0408 83.02+079 83.82+1.14 81.08+1.05 81.82+095 91.85+060 92.09-+0.60
1 7 -1.00€ -030€ 83.00+171 83.514229 81.31+143 81.95+161 91.78+164 92.02+1.63
1 7 -1.008 -0308 82.78+168 83.494238 81.10+1.04 81.70+143 91.98+135 92.19+136
1 7 -1.008 -020@® 83.13+1.72 83.47+220 81.71+160 82.18+1.67 92.09+165 92.25+1.65
1 7 -1.008 -0208 83.16+193 83.61+247 81.55+179 82.14+191 92.13+174 92.30+1.72
1 7 -1.008 -0.10® 84.39+090 84.68+t094 82.92+122 83.48+106 93.08+092 93.20+0.98
1 7 -1.008 -0.108 84.56+097 84.89+069 83.05+142 83.64+120 93.19+094 93.30+1.01
1 7 -1.00® 0.10@ 84.25+146 84.47+137 82.77+179 83.33%t164 92.77+108 92.90+1.13
1 7 -1.008 0108 84.39+155 84.56+149 82.96+183 83.50+171 92.84+118 92.95+122
1 7 -1.00€8 020€ 84.02+148 84.15+152 82.56+161 83.12+160 92.51+121 92.66+1.20
1 7 -1.008 0208 83.37+181 83.65+204 81.85+183 82.40+187 92.11+131 92.27+1.26
1 7 -1.00€8 030€ 8295+219 82.86+264 81.70+198 82.11+218 91.84+167 92.01+1.62
1 7 -1.008 0308 82.66+188 82.62+243 81.40+156 81.79+181 91.34+188 91.43+1.94
1 7 -1.00€8 040&® 82.33+191 82354229 80.91+1.87 81.38+197 91.20+198 91.32+2.00
1 7 -1.008 0408 83.12+175 83.32+207 81.57+179 82.13+184 91.91+165 92.08+1.59
1 7 -1.00€8 050€ 82.07+177 82.32+231 80.33+161 80.96+178 90.99+165 91.21+1.59
1 7 -1008 0508 82.35+242 82.574+249 80.63+264 81.244263 91.04+186 91.27+1.79
1 7 -1.00€8 060€ 82.03+1211 82.194+265 80.39+201 80.97+2.16 90.74+194 90.95+1.87
1 7 -1008 0608 82.08+201 82.22+248 80.48+197 81.04+208 90.80+192 91.00+1.86
1 7 -1.008 070€ 81.73+222 81.664239 80.24+236 80.724238 90.43+190 90.63+1.82
1 7 -1.008 0708 81.79+220 81.87+248 80.134225 80.70+232 90.50+1.90 90.71+1.84
1 7 -1.00® 080@ 81.37+194 81.69+261 79.56+175 80.19+194 90.28+2.07 90.50+2.00
1 7 -1.008 0808 81.83+237 81.994263 80.104+244 80.714252 90.31+197 90.54+1.91
1 7 -1.00® 090€@ 81.72+173 82.11+228 79.84+162 80.52+176 90.29+1.72 90.49+1.67
1 7 -1.008 0908 82.07+230 82.18+241 80.394248 80.984248 90.38+1.84 90.59+1.78
1 7 -1.00® 1.00@& 81.29+173 81.08+1.65 79.84+205 80.27+193 89.88+138 90.09+1.36
1 7 -1.008 1.008 81.31+234 82.154+2.11 79.344326 79.894298 89.94+188 90.14+1.84
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t n a b Accuracy Precision Recall F1score AUROC AUPRC

1 7 -090& -1.00€ 81.34+229 81.35+256 79.74+233 80.26+241 89.54+201 89.96+1.97
1 7 0908 -1.008 81.30+217 81.41+248 79.59+220 80.16+228 89.53+1.99 89.96-+1.95
1 7 -090# -090€& 81.58+233 81.58+282 80.05+221 80.56+236 89.96+2.13 90.33+2.04
1 7 0908 -0908 81.89+219 82.12+215 80.15+254 80.73+247 90.10+2.14 90.41+2.09
1 7 -090€8 -0.80#® 82.00+162 82.67+18 80.05+£1.93 80.73+1.86 90.12+1.47 90.49+1.41
1 7 -0908 -0808& 81.75+177 82.20+233 80.00+1.77 80.58+1.82 89.88+142 90.30+1.36
1 7 -090# -0.70# 81.31+174 81.924221 79.29+177 79.99+184 89.40+1.63 89.88+1.52
1 7 -0908 -0708 81.87+208 82.28+250 80.18+2.09 80.74+2.16 90.02+1.74 90.44+1.63
1 7 -090# -0.60# 81.98+147 82.62+197 80.09+150 80.75+154 90.37+£1.07 90.73+1.03
1 7 -0908 -0.608 81.93+135 82.56+2.14 80.084+093 80.73+1.17 90.09+1.10 90.49+1.07
1 7 -090® -050® 81.72+150 82.60+2.15 79.70+£132 80.40+144 90.11+168 90.46+1.61
1 7 -0908 -0508 81.33+140 81.654+2.17 79.66+126 80.19+132 90.08+136 90.45+1.21
1 7 -090® -040® 82.35+075 82.80+1.60 80.67+025 81.25+047 91.06+076 91.35+0.71
1 7 -0908 -0408 82.45+046 82.95+1.18 80.68+054 81.314041 91.134059 91.40+055
1 7 -090® -030® 81.38+183 81.35+247 80.09+134 80.46+164 90.22+137 90.48+1.47
1 7 -0908 -0308 81.31+188 81.244253 80.15+124 80.44+163 90.21+142 90.47+152
1 7 -090® -020® 82.01+1ss 81.92+242 80.77+162 81.13+179 90.86+171 91.07+1.77
1 7 -0908 -0208 82.42+176 82.42+222 80.98+167 81.47+177 91.10+167 91.28+1.72
1 7 -090® -0.10® 83.94+079 84.11+090 82.51+101 83.04+089 92.50+0.78 92.65+0.83
1 7 -0908 -0.108 82.92+167 83.22+178 81.444+200 81.92+187 91.66+160 91.82+1.62
1 7 -090® 0.10@ 83.61+165 83.89+199 82.02+154 82.64+167 92.12+149 92.28+151
1 7 -0908 0.108 83.75+223 84.27+221 81.954+255 82.664249 92.214201 92.36+1.99
1 7 -090® 020@ 83.37+146 83.92+201 81.60+140 82.29+147 92.18+165 92.33+1.64
1 7 -0908 0208 83.51+125 84.15+164 81.66+133 82.40+132 92.33+147 92.47+1.48
1 7 -090® 030@ 82.99+1s52 83.25+174 81.45+187 81.98+170 92.01+152 92.15+150
1 7 -0908 0308 81.62+147 81.77+219 80.25+1.19 80.64+134 90.76+1.81 90.98+1.74
1 7 -090® 040@ 81.50+162 81.95+246 79.67+141 80.30+157 90.76+191 90.97+1.86
1 7 -0908 0408 81.59+174 81.90+232 79.81+163 80.43+176 90.73+1.84 90.94+1.79
1 7 -090€ 050€ 81.68+191 81.844240 80.16+2.12 80.6242.04 90.85+190 91.04+1.84
1 7 -0908 0508 81.71+171 82.05+240 79.99+172 80.56+176 90.82+198 91.01+1.93
1 7 -090® 060@& 81.45+207 81.58+265 79.96+2.13 80.41+216 90.34+190 90.54+1.86
1 7 -0908 0608 81.52+184 81.68+244 80.00+180 80.47+190 90.34+1.84 90.55+1.79
1 7 -090® 070@ 81441260 81.43+292 79.84+266 80.37+275 89.97+2.15 90.19+2.10
1 7 -0908 0708 81.02+146 81.49+275 79.19+1.13 79.80+129 90.2142.15 90.38+2.09
1 7 -090® 080@® 81.05+t1s8s 81.28+250 79.29+171 79.88+187 89.82+2.03 89.96+2.01
1 7 -0908 0808 81.41+261 81.44+287 79.75+270 80.31+277 89.82+2.10 90.00-+2.05
1 7 -090€& 090€ 81.23+187 81.02+180 79.77+218 80.21+208 89.72+171 89.91+1.67
1 7 0908 0908 81.59+237 81.53+233 80.01+269 80.52+260 89.95+192 90.17+1.87
1 7 -090€ 1.00€ 81.26+206 81.47+219 79.39+220 80.03+223 89.73+176 89.91+1.74
1 7 0908 1008 80.78+160 80.71+159 79.13+181 79.65+1.76 89.51+156 89.63+1.48
1 7 -080# -1.00& 81.24+214 81.34+224 79.59+240 80.11+236 89.28+174 89.65+1.80
1 7 0808 -1.008 81.24+198 81.67+243 79344205 79.98+211 89.23+177 89.63+183
1 7 -080#& -090&® 81.44+214 81.48+246 79.88+2.12 80.38+222 89.56+182 89.93+1.83
1 7 0808 -0908 81.12+193 81.32+223 79.44+193 79.97+201 89.23+152 89.66+1.56
1 7 -080# -0.80# 81.22+166 81.384225 79.53+140 80.09+159 89.32+130 89.77+1.30
1 7 -0808& -0808 80.96+129 81.224205 79.24+108 79.79+1.18 88.96+1.01 89.44+1.05
1 7 -080@ -070@® 81.73+163 82.03+208 80.00+1.63 80.59+166 89.71+126 90.08+125
1 7 -0808 -0708 81.93+159 82.45+2.15 80.08+161 80.73+1.64 89.96+134 90.30+133
1 7 -080# -0.60# 81.73+f142 81.72+172 80.22+134 80.71+142 89.55+125 89.95+121
1 7 -0808 -0608 81.52+145 81.87+222 79.83+1.16 80.39+131 89.60+1.05 90.00+1.04
1 7 -080® -050® 81.40+146 81.51+170 79.76+151 80.29+152 89.54+156 89.88+1.47
1 7 -0808 -0508 80.99+182 81.09+184 79.304+2.07 79.8342.03 89.14+194 89.44+189
1 7 -080® -040® 81.09+165 81.21+175 79.40+180 79.94+179 89.26+18 89.49+1.78

Continued on next page

39



Under review as a conference paper at ICLR 2026

t n a b Accuracy Precision Recall F1score AUROC AUPRC

1 7 -0808 -0408 80.98+150 81.04+159 79.32+168 79.84+165 89.21+165 89.48+1.66
1 7 -080# -030€ 82.03+t141 82.48+202 80.30+1.15 80.90+131 90.40+125 90.68+1.21
1 7 -0808 -0308 82.08+129 82.60+195 80.30+089 80.93+1.12 90.39+1.17 90.69+1.14
1 7 -080#& -020€ 81.93+135 82.02+185 80.40+099 80.91+121 90.31+125 90.60+1.27
1 7 -0808 -0208 81.33+184 81.22+232 79.94+159 80.36+1.77 89.96+168 90.25+1.72
1 7 -080& -0.10® 82.59+187 82.58+4235 81.24+157 81.68+179 91.01+185 91.20+1.87
1 7 -0808 -0108 81.73+176 81.47+219 80.55+154 80.88+172 90.39+172 90.60+1.76
1 7 -080# 0.108® 82.89+177 83.56+202 81.01+190 81.72+191 91.67+174 91.83+1.74
1 7 -0808 0108 82.25+179 82.78+206 80.35+1.89 81.04+191 91.08+1.69 91.28+1.69
1 7 -080# 020€ 82.03+250 82.65+268 80.14+273 80.78+2.76 90.83+246 91.04+2.40
1 7 -0808 0208 82.70+152 83.164203 80.95+145 81.59+152 91.58+160 91.73+1.62
1 7 -080# 030€ 82.07+168 82514206 80.25+176 80.89+180 90.43+229 90.65+2.22
1 7 -0808 0308 81.27+165 81.4342.11 79.82+166 80.23+170 90.11+222 90.33+2.14
1 7 -080® 040@® 81.23+1s54 81.37+2.17 79.65+£141 80.15+151 90.19+180 90.43+1.75
1 7 -0808 0408 82294125 82.70+185 80.50+106 81.16+1.18 90.92+167 91.11+1.64
1 7 -080® 050@ 80.92+192 81.08+268 79.51+£175 79.89+185 89.95+206 90.15+2.03
1 7 -0808 0508 8094+193 80.81+253 79.72+185 80.01+191 89.8742.00 90.07+1.99
1 7 -080® 060# 80.92+166 80.55+1.65 79.75+198 80.02+185 89.67+166 89.82+1.68
1 7 -0808 0.608 80.99+190 80.75+2.03 79.70+2.09 80.04+2.04 89.65+159 89.87+157
1 8 -1.00® -1.008® 84.12+105 84.18+159 82.90+095 83.32+1.01 92.684093 92.78+0.89
1 8 -1.008 -1.008 8491409 85.15+153 83.57+062 84.09+085 93.08+098 93.16+0.87
1 8 -1.00® -090® 84.32+162 84.10+190 83.36+£139 83.64+157 92.63+128 92.79+121
1 8 -1.008 -0908 84.89+1.03 85.03+145 83.63+085 84.11+098 92.88+1.08 93.06+1.05
1 8 -1.00® -0.80#® 85274085 85.49+100 84.10+1.06 84.51+090 93.304+076 93.44+0.74
1 8 -1.008 -0808 85.10+087 85.61+122 83.72+126 84.24+1.03 93.38+090 93.52+0.386
1 8 -1.00® -0.70® 84914091 85.51+165 83.42+099 84.00+091 93.67+1.08 93.80+1.07
1 8 -1.008 -0708 84.56+064 85.52+180 82.89+074 83.55+052 93.70+1.03 93.81+1.03
1 8 -1.008® -0.60® 84.40+069 85.27+155 82.70+097 83.37+077 93.56+125 93.70+1.19
1 8 -1.008 -0608 84.98+066 85.65+136 83.45+101 84.05+077 93.82+108 93.95+1.03
1 8 -1.00® -050® 8521+092 8591+128 83.61+1.16 84.28+1.02 93.70+1.11 93.83+1.07
1 8 -1.008 -0508 85.34+093 85.35+076 84.18+128 84.60+1.09 93.49+094 93.63+0.90
1 8 -1.008® -040® 84.98+090 85.77+128 83.22+1.02 83.97+097 93.80+085 93.92+0s84
1 8 -1.008 -0408 84.47+151 85.36+172 82.54+1.64 83.37+165 93.27+155 93.45+146
1 8 -1.00® -030® 84.25+135 85.00+136 82.38+1.61 83.16+1.53 93.02+134 93.17+1.26
1 8 -1.008 -0308 84.56+086 85.30+080 82.75+1.15 83.51+1.02 93.59+072 93.72+0.69
1 8 -1.008® -0208® 83351214 83.95+293 81.69+157 82.34+196 92.57+206 92.73+1.95
1 8 -1.008 -0208 83.87+129 8491+172 81.79+122 82.67+133 93.04+141 93.18+131
1 8 -1.008 -0.108 83471214 83.80+253 81.93+224 82494221 92224191 92.39+1.80
1 8 -1.008 -0108& 83.58+204 83.924243 81.994202 82.60+209 92.37+195 92.53+1.84
1 8 -1.00® 0.10® 83.59+146 83.74+151 82.09+167 82.65+160 92.21+125 92.36+1.22
1 8§ -1.008 0.108 82914216 83.13+221 81.23+238 81.85+236 91.17+232 91.37+2.17
1 8 -1.00® 020 8131+264 81.25+271 79.83+2890 80.27+287 90.09+207 90.27+2.07
1 8 -1.008 0208 80.77+203 80.77+239 79.25+213 79.69+2.16 89.65+2.12 89.73+2.13
1 8 -1.00® 030€® 81.29+245 8l.41+265 79.66+256 80.17+260 89.46+236 89.71+2.24
1 8 -1.008 0308 81.30+250 81.364275 79.724257 80.21+263 89.43+252 89.69+2.40
1 8 -1.00® 040€® 8031+206 80.88+268 78.15+195 78.87+2.09 89.10+226 89.35+2.17
1 8 -1.008 0408 80.17+220 80.5394273 78.06+2.13 78.76+228 88.60+2.62 88.90+2.50
1 8 -1.00® 050@ 79.04+224 79.8743.14 76.60+207 77.344224 87.444278 87.79+2.67
1 8 -1.008 0508 79.40+211 79.94+28 T77.16+180 77.86+208 88.00+229 88.35+221
1 8 -1.00® 0.60® 7832+240 78.884295 76.20+2.09 76.76+229 86.79+220 87.16+2.11
1 8 -1.008 0.608 78.53+237 79.034294 76.44+210 77.014220 87.11+2.10 87.48+206
1 8 -1.00® 0.70® 78.16+200 78.58+240 75.89+195 76.51+207 86.46+207 86.89-+2.01
1 8 -1.008 0708 77.83+194 78.634246 75.29+180 75.96+201 85.92+225 86.34+2.19
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1 8 -1.00® 080@& 7723+136 77.84+199 74.72+132 75.35+138 85.34+185 85.69+1.77
1 8 -1.008 0808 77.23+163 78.034245 T4.63+134 75.29+149 85.38+203 85.82+2.03
1 8 -1.00&8 090& 76.79+174 T77.49+237 T4.23+177 74.82+183 84.53+201 85.01+2.00
1 8 -1.008 0908 76.52+127 76.86+196 74.11+103 74.68+1.13 84.70+139 85.11+1.30
1 8§ -1.00&8 1008 77.04+146 7T77.68+225 7T4.54+097 75.16+1.16 84.76+1.19 85.27+1.21
1 8 -1008 1008 7690+148 77734241 74324083 T74.94+105 84.52+1.16 85.02+1.15
1 8 -090® -1.00® 83.35+173 83.284197 82.35+180 82.59+179 92.15+089 92.26-+0.86
1 8 -0908& -1008 83.07+189 82954203 82.08+208 82.30+201 91.80+1.12 91.91+1.09
1 8 -090® -090® 83.58+184 83.3642.19 82.69+1.73 82.88+184 92.20+1.08 92.31+1.04
1 8 0908 -0908 84.43+140 84.28+165 83.42+139 83.72+143 92.62+087 92.67+085
1 8 090 -0.80® 83.86+207 83.70+240 82.92+189 83.164204 92.31+121 92.44+121
1 8 -0908 -0808 83.70+181 83.76+248 82.63+149 82.94+169 92.52+124 92.64+127
1 8 -090® -0.70® 84.36+098 84.79+191 82.93+080 83.47+086 92.78+1.16 92.93+1.16
1 8 -0908 -0708 83.97+105 84.46+2.13 82.56+081 83.06+088 92.77+107 92.92+1.07
1 8 090 -0.60® 84.74+129 84.95+172 83.49+101 83.94+121 93.284090 93.38+0.89
1 8 -0908 -0608 84.58+137 85.194220 83.14+087 83.70+1.18 93.33+1.18 93.43+1.16
1 8 090 -050® 84.64+1220 84.72+140 83.44+135 83.86+129 93.01+1.12 93.17+1.07
1 8 -0908 -0508 84.72+108 85.00+139 83.29+1.05 83.86+1.10 93.01+1.17 93.17+1.12
1 8 090 -040® 84.75+132 84.76+142 83.51+145 83.97+141 93.01+1.02 93.14+1.02
1 8 0908 -0408 84.57+080 84.90+1.15 83.05+096 83.66+094 93.08+092 93.20+0.93
1 8 -090® -030® 84.92+128 85.22+141 83.47+146 84.05+£140 93.35+101 93.45+1.02
1 8 0908 -0308 84.25+18 84.324200 82.91+18 83.41+190 92.82+133 92.92+137
1 8 -090® -020® 84.44+135 84.82+120 82.87+172 83.49+156 92.75+131 92.89+1.6
1 8 -0908 -0208 8397+1.12 84.59+112 82.14+129 82.89+126 92.55+122 92.71+1.14
1 8 -090® -0.108® 83.90+094 84.18+092 82.35+126 82.94+1.10 92.534092 92.69+0.88
1 8 0908 -0.108 83.61+093 84.06+127 81.91+105 82.57+1.00 92.44+104 92.60+1.03
1 8 -090® 0.108 82.14+278 82.44+333 80.65+235 81.15+265 91.024235 91.2642.25
1 8 -0908 0108 82.38+198 82.59+242 80.78+174 81.35+194 91.09+204 91.31+1.97
1 8 -090® 0208 82.18+4234 82.46+289 80.66+2.11 81.16+229 90.444232 90.70+2.24
1 8 -0908 0208 81.24+299 81.32+343 79.81+277 80.24+298 89.57+276 89.77+2.69
1 8 0908 0308 80.75+219 80.96+2.76 79.06+2.00 79.59+220 88.974263 89.23+254
1 8 0908 0308 80.66+240 80.85+2.84 78.97+238 79.49+246 89.08+265 89.35+2.56
1 8 0908 0408 79.64+251 79.80+308 77.79+2290 78.35+248 88.31+232 88.624225
1 8 0908 0408 79.76+279 79.68+328 78.15+263 78.62+280 88.16+237 88.48+232
1 8 0908 0508 7855+261 78.46+301 T76.71+253 77224267 86.464246 86.85+2.44
1 8 -0908& 0508 78.464248 78.514287 76.574+247 77.08+257 86.58+223 86.96+221
1 8 -090& 0608 77.90+195 77.77+217 76.02+207 76.51+2.11 85.68+4256 86.09+2.56
1 8 -0908& 0608 7836+187 78.1842.15 76.55+186 77.05+193 86.32+181 86.69+1.86
1 8 -090® 0.70@ 78.03+181 78.65+239 75.67+181 76.29+189 85.96+2.14 86.36+2.11
1 8 -0908 0708 77.76+179 78.524+230 75.11+176 75.83+1.87 85.64+209 86.08+2.07
1 8 -090® 080@& 77.64+223 77.93+283 75.36+206 75.98+220 85.53+189 85.99+1.91
1 8 -0908 0808 77.41+195 78.004+228 74.824210 75.49+215 85.18+241 85.53+247
1 8 -090& 090& 76.72+4213 T7.53+201 T4.22+195 T4.77+2.11 84264217 84.69+2.23
1 8 -0908 0908 76.70+198 77.20+264 74.36+182 74.89+195 84.27+206 84.68+2.15
1 8 -090® 1.00® 77.0l+166 77.794243 7434+123 75.02+141 84.23+165 84.73+1.64
1 8 -0908& 1008 77.09+136 77.874+213 T4.47+104 75.12+1.18 84.27+144 84.70+1.52
1 8 -080® -1.00® 83.51+191 83.37+161 82.43+247 82.70+224 91.74+131 91.81+1.33
1 8 -0808 -1.008 83.33+198 83.22+160 82.31+264 82.514238 91.59+146 91.68+146
1 8 -080® -090@® 8344+135 83.844208 82.11+144 82.52+137 92.12+096 92.23+1.04
1 8 -0808 -0908 83.72+148 83.55+162 82.97+174 83.05+158 92.21+094 92.26+0.98
1 8 -080® -0.80#® 83.86+136 84.20+2.17 82.59+133 83.00+£130 92.50+1.00 92.58+1.04
1 8 -0808 -0808 83.87+140 83.95+192 82.76+141 83.08+138 92.48+1.02 92.57+1.05
1 8 -080® -0.70® 83.89+105 84.03+200 82.76+086 83.10+091 92.50+1.13 92.62+1.15
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1 8 -0808 -0708 83.72+105 83.944200 82.58+099 82.91+093 92.52+1.11 92.63+1.14
1 8 -080#® -0.60® 8430+136 84.49+221 83.14+097 83.53+121 92.69+125 92.78+1.28
1 8 -0808 -0608 8429+1.12 84.50+195 83.16+081 83.52+095 92.73+1.18 92.81+1.21
1 8 -080#® -050@ 8433+152 84.47+204 83.07+126 83.53+145 92.61+120 92.72+1.16
1 8 0808 -0508 84.28+148 84.19+177 83.14+137 83.52+148 92.58+1.10 92.71+1.06
1 8 -080& -040# 84.01+126 83.98+167 82.81+101 83.22+1.19 92.534+098 92.69-+0.96
1 8 -0808& -0408 83.86+177 83.754+212 82.70+170 83.08+179 92.17+1.43 92.34+1.40
1 8 -080#& -030€# 83.84+198 83.97+253 82.59+203 83.01+2.02 92.42+158 92.54+1.61
1 8 -0808 -0308 83.98+179 84.35+164 82.36+216 82984204 92.34+149 92.50+145
1 8 -080® -020@® 83.82+136 83.99+136 82.28+154 82.87+149 92.19+1.17 92.35+1.16
1 8 -0808 -0208 83.40+155 83.71+140 81.74+18 82.36+1.78 91.81+125 91.99+1.18
1 8 -080® -0.10® 83.61+1.09 83.97+126 81.94+1.17 82.59+1.17 92.05+1.05 92.19+1.09
1 8 -0808 -0.108 83.49+1.10 83.75+1.18 81.86+1.18 82.49+1.18 92.00+1.16 92.16+1.18
1 8 -080#® 0.10® 80.88+292 81.02+331 79.41+237 79.85+274 89.834236 90.14+227
1 8 -0808 0.108 81.72+309 81.92+352 80.36+259 80.77+293 90.46+233 90.72+227
1 8 -080® 020® 81.36+1.99 81.66+251 79.67+184 80.22+197 89.724+224 89.99+221
1 8 -0808& 0208 81.06+2.13 81.59+258 79.18+2.12 79.79+2.19 89.30+243 89.60+233
1 8 -080® 030%® 79.82+262 80.09+348 78.20+2.10 78.664242 88.38+257 88.69+251
1 8 -0808 0308 80.84+2.17 81.234276 79.13+184 79.66+206 89.12+2.10 89.41+2.09
1 8 -080® 040® 79.544209 79914297 T7.54+165 78.17+191 87.714+230 88.05+2.27
1 8 -0.808 0408 79504220 79.8443.00 77.50+194 78.1242.17 87.79+239 88.12+234
1 8 -080® 050® 78564226 78.97+348 76.50+165 77.11+£197 86.584273 86.88+2.66
1 8 -0808 0508 78.184226 78.50+341 76.17+167 76.74+197 86.59+273 86.97+2.71
1 8 -080® 0.60® 77.86+191 77.81+233 75.84+180 76.39+199 85.384265 85.79+2.67
1 8 -0808 0608 78.25+187 78.47+291 76.18+147 76.77+1.69 86.13+227 86.51+2.29
1 9 -1.00® -1.00® 86.16+134 85.62+138 86.00+£137 85.77+137 94.32+1.02 94.47+0.99
1 9 -1.008 -1.008 86.07+1.14 85.54+121 86.20+151 85.73+124 94.53+128 94.66+1.22
1 9 -1.00® -090® 85.48+200 85.21+197 85.39+157 85.08+192 94.20+128 94.35+123
1 9 -1.008 -0908& 85704210 85.354+2.03 85.65+1.80 85.3242.06 94.25+128 94.40+1.24
1 9 -1.00® -080® 85.81+1.73 85.47+172 85.78+138 85.44+167 94.35+1.09 94.48+1.05
1 9 -1.008 -0808 8537+262 85.34+222 8534+187 84.97+249 94.12+1.18 94.27+1.15
1 9 -1.00€8 -0.70€ 8291+409 83.81+321 83.49+251 82.57+381 93.75+1.11 93.9241.09
1 9 -1.008 -0708 84.01+368 84.45+276 84.014+230 83.57+3.44 93.89+101 94.04+0.99
1 9 -1.00€& -0.60# 8531+143 84.94+155 85.29+1.13 84.93+135 94.10+093 94.26+0.87
1 9 -1.008 -0608 86.26+076 85.84+076 86.17+049 85.88+0.67 94.494044 94.62+0.42
1 9 -1.00® -050@® 86.54+155 86.33+188 86.10+£1.11 86.08+146 94.43+070 94.57+0.67
1 9 -1.008 -0508 86.39+106 86.04+120 86.14+066 85.97+096 94.53+050 94.66-+0.49
1 9 -1.00® -040@® 85.74+100 85.57+1.09 85.18+126 85.20+1.07 94.29+059 94.43+057
1 9 -1.008 -0408 85.77+117 85.60+122 85.19+135 85.23+124 94.19+058 94.34+0.54
1 9 -1.00& -030€ 85.56+136 85.57+126 84.83+199 84.93+162 93.99+t082 94.14+0.78
1 9 -1.008 -0308 8534+166 85.45+164 84.50+206 84.67+1.87 93.87+082 94.03+0.76
1 9 -1.00& -020€ 85.31+085 85.05+1.04 84.51+082 84.70+084 93.58+071 93.75+0.67
1 9 -1.008 -0208 85.52+139 85.49+178 84.50+1.14 84.85+134 93.65+088 93.81+082
1 9 -1.008 -0.108 84.65+096 84.43+124 83.79+092 84.00+094 93.34+074 93.51+0.72
1 9 -1.008 -0.108 85.03+142 85.30+207 83.69+1.03 84.23+132 93.62+093 93.77+0s88
1 9 -1.00€8 0.108® 83.35+099 84.57+170 81.21+099 82.07+1.03 92.63+125 92.79+1.15
1 9 -1008 0108 83.65+132 84.36+172 81.81+137 82.54+138 92.57+134 92.74+125
1 9 -1.00#8 020€ 83.90+214 84.404206 82.13+245 82.834239 92.65+1.78 92.81+1.66
1 9 -1008 0208 83.41+193 83.88+194 81.62+215 82.32+214 92.21+167 92.38+1.52
1 9 -1.00€8 030€ 83.16+207 83.70+192 81.31+247 82.014+238 92.20+186 92.34+1.73
1 9 -1.008 0308 83.10+187 83.90+195 81.064207 81.87+208 92.02+1.84 92.18+1.72
1 9 -1.00#®8 040€® 82.84+176 83.51+133 80.89+231 81.60+2.16 91.59+189 91.73+1.73
1 9 -1.008 0408 81.84+134 82.72+152 79.61+145 80.44+149 90.87+18 91.04+1.66
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1 9 -1.00& 050€ 81.91+208 81.99+227 80.27+2.18 80.84+220 91.05+202 91.20+1.78
1 9 -1.008 0508 81.50+166 81.65+187 79.77+179 80.35+1.77 90.67+1.72 90.79+147
1 9 -1.00#& 0.60€ 81.38+1.09 81.89+147 79.36+106 80.08+1.11 90.67+142 90.73+133
1 9 -1008 0608 81.44+093 82.07+100 79.32+1.10 80.08+1.07 90.78+129 90.84+1.22
1 9 -1.008 0.708 81.09+090 82.04+097 78.79+128 79.57+1.15 90.33+126 90.35+1.10
1 9 -1008& 0708 81.23+071 81.92+061 79.07+105 79.82+095 90.42+1.15 90.46+1.03
1 9 -1.00#& 080 80.52+098 81.47+132 78.10+£1.03 78.92+106 89.87+124 89.80+1.24
1 9 -1008 0808 80.17+114 81.05+137 77.76+133 78.54+132 89.68+1.13 89.65+1.09
1 9 -1.008 090€ 79.92+064 80.92+083 77.36+064 78.19+068 89.39+1.07 89.3041.05
1 9 -1.008 0908 79.99+084 80.70+1.14 77.66+097 78.414095 89.50+1.11 89.37+1.07
1 9 -1.00® 1.00@8 79.27+064 79.94+108 76.90+067 77.62+066 88.76+1.02 88.54+1.14
1 9 -1.008 1.008 7891+149 80.03+1.67 76.16+162 76.97+1.69 88.21+236 88.14+221
1 9 -090® -1.00® 85.58+216 85.25+189 85.67+194 85224214 93.97+134 94.13+132
1 9 -0908 -1.008 8576+220 85.404+206 85.78+2.04 85.394220 94.03+1.44 94.18+1.41
1 9 -090® -090® 85.81+111 85.23+1.13 85.83+1.19 85.46+1.15 94.12+098 94.29-+0.94
1 9 -0908 -0908 85.65+1.63 85.48+180 85.39+1.02 85.20+1.49 94.144090 94.29+0.87
1 9 -090® -080® 85.39+284 85.26+248 85.48+193 85.04+268 94.04+105 94.18+1.05
1 9 -0908 -0808 8526+324 85.15+281 85.334+233 84.904+3.00 94.01+1.18 94.15+1.18
1 9 -090® -070® 85.23+283 85.34+247 85.06+208 84.78+267 94.23+1.11 94.38+1.07
1 9 -0908 -0708 85234288 85.304244 85.094207 84.79+271 94.23+1.16 94.38+1.14
1 9 -090® -060® 84.00+3.17 84.01+261 84.68+239 83.76+304 93.89+128 94.04+1.22
1 9 -0908 -0608 85744299 85.564243 85914220 85.424286 94.44+1.14 94.58+1.10
1 9 -090® -050® 86.01+0s83 85.89+1.17 85.53+097 85.50+082 94.34+045 94.49+0.42
1 9 -0908 -0508 84.85+247 85.08+236 84.56+195 84.34+234 94.14+089 94.29+0585
1 9 -090® -040® 85.45+178 85.68+2.13 84.67+206 84.80+187 93.88+121 94.04+1.16
1 9 -0908 -0408 85.46+162 85.56+193 84.80+190 84.86+170 93.92+126 94.08+1.22
1 9 -090® -030® 85.59+158 85.46+1.68 85.02+171 85.04+163 93.95+086 94.11+o081
1 9 -0908 -0308 85.14+196 84.89+206 84.514+226 84.564+2.08 93.45+152 93.62+1.45
1 9 -090® -020® 85.00+1.14 85.29+128 84.03+t191 84.25+149 93.49+063 93.66-+0.59
1 9 -0908 -0208 84.40+240 84.20+247 83.33+2.64 83.66+257 92.83+183 93.07+1.77
1 9 -090® -0.10® 84.89+093 85.20+154 83.66+1.03 84.09+095 93.41+079 93.58+0.75
1 9 -0908 -0.108 84.79+106 84.88+1.53 83.67+082 84.05+097 93.444072 93.60+0.69
1 9 -090® 0.10@ 84.21+18 84.73+237 82.51+167 83.22+185 92.75+164 92.94+155
1 9 -0908 0.108 84.04+191 84.66+238 82.26+184 83.00+196 92.82+1.64 93.01+1.55
1 9 -090® 020@ 83.82+199 84.27+2.17 82.10+2.16 82.78+2.16 92.62+1.74 92.80+1.64
1 9 -0908 0208 83.93+212 84.38+225 82224230 82.90+230 92.63+180 92.82+1.69
1 9 -090€& 030€ 83.06+192 83.52+195 81.26+220 81.94+216 92.13+186 92.29+1.73
1 9 -0908 0308 8391+134 84.43+138 82.20+162 82.87+152 92.59+148 92.71+135
1 9 -090# 040€ 82.99+107 83.76+1.19 81.01+136 81.77+124 91.72+128 91.82+125
1 9 -0908& 0408 83.45+1.14 84.40+142 81.39+1.19 82.23+121 92.28+139 92.41+1.32
1 9 -090& 050€ 82.73+134 83.39+140 80.72+149 81.49+148 91.71+139 91.77+137
1 9 -0908 0508 82.71+131 83.34+155 80.75+139 81.51+140 91.80+140 91.85+134
1 9 -090# 0608 82.03+1.18 82.84+120 79.86+137 80.66+134 91.20+1.10 91.20+1.06
1 9 -0908 0608 81.97+126 82.81+129 79.79+148 80.59+145 91.15+122 91.12+1.18
1 9 -090# 0.70€ 81.58+1.13 82.53+121 79.32+144 80.12+135 90.72+124 90.7041.19
1 9 -0908 0708 80.92+064 81.94+093 78.50+063 79.35+066 90.35+1.14 90.30+1.10
1 9 -090# 080€® 79.69+1.67 80.50+238 77.32+140 78.08+157 88.77+194 88.78+1.85
1 9 -0908 0808 80.03+127 80.91+187 77.60+108 78.40+121 89.27+166 89.27+1.60
1 9 -090# 090€ 79.80+0.84 81.00+1.11 77.13+084 77.99+080 89.43+1.03 89.35+1.03
1 9 -0908 0908 79.82+094 81.20+120 77.064097 77.94+1.02 89.43+1.15 89.24+1.17
1 9 -090® 1.008@ 79.36+074 80.15+122 76.89+067 77.66+071 88.77+128 88.57+1.26
1 9 -0908 1.008 79.23+091 80.23+095 76.59+1.04 77.40+1.07 88.79+1.17 88.64+1.18
1 9 -080® -1.00® 8537+164 85.90+060 84.34+290 84.544230 93.82+130 94.00+1.21
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1 9 -0808 -1.008 84.46+174 85.26+123 83.67+236 83.67+205 93.72+105 93.92+1.00
1 9 -080#& -090€& 85.65+136 86.08+056 84.55+241 84.86+186 93.96+079 94.13+0.76
1 9 -0808 -0908 8595+170 86.43+092 84.76+268 85.14+219 94.10+089 94.27+086
1 9 -080#& -0.80#& 8595+120 86.05+099 85.26+192 85.34+151 94.28+077 94.44+0.72
1 9 -0808 -0808 86.00+120 86.01+1.14 85.32+174 85.40+142 94.20+076 94.36+0.72
1 9 -080& -0.70€® 85.19+209 85.57+204 84.32+174 84.50+202 94.10+086 94.26+0.83
1 9 0808 -0708 85.41+239 85.68+221 84.70+205 84.79+233 93.98+091 94.14+087
1 9 -080# -0.60® 86.23+1.17 86.35+135 85.14+124 85.55+122 94.09+081 94.27+0.75
1 9 -0808 -0608 86.30+1.05 86.16+1.09 85.47+1.12 85.71+1.09 94.26+054 94.42+049
1 9 -080# -050# 85.67+274 85.404242 85.61+203 85.30+260 94.18+124 94.34+1.20
1 9 -0808 -0508 85.67+139 85.34+15 85.20+1.02 85.18+130 94.07+066 94.24+0.63
1 9 -080#& -040€® 86.08+1.04 85.69+1.09 85.51+1.17 85.57+1.09 93.97+094 94.1440.89
1 9 -0808 -0408 86.18+077 85.81+086 85.74+091 85.70+079 94.144070 94.30+0.65
1 9 -080® -030® 8549+18 85.45+218 84.68+4202 84.87+194 93.73+145 93.87+137
1 9 -0808 -0308 85.02+076 84.904+099 84.06+084 84.344076 93.43+063 93.63+0.60
1 9 -080® -020%® 84.84+203 85.20+256 83.38+1.87 83.984202 93.22+164 93.44+157
1 9 -0808 -0208 84.28+167 84.97+220 82.55+154 83.26+1.65 93.04+147 93.26+1.41
1 9 -080® -0.10® 84.07+150 84.56+198 82.37+138 83.07+151 92.70+1.15 92.96+1.05
1 9 -0808 -0.108 83.83+237 84.58+3.02 81.994232 82.754244 92.334+196 92.60+1.88
1 9 -080® 0.10@ 84.21+134 85.39+196 82.14+124 83.03+133 92.98+131 93.20+1.20
1 9 -0808 0.108 84.29+148 85.49+195 82.23+152 83.11+157 92.95+133 93.17+1.23
1 9 -080® 020@ 84.32+136 84.94+139 82.54+157 83.28+151 92.76+143 92.97+132
1 9 -0808 0208 83.83+193 84.13+252 82.35+171 82.91+18 92.37+175 92.57+1.66
1 9 -080® 030@ 8348+129 84.23+150 81.54+139 82324139 92.28+143 92.47+133
1 9 -0808 0308 83.44+1.09 84.45+1.17 81.33+128 82194123 92.35+132 92.53+1.23
1 9 -080® 040@ 82.66+124 83.38+1.47 80.65+£139 81.41+136 91.36+159 91.50+1.43
1 9 -0808 0408 83.05+1.19 83.81+1.18 81.04+142 81.82+136 91.86+136 91.94+1.24
1 9 -080® 050@ 82.63+122 83.53+138 80.47+132 81.31+134 91.70+126 91.70+133
1 9 -0808 0508 8235+1.00 83.13+1.13 80.25+130 81.04+125 91.58+131 91.57+1.33
1 9 -080® 060@& 81.38+159 82.08+1s55 79.21+189 79.97+184 90.25+2.10 90.37+1.94
1 9 -0808 0608 81.75+095 82.79+128 79.46+120 80.29+1.12 90.97+132 91.01+1.29
1 10 -1.00& -1.00@& 82.39+178 82.06+t1.60 81.98+1.15 81.83+161 91.79+089 91.99+0.84
1 10 -1.008 -1.008 82.10+192 81.76+163 81.89+1.15 81.60+173 91.81+077 92.01+0.74
1 10 -1.008® -090#® 83.10+242 83.354248 82.35+146 82.414215 92.36+1.11 92.55+1.08
1 10 -1.008 -0908 82.92+143 83.61+193 81.32+196 81.82+176 91.78+1.19 92.04+1.07
1 10 -1.008® -0.808® 84.00+141 84.69+061 82.39+237 82931202 92.73+1.12 92.93+1.00
1 10 -1.008 -0.808 83.13+140 83.55+135 81.69+2.11 82.12+185 91.994097 92.24+0.85
1 10 -1.00€ -070€ 83.02+122 83.67+174 81.51+196 81.96+156 91.92+1.09 92.20+0.97
1 10 -1.008 -0708 83.93+130 84.13+1.04 82.68+201 83.05+1.67 92.64+128 92.86+1.15
1 10 -1.008 -060#® 83.09+147 83.24+173 81.98+192 82244166 92.03+1.14 92.31+0.99
1 10 -1.008 -0608 83.31+134 83.63+134 82.04+218 82.38+1.72 91.86+1.11 92.16+095
1 10 -1.00® -050€® 83.63+1338 83.31+176 83.30+135 83.12+132 92.94+1.13 93.05+1.07
1 10 -1.008 -0508 83.84+154 83.50+190 83.36+148 83.29+150 92.92+1.14 93.04+1.07
1 10 -1.00€ -040€® 83.44+122 83.16+160 82.60+128 82.76+123 92.10+094 92.32+0536
1 10 -1.008 -0408 83.68+147 83.26+1.69 82.90+140 83.04+148 92.41+130 92.60+1.17
1 10 -1.00€ -030€® 84.14+154 84.13+165 83.02+194 83.35+170 92.59+125 92.85+1.10
1 10 -1.008 -0308 84.14+151 84.26+176 82.97+183 83.33+163 92.54+117 92.80+1.02
1 10 -1.00® -020€® 84.49+139 84.53+151 83.19+153 83.67+148 92.77+1.18 92.96+0.97
1 10 -1.008 -0208 84.99+1.11 84.68+1.17 84.10+1.17 84.35+1.17 93.07+101 93.22+0588
1 10 -1.00® -0.10® 85.12+128 84.99+130 84.03+145 84.40+138 93.20+1.06 93.40+0.90
1 10 -1.008 -0.108 85.07+1.18 84.90+122 84.03+131 84.38+126 93.20+098 93.41+0.84
1 10 -1.00® 0.10€® 85.20+127 85.52+167 83.79+130 84.36+131 93.83+098 93.95+0.84
1 10 -1.008 0.108 85.39+095 85.67+126 84.03+105 84.58+101 93.85+093 93.96+081
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1 10 -1.00€& 020€ 84.61+t208 84.76+242 83.28+206 83.79+2.13 93.05+155 93.15+151
1 10 -1.008 0208 83.96+132 84.31+1.63 82.40+141 83.00+138 92.88+126 92.97+1.16
1 10 -1.00€ 030€ 8295+15 84.10+190 80.95+2.19 81.65+2.02 92.40+145 92.51+1.41
1 10 -1.008 0308 82.36+1.83 83.87+210 80.25+270 80.91+254 92.27+135 92.38+1.32
1 10 -1.00® 040€ 8233+192 84.13+236 79.84+227 80.75+223 91.95+18 92.11+1.74
1 10 -1008 0408 82.08+193 84.034222 79.57+257 80.41+250 91.87+180 92.03+1.74
1 10 -1.00® 050 81.20+256 83.464224 78474340 79.264351 91.14+4218 91.32+2.13
1 10 -1.008 0508 82.10+255 84.46+1.10 79.38+361 80.21+366 92.01+175 92.19+1.77
1 10 -1.00® 0.60# 82.56+279 84.154328 80.11+292 81.0543.03 91.53+3.05 91.68+2.95
1 10 -1.008 0608 82.43+281 83.64+329 80.12+290 81.01+301 90.84+348 91.09+3.34
1 10 -1.00€¢ 0.70€® 8285+177 84.55+160 80.32+211 81.30+2.12 91.51+2.11 91.75+201
1 10 -1.008 0708 82.01+288 83.43+338 79.59+298 80.49+3.10 90.63+337 90.85+3.24
1 10 -1.00€¢ 080€® 8250+148 84.59+1.19 79.75+179 80.80+181 90.85+£2.07 91.15+1.98
1 10 -1.008 0808 82.63+1.73 84.52+140 79.98+210 80.99+211 90.85+243 91.08+2.44
1 10 -1.00€¢ 090€® 81.82+202 83.594226 79.11+2.16 80.11+226 90.07+3.10 90.44+2.88
1 10 -1.008 0908 81.59+180 83.13+247 79.02+171 79.96+184 89.65+3.19 90.07+2.93
1 10 -100€¢ 1.00€® 81.13+169 82.88+179 78.36+18 79.32+195 89.14+290 89.58+2.66
1 10 -1.008 1008 81.10+1.70 82.79+198 78.36+183 79.32+190 89.02+3.03 89.47+2.76
1 10 -090€ -1.00€ 82591268 82.564282 81.84+190 81.91+244 91.85+139 92.04+133
1 10 -0908 -1.008 83.28+287 83.28+241 82.93+180 82.75+262 92.44+097 92.59+1.00
1 10 -090€ -090€ 8391+202 83.974262 83.04+141 83.23+18 92.80+1.18 92.94+1.19
1 10 -0908 -0908 83.90+148 84.63+154 82.33+223 82.86+193 92.59+129 92.79+1.19
1 10 -090€ -0.80€ 83.69+120 84.524109 82.10+2.17 82.61+1.76 92.59+084 92.78+0.76
1 10 -0908 -0808 83.72+101 83.93+061 82.53+191 82.84+151 92.38+1.01 92.60+091
1 10 -090€ -0.70€ 83.52+121 83.794044 82.424231 82.64+185 92.53+1.04 92.74+093
1 10 -0908 -0708 83.02+215 83.25+219 82.83+128 82.49+188 92.67+095 92.83+0.95
1 10 -090€ -0.60€ 84.05+160 84.144222 83.16+1.74 83.34+1.63 92.85+120 93.01+1.16
1 10 -0908 -0608 83.55+150 83.72+220 82.50+1.81 82.75+1.65 92.31+135 92.57+121
1 10 -090#® -050#® 83.41+123 83.06+142 82.63+144 82.74+131 92324092 92.53+0.92
1 10 -0908 -0508 84.28+178 84.12+211 83.44+207 83.60+190 92.76+127 92.91+1.20
1 10 -090€ -040€ 83.73+130 84.51+175 82.02+161 82.66+145 92.44+1.13 92.73+1.01
1 10 -0908 -0408 83.58+175 83.79+216 82.18+177 82.67+179 92.26+136 92.52+1.26
1 10 0908 -030® 83.02+173 83.49+189 81.56+252 81.98+2.15 92.01+134 92.28+1.26
1 10 0908 -0308 83.30+209 83.70+2.11 81.87+282 82.29+248 92.21+143 92.46+134
1 10 -090€ -020€ 84.79+135 84.91+127 83.52+179 83.98+156 92.90+131 93.16+1.15
1 10 -0908 -0208 84931134 85.25+130 83.45+1.62 84.05+150 92.89+125 93.15+1.08
1 10 -090€ -0.10® 84.75+t172 84.97+126 83.42+234 83.88+208 93.04+128 93.26+1.20
1 10 -0908 -0.108 85.28+092 85.48+080 83.97+131 84.48+1.10 93.47+087 93.67+0.76
1 10 -090€ 0.10€ 85.17+127 85.83+130 83.45+148 84.20+142 93.55+107 93.71+0.95
1 10 -0908& 0.108 8526+133 86.12+1.10 83.45+176 84.23+159 93.62+1.02 93.79+0.90
1 10 -090€ 020 84.40+192 85.224203 82.53+2.18 83.31+212 93.24+144 93.38+136
1 10 -0908 0208 84.64+199 85.41+203 82.81+226 83.58+221 93.42+153 93.54+145
1 10 -090&® 030€& 83.79+229 84.16+257 82.124+235 82.794241 92424207 92.59+2.04
1 10 -0908 0308 84.09+192 84.88+227 82.264+209 83.01+206 92.83+1.68 92.96+1.57
1 10 -090#® 0.40€ 83.35+t222 84.754258 81.09+241 82.004242 92224203 92.41+1.94
1 10 -0908& 0408 83.19+204 84214233 81.16+240 81.93+230 92.01+182 92.19+1.72
1 10 -090#® 050 82.78+216 83.874+250 80.63+241 81.454240 91.524215 91.7242.05
1 10 -0908 0508 82.80+200 84.12+253 80.49+206 81.39+213 91.62+2.16 91.81+2.05
1 10 -090#® 0.60# 83.05+t285 84.444308 80.73+3.14 81.6343.19 91.27+3.08 91.47+297
1 10 -0908 0608 82.81+302 84.38+345 80.40+321 81.33+331 91.19+306 91.42+294
1 10 -090€ 0.70€® 81.83+243 83.464289 79.294+259 80.21+269 90.11+£329 90.38+3.17
1 10 -0908 0708 81.98+243 83.45+284 79.49+255 80.42+265 90.19+328 90.46+3.15
1 10 -090€ 080€® 82.12+191 83.594232 79.61+195 80.57+205 90.15+289 90.52+2.76
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1 10 -0908& 0808 82.57+151 84.47+103 79.92+191 80.92+191 90.53+237 90.85+2.32
1 10 -090€ 090€ 81.33+210 82.93+205 78.65+243 79.58+246 89.00+280 89.45+2.63
1 10 -0908& 0908 81.22+200 82.72+231 78.57+211 79.50+221 88.90+300 89.35+2.80
1 10 -090€ 1.00€ 80.70+t222 82.20+275 78.02+229 78.93+239 88.22+363 88.72+3.36
1 10 -0908& 1008 80.84+2.14 82.294262 78.194219 79.10+230 88.31+329 88.81+3.03
1 10 -080® -1.00® 82.64+304 82.99+251 82.27+167 82.05+2.71 92.09+093 92.24+0.97
1 10 -0808 -1.008& 82474287 83.03+253 82.02+149 81.83+251 92.11+090 92.25+094
1 10 -080® -090#® 82.07+268 82.37+301 81.16+180 81.284239 91.27+131 91.53+1.19
1 10 -0808& -0908& 82431288 82.814305 81.66+212 81.69+263 91.91+128 92.11+1.22
1 10 -0.80#® -0.80@ 83.51+148 83.714+100 82.42+224 82.65+193 92.39+138 92.59+1.28
1 10 -0808 -0808 83.77+148 84.19+137 82.44+202 82.84+181 92.45+133 92.65+1.24
1 10 -0.80#® -0.70® 83.03+1.77 83.594251 82.29+190 82.26+1.80 92.56+098 92.73+0.99
1 10 -0808 -0708 83.02+181 83.61+258 82.29+18 82.26+179 92.59+1.03 92.75+1.05
1 10 -080€® -060€ 8428+133 84.09+149 83.34+159 83.58+143 92.56+1.14 92.74+1.10
1 10 -0808 -0608 83.80+120 84.28+181 82.55+197 82.89+155 92.78+1.16 92.94+1.13
1 10 -080€® -050€ 83.84+144 83.724174 82.79+155 83.09+150 92.19+1.06 92.40+1.09
1 10 -0808& -0508 83.87+18 83.54+191 83.09+222 83.21+204 92.40+136 92.57+1.29
1 10 -080€® -040€® 83.96+186 83.834224 83.00+166 83.25+180 92.54+142 92.73+1.41
1 10 -0808 -0408 83.96+179 83.97+233 83.00+1.53 83.24+168 92.50+1.40 92.69+138
1 10 -0.80€ -030€ 83.79+179 84.274240 82.24+180 82.82+18 92.62+139 92.83+136
1 10 -0808 -0308 8391+184 84.44+258 82.34+179 82.94+184 92.46+159 92.71+151
1 10 -080€ -020€ 84.07+186 84.764230 82.25+193 83.00+£197 92.69+180 92.93+1.69
1 10 -0808 -0208 84.39+220 84.78+225 82.77+245 83.42+240 92.80+1.70 93.03+1.61
1 10 -0.80€ -0.10€® 8491+121 85394119 83.33+156 83.97+140 93.02+131 93.28+1.16
1 10 -0808 -0.108 85.03+1.17 85.57+097 83.41+155 84.08+137 93.22+1.11 93.46+0.99
1 10 -0.80€ 0.10€® 85.05+142 86.16+120 83.04+1.73 83.93+166 93.39+1.18 93.60+1.09
1 10 -0808 0108 84.81+18 85.62+18 82.99+213 83.76+204 93.32+134 93.48+1.29
1 10 -0.80€ 020 84864212 85.5842.18 83.14+248 83.85+237 93.29+167 93.43+1.60
1 10 -0808 0208 8491+194 85.70+208 83.17+228 83.89+216 93.28+1.60 93.43+1.54
1 10 -0.80€ 030€® 83.83+t215 84.814252 81.924243 82.67+238 92.32+175 92.47+1.68
1 10 -0808 0308 84.18+232 85.02+250 82.32+262 83.07+255 92.58+194 92.76+1.88
1 10 -080@& 040@ 83.80+271 84.93+t296 81.71+294 82.564296 92.10+230 92.30+2.22
1 10 -0808 0408 82.77+213 84.13+248 80.54+253 81.36+242 91.49+187 91.71+178
1 10 -0.80® 0508 82924235 84.52+266 80.48+254 81.44+261 91.334248 91.544242
1 10 -0808 0508 82.75+239 84.39+253 80.27+2690 81.22+272 91.144245 91.38+239
1 10 -0.80® 0.60® 82.82+270 84.30+292 80.42+294 81.35+£300 90.82+286 91.08+2.77
1 10 -0808 0608 82.70+2690 84.47+295 80.17+296 81.1343.02 90.794298 91.05+2.90
1 11 -1.00€ -1.00€ 79.22+188 79.78+226 77.02+189 77.66+198 87.90+248 87.61+2.56
1 11 -1.008 -1.008 78.95+200 79.44+213 76.75+224 77.36+230 87.35+275 87.03+2.91
1 11 -1.00€ -090€ 80.32+148 80.55+147 78.51+208 79.03+180 88.71+244 88.42+246
1 11 -1.008 -0908 79.55+168 80.46+144 77.03+211 77.79+210 87.82+248 87.56+2.60
1 11 -1.00€ -0.80€& 80.14+322 80.91+261 77.92+4.12 78.49+400 88.18+357 87.92+3.74
1 11 -1.008 -0808& 80.95+234 81.48+194 78.874+297 79.52+283 89.08+246 88.89+2.49
1 11 -1.00€ -0.70€ 80.50+296 81.16+238 78.33+371 78.94+370 88.26+357 88.11+3.71
1 11 -1.008 -0708 80.69+281 81.34+224 78.5043.52 79.154+350 88.48+345 88.33+3.59
1 11 -1.008& -060#® 80.80+28 80.97+255 79.02+3.42 79.524337 88.60+3.59 88.57+3.74
1 11 -1.008 -0608& 80.60+285 80.78+274 78.74+332 79.30+332 88.66+345 88.57+3.59
1 11 -1.00® -050€® 81.15+363 81.83+184 79.62+533 79.7045.11 89.42+383 89.32+3.93
1 11 -1008& -0508 81.54+237 81.54+182 80.24+335 80.49+299 89.61+325 89.50+3.33
1 11 -1.00® -040€® 81.54+267 81.724238 79.89+350 80.35+3.16 89.57+3.11 89.58+3.15
1 11 -1.008 -0408 81.33+316 81.79+242 79.45+414 79.95+395 89.35+330 89.37+331
1 11 -1.00® -030€® 82.12+182 82.48+178 80.38+226 80.9642.13 90.11+271 90.25+2.84
1 11 -1.008 -0308 81.01+327 82.10+288 78.56+396 79.31+408 89.49+367 89.35+4.16
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1 11 -1.00€ -020€ 83.20+145 83.60+184 81.46+137 82.14+148 91.53+164 91.71+1.66
1 11 -1.008 -0208 83.10+1.53 83.60+1.87 81.27+1.50 81.99+158 91.58+1.63 91.77+1.63
1 11 -1.00® -0.10® 84.37+154 84.57+201 82.99+133 83.53+150 92.48+138 92.56+1.54
1 11 -1.008 -0.108 84.46+133 84.87+186 82.99+131 83.56+135 92.81+137 92.88+151
1 11 -1.00® 0.10€ 83.73+1.69 84.85+298 82.21+1.05 82.73+136 93.46+144 93.53+1.44
1 11 -1008 0108 8274+232 84.994284 80.43+260 81.21+261 93.20+145 93.22+1.50
1 11 -1.00® 020 83.62+229 84.444321 82.16+183 82.6642.13 92.80+1.99 92.81+2.07
1 11 -1008 0208 83.89+204 84904293 82.32+174 82.88+192 93.41+167 93.48+1.65
1 11 -1.00® 030 83.82+204 84.804293 82.24+138 82.82+179 93.31+181 93.37+1.80
1 11 -1.008 0308 8296+190 84.00+284 81.31+182 81.85+1.84 92.424202 92.52+1.95
1 11 -100€¢ 040€® 83.59+203 84.924301 81.71+168 82.43+193 93.09+2.10 93.15+2.08
1 11 -1.008 0408 83.72+215 85.07+3.14 81.84+168 82.57+200 93.11+217 93.17+2.14
1 11 -100€¢ 050€® 81.58+282 83.884285 79.04+347 79.77+358 92.37+195 92.40+1.99
1 11 -1.008 0508 81.38+267 83.85+280 78.72+323 79.50+340 92.17+182 92.21+1585
1 11 -1.00€¢ 0.60® 81274291 83.594345 78.66+3.11 79.46+333 91.70+2.11 91.7342.11
1 11 -1.008 0608 81.64+307 83.33+343 79.29+324 80.05+346 91.73+216 91.77+2.16
1 11 -1.00€ 070 8284+150 85244104 80.224258 81.13+237 92.97+053 93.03+047
1 11 -1.008 0708 83.37+153 85.39+102 80.92+238 81.83+2.19 93.12+044 93.17+041
1 11 -1.00€¢ 080 8321+126 85.12+101 80.78+207 81.69+18 92.67+056 92.72+0.50
1 11 -1.008 0808 81.71+285 84.43+193 78.82+393 79.66+381 91.85+161 91.91+1.67
1 11 -1.00€¢ 090€® 81.12+164 83.78+127 78204268 79.06+250 91.78+087 91.84+0.80
1 11 -1.008 0908 82.00+153 83.96+120 79.41+235 80.28+218 91.47+066 91.56+0.56
1 11 -1.00€ 1.00€ 81.36+150 83.66+126 78524224 79.43+221 91.25+061 91.32+0.55
1 11 -1.008 1008 80.85+166 83.29+140 77.91+243 78.80+242 91.21+051 91.29+0.49
1 11 -090€ -1.00€ 80.14+122 80.37+1.18 78.14+145 78.78+1.41 87.82+240 87.65+241
1 11 -0908 -1.008 79.36+228 79.55+203 77.39+281 77.92+281 87.28+279 87.05+2.90
1 11 -090€ -090€ 7934+181 80.124230 77.02+202 77.70+204 87.42+302 87.1843.21
1 11 -0908 -0908 79.64+146 80.28+229 77.48+131 78.13+138 87.80+246 87.62+2.54
1 11 -090& -080@ 79.99+170 80.35+232 78.03+133 78.65+154 88.22+241 88.02+2.55
1 11 -0908 -0808 80.08+143 80.51+203 78.05+127 78.70+137 88.32+207 88.16+2.20
1 11 0908 -0.708® 80.13+1.81 80.51+2.14 78.09+204 78.72+202 88.3043.05 88.19+3.26
I 11 -0908 -0.708 80.46+164 81.08+197 78.33+194 79.01+188 88.734275 88.60+2.93
1 11 0908 -0.608® 8095+247 81.47+249 78.90+285 79.56+2.88 89.18+2.81 89.13+2.98
1 11 0908 -0608 81.15+18 81.78+194 79.03+212 79.75+213 89.45+197 89.39+2.06
1 11 -090€ -050€ 81.48+197 81.814+202 80.02+269 80.37+237 89.74+237 89.70+2.46
1 11 -0908 -0508 81.48+250 82.06+228 79.74+332 80.20+3.09 89.57+298 89.54+3.09
1 11 -090€ -040€ 81.22+324 81.77+251 79.45+452 79.83+4.12 89.10+393 89.12+3.95
1 11 -0908& -0408& 81.10+301 81.01+273 79.594372 79.98+354 88.97+337 89.03+347
1 11 -090€® -030€® 8232+146 82.67+1.14 80.71+218 81.21+187 90.17+198 90.32+1.97
1 11 -0908 -0308 82.77+266 82.67+204 81.85+376 81.91+329 90.29+345 90.29+3.53
1 11 -090€ -020€ 82.33+109 83.49+187 80.24+152 80.98+130 90.80+1.66 90.96+1.71
1 11 -0908 -0208 82.77+168 83.45+165 80.87+220 81.55+201 90.88+198 91.04+2.08
1 11 -090& -0.10® 8437+146 84.89+1.69 82.85+156 83.43+153 92.36+132 92.45+1.49
1 11 -0908 -0.108 84.14+171 84.40+214 82.80+1.63 83.28+171 92.31+142 92.40+1.58
1 11 -090€ 0.10€¥ 85.19+131 86.08+129 83.39+168 84.16+153 93.98+084 94.08+0.91
1 11 -0908& 0.108 8425+252 85394250 82.41+292 83.10+290 93.15+2.03 93.18+223
1 11 -090€® 020 83.24+193 84.154238 81.61+219 82.154214 92.52+161 92.61+1.56
1 11 -0908 0208 82.68+190 83.89+225 80.90+249 81.43+229 92.36+149 92.42+143
1 11 -090#® 030€ 81.52+186 83.80+272 79.08+2.15 79.832212 92.12+177 92.19+1.72
1 11 -0908 0308 81.72+291 84.83+305 79.04+360 79.77+377 93.15+185 93.18+1585
1 11 -090€ 040€® 82.68+238 84.76+301 80.42+263 81.19+265 92.73+187 92.79+1.89
1 11 -0908 0408 82.33+222 84.56+294 79.99+252 80.75+253 92.73+187 92.79+1.89
1 11 -090€ 050€® 80224226 83.74+301 77.06+285 77.86+3.00 91.89+190 91.96+1.91
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1 11 -0908 0508 82.25+163 84.45+298 79.83+160 80.67+1.67 92.55+183 92.59+1.80
1 11 -090€ 0.60€ 81.94+327 85.51+167 78.75+437 79.66+448 93.08+1.12 93.08+1.12
1 11 -0908 0608 80.59+345 83.82+366 77.69+410 78.38+436 91.83+216 91.87+2.14
1 11 -090€ 0.70€ 81.48+327 84.64+136 78.39+445 79.21+453 92.24+132 92.25+1.22
1 11 -0908 0708 81.65+280 85.06+138 78.49+390 79.40+387 92.44+143 92.47+141
1 11 -090&® 080&® 8243+213 84.70+1.00 79.764+3.07 80.65+2.99 92.18+0.69 92.20+0.61
1 11 -0908 0808 82.38+189 84.62+1.17 79.77+288 80.63+275 92.13+082 92.19+077
1 11 -090&® 090€® 80.80+161 83.74+134 77.754+267 78.60+253 91.39+101 91.46+0095
1 11 -0908 0908 80.20+174 83.0942.11 77.104267 77.93+253 90.86+174 90.93+1.78
1 11 -090#® 1.00€ 80.77+15 83.06+141 77.92+245 78.76+239 90.62+065 90.70+0.66
1 11 -0908 1008 80.71+175 83.07+1.14 77.87+278 78.67+276 90.46+067 90.55+0.62
1 11 -0.80#® -1.00® 80.31+095 80.70+170 78.46+1.16 79.01+1.05 88.49+1.64 88.43+1.68
1 11 -0808& -1.008 80.07+097 80.54+185 78.10+062 78.71+075 88.22+185 88.17+1.95
1 11 -080€® -090€ 79.85+1.16 80.44+154 77.69+139 78.34+135 88.06+2.13 87.98+223
1 11 -0808 -0908 79.93+122 80.24+197 78.05+105 78.62+1.11 88.02+2.16 87.92+2.29
1 11 -080€® -080€® 8031+134 81.35+174 77.82+143 78.64+147 88.31+237 88.23+2.52
1 11 -0808 -0808 80.10+145 80.86+173 77.87+173 78.55+1.69 88.30+241 88.17+2.58
1 11 -080€® -070€ 80.22+2.11 80.684241 78.13+234 78.80+232 88.09+3.14 87.99+335
1 11 -0808 -0708 80.42+233 80.79+278 78.45+248 79.08+249 88.28+328 88.18+351
1 11 -080€® -0.60€ 80.50+206 81.0042.64 78.55+2.19 79.16+2.15 88.78+3.01 88.71+3.22
1 11 -0808 -0608 80.75+227 81.63+217 78.52+294 79.20+285 88.94+283 88.92+3.00
1 11 -080€ -050€ 80.99+248 81.134294 79.364254 79.87+256 88.87+330 88.92+345
1 11 -0808 -0508 81.01+216 81.34+234 79.36+266 79.81+252 89.09+276 89.15+2.86
1 11 -080€® -040€ 81.15+214 81.6242.19 79.36+2.79 79.87+260 88.92+287 89.03+2.99
1 11 -0808 -0408 81.19+206 81.17+163 79.70+278 80.08+259 88.93+274 89.02+2.80
1 11 -0.80€ -030€ 8222+190 82.63+173 80.62+250 81.10+232 89.95+294 90.08+3.07
1 11 -0808 -0308 82.14+192 82.55+157 80.49+258 80.98+240 89.90+273 90.08+2.81
1 11 -0.80€ -020€ 82.18+122 83.92+186 79.72+170 80.60+158 90.70+£2.02 90.93+2.10
1 11 -0808 -0208 82.71+197 83.36+201 80.95+245 81.54+233 90.79+229 90.95+2.37
1 11 -0.80€ -0.10€& 83.70+139 84.68+185 81.92+180 82.58+161 92.13+148 92.33+1.54
1 11 -0808 -0.108 83.87+155 84.82+180 82.23+191 82.80+174 92.14+153 92.36+1.56
1 11 -080@& 0.10#% 84.17+131 85.52+256 82.50+143 83.09+131 93.34+136 93.43+1.40
1 11 -0808 0108 84.50+18 85.22+227 83.16+208 83.60+200 93.11+123 93.21+1.27
1 11 -0.80# 020 84.18+235 85.30+213 82.11+281 82.964+271 93.22+182 93.26+1.85
1 11 -0808& 0208 83.61+184 85274207 81.214210 82.194208 93.07+1.62 93.11+1.65
1 11 -080#® 030® 81.97+323 83.744262 79.74+4.14 80.34+416 92.14+182 92.17+1.83
1 11 -0808& 0308 82224281 83.93+242 80.01+362 80.66+3.54 92.15+1.74 92.19+1.75
1 11 -080€ 040 82524260 85464158 79.52+350 80.54+350 93.40+1.17 93.43+1.26
1 11 -0808 0408 82524269 85.44+1.65 79.53+348 80.544356 93.48+1.00 93.50+1.10
1 11 -0.80# 050€& 82.04+279 84.87+169 79.13+381 80.02+381 92.83+097 92.87+1.01
1 11 -0808 0508 82.19+301 85.03+1.60 79.33+4.16 80.18+4.12 92.96+094 93.00+0.99
1 12 -1.00€ -1.00€ 84.18+202 84.30+264 83.31+189 83.49+194 92.87+155 92.95+1.61
1 12 -1.008 -1.008 83.59+161 83.64+1.85 83.17+085 83.02+136 92.53+1.00 92.60+1.04
1 12 -1.00€ -090€ 84.30+187 84.23+235 83.67+163 83.71+1.77 92.93+125 92.99+135
1 12 -1.008 -0908& 84.46+202 84.244235 83.84+1.87 83.88+1.99 92.75+1.60 92.86+1.59
1 12 -1.008 -080#® 84.88+t212 84.88+273 84.08+2.16 84.244213 93.34+155 93.42+1.62
1 12 -1.008 -0808 84.58+226 84.43+263 83.824208 83.97+222 92.96+141 93.06+1.46
1 12 -1.00® -0.70® 85.19+193 85.164235 84.34+191 84.554+193 93.39+139 93.46+1.47
1 12 -1008 -0708 85.19+178 85.044209 84.32+184 84.55+18 93.24+139 93.32+1.47
1 12 -1.00® -0.60#® 85.35+194 85.644267 84.55+214 84.69+199 93.76+156 93.90+1.56
1 12 -1.008 -0608 8541+165 85.79+222 84.48+221 84.69+183 93.77+135 93.93+134
1 12 -1.00® -050€® 85.14+130 85.62+1.70 83.78+1.67 84.294143 93.52+133 93.70+1.27
1 12 -1.008 -0508 85.52+180 85.49+187 84.52+4207 84.83+194 93.54+144 93.71+139
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1 12 -1.00€ -040€ 84.03+t1.12 84.71+200 82.58+136 83.07+1.19 93.14+098 93.30+0.95
1 12 -1.008 -0408 83.98+1.14 84.70+222 82.42+060 83.01+088 92.91+118 93.09+1.13
1 12 -1.00® -030€® 84.05+t106 84.61+150 82.58+151 83.09+128 92.92+078 93.08+0.78
1 12 -1.008 -0308 83.97+124 84.45+165 82.61+174 83.04+151 92.91+079 93.06+0.79
1 12 -1.008 -020@® 8524+088 85.64+145 83.77+073 84.39+083 93.51+087 93.67+0.2
1 12 -1.008 -0208 85.19+1.04 85.49+137 83.76+098 84.35+105 93.45+089 93.61+084
1 12 -1.00® -0.10® 83.69+1.77 84.82+196 81.70+222 82.4642.15 92.87+130 93.03+1.28
1 12 -1008& -0.108 83.62+213 85.05+1.89 81.46+278 82.27+263 92.81+147 92.96+1.46
1 12 -1.00® 0.10¥ 84.25+176 84.3242.16 82.92+165 83.42+179 92.53+145 92.65+1.46
1 12 -1.008 0108 84.33+173 84.54+203 82.88+1.72 83.45+180 92.63+145 92.74+146
1 12 -100€¢ 0209 8274+178 83.24+166 80.88+2.12 81.57+203 91.24+156 91.40+1.55
1 12 -1.008 0208 8221+151 82.63+177 80.39+164 81.04+163 90.98+1.67 91.05+1.76
1 12 -100€ 030€® 80.52+272 80.5643.10 79.14+251 79.49+272 89.65+226 89.66+2.42
1 12 -1.008 0308 80.64+287 80.62+3.13 79.39+269 79.68+289 89.80+223 89.80+2.44
1 12 -100€¢ 040€® 79374280 79.60+274 78.00+238 78.26+2.690 88.59+208 88.714221
1 12 -1.008 0408 79.55+275 79.95+3.15 77.86+233 78.30+264 88.76+213 88.87+2.26
1 12 -100€ 050€® 77.61+279 78.164304 75.85+2.19 76.17+256 86.92+193 87.05+2.14
1 12 -1.008 0508 77.75+277 78.29+293 76.01+218 76.33+256 87.06+1.87 87.16+2.12
1 12 -1.00€¢ 0.60€® 76.59+274 76.894296 7T4.58+254 T4.97+277 85.51+186 85.68+2.08
1 12 -1.008 0608 76.80+277 77.22+3.10 74.67+260 75.11+283 85.64+194 85.82+2.16
1 12 -1.00€ 070€® 7458+166 75.08+190 72.82+1.73 72.87+176 83.55+0.60 83.69+0.95
1 12 -1.008 0708 74.14+241 75.06+19 72.17+345 72.02+377 83.26+1.57 83.38+1.80
1 12 -1.00€¢ 080 72864093 73.07+1.82 70.88+155 70.94+147 81.88+0.690 81.97+0.94
1 12 -1.008 0808 72.38+191 72.81+118 70.22+339 70.05+382 81.26+144 81.39+1.58
1 12 -1.00€¢ 090€ 72.69+154 72524188 70.35+18 70.63+191 80.94+1.12 81.00+1.17
1 12 -1.008 0908 7230+1.19 72.15+149 69.91+178 70.14+179 80.65+1.05 80.73+1.06
1 12 -1.00€ 1008 7282+18 72.76+185 70.16+239 70.48+247 80.34+135 80.52+1.41
1 12 -1.008 1008 7230+214 72.34+232 69.73+270 69.93+298 79.284279 79.61+2.69
1 12 -090& -1.00& 82.81+260 83.16+3.15 81.994268 82.04+264 91.96+205 92.09+2.05
1 12 -0908 -1.008 84.29+164 83.94+178 83.60+1.85 83.68+1.73 92.44+144 92.58+1.41
1 12 0908 -090€® 84.19+182 84.06+220 83.58+1.73 83.60+1.78 92.65+1.14 92.73+1.19
1 12 -0908 -0908 84.12+168 84.03+2.13 83.37+1.63 83.48+1.64 92.39+134 92.52+133
1 12 -090#® -0.80#® 84.10+129 84.814247 82.86+1.63 83.21+128 93.24+159 93.30+1.67
1 12 0908 -0808 8447+162 84.60+231 83.65+161 83.80+157 93.11+130 93.18+1.39
1 12 -090€ -0.70€@ 84.56+158 85.14+261 83.39+179 83.74+157 92.90+1.45 93.07+1.46
1 12 -0908 -0708 84.51+221 84.74+293 83.60+2.04 83.8242.14 92.89+170 93.04+1.69
1 12 -090€ -0.60#& 84.65+223 85.00+2.71 83.52+245 83.86+234 93.03+175 93.21+1.71
1 12 -0908 -0608 85.00+191 85.23+224 83.81+217 84.224204 93.19+158 93.34+1.56
1 12 -090€® -050€ 8551+190 85.74+1890 84.36+236 84.74+214 93.45+153 93.61+1.50
1 12 -0908 -0508& 85.13+185 85.42+188 83.84+227 84.31+207 93.20+151 93.33+1.42
1 12 -090€ -040€ 85.13+239 85.224255 83.93+263 84.36+256 93.20+156 93.33+1.46
1 12 -0908 -0408 85.55+200 85.494236 84.694+200 84.92+202 93.40+136 93.52+1.28
1 12 -090€ -030€& 84.57+139 85.00+208 83.07+120 83.67+135 93.11+120 93.28+1.14
1 12 -0908 -0308 83.90+133 85.12+139 81.87+184 82.67+166 92.70+087 92.85+085
1 12 -090€ -020€@ 84.49+1.17 84.66+176 83.14+085 83.66+1.08 92.85+096 93.03+0.90
1 12 -0908& -0208 84.72+132 84.68+171 83.55+111 83.97+129 93.13+1.09 93.25+1.04
1 12 -090#® -0.10® 8391+150 84.794154 82.10+197 82.79+181 92.70+123 92.86+1.19
1 12 -0908 -0.108 84.15+158 84.99+158 82.26+189 83.03+18 92.89+128 93.00+1.24
1 12 -090® 0.10® 84.04+185 84.194199 82.61+199 83.14+199 92.08+152 92.21+1.55
1 12 -0908 0.108 83.41+231 83.47+229 81.95+259 82.47+251 91.81+1.88 91.93+1.93
1 12 -090€ 020€® 81.77+266 81.924274 80.48+258 80.81+271 90.51+200 90.50+2.17
1 12 -0908 0208 80.66+185 80.78+160 79.51+269 79.64+231 89.94+179 89.97+1.88
1 12 -090€ 030€® 80.22+229 80.424257 78.60+223 79.04+234 89.09+203 89.06+2.27

Continued on next page
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t n a b Accuracy Precision Recall F1score AUROC AUPRC

1 12 -0908 0308 80.24+239 80.57+260 78.68+222 79.07+239 89.24+215 89.19+241
1 12 -090€ 040 7823+306 78.77+211 76.39+4.18 76.58+421 87.60+229 87.70+2.39
1 12 -0908 0408 78214300 78.94+208 76.13+420 76.41+414 87.42+4265 87.53+2.74
1 12 -090€@ 050& 77441218 7T77.78+237 75.35+223 75.82+233 86.03+1.63 86.14+1.89
1 12 -0908 0508 76.73+299 77.57+251 74.30+378 74.64+406 85.69+208 85.84+231
1 12 -0908& 060& 7627+264 76.83+290 74.00+256 74.424276 84.85+171 84.99+1.96
1 12 -0908 0608 75744275 76.63+259 73.23+324 73.55+353 84.34+182 84.46+211
1 12 -090& 070 7522+241 75.97+268 72.67+236 73.07+261 83.65+1.55 83.67+1.87
1 12 -0908& 0708 74.03+166 74.654+227 71.90+185 72.03+181 83.04+082 82.99+1.05
1 12 -090#® 080 73.00+£176 73.294236 70.68+186 70.87+1.92 81.77+094 81.75+1.20
1 12 -0908 0808 73.11+155 73.26+204 70.86+166 71.07+169 81.76+093 81.69+1.23
1 12 -090® 090 7324+186 73.844205 70.25+231 70.57+250 81.18+1.01 81.02+1.42
1 12 -0908 0908 72.12+104 72.84+207 69.16+145 69.33+154 80.58+0.57 80.50+0.91
1 12 -090€ 1.00€® 7233+192 73.194190 68.99+268 69.16+295 79.75+164 79.69+181
1 12 -0908 1008 71.73+272 72.00+335 68.88+2838 69.10+3.16 79.28+2.16 79.35+2.25
1 12 -080€® -1.00€ 8443+179 84.124200 83.83+194 83.85+18 92.42+146 92.51+1.44
1 12 -0808 -1.008 84.28+152 83.87+175 83.75+153 83.73+152 92.46+143 92.51+1.39
1 12 -080€® -090€ 8347+122 83.33+142 83.08+090 82.91+1.05 92.20+098 92.28+1.00
1 12 -0808 -0908 83.87+1.72 83.65+213 83.45+151 83.34+164 92.49+140 92.54+1.40
1 12 -080€® -080€% 84.07+147 83.83+1.68 83.54+165 83.49+151 92.49+1.19 92.61+1.26
1 12 -0808 -0808 84.08+157 84.21+213 83.25+169 83.38+156 92.63+137 92.71+1.43
1 12 -080€® -070€ 8435+159 84.694235 83.18+155 83.54+154 92.81+158 92.87+1.68
1 12 -0808 -0708 84.22+203 84.39+267 83.07+207 83.43+204 92.61+185 92.76+181
1 12 -080€ -0.60€ 8491+208 85434201 83.42+256 83.98+235 92.77+1.68 92.97+1.59
1 12 -0808 -0608 84.65+18 84.98+211 83.30+203 83.80+196 92.74+1.63 92.90+1.58
1 12 -080€ -050€ 84331212 85.09+194 82.86+292 83.33+250 92.82+178 92.99+1.71
1 12 -0808 -0508 84.57+191 85.18+195 83.12+252 83.62+223 93.02+1.69 93.19+1.63
1 12 -080€ -040€ 8430+152 85334220 82.42+170 83.20+1.64 92.90+153 93.01+1.44
1 12 -0808 -0408 84.05+141 84.94+221 82.42+182 83.01+157 92.92+157 93.05+1.46
1 12 -080€ -030€ 8423+t166 85.00+1.84 82.54+199 83.19+180 92.87+122 93.03+1.15
1 12 -0808 -0308 84.30+138 85.64+153 82.33+216 83.10+172 93.14+140 93.27+1.32
1 12 -080@ -020@ 84.46+162 85.23+153 82.63+194 83.39+187 92.85+1.15 92.98+1.07
1 12 -0808 -0208 84.26+158 85.56+183 82.18+188 83.05+1.82 92.96+130 93.11+1.25
1 12 -080€ -0.10€ 83.69+093 84.36+198 81.99+032 82.65+067 92.33+1.16 92.44+1.28
1 12 -0808 -0.108 83424118 84.76+161 81214144 82.10+139 92.744096 92.8540.96
1 12 -080€ 0.108® 81.87+180 82344245 80.32+148 80.80+1.60 90.48+220 90.59+221
1 12 -0808 0108 82.39+166 82.48+135 80.87+225 81.35+199 90.82+1.77 90.87+1.86
1 12 -080€ 020 81.33+244 81.994204 79.28+306 79.92+3.00 90.08+191 90.21+1.93
1 12 -0808& 0208 81.08+225 81.50+2.14 79.16+270 79.7642.64 89.78+1.94 89.90+1.97
1 12 -080€ 030 80.32+187 80.76+2.18 78.45+195 79.00+198 88.72+1.82 88.61+2.11
1 12 -0808 0308 79.55+102 79.72+123 78.22+177 78.42+132 88.34+165 88.22+185
1 12 -080#® 040€& 77.65+337 78.93+157 75.15+483 75.37+530 86.89+151 87.04+1.63
1 12 -0808 0408 78.07+281 79.33+161 75.53+400 75.93+422 87.00+153 87.14+161
1 12 -080#® 050 77.51+201 78.32438 75.04+290 75.65+3.12 86.13+3.08 86.21+3.24
1 12 -0808 0508 77.33+274 77.67+278 75.094315 75.594317 85.76+227 85.88+2.52
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J.2 GENERALIZABILITY OF HYPERPARAMETERS

We transfer the key hyperparameters obtained from HM-BiTCN—such as the fusion coefficients
(a, b), and segment length (n)—to other baseline models. This experiment evaluates whether
these hyperparameters retain effectiveness when applied to different architectures, indicating their
robustness and broader applicability.

Table 15: Results of Subject-Independent Setup. Green cells indicate performance improvement

with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC
Autoformer 73.18+733  73.87+672 73.01+6.10 72.40+7.03 81.64+724 81.10+7.75

Autoformer + CIF 75.96+268 76.33+347 75.11+110 74.97+190 83.42+199 83.15+263

Crossformer 72764204 79.644245 67.41+262 66.88+361 T1.81+406 71.6443.74

Crossformer + CIF = 82.32+260 85.35+183 79.21+3.17 80.29+330 90.39+158 90.02+1.47

FEDformer 75.16+167 74984069 73.34+297 73.50+290 83.89+154 83.27+1.62

FEDformer + CIF 77.20+2.17  76.97+207 77.02+260 76.55+240 86.70+1.73 86.53+1.76

Informer 72204278  73.92+480 68.48+251 68.74+270 70.14+343 70.84+3.80

Informer + CIF 79.78+207 82.29+3.03 76.55+205 77.53+223 78.56+133 78.58+1.14

iTransformer 74.55+166 T74.777+210 T1.76+172  72.30+1.79 85.59+155 84.39+1.57

iTransformer + CIF = 74.95+087 74.40+0.75 = 73.79+178 73.81+143 84.30+088 82.49+096

MTST 69.24+124 75.87+280 63.28+181 61.62+275 66.09+327 68.08+2.93

APAVA MTST + CIF 76.20+239 81.46+1.11  71.67+306 72.06+373 77.65+337 77.98+273
(2-Classes) Nonformer 71.81+420 71.31+440 70.15+338 70.384374 71.54+273 72.79+2.50
Reproduced Nonformer + CIF 71.89+£381 71.80+458 69.44+356 69.74+384 T70.554+296 70.78+4.08
Reformer 78.42+285 80.89+452 75.20+228 76.09+254 75.48+279 77.52+2.64

Reformer + CIF 81.51+057 84.90+086 78.18+060 79.32+064 79.10+250 80.77+221

Transformer 75.53+428 76.90+505 72.14+487 72.644544  72.30+6.04 73.04+7.15

Transformer + CIF ~ 77.96+282 79.34+386 75.07+252 75.87+273 74.75+162 74.76+233

Medformer 77.85+242  80.31+321 74.38+249 75214267 80.85+380 81.6243.24

Medformer + CIF 81.06+158 82.97+223 78.26+152 79.23+1.65 85.74+185 86.32+1.48

MedGNN 77.40+577  82.77+446 73.24+706 73.294901 81.31+294 82.80+291

MedGNN + CIF 81.02+151 84.21+262 77.76+152 78.83+1.64 86.27+279 87.45+2.40

HM-BiTCN 82.49+140 82.38+179 81.20+132 81.60+1.39 91.10+163 91.30+1.71

HM-BiTCN + CIF ~ 85.16+155 84.76+162 85.33+127 84.82+149 94.06+1.07 94.21+0.99

Table 16: Results of Subject-Independent Setup. Green cells indicate performance improvement

with CIF.
Datasets Models Accuracy Precision Recall F1score AUROC AUPRC

Autoformer 90.38+3.03 91.16+242 90.38+3.03 90.31+3.09 95.83+2.14 95.43+231

Autoformer + CIF 93421249 93.71+227 93.42+249 93.40+251 97.46+108 97.21+1.15

Crossformer 82.154+260 82.81+2.11 82.15+260 82.04+270 91.20+223 91.47+2.16

Crossformer + CIF ~ 89.40+126 89.83+1.18 89.40+126 89.37+127 96.76+062 96.80+0.62

FEDformer 77.60+£123  78.25+152 77.60+123 77.48+1.19 86.31+123 86.48+136

FEDformer + CIF 78.87+194 79.194+200 78.88+1.94 78.82+194 88.12+1.87 88.39+1.92

Informer 88.42+4299 89.01+245 88.42+299 88.36+305 96.54+090 96.66+0.385

Informer + CIF 89.38+166 89.71+137 89.38+166 89.35+1.68 96.92+066 97.03+0.64

iTransformer 74.69+1.02  74.76+1.04 T4.69+1.02 74.67+1.02 83.35+124 83.65+1.41

iTransformer + CIF ~ 72.79+1.12  72.89+1.16  72.79+1.12  72.76+1.11  81.08+1.03 81.31+093

MTST 77.67+358 78.97+437 77.67+358 77.45+355 86.47+484 84.99+643

TDBrain MTST + CIF 87.21+199 87.30+206 87.21+199 87.20+1.99 94.14+183 93.24+2.63
(2-Classes) Nonformer 88.10+239 88.76+1.74 88.10+239 88.04+247 96.56+091 96.36+121
Reproduced Nonformer + CIF 88.00+206  88.91+168 88.00+206 87.92+2.12 @ 97.10+1.10 97.17+1.09
PatchTST 77.98+264 79.304373  77.98+264 77.764265 86.67+403 84.93+547

PatchTST + CIF 79.58+086 80.22+082 79.58+086 79.47+088 87.20+1.57 85.81+1.17

Reformer 88.50+230 89.01+180 88.50+230 88.45+235 96.10+063 96.19+0.55

Reformer + CIF 89.08+1.19 89.47+070 89.08+1.19 89.05+123 96.88+035 97.00+0.35

Transformer 85.13+186 86.39+156 85.13+186 84.99+193 95.61+1.05 95.63+091

Transformer + CIF ~ 89.96+157 90.53+126 89.96+157 89.92+160 97.73+045 97.77+0.46

Medformer 88.77+124 88.91+1.11  88.77+124 88.76+125 96.38+034 96.44+0.30

Medformer + CIF 90.88+087 90.94+081 90.88+087 90.87+087 97.39+030 97.46+0.28

HM-BiTCN 84.90+260 86.02+200 84.90+260 84.76+274 93.94+192  94.20+185

HM-BiTCN + CIF  93.13+141 93.33+137 93.13+141 93.12+142 98.62+0.66 98.68+0.63
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Table 17: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

Autoformer 46.90+289 45.59+237 44914223 443441252 63.49+244  45.63+229

Autoformer + CIF 45924278 44.81+244 44.664225 44264238 62.69+221 44.93+268

Crossformer 50.18+197 45.97+184 46.30+1.73 45904184 66.68+167 48.65+1.89

Crossformer + CIF 54.58+122 47.85+067 48.96+089 48.22+072 69.10+1.05 52.23+0.98

FEDformer 45.75+078 45.71+129 44.27+128 43.51+100 62.64+1.64 45.88+135

FEDformer + CIF 48.63+199 46.97+158 46.87+1.63 46.69+154 65.56+2.14 48.30+2.30

Informer 48.42+199 46.94+160 46414099 45.76+043 65.99+1.14 47.49+1.07

Informer + CIF 50.12+066 47.23+047 46.77+039 46.62+038 65.13+052 46.84+0.54

iTransformer 52.85+136 46.97+1.05 47.31+1.03 46.84+078 67.46+096 49.90+0.89

iTransformer + CIF  50.76+0.50 = 47.11+067 47.29+059 47.10+066 67.00+0.55 49.60+0.69

MTST 45.77+170 44394173 43.70+182 43.36+198 61.38+157 44.01+1.60

ADFTD MTST + CIF 46.364+093 45.04+065 45.47+088 44.87+081 63.57+124 47.35+136
(3-Classes) Nonformer 50.81+1.06 48.71+140 48.55+147 48.36+138 66.95+154 48.08+1.82
Reproduced Nonformer + CIF 51.81+211 49.93+081 49.66+036 49.10+057 68.59+060 50.44+094
Reformer 51.28+260 49.68+275 49.64+202 48.45+206 69.20+253 51.74+3.24

Reformer + CIF 52.50+091 52.10+291 49.01+274 47.53+423 68.25+1.79 50.44+259

Transformer 50.53+094 49.31+087 48.57+123 48.42+128 67.98+090 49.07+135

Transformer + CIF = 52.84+250 51.27+233 51.53+237 51.10+221 70.254242 52.35+294

Medformer 53.70+118  51.51+132 50.49+148 50.35+153  70.48+1.17  50.91+1.13

Medformer + CIF 55.88+082 51.91+190 50.80+1.63 50.29+1.92 70.45+133  53.73+1.70

MedGNN 50.22+321  48.65+372  47.50+457 47.33+440 67.18+439 48.84+4.11

MedGNN + CIF 54.89+123 51.57+157 51.46+168 50.85+205 71.98+159 53.89+1.73

HM-BiTCN 52.05+222  50.45+300 50.40+255 49.48+270 69.43+284 50.99+3.15

HM-BIiTCN + CIF  58.56+0.93 55.65+081 55.86+079 55.42+082 76.07+059 59.75+0.67

Table 18: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1score AUROC AUPRC
Autoformer 71.99+274  69.60+385 61.50+423 61.43+507 74.29+189  70.26+2.00
Autoformer + CIF 77.71+063 77.15+129 70324162 71.77+160 81.20+4.15 78.13+4.80
Crossformer 78.06+344 81.53+3.13  68.624563 69.76+653 88.31+207 85.81+243
Crossformer + CIF  84.55+480 85.96+363 78.64+749 80.25+7.80 92.17+299 91.16+3.70
FEDformer 74.54+227  77.99+410 63.144329 63.28+436 84.63+427 80.91+555
FEDformer + CIF 77.93+186 80.65+350 68.59+220 70.23+263 86.00+351 83.42+476
Informer 79.59+065 83.33+077 70.58+095 72.58+1.08 92.77+048 90.89+057
Informer + CIF 83.63+232 85.31+180 77.28+367 79.37+345 93.87+048 92.29+0.63
iTransformer 83.43+1.19  88.06+147 75.64+155 T78.29+170 91.38+141  91.08+1.30
iTransformer + CIF  81.62+296 87.48+203 72.74+441 74994491 90.25+329 89.80+3.28
MTST 75.53+245 78.72+187 64.78+406 65.30+481 87.76+409 83.60+3.92
MTST + CIF 81.80+1.60 84.194205 74.28+205 76.52+225 91.30+248 88.41+3.30

PTB Nonformer 78.93+146 82.48+153 69.6842.15 71.50+256 90.54+059 87.78+1.46
(2-Classes) Nonformer + CIF 71.89+381  71.80+458 69.444356 69.74+384 70.55+296 70.78+4.08
PatchTST 75.28+244  77.05+244 64.86+405 65.41+528 88.11+259 82.65+2.387
PatchTST + CIF 80.80+1.90 82.46+175 73.23+281 75.24+295 92.45+091 88.23+1.61

Reformer 78.11+165 82.70+080 68.17+268 69.68+334 90.77+156 88.14+1.20

Reformer + CIF 81.95+209 84.63+1.07 74.44+353 T76.55+364 93.36+087 91.53+1.05
Transformer 76.43+198 81.25+1.15 65.644329 66.44+439 90.21+124 87.28+1.49
Transformer + CIF ~ 78.80+244 82.45+236 69.424362 71.10+433 92.50+1.17 89.07+1.39
Medformer 80.99+075 83.01+072 73.35+1.16 75.47+121  93.10+1.18  90.69+1.04
Medformer + CIF 78.74+064 =~ 81.11+084 75.40+066 76.31+071 83.20+091 83.66+0.92
HM-BiTCN 81.87+1.87 86.50+124 73.49+290 75.84+320 94.20+029 93.04+045

HM-BIiTCN + CIF 88.29+145 90.66+148 83.21+2.02 85.59+196 94.28+093 93.78+1.11

During the process of transferring the optimized CIF hyperparameter configurations from the HM-
BiTCN architecture to other model structures, we observed significant improvements in performance
across most models and evaluation metrics. This result strongly demonstrates that the CIF module
not only exhibits high generalizability but also possesses well-transferable hyperparameters that can
be effectively adapted to various architectures. These hyperparameters enhance feature extraction
and representation capabilities across different model designs. This finding further highlights the
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potential of the CIF architecture in diverse tasks and provides valuable insights for future model
design and parameter sharing.

J.3 FINE-TUNING TRANSFERRED PARAMETERS

For models where the transferred hyperparameters from HM-BiTCN do not yield optimal results, we
perform additional fine-tuning. This step investigates the adaptability of CIF-related parameters and
explores how they can be optimized for other model structures.

Table 19: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy  Precision Recall F1 score AUROC AUPRC
iTransformer 74.69+1.02  74.76+104  T4.69+102  T4.67+102  83.35+124 83.65+1.41
TDBrain @Transfprmer + CIF(HM-BiTCN)  72.79+1.12  72.89+116  72.79+1.12  72.76+1.11  81.08+1.03  81.31+093
(2-Classes) iTransformer + CIF(New) 76.10+076  76.16+075  76.10+076  76.09+076  84.79+115  85.13+1.11
Reproduced Nonformer 88.10+239  88.76+1.74 88.10+239  88.04+247  96.56+091  96.36+1.21
Nonformer + CIF(HM-BiTCN) 88.00+206 = 88.91+168 88.00+206 87.92+2.12 = 97.10+110 97.17+1.09
Nonformer + CIF (New) 88.67+130 89.34+093 88.67+130 88.61+133  96.89+031  96.91+037

Table 20: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC
Autoformer 46.90+2890  45.59+237 44914223 44344250  63.49+244  45.63+229
Autoformer + CIF((HM-BiTCN))  45.924278 44.81+244 44.66+225 44.26+238  62.69+221  44.93+268
Autoformer + CIF(New) 48.49+131 46.42+107 45394180 44.94+197 63.75+146  46.10+1.84
ADFTD iTransformer 52.85+136 46.97+105 47.31+1.03 46.84+078 67.46+096 49.90+0.89
(3-Classes)  iTransformer + CIF(HM-BiTCN)  50.76+050 | 47.11+067 47.29+059 = 47.10+066 67.00+0.55  49.60+0.69
Reproduced iTransformer + CIF(New) 53.93+152 48.44+089 49.13+1.17  48.56+084  68.70+094  50.88+1.20
Reformer 51284260 49.68+275 49.64+202 48.45+206 69.20+253  51.74+324
Reformer + CIF(HM-BiTCN) 52.50+091 52.10+291 49.01+274 47.53+423 68.25+1.79  50.44+259
Reformer + CIF(New) 53.11+171  52.14+142 52424190 51.73+201  70.47+164 51.88+1.92
Medformer 53.70+1.18  51.51+132  50.49+148  50.35+153  70.48+117  50.91+1.13
Medformer + CIF(HM-BiTCN) 55.884082 51.91+190 50.80+1.63 50.29+192  70.45+1.33 = 53.73+1.70
Medformer + CIF(New) 5521+142  52.84+236 52.60+226 52.43+265 72.11+242  54.10+3.09

Table 21: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy  Precision Recall F1 score AUROC AUPRC
iTransformer 83.43+1.19  88.06+147  75.64+155  78.29+170 91.38+141  91.08+1.30
iTransformer + CIF(HM-BiTCN)  81.62+296 87.48+203 72.74+441  74.99+491  90.25+329  89.80+3.28

PTB iTransformer + CIF(New) 83.56+1.15 86.00+1.03 = 76.78+194  79.10+187 90.40+075  89.80+0.93
(2-Classes) Nonformer 78.93+146 82.48+153 69.68+2.15 71.50+256 90.54+059  87.78+1.46
Reproduced Nonformer + CIF(HM-BiTCN) 71.89+381  71.80+458 69.44+356  69.74+384  70.55+296  70.78+4.08
Nonformer + CIF(New) 80.46+220 84.22+244  71.7943.10  73.894350  92.744097  90.30+1.26

Medformer 80.99+075 83.01+072  73.35+116  75.47+121  93.10+1.18  90.69+1.04

Medformer + CIF(HM-BiTCN) 78.74+064 8l.11+084 = 75.40+066 76.31+071  83.20+091  83.66+0.92

Medformer + CIF(New) 83.98+081 85.21+062 78.00+130 80.11+122  93.32+097 90.97+1.69

For models that did not initially benefit from the direct transfer of CIF hyperparameters optimized for
HM-BiTCN, we conducted further fine-tuning of the key CIF parameters. The results demonstrate
that, after targeted adjustment, these models also achieved notable performance improvements. This
process not only reinforces the adaptability of the CIF architecture across diverse models but also
highlights the high tunability and flexibility of its hyperparameters. By appropriately modifying the
number of selected channels, fusion direction, and scaling factors, as shown in Tables
and Figures [T 1] [I2] 3] [[4] CIF can be effectively tailored to different network structures, thereby
maximizing its strengths in feature modeling and discriminative capability.
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K LIMITATIONS AND FUTURE WORK

Limitations:

Biomedical time series exhibit complex modal characteristics, which lead to significant efficiency
bottlenecks when manually adjusting the prior parameters (t, n, a, b) with clear medical interpretations
in the CIF model based on empirical experience. This limitation highlights the urgent need for
developing novel automated hyperparameter optimization frameworks.

Future Work:

We plan to explore a more universal and generalizable time-series analysis approach, incorporating
domain knowledge, structural modeling, and automated hyperparameter optimization. This inte-
gration should foster both deeper theoretical insights and stronger practical applicability, providing
robust solutions for real-world medical problems.

Furthermore, incorporating domain-specific prior knowledge into medical time-series analysis can
more precisely reveal and model relationships between channels. By integrating medical expertise,
clinical experience, and existing pathological data, the interpretability and predictive performance
of models can be enhanced, thereby supporting clinical decision-making and interventions. On
this basis, frequency-domain analysis |[Hu et al.| (2025); [Nason & Sachs| (1999); |Y1 et al.| (2025)
offers an additional perspective: by applying Fourier transform or wavelet decomposition to the
signals, physiological features at different frequency components can be identified, revealing patterns
that are difficult to capture in the time domain. This is particularly valuable for noise reduction,
extraction of periodic signals, and detection of pathological events, and can also provide richer feature
representations for model inputs. Future research could further explore how to combine time-domain
and frequency-domain information, integrating domain priors to improve the accuracy and robustness
of intelligent medical analytics.

Finally, we must acknowledge that the development trends in the field of artificial intelligence
highlight the importance of architectural innovation. Future research should focus on designing
novel architectures that align more closely with the CIF method, combining the strengths of existing
models. For example, the local feature extraction capabilities of CNNs |[LeCun et al.| (1989), the
temporal stability of TCNs|Bai et al.|(2018) for long sequences, the long-term dependency modeling
of RNNs Rumelhart et al.|(1986) and LSTMs |Hochreiter & Schmidhuber; (1997), the global modeling
efficiency of Transformers [Vaswani et al.| (2017)), the resource-efficient computation of Mamba |Gu &
Dao|(2023)), and the hybrid recurrence-attention structure of RWKYV Peng et al.|(2023)). By adapting
and integrating these methods, we aim to build a powerful model that is not only deeply compatible
with the CIF framework but also capable of efficiently handling complex medical time-series data.

L BROADER IMPACTS

In this study, we take the first step toward a paradigm shift in medical time-series analysis, transition-
ing from a focus on model architecture improvements to emphasizing the intrinsic structure of the
data. Our experimental results, which outperform several state-of-the-art methods across multiple
datasets, validate the effectiveness of this approach. We emphasize that uncovering the essential
characteristics in medical time-series data is a valuable research direction, particularly given the
critical need for model interpretability in medical applications. However, practitioners should be
cognizant of the method’s limitations.
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