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ABSTRACT

Medical time series (MedTS) such as EEG and ECG are critical for clinical diagno-
sis, yet existing deep learning approaches often struggle with two key challenges:
the misalignment between domain-specific physiological knowledge and generic
architectures, and the inherent low signal-to-noise ratio (SNR) of MedTS. To
address these limitations, we shift from a conventional model-centric paradigm
toward a data-centric perspective grounded in physiological principles. We pro-
pose Channel-Imposed Fusion (CIF), a method that explicitly encodes causal
inter-channel relationships by linearly combining signals under domain-informed
constraints, thereby enabling interpretable signal enhancement and noise suppres-
sion. To further demonstrate the effectiveness of data-centric design, we develop
a simple yet powerful model, Hidden-layer Mixed Bidirectional Temporal Con-
volutional Network (HM-BiTCN), which, when combined with CIF, consistently
outperforms Transformer-based approaches on multiple MedTS benchmarks and
achieves new state-of-the-art performance on general time series classification
datasets. Moreover, CIF is architecture-agnostic and can be seamlessly integrated
into mainstream models such as Transformers, enhancing their adaptability to
medical scenarios. Our work highlights the necessity of rethinking MedTS classi-
fication from a data-centric perspective and establishes a transferable framework
for bridging physiological priors with modern deep learning architectures. The
complete source code supporting this study is publicly available at the following
anonymous repository: anonymous link.

1 INTRODUCTION

Medical time series (MedTS) data, such as electroencephalogram (EEG) and electrocardiogram
(ECG) signals, are widely used in clinical settings to monitor patient health and play a crucial role
in diagnosing neurological and cardiovascular diseases Arif et al. (2024); Xiao et al. (2023); Zhu
et al. (2025); Wang et al. (2024b; 2025b). Accurate classification of these signals enables early
anomaly detection, personalized treatment, and optimized therapy planning, ultimately improving
patient outcomes and healthcare efficiency Liu et al. (2024a); Tian et al. (2023). With advances in
deep learning, CNN-based models like EEGNet Lawhern et al. (2018) can automatically extract
informative features from raw signals, significantly improving classification performance.

In recent years, Transformer models Vaswani et al. (2017), originally inspired by the self-attention
mechanism Bahdanau et al. (2014), have achieved remarkable progress in time series modeling, partic-
ularly in capturing long-range dependencies and global contextual information Liu et al. (2021); Zhou
et al. (2021). By mapping sequential data into high-dimensional token embeddings, Transformers are
able to implicitly model complex temporal dependencies. Despite their success across a wide range
of time series tasks, applying Transformer architectures to MedTS classification still faces several
challenges, which can be summarized as follows: (1) Misalignment between domain-specific
knowledge and generic architectures. Mainstream time series models, such as Autoformer Wu et al.
(2021), Crossformer Zhang & Yan (2022), and Reformer Kitaev et al. (2019), have demonstrated
strong performance in general domains such as weather forecasting and finance. However, as illus-
trated in Fig. 1, these approaches fail to achieve comparable effectiveness in MedTS classification
tasks. This raises the urgent question of how to enhance the applicability of general-purpose models
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Figure 1: The results of various methods on the TDBrain dataset (EEG) are presented, where
* indicates results reported by Medformer Wang et al. (2024a), and # indicates results reported by
MedGNN Fan et al. (2025). In addition, we highlight two main motivations of this work (Q1 and Q2).

in medical scenarios. Moreover, MedTS often encode critical physiological characteristics—for
example, conduction delays across ECG leads Auricchio et al. (2014) and rhythmic synchrony in
EEG signals Palva & Palva (2014); Fries (2015)—which inherently reflect channel-level relationships.
Unfortunately, such physiological dependencies are rarely considered in generic time series modeling
frameworks. (2) Overemphasis on model optimization while neglecting the intrinsic low SNR of
MedTS. Unlike general-purpose time series tasks, MedTS are characterized by pronounced low-SNR
conditions Del Rio et al. (2011); Sraitih et al. (2022); Sharma (2017); Mohd Apandi et al. (2020); Jia
et al. (2024), where noise and artifacts can easily overshadow critical physiological features. In such
conditions, complex Transformer architectures do not always succeed in stably extracting effective
representations, while simpler models (e.g., TCNs Bai et al. (2018)) may also experience more severe
performance degradation. Indeed, recent Transformer-based methods tailored for MedTS, such as
MedGNN Fan et al. (2025) and Medformer Wang et al. (2024a), primarily rely on architectural
innovations, yet they fall short in fundamentally addressing the low-SNR challenge. This raises
a key question: should breakthroughs in MedTS classification come from increasingly complex
architectures, or from more principled data processing and representation strategies?

To address the aforementioned limitations, we depart from the traditional model-centric paradigm that
relies on increasingly complex architectures to capture temporal dependencies, and instead propose a
data-centric approach grounded in the physiological properties of medical time series. Following
this principle, we introduce the Channel-Imposed Fusion (CIF) method, which explicitly encodes
prior causal structures into feature representations. Specifically, CIF constructs new features through
a linear combination of signals from different channels:

xnew = ax+ by, (1)

where x and y denote signals from two distinct channels, and a and b are coefficients predefined based
on domain knowledge. When a and b take fixed values, they are not learned directly from patient
data, but instead derived from two domain-specific prior hypotheses: (1) Physiological Coupling
Hypothesis. For ECG signals, when two leads are highly correlated (e.g., P-wave polarity and
morphology are consistent Platonov (2012)), setting a = b = 1 achieves in-phase summation, thereby
enhancing target signal components and improving the SNR. (2) Noise Suppression Hypothesis. In
EEG recordings, ocular artifacts such as blinks often appear highly correlated in frontal electrodes
Fp1 and Fp2 Croft & Barry (2000). To suppress such noise, we set a = 1, b = −1, applying a
differential fusion strategy to cancel common-mode interference. Here, the coefficients a and b
serve as symbolic encodings of interpretable physiological principles, rather than exact data-driven
estimates. When treated as learnable parameters, they can be fine-tuned under symbolic constraints
imposed by prior knowledge (e.g., enforcing a > 0, b > 0 under coupling, and a > 0, b < 0 under
noise suppression). This design maintains the interpretability of directional relationships (e.g., signal
enhancement or cancellation) while allowing the model to adaptively adjust the magnitude of each
coefficient based on the training data.
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To emphasize the importance of data-centric approaches, we deliberately designed a simple
yet effective model—the Hidden-layer Mixed Bidirectional Temporal Convolutional Network (HM-
BiTCN)—to demonstrate that excellent performance does not necessarily require model complexity.
The combination of CIF and HM-BiTCN not only outperforms Transformer-based methods on
multiple medical datasets but also achieves new state-of-the-art (SOTA) results on general time series
classification benchmarks. More importantly, the CIF method is not limited to the HM-BiTCN
architecture itself; it exhibits strong transferability and can be seamlessly integrated into existing
Transformer architectures, enhancing their adaptability to MedTS data. Our main contributions are:

• Proposal of Channel-Imposed Fusion (CIF). We introduce CIF to explicitly model inter-
channel relationships in medical time series, particularly suitable for signals with well-
defined physiological structures such as EEG and ECG.

• Design of HM-BiTCN based on CIF. By integrating CIF into HM-BiTCN, our method
consistently outperforms existing SOTA models across multiple publicly available medical
and non-medical time series classification datasets.

• Methodological transferability. CIF is architecture-agnostic and can be seamlessly inte-
grated into mainstream models such as Transformers, compensating for the limitations of
traditional positional encodings in modeling channel-level correlations, and highlighting the
paradigm shift from a model-centric to a data-centric perspective.

2 RELATED WORK

Medical Time Series Classification. Medical time series analysis diverges fundamentally from
general time series forecasting Wu et al. (2022a); Lu et al. (2024) by prioritizing pathological
signature decoding over temporal extrapolation, with modalities like EEG Tang et al. (2021); Yang
et al. (2023); Qu et al. (2020), ECG Xiao et al. (2023); Wang et al. (2023); Kiyasseh et al. (2021),
and EMG [Xiong et al. (2021); Dai et al. (2022)] encoding distinct clinical semantics. Early
methods were dominated by compact CNNs such as EEGNet Lawhern et al. (2018), which employs
depthwise separable convolutions to efficiently extract spatio–temporal features while providing
preliminary interpretability via feature-map visualization. Subsequently, temporal convolutional
networks (TCNs) Bai et al. (2018); Lin et al. (2019) leveraging dilated causal convolutions achieved
parallelizable computation and extended receptive fields, surpassing LSTM-based approaches Zhou
et al. (2016); Shen & Lee (2016); Hochreiter & Schmidhuber (1997) on multiple medical signal
classification benchmarks. Hybrid architectures such as EEG-Conformer Song et al. (2022) combined
convolutional front-ends with Transformer self-attention to capture both local and global dependencies
and enabled attention-based interpretability. More recently, fine-grained Transformer models such as
Medformer Wang et al. (2024a) introduced cross-channel tokenization and dual-stage self-attention,
setting new SOTA accuracy on several public datasets. The latest MedGNN Fan et al. (2025)
further augments attention mechanisms with multi-resolution graph learning to jointly model spatial
multi-scale channel dependencies and temporal dynamics.

Model-centric Transformer-based time series methods. In time series analysis, Transformer-
based models learn complex dependencies through diversified architectural designs: the vanilla
Transformer Vaswani et al. (2017) first introduced multi-head self-attention and sinusoidal positional
encoding to model temporal correlations globally; Informer Zhou et al. (2021) employs ProbSparse
attention to select key time steps and compress sequence length, thereby reducing the computational
cost of long-range dependencies; Reformer Kitaev et al. (2019) incorporates Locality-Sensitive
Hashing (LSH) to reduce attention complexity to O(L logL), making it suitable for ultra-long
sequences; Autoformer Wu et al. (2021) proposes an Auto-Correlation mechanism that aggregates
periodic subsequences to enhance the implicit capture of cyclic patterns; FEDformer Zhou et al.
(2022) performs seasonal–trend decomposition in the frequency domain and uses compressed Fourier
coefficients to enable cross-frequency attention interactions; Crossformer Zhang & Yan (2022) designs
a two-stage attention mechanism across time and feature dimensions to implicitly fuse multivariate
spatiotemporal couplings; iTransformer Liu et al. (2024b) innovatively treats time steps as channel
dimensions and applies standard attention to implicitly learn nonlinear inter-variable relationships;
PatchTST Nie et al. (2023) segments continuous time steps into patch-based tokens and uses a
combination of local and global attention to capture multi-scale temporal patterns; Medformer Wang
et al. (2024a) introduces multi-granularity patch embeddings and cross-channel attention for medical
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signals, implicitly modeling the heterogeneous couplings of physiological metrics; and MedGNN Fan
et al. (2025) combines graph attention with frequency-differential networks to incorporate medical
topological priors into implicit spatiotemporal dependency learning.

3 METHOD

3.1 CHANNEL-IMPOSED FUSION

As shown in Eq. 1, a linear combination of two channels can incorporate physiological priors to
construct more meaningful feature representations. For multi-channel data with N channels, we
select two subsets X and Y , each containing n ≤ N channels. Each corresponding channel pair Xi

and Yi is linearly fused to produce

Xnew
i = aiXi + biYi, i = 1, 2, . . . , n, (2)

where ai and bi are the linear combination coefficients for the i-th pair of channels. Consequently, this
multi-channel fusion scheme requires n coefficients ai and n coefficients bi in total. By leveraging
physiological priors through such linear combinations across multiple channels, the model can
enhance its capability to capture salient physiological patterns .

SNR Improvement via Linear Channel Fusion. Details in Appendix A Consider two observed
signals x1 = s1 + ϵ1 and x2 = s2 + ϵ2, with zero-mean, mutually uncorrelated signal and noise
components. The CIF module performs a linear combination y = ax1+bx2 = as1+bs2+aϵ1+bϵ2,
whose output SNR can be expressed as SNRout = Var(as1 + bs2)/Var(aϵ1 + bϵ2).

In the simple case where the signals and noises have equal variances σ2
s and σ2

ϵ , and correlations
ρ and γ, this reduces to SNRout = SNRin · (a2 + b2 + 2abρ)/(a2 + b2 + 2abγ). Maximizing this
ratio yields two canonical modes: cooperative mode (ρ > γ) with a = b, which amplifies correlated
signals, and differential mode (ρ < γ) with a = −b, which suppresses correlated noise.

In the general case where signal and noise variances are unequal and may both be corre-
lated, let the signal vector [s1, s2]

T and noise vector [ϵ1, ϵ2]
T have covariance matrices S =[

σ2
s1 ρσs1σs2

ρσs1σs2 σ2
s2

]
and N =

[
σ2
ϵ1 γσϵ1σϵ2

γσϵ1σϵ2 σ2
ϵ2

]
, respectively, and let the linear combination

coefficients be w = [a, b]T . The output SNR is then SNR(w) = (wTSw)/(wTNw). Taking
the derivative with respect to w and setting it to zero yields the generalized eigenvalue prob-
lem Sw = λNw, where the eigenvalue λ represents an achievable SNR. In the two-channel
case, λ satisfies the quadratic equation Aλ2 + Bλ + C = 0, with A = σ2

ϵ1σ
2
ϵ2(1 − γ2),

B = −
(
σ2
s1σ

2
ϵ2 + σ2

s2σ
2
ϵ1 − 2ργσs1σs2σϵ1σϵ2

)
, and C = σ2

s1σ
2
s2(1 − ρ2). The maximum out-

put SNR is therefore SNRmax = λmax = [−B +
√
B2 − 4AC]/(2A), and the corresponding

optimal coefficient ratio is (b/a) = (λmaxσ
2
ϵ1 − σ2

s1)/(ρσs1σs2 − λmaxγσϵ1σϵ2). This two-channel
SNR maximization framework can be directly extended to multi-channel recordings by grouping
channels into corresponding pairs (xik , xjk), constructing for each pair the signal and noise covari-
ance matrices Sk and Nk, and solving Skwk = λkNkwk to obtain the optimal fusion coefficients
wk = [ak, bk]

T , which define the fused channel yk = akxik + bkxjk . Such pairwise optimal linear
fusion exploits inter-channel signal correlations while suppressing correlated noise, thereby achieving
simultaneous SNR enhancement across all channels in a multi-channel system .

However, despite the fact that designing independent coefficients (ai, bi) for each channel pair can
maximize physiological interpretability and enhance the signal-to-noise ratio, this approach still
faces several practical challenges in real-world applications. The total number of parameters scales
linearly with the number of channels, reaching 2n, which can make parameter management and
optimization cumbersome as n increases. Moreover, if the coefficients are not learnable, each pair
must be manually adjusted, substantially increasing the workload and introducing potential human
bias. In addition, when the coefficients are uncertain or need to be searched over a range of candidate
values, the number of possible configurations grows exponentially (i.e., K2n for K candidate values
per coefficient), rendering exhaustive optimization practically infeasible.

To alleviate these issues, we adopt a simplified strategy in which a single coefficient a is applied
uniformly to the first n channels and a single coefficient b is applied to the remaining n channels,
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reducing the total number of parameters from 2n to 2. This substantially decreases the manual
adjustment and computational cost while retaining the core advantages of linear fusion. The simplified
fusion can be expressed as

Xnew
i = aXi + bYi, i = 1, . . . , n. (3)

Although this strategy significantly reduces the parameter space and improves practical usability, it
comes with a trade-off: replacing pairwise coefficients (ai, bi) with global coefficients (a, b) reduces
micro-level interpretability and may limit the ability to selectively enhance high-signal channels.
Overall, this design provides a practical compromise between physiological fidelity, parameter
efficiency, and computational feasibility. For applications that require more fine-grained modeling,
intermediate strategies such as group-wise coefficients or learnable parameters can be employed to
balance interpretability and parameter efficiency.
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Figure 2: Reorders the channels , placing electrodes from the same functional region adjacently along
the input dimension to create an “functional region fusion” input layout. Panel (d) visualizes the
pairwise channel fusion process as the number of channels n varies.
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Figure 3: The implementation process of the Channel-Imposed Fusion method.

To align with the use of global coefficients (a, b), the subsequent stage of the CIF module reorders
channels according to physiological priors, ensuring that linear fusion operates on a physiologically
meaningful sequence and preserves functional relationships. In the first step, input channels are
reordered as shown in Figure 2(b) to explicitly encode the physiological priors depicted in Figure 2(a).
For EEG, channels are grouped by functional regions following the international 10–20 system Klem
(1999), with anterior regions (frontopolar and frontal) placed at the beginning and posterior regions
(parietal and occipital) at the end, while preserving local spatial neighborhoods within each region as
much as possible. This "anterior-to-posterior" ordering is independent of specific electrode montages,
allowing application across datasets and enhancing the capture of spatial patterns related to the brain’s
anterior–posterior organization. For ECG, channels are grouped according to cardiac physiology:
limb leads (I, II, III) and augmented leads (aVR, aVL, aVF) are placed first, precordial leads (V1–V6)
in the middle, and other derived or vector leads (Vx, Vy, Vz) last. The precordial and vector leads
roughly follow the thoracic spatial trajectory—from proximal to distal, right to left, and anterior to
posterior—ensuring adjacent placement of leads capturing related cardiac activity, thereby enabling
effective fusion across functional regions or lead groups. This process, referred to as functional region
fusion (FRF), allows the CIF module to fully exploit cross-region spatial dependencies.
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In Figure 2 (d), we illustrate the specific physiological channel fusion relationships as the number of
channels n varies; for clarity, Figure 3 provides a simplified schematic of this process. Specifically,
the anterior and posterior brain regions are first arranged according to physiological order, and then
the first n channels are fused with the last n channels. When n is less than half of the total number
of channels, fusion occurs across different functional regions; when n exceeds half, fusion occurs
within the same functional region. This approach relies on only a few tunable parameters—n, a, and
b—which control the number of channels affected by the CIF module. As n increases, more channels
are influenced while maintaining physiological diversity across channels. This flexible fusion strategy
provides a foundation for systematically exploring different channel subsets and integrating additional
physiological features, while also supporting subsequent parameter optimization.

3.2 HM-BITCN STRUCTURE DESIGN AND THEORETICAL ANALYSIS
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Figure 4: HM-BiTCN Architecture Diagram.

To demonstrate the advantages of data-centric approaches and to show that simple models can achieve
strong performance, as illustrated in Figure 4 (a), the conventional TCN only models unidirectional
causal relationships in time series. In contrast, our proposed HM-BiTCN (Figure 4 (c)) extends the
traditional TCN by introducing bidirectional feature mixing, allowing each layer to capture both
forward and backward temporal dependencies. This design is complementary to CIF’s enhancement
along the channel dimension: CIF focuses on capturing inter-channel spatial relationships and
improving the signal-to-noise ratio, while HM-BiTCN strengthens feature extraction along the
temporal dimension. The combined enhancement across both channel and temporal dimensions
enables CIF+HM-BiTCN to more fully exploit the information contained in the data, achieving
superior performance. Importantly, when the parameters a and b in CIF are set to be learnable, they
are optimized jointly with HM-BiTCN’s structural parameters in an end-to-end training process,
thereby enabling unified channel- and time-domain feature enhancement. For further details, please
refer to Appendix D and Appendix E.

4 EXPERIMENTS

Medical Time Series Datasets. (1) APAVA Escudero et al. (2006) is an EEG dataset where
each sample is assigned a binary label indicating whether the subject has Alzheimer’s disease. (2)
TDBRAIN van Dijk et al. (2022) is an EEG dataset with a binary label assigned to each sample,
indicating whether the subject has Parkinson’s disease. (3) ADFTD Miltiadous et al. (2023b;a) is
an EEG dataset with a three-class label for each sample, categorizing the subject as Healthy, having
Frontotemporal Dementia, or Alzheimer’s disease. (4) PTB PhysioBank (2000) is an ECG dataset
where each sample is labeled with a binary indicator of Myocardial Infarction. (5) PTB-XL Wagner
et al. (2020) is an ECG dataset with a five-class label for each sample, representing various heart
conditions. Table 5 provides information on the processed datasets.The data processing methodology
is the same as that of Medformer Wang et al. (2024a) and MedGNN Fan et al. (2025).
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Baselines. We compare with 12 state-of-the-art time series transformer methods: Autoformer Wu
et al. (2021), Crossformer Zhang & Yan (2022), FEDformer Zhou et al. (2022), Informer Zhou et al.
(2021), iTransformer Liu et al. (2024b), MTST Zhang et al. (2024), Nonformer Liu et al. (2022),
PatchTST Nie et al. (2023), Reformer Kitaev et al. (2019), vanilla Transformer Vaswani et al. (2017),
Medformer Wang et al. (2024a), MedGNN Fan et al. (2025).

Implementation. We employ six evaluation metrics: accuracy, precision (macro-averaged), recall
(macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged), and AUPRC (macro-
averaged). The training process is conducted with five random seeds (41-45) on fixed training,
validation, and test sets to compute the mean and standard deviation of the models. All experi-
ments were conducted using an NVIDIA RTX 3090 GPU and implemented with PyTorch version
1.11.0 Paszke et al. (2017). Following Medformer Wang et al. (2024a) and MedGNN Fan et al. (2025),
we consider two dataset partitioning strategies: (i) Subject-Dependent Split, where samples from
the same subject may appear in both training and test sets, potentially causing information leakage;
and (ii) Subject-Independent Split, where each subject appears only in one of the train, validation,
or test sets, simulating real-world diagnostic scenarios while introducing inter-subject variability
challenges. The model is trained to minimize the supervised loss L = 1

N

∑N
i=1 ℓ(ŷi, yi), where

ℓ(ŷi, yi) measures the discrepancy between the predicted labels ŷi and the ground-truth labels yi.
Specifically, the encoder fθ : RT×C → Rd maps each input xi to a latent representation hi = fθ(xi),
which is then passed to the classifier gϕ to produce the prediction ŷi = gϕ(hi).

4.1 RESULTS OF SUBJECT-DEPENDENT

Table 1: Results of Subject-Dependent Setup. Results of the ADFTD dataset under this setup are
presented here.The best result is highlighted in bold, and the second-best is underlined.

Datasets Models Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑

ADFTD
(3-Classes)
Reported

Autoformer 87.83±1.62 87.63±1.66 87.22±1.97 87.38±1.79 96.59±0.88 93.82±1.64
Crossformer 89.35±1.32 89.00±1.44 88.79±1.37 88.88±1.40 97.52±0.58 95.45±1.03
FEDformer 77.63±2.37 76.76±2.17 76.68±2.48 76.60±2.46 91.67±1.34 84.94±2.11
Informer 90.93±0.90 90.74±0.71 90.50±1.14 90.60±0.94 98.19±0.27 96.51±0.49
iTransformer 64.90±0.25 62.53±0.27 62.21±0.26 62.25±0.33 81.52±0.29 68.87±0.49
MTST 65.08±0.69 63.85±0.80 62.71±0.64 63.03±0.58 81.36±0.56 69.34±0.89
Nonformer 96.12±0.47 95.94±0.56 95.99±0.38 95.96±0.47 99.59±0.09 99.08±0.16
PatchTST 66.26±0.40 65.08±0.41 64.97±0.51 64.95±0.42 83.07±0.45 71.70±0.61
Reformer 91.51±1.75 91.15±1.79 91.65±1.56 91.14±1.83 98.85±0.35 97.88±0.60
Transformer 97.00±0.43 96.87±0.53 96.86±0.36 96.86±0.44 99.75±0.04 99.42±0.07
Medformer 97.62±0.34 97.53±0.33 97.48±0.40 97.50±0.36 99.83±0.05 99.62±0.12
MedGNN 98.42±0.04 98.31±0.02 98.29±0.05 98.30±0.12 99.93±0.11 -
Medformer + CIF 98.87±0.26 98.77±0.27 98.86±0.27 98.81±0.27 99.96±0.01 99.92±0.03
MedGNN + CIF 99.60±0.09 99.60±0.11 99.58±0.09 99.59±0.10 99.99±0.01 99.97±0.01

Following Medformer Wang et al. (2024a), in this setup, the training, validation, and test sets are split
at the sample level. All samples from all subjects are randomly shuffled and assigned to the three sets
according to a predetermined ratio, so that samples from the same subject may appear simultaneously
in the training, validation, and test sets. This setup has limited applicability for MedTS-based disease
diagnosis in real-world scenarios and is typically used to quickly assess whether the dataset exhibits
cross-subject features. Results obtained under this setup are generally much higher than those from
the subject-independent setup, reflecting the upper bound of the dataset’s learnability.

We reproduced 12 baselines. Table 1 lists their reported results, and Table 10 in Appendix I shows
our reproduced results. Experimental results show that integrating the CIF method into MedGNN and
Medformer outperforms existing approaches, fully demonstrating its effectiveness and superiority.

4.2 RESULTS OF SUBJECT-INDEPENDENT

Following Medformer Wang et al. (2024a), in this setup, the training, validation, and test sets are
split based on subjects. All subjects and their corresponding samples are assigned to the training,
validation, and test sets according to a predetermined ratio or subject IDs, ensuring that samples from
the same subject appear in only one of these sets. This simulates real-world MedTS-based disease
diagnosis, aiming to train a model on subjects with known labels and then test it on unseen subjects
to determine whether they have a specific disease. All five datasets are evaluated using this setup.
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Table 2: Results of Subject-Independent Setup. The results we compare include those reported by
Medforme Wang et al. (2024a) and MedGNN Fan et al. (2025). Additionally, we have reproduced all
the methods in the Table 11 to ensure a fairer comparison.The best result is highlighted in bold, and
the second-best is underlined.

Datasets Models Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑

APAVA
(2-Classes)
Reported

Autoformer 68.64±1.82 68.48±2.10 68.77±2.27 68.06±1.94 75.94±3.61 74.38±4.05
Crossformer 73.77±1.95 79.29±4.36 68.86±1.70 68.93±1.85 72.39±3.33 72.05±3.65
FEDformer 74.94±2.15 74.59±1.50 73.56±3.55 73.51±3.39 83.72±1.97 82.94±2.37
Informer 73.11±4.40 75.17±6.06 69.17±4.56 69.47±5.06 70.46±4.91 70.75±5.27
iTransformer 74.55±1.66 74.77±2.10 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57
MTST 71.14±1.59 79.30±0.97 65.27±2.28 64.01±3.16 68.87±2.34 71.06±1.60
Nonformer 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08
PatchTST 67.03±1.65 78.76±1.28 59.91±2.02 55.97±3.10 65.65±0.28 67.99±0.76
Reformer 78.70±2.00 82.50±3.95 75.00±1.61 75.93±1.82 73.94±1.40 76.04±1.14
Transformer 76.30±4.72 77.64±5.95 73.09±5.01 73.75±5.38 72.50±6.60 73.23±7.60
Medformer 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92
MedGNN 82.60±0.35 87.70±0.22 78.93±0.09 80.25±0.16 85.93±0.26 -
HM-BiTCN + CIF 86.30±1.05 86.16±1.09 85.47±1.12 85.71±1.09 94.26±0.54 94.42±0.49

TDBrain
(2-Classes)
Reported

Autoformer 87.33±3.79 88.06±3.56 87.33±3.79 87.26±3.84 93.81±2.26 93.32±2.42
Crossformer 81.56±2.19 81.97±2.25 81.56±2.19 81.50±2.20 91.20±1.78 91.51±1.71
FEDformer 78.13±1.98 78.52±1.91 78.13±1.98 78.04±2.01 86.56±1.86 86.48±1.99
Informer 89.02±2.50 89.43±2.14 89.02±2.50 88.98±2.54 96.64±0.68 96.75±0.63
iTransformer 74.67±1.06 74.71±1.06 74.67±1.06 74.65±1.06 83.37±1.14 83.73±1.27
MTST 76.96±3.76 77.24±3.59 76.96±3.76 76.88±3.83 85.27±4.46 82.81±5.64
Nonformer 87.88±2.48 88.86±1.84 87.88±2.48 87.78±2.56 97.05±0.68 96.99±0.68
PatchTST 79.25±3.79 79.60±4.09 79.25±3.79 79.20±3.77 87.95±4.96 86.36±6.67
Reformer 87.92±2.01 88.64±1.40 87.92±2.01 87.85±2.08 96.30±0.54 96.40±0.45
Transformer 87.17±1.67 87.99±1.68 87.17±1.67 87.10±1.68 96.28±0.92 96.34±0.81
Medformer 89.62±0.81 89.68±0.78 89.62±0.81 89.62±0.81 96.41±0.35 96.51±0.33
MedGNN 91.04±0.09 91.15±0.12 91.04±0.20 91.04±0.08 96.74±0.04 -
HM-BiTCN + CIF 93.13±1.41 93.33±1.37 93.13±1.41 93.12±1.42 98.62±0.66 98.68±0.63

ADFTD
(3-Classes)
Reported

Autoformer 45.25±1.48 43.67±1.94 42.96±2.03 42.59±1.85 61.02±1.82 43.10±2.30
Crossformer 50.45±2.31 45.57±1.63 45.88±1.82 45.50±1.70 66.45±2.03 48.33±2.05
FEDformer 46.30±0.59 46.05±0.76 44.22±1.38 43.91±1.37 62.62±1.75 46.11±1.44
Informer 48.45±1.96 46.54±1.68 46.06±1.84 45.74±1.38 65.87±1.27 47.60±1.30
iTransformer 52.60±1.59 46.79±1.27 47.28±1.29 46.79±1.13 67.26±1.16 49.53±1.21
MTST 45.60±2.03 44.70±1.33 45.05±1.30 44.31±1.74 62.50±0.81 45.16±0.85
Nonformer 49.95±1.05 47.71±0.97 47.46±1.50 46.96±1.35 66.23±1.37 47.33±1.78
PatchTST 44.37±0.95 42.40±1.13 42.06±1.48 41.97±1.37 60.08±1.50 42.49±1.79
Reformer 50.78±1.17 49.64±1.49 49.89±1.67 47.94±0.69 69.17±1.58 51.73±1.94
Transformer 50.47±2.14 49.13±1.83 48.01±1.53 48.09±1.59 67.93±1.59 48.93±2.02
Medformer 53.27±1.54 51.02±1.57 50.71±1.55 50.65±1.51 70.93±1.19 51.21±1.32
MedGNN 56.12±0.11 55.07±0.09 55.47±0.34 55.00±0.24 74.68±0.33 -
HM-BiTCN + CIF 58.56±0.93 55.65±0.81 55.86±0.79 55.42±0.82 76.07±0.59 59.75±0.67

PTB
(2-Classes)
Reported

Autoformer 73.35±2.10 72.11±2.89 63.24±3.17 63.69±3.84 78.54±3.48 74.25±3.53
Crossformer 80.17±3.79 85.04±1.83 71.25±6.29 72.75±7.19 88.55±3.45 87.31±3.25
FEDformer 76.05±2.54 77.58±3.61 66.10±3.55 67.14±4.37 85.93±4.31 82.59±5.42
Informer 78.69±1.68 82.87±1.02 69.19±2.90 70.84±3.47 92.09±0.53 90.02±0.60
iTransformer 83.89±0.71 88.25±1.18 76.39±1.01 79.06±1.06 91.18±1.16 90.93±0.98
MTST 76.59±1.90 79.88±1.90 66.31±2.95 67.38±3.71 86.86±2.75 83.75±2.84
Nonformer 78.66±0.49 82.77±0.86 69.12±0.87 70.90±1.00 89.37±2.51 86.67±2.38
PatchTST 74.74±1.62 76.94±1.51 63.89±2.71 64.36±3.38 88.79±0.91 83.39±0.96
Reformer 77.96±2.13 81.72±1.61 68.20±3.35 69.65±3.88 91.13±0.74 88.42±1.30
Transformer 77.37±1.02 81.84±0.66 67.14±1.80 68.47±2.19 90.08±1.76 87.22±1.68
Medformer 83.50±2.01 85.19±0.94 77.11±3.39 79.18±3.31 92.81±1.48 90.32±1.54
MedGNN 84.53±0.28 87.35±0.45 77.90±0.66 80.40±0.62 93.31±0.46 -
HM-BiTCN + CIF 88.29±1.45 90.66±1.48 83.21±2.02 85.59±1.96 94.28±0.93 93.78±1.11

PTB-XL
(5-Classes)
Reported

Autoformer 61.68±2.72 51.60±1.64 49.10±1.52 48.85±2.27 82.04±1.44 51.93±1.71
Crossformer 73.30±0.14 65.06±0.35 61.23±0.33 62.59±0.14 90.02±0.06 67.43±0.22
FEDformer 57.20±9.47 52.38±6.09 49.04±7.26 47.89±8.44 82.13±4.17 52.31±7.03
Informer 71.43±0.32 62.64±0.60 59.12±0.47 60.44±0.43 88.65±0.09 64.76±0.17
iTransformer 69.28±0.22 59.59±0.45 54.62±0.18 56.20±0.19 86.71±0.10 60.27±0.21
MTST 72.14±0.27 63.84±0.72 60.01±0.81 61.43±0.38 88.97±0.33 65.83±0.51
Nonformer 70.56±0.55 61.57±0.66 57.75±0.72 59.10±0.66 88.32±0.36 63.40±0.79
PatchTST 73.23±0.25 65.70±0.64 60.82±0.76 62.61±0.34 89.74±0.19 67.32±0.22
Reformer 71.72±0.43 63.12±1.02 59.20±0.75 60.69±0.18 88.80±0.24 64.72±0.47
Transformer 70.59±0.44 61.57±0.65 57.62±0.35 59.05±0.25 88.21±0.16 63.36±0.29
Medformer 72.87±0.23 64.14±0.42 60.60±0.46 62.02±0.37 89.66±0.13 66.39±0.22
MedGNN 73.87±0.18 66.26±0.29 61.13±0.29 62.54±0.20 90.21±0.15 -
HM-BiTCN + CIF 73.73±0.30 65.41±0.67 60.70±1.08 61.89±0.91 90.53±0.22 67.75±0.75

Table 2 presents the results reported by various methods in the subject-independent setting, while
Table 11 shows the results of our reproduction of these methods. Our method achieves the highest
average scores across six metrics on four out of the five datasets. On PTB-XL, our method tops
AUROC and AUPRC and ranks second in Accuracy versus reported results, and ranks first in Accuracy,
Precision, AUROC, AUPRC, and second in Recall versus our reproduced results. Additionally, it is
worth noting that in the subject-independent, the F1 score of ADFTD is 55.42%, which is significantly
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lower than the 99.59% achieved in the subject-dependent setup. This comparison highlights the
challenges of the subject-independent setup, which better simulates real-world scenarios.

4.2.1 EFFICIENCY ANALYSIS

HM-BiTCN
2.3G | 3.1s

Reformer
3.1G | 7.1sTransformer

3.2G | 4.4s

iTransformer
2.0G | 4.0s

PatchTST
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Crossformer
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Fedformer
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(a) APAVA
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2.3G | 4.5s
Autoformer
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3.1G | 9.7s

Transformer
3.3G | 6.2s

Crossformer
2.8G | 12.1s

PatchTST
3.9G | 9.9s

iTransformer
2.0G | 6.4s

MTST
4.5G | 20.4s

Medformer
2.3G | 25.1s

Fedformer
2.4G | 58.3s

(b) TDBRAIN

Figure 5: Effectiveness and efficiency on two datasets (subject-based).

We evaluate the model efficiency in terms of accuracy, training speed, and memory footprint using
two datasets: APAVA and TDBRAIN. In Figure 5, a marker closer to the upper-left corner indicates
higher accuracy and faster training speed, while a smaller marker area corresponds to lower memory
usage. The results show that HM-BiTCN achieves the best overall performance among all baseline
methods, demonstrating its high efficiency and reliability across different application scenarios.

4.3 ABLATION STUDY

(1) Effectiveness of CIF: Table 3 demonstrates the excellent performance of combining HM-BiTCN
with CIF, confirming the compatibility of the HM-BiTCN with CIF. See Appendix J.1 for details.
Appendix F presents ablation studies on the HM-BiTCN architecture, the performance improvements
from integrating CIF into its components, and comparisons with the vanilla TCN structure.

Table 3: Exploring the Integration of HM-BiTCN Structure with CIF.

Datasets APAVA ADFTD PTB TDBRAIN PTB-XL

Metrics Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

w/ CIF 86.30±1.05 85.71±1.09 58.56±0.93 55.42±0.82 88.29±1.45 85.59±1.96 93.13±1.41 93.12±1.42 73.73±0.30 61.89±0.91

w/o CIF 82.49±1.40 81.60±1.39 52.05±2.22 49.48±2.70 81.87±1.87 75.84±3.20 84.90±2.60 84.76±2.74 72.92±0.88 61.49±0.82

Improvement +3.81% +4.11% +6.51% +5.94% +6.42% +9.75% +8.23% +8.36% +0.81% +0.40%

(2) Hyperparameter Transfer and Adaptation: We evaluate the transferability of key hyperpa-
rameters (e.g., a, b, n) from HM-BiTCN to other models. If transferred settings underperform, we
further fine-tune them for adaptation. See Appendices J.2 and J.3. Figure 6 illustrates the outstanding
performance of CIF when combined with other models.

(3) Exploring alternative fusion strategies: In Appendix G, we systematically evaluate several
fusion approaches, including the fusion using only the Fp1 and Fp2 channels mentioned in the
Introduction, the fusion of a reduced set of left-right symmetric channels, and our further exploration
using canonical correlation analysis (CCA) for fusion. The experimental results demonstrate that CIF
exhibits strong scalability, maintaining performance advantages across different fusion strategies.

(4)Results on general time series classification tasks

To evaluate the performance of our method on general time series, we follow the design of
Medformer Wang et al. (2024a) and test it on two human activity recognition (HAR) datasets:
FLAAP(13,123 samples, 10 classes) Kumar & Suresh (2022) and UCI-HAR(10,299 samples, 6
classes) Anguita et al. (2013). Additionally, to conduct a more comprehensive evaluation, following
TimeMixer++ Wang et al. (2025a), we used 10 multivariate datasets from the UEA Time Series
Classification Archive (2018) for the assessment of classification tasks.
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Figure 6: The improvements achieved by various baselines when combined with the CIF method.

Table 4: Performance on the HAR and UCI-HAR non-medical time series datasets. Bold numbers
indicate the best results. * denotes the results reported by Medformer.

Dataset / Metric Crossformer *
Zhang & Yan (2022)

Reformer *
Kitaev et al. (2019)

Transformer *
Vaswani et al. (2017)

TCN *
Bai et al. (2018)

ModernTCN *
Luo & Wang (2024)

Mamba *
Gu & Dao (2023)

Medformer *
Wang et al. (2024a)

HM-BiTCN
(This work)

HM-BiTCN + CIF
(This work)

FLAAP
(10 Classes)

Accuracy 75.84±0.52 71.65±1.27 74.96±1.25 66.48±1.66 74.80±0.96 64.87±2.78 76.44±0.64 76.08±0.81 76.82±1.32
F1 Score 75.52±0.66 71.14±1.45 74.49±1.39 65.29±1.74 74.35±0.85 64.14±2.70 76.25±0.65 75.54±0.94 76.39±1.18

UCI-HAR
(6 Classes)

Accuracy 89.74±1.08 88.44±2.02 88.86±1.65 93.08±0.95 91.44±1.01 87.78±1.10 91.65±0.74 93.72±0.73 93.78±0.32
F1 Score 89.70±1.10 88.34±1.98 88.80±1.67 93.19±0.88 91.47±0.98 87.72±1.10 91.61±0.75 93.69±0.76 93.74±0.34

70 71 72 73 74 75 76 77

Average Accuracy (%)
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72.7
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73.6

75.3
75.8

+5.5

Figure 7: Average accuracy of various meth-
ods on the UEA dataset. More details in Ap-
pendix H.

As shown in Table 4, and Fig. 7, the combination
of HM-BiTCN and CIF consistently outperforms
other architectures in general time series classifica-
tion, achieving a 5.5% improvement over the original
TCN and surpassing current SOTA methods. Al-
though CIF was originally designed for MedTS, its in-
tegration with HM-BiTCN significantly outperforms
Transformer-based models in both medical and gen-
eral time series classification tasks, demonstrating the
effectiveness of our data-centric approach.

The results in Tables 4, 9, 3 and Figure 6 show that
CIF achieves significant improvements in MedTS
classification, while the gains on non-medical data are
relatively limited. This observation further demon-
strates that a data-driven perspective is particularly
effective for MedTS classification with physiological
characteristics.

5 CONCLUSION

In this work, we propose a simple and effective method for medical time series classification, Channel-
Imposed Fusion (CIF), which explicitly encodes physiological causal relationships between channels
in the feature representations while enhancing the SNR of the original signals. Combined with the
simple HM-BiTCN architecture, CIF surpasses existing SOTA methods on multiple medical datasets
and performs strongly on general time series classification tasks, demonstrating that data-centric
design enables simple models to outperform more complex architectures. More importantly, CIF
exemplifies the shift from the traditional model-centric paradigm to a data-centric perspective, where
structured representations grounded in physiological priors are both efficient and scalable for medical
time series classification. CIF also exhibits strong transferability and can be seamlessly integrated
into mainstream models such as Transformers, enhancing their applicability in medical scenarios. We
hope this work encourages the community to reconsider the core of medical time series classification:
should it be driven primarily by data-centric strategies or by model-centric design or both?
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APPENDIX

THE USE OF LLM AND REPRODUCIBILITY STATEMENT

Large language models are only used for writing refinement. The complete source code supporting
this study is publicly available at the following anonymous repository: anonymous link.

A EXPLANATION OF SNR OPTIMIZATION VIA CIF.

In analyzing the SNR improvement process of the CIF module, we consider two scenarios for the
two-channel signals: the first scenario assumes equal signal variances and equal noise variances
across the channels, while the second scenario represents the more general case where the signal and
noise variances differ between the two channels.

SCENARIO 1: EQUAL SIGNAL AND NOISE VARIANCES

Consider the linear combination of the two observed signals:

y = ax1 + bx2, (4)

where a and b are real coefficients. The observed signals are given by

x1 = s1 + ϵ1, x2 = s2 + ϵ2, (5)

with zero-mean signal and noise components:

E[si] = E[ϵi] = 0, i = 1, 2,

and mutually uncorrelated signal and noise components: Cov(si, ϵj) = 0.

The power of a zero-mean random signal is given by its variance:

Ps = Var[s] = E[(s− E[s])2] = E[s2]. (6)

This is why, for zero-mean signals, the SNR can be expressed as a ratio of variances (or mean-square
values) Kay (1993).

For the linear combination of signals:

Var(as1 + bs2) = a2Var(s1) + b2Var(s2) + 2abCov(s1, s2)

= a2σ2
s + b2σ2

s + 2ab(ρσ2
s)

= σ2
s

(
a2 + b2 + 2abρ

)
,

(7)

where ρ = Corr(s1, s2).

Similarly, the noise power of the linear combination is:

Var(aϵ1 + bϵ2) = a2Var(ϵ1) + b2Var(ϵ2) + 2abCov(ϵ1, ϵ2)

= a2σ2
ϵ + b2σ2

ϵ + 2ab(γσ2
ϵ )

= σ2
ϵ

(
a2 + b2 + 2abγ

)
,

(8)

where γ = Corr(ϵ1, ϵ2).

Using the definition of SNR as the ratio of signal power to noise power:

SNRout =
Var(as1 + bs2)

Var(aϵ1 + bϵ2)
=

σ2
s(a

2 + b2 + 2abρ)

σ2
ϵ (a

2 + b2 + 2abγ)
= SNRin ·

a2 + b2 + 2abρ

a2 + b2 + 2abγ
, (9)

where SNRin = σ2
s/σ

2
ϵ .

> Remark: The zero-mean property ensures that the variance equals the mean-square value, which is
why SNR can be expressed as a ratio of variances Kay (1993); Haykin (2002).

For SNR improvement relative to individual channels:

a2 + b2 + 2abρ

a2 + b2 + 2abγ
> 1 ⇒ 2ab(ρ− γ) > 0. (10)
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• Difference Mode (ab < 0): ρ < γ — suppress correlated noise while possibly attenuating
some correlated signal.

• Cooperative Mode (ab > 0): ρ > γ — amplify correlated signals relative to less-correlated
noise.

Optimization via the ratio k = a/b (explicit choice of a, b)

Because the output SNR

SNRout = SNRin ·
a2 + b2 + 2abρ

a2 + b2 + 2abγ
(11)

is homogeneous of degree zero in (a, b) (i.e. invariant under common scaling (a, b) 7→ (ca, cb),
c ̸= 0), only the ratio k = a/b matters. Assume b ̸= 0 and set

k =
a

b
. (12)

Define

F (k) =
a2 + b2 + 2abρ

a2 + b2 + 2abγ
=

k2 + 1 + 2kρ

k2 + 1 + 2kγ
, (13)

so that
SNRout = SNRin · F (k). (14)

We therefore study extrema of F (k) to determine favorable relative weights a : b.

Let
N(k) = k2 + 1 + 2kρ, D(k) = k2 + 1 + 2kγ, (15)

so F (k) = N(k)/D(k). Then

N ′(k) = 2k + 2ρ, D′(k) = 2k + 2γ. (16)

Using the quotient rule,

F ′(k) =
N ′(k)D(k)−N(k)D′(k)

D(k)2
. (17)

The numerator simplifies and factorizes as

N ′(k)D(k)−N(k)D′(k) = 2(γ − ρ)(k − 1)(k + 1), (18)

so we obtain

F ′(k) =
2(γ − ρ)(k − 1)(k + 1)

(k2 + 1 + 2kγ)2
. (19)

Critical points and their nature

From equation 19, the critical points satisfy

F ′(k) = 0 ⇐⇒ k = −1, k = +1 or ρ = γ. (20)

• If ρ > γ (so γ − ρ < 0), then (k − 1)(k + 1) < 0 for k ∈ (−1, 1) and (k − 1)(k + 1) > 0
for k > 1 or k < −1. Hence F ′(k) > 0 on (−1, 1) and F ′(k) < 0 outside, so

k = 1 is a local maximum, k = −1 is a local minimum. (21)

• If ρ < γ (so γ − ρ > 0), the inequalities reverse: F ′(k) < 0 on (−1, 1) and F ′(k) > 0 for
|k| > 1, thus

k = −1 is a local maximum, k = 1 is a local minimum. (22)

• If ρ = γ, then from equation 13 we have

F (k) ≡ 1, ∀k ∈ R, (23)

so no choice of k changes the SNR.
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Interpretation in terms of a, b and explicit choice

Recall from equation 12 that k = a/b. The critical ratios k = ±1 correspond to equal-magnitude
weights:

k = +1 ⇐⇒ a = b, k = −1 ⇐⇒ a = − b. (24)

Since SNRout in equation 11 is invariant to a common scaling of (a, b), we may fix a convenient
normalization:

Fix b = 1. Then k = a and the recommended choices are

Cooperative mode (ρ > γ): (a, b) = (1, 1), (25)

Differential mode (ρ < γ): (a, b) = (−1, 1). (26)

Fix b = −1. Then k = a and the recommended choices are

Cooperative mode (ρ > γ): (a, b) = (−1,−1), (27)

Differential mode (ρ < γ): (a, b) = (1,−1). (28)

Degenerate and neutral cases

• If ρ = γ, then by equation 23 we have

SNRout = SNRin, ∀(a, b) ̸= (0, 0), (29)

i.e. the linear combination cannot improve SNR (except for singular noise-cancellation
cases).

• The denominator in equation 13 vanishes when

k2 + 1 + 2kγ = 0, (30)

which corresponds to zero output noise variance. This is a nongeneric, degenerate configura-
tion (perfect noise cancellation).

From equation 21–equation 22 and equation 24, we conclude:

• If ρ > γ: the SNR is maximized (among equal-variance combinations) by equal-phase
combining a = b (cooperative mode).

• If ρ < γ: the SNR is maximized by equal-magnitude opposite-phase combining a = −b
(differential mode).

• If ρ = γ: F (k) ≡ 1 and no linear combining improves SNR, up to degenerate cases.

Remarks on the choice of (a, b) ranges. If the goal is to find the SNR extremum points, it is
sufficient to consider (a, b) combinations where a and b are either of the same sign (both positive or
both negative) or of opposite signs. For example, exploring (a, b) within the rectangle [−1, 1]×[−1, 1]
already includes the critical ratios k = ±1 and thus captures the SNR maxima and minima. While
this rectangle does not cover all possible k values (i.e., all real ratios a/b), it is enough to determine
the locations of the extremal points, thanks to the homogeneity of SNR in (a, b).

SCENARIO 2: UNEQUAL SIGNAL AND NOISE VARIANCES

Consider the general case with potentially unequal variances and nonzero correlations:

Var(s1) = σ2
s1, Var(s2) = σ2

s2, Cov(s1, s2) = ρ σs1σs2,

Var(ϵ1) = σ2
ϵ1, Var(ϵ2) = σ2

ϵ2, Cov(ϵ1, ϵ2) = γ σϵ1σϵ2.
(31)

where:

• Signal and noise components are mutually uncorrelated
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Consider two observed signals

y = as1 + bs2 + aϵ1 + bϵ2 = sy + ϵy (32)

where the signal vector [s1, s2]T has covariance

S =

[
σ2
s1 ρσs1σs2

ρσs1σs2 σ2
s2

]
(33)

and the noise vector [ϵ1, ϵ2]T has covariance

N =

[
σ2
ϵ1 γσϵ1σϵ2

γσϵ1σϵ2 σ2
ϵ2

]
, (34)

with signal and noise mutually uncorrelated. Define the coefficient vector

w =

[
a
b

]
. (35)

The output signal-to-noise ratio (SNR) is

SNR(w) =
Var(sy)

Var(ϵy)
=

wTSw

wTNw
. (36)

To maximize the SNR, we consider the derivative with respect to w:

∂

∂w
SNR =

2Sw(wTNw)− 2Nw(wTSw)

(wTNw)2
= 0 (37)

which leads to the generalized eigenvalue problem

Sw = λNw, λ = SNR. (38)

For the 2× 2 matrices, this can be written explicitly as[
σ2
s1 ρσs1σs2

ρσs1σs2 σ2
s2

] [
a
b

]
= λ

[
σ2
ϵ1 γσϵ1σϵ2

γσϵ1σϵ2 σ2
ϵ2

] [
a
b

]
, (39)

which yields

aσ2
s1 + bρσs1σs2 = λ(aσ2

ϵ1 + bγσϵ1σϵ2) (40)

aρσs1σs2 + bσ2
s2 = λ(aγσϵ1σϵ2 + bσ2

ϵ2). (41)

The condition for a nontrivial solution (a, b) ̸= 0 is

det(S− λN) = 0, (42)

which explicitly reads

(σ2
s1 − λσ2

ϵ1)(σ
2
s2 − λσ2

ϵ2)− (ρσs1σs2 − λγσϵ1σϵ2)
2 = 0. (43)

Expanding the determinant, we obtain

σ2
s1σ

2
s2 − σ2

s1λσ
2
ϵ2 − σ2

s2λσ
2
ϵ1 + λ2σ2

ϵ1σ
2
ϵ2

− ρ2σ2
s1σ

2
s2 + 2ργλσs1σs2σϵ1σϵ2 − λ2γ2σ2

ϵ1σ
2
ϵ2 = 0. (44)

Combining like terms yields the quadratic equation in λ:

λ2σ2
ϵ1σ

2
ϵ2(1− γ2)− λ(σ2

s1σ
2
ϵ2 + σ2

s2σ
2
ϵ1 − 2ργσs1σs2σϵ1σϵ2) + σ2

s1σ
2
s2(1− ρ2) = 0. (45)

Define

A = σ2
ϵ1 σ

2
ϵ2(1− γ2), (46)

B = −
(
σ2
s1 σ

2
ϵ2 + σ2

s2 σ
2
ϵ1 − 2ργ σs1σs2σϵ1σϵ2

)
, (47)

C = σ2
s1 σ

2
s2(1− ρ2). (48)
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The generalized eigenvalue problem leads to the quadratic equation

Aλ2 +Bλ+ C = 0, (49)

whose solution is

λ =
−B ±

√
B2 − 4AC

2A
. (50)

Taking the positive sign yields the maximum output SNR:

SNRmax = λmax =
−B +

√
B2 − 4AC

2A
. (51)

The optimal linear combination coefficients [a, b]T = wopt satisfy

b

a
=

λmaxσ
2
ϵ1 − σ2

s1

ρσs1σs2 − λmaxγσϵ1σϵ2
, wopt = a

[
1
b/a

]
, a ̸= 0. (52)

MULTI-CHANNEL LINEAR FUSION FOR SNR ENHANCEMENT

As shown in equation , the two-channel SNR maximization framework can be directly extended
to multi-channel recordings by performing corresponding pairwise fusion across multiple channel
subsets. Consider two subsets of n channels each,

xA = [xi1 , . . . , xin ]
T , xB = [xj1 , . . . , xjn ]

T , (53)

where each channel may have correlated signal and noise components across channels.

For each corresponding channel pair (xik , xjk), k = 1, . . . , n, the optimal linear fusion coefficients

wk = [ak, bk]
T (54)

are determined exactly as in the two-channel case by solving the generalized eigenvalue problem:

Skwk = λkNkwk, (55)

where Sk and Nk are the signal and noise covariance matrices for the k-th pair, and λk corresponds
to the maximum achievable SNR for that fused channel. The fused channel is then constructed as

yk = akxik + bkxjk . (56)

By applying this pairwise optimal fusion to all n channel pairs, each channel independently reaches
its maximum SNR, ensuring that the multi-channel system as a whole achieves a simultaneous SNR
enhancement across all channels.

B DATA PREPROCESSING

Table 5: The information of processed datasets. The table shows the number of subjects, samples,
classes, channels, sampling rate, sample timestamps, modality of MedTS, and file size. Here, #-
Timestamps indicates the number of timestamps per sample.All data processing procedures follow
those of Medformer Wang et al. (2024a).

Datasets #-Subject #-Sample #-Class #-Channel #-Timestamps Sampling Rate Modality File Size

APAVA 23 5,967 2 16 256 256Hz EEG 186MB
ADFTD 88 69,752 3 19 256 256Hz EEG 2.52GB
TDBrain 72 6,240 2 33 256 256Hz EEG 571MB
PTB 198 64,356 2 15 300 250Hz ECG 2.15GB
PTB-XL 17,596 191,400 5 12 250 250Hz ECG 4.28GB
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Table 6: Datasets and mapping details of UEA dataset (Bagnall et al., 2018).

Dataset Sample Numbers(train set,test set) Variable Number Series Length
EthanolConcentration (261, 263) 3 1751
FaceDetection (5890, 3524) 144 62
Handwriting (150, 850) 3 152
Heartbeat (204, 205) 61 405
JapaneseVowels (270, 370) 12 29
PEMSSF (267, 173) 963 144
SelfRegulationSCP1 (268, 293) 6 896
SelfRegulationSCP2 (200, 180) 7 1152
SpokenArabicDigits (6599, 2199) 13 93
UWaveGestureLibrary (120, 320) 3 315

C IMPLEMENTATION DETAILS

We implement our method and all the baselines based on the Time-Series-Library project1 from
Tsinghua University Wu et al. (2023), which integrates all methods under the same framework and
training techniques to ensure a relatively fair comparison. The 12 baseline time series transformer
methods are Autoformer Wu et al. (2021), Crossformer Zhang & Yan (2022), FEDformer Zhou et al.
(2022), Informer Zhou et al. (2021), iTransformer Liu et al. (2024b), MTST Zhang et al. (2024),
Nonformer Liu et al. (2022), PatchTST Nie et al. (2023), Reformer Kitaev et al. (2019), vanilla
Transformer Vaswani et al. (2017), Medformer Wang et al. (2024a), and MedGNN Fan et al. (2025).

Autoformer Autoformer Wu et al. (2021) employs an auto-correlation mechanism to replace self-
attention for time series forecasting. Additionally, they use a time series decomposition block to
separate the time series into trend-cyclical and seasonal components for improved learning. The raw
source code is available at https://github.com/thuml/Autoformer.

Crossformer Crossformer Zhang & Yan (2022) designs a single-channel patching approach for token
embedding. They utilize two-stage self-attention to leverage both temporal features and channel
correlations. A router mechanism is proposed to reduce time and space complexity during the cross-
dimension stage. The raw code is available at https://github.com/Thinklab-SJTU/
Crossformer.

FEDformer FEDformer Zhou et al. (2022) leverages frequency domain information using the Fourier
transform. They introduce frequency-enhanced blocks and frequency-enhanced attention, which
are computed in the frequency domain. A novel time series decomposition method replaces the
layer norm module in the transformer architecture to improve learning. The raw code is available at
https://github.com/MAZiqing/FEDformer.

Informer Informer Zhou et al. (2021) is the first paper to employ a one-forward procedure instead of
an autoregressive method in time series forecasting tasks. They introduce ProbSparse self-attention
to reduce complexity and memory usage. The raw code is available at https://github.com/
zhouhaoyi/Informer2020.

iTransformer iTransformer Liu et al. (2024b) questions the conventional approach of embedding
attention tokens in time series forecasting tasks and proposes an inverted approach by embedding
the whole series of channels into a token. They also invert the dimension of other transformer
modules, such as the layer norm and feed-forward networks. The raw code is available at https:
//github.com/thuml/iTransformer.

MTST MTST Zhang et al. (2024) uses the same token embedding method as Crossformer and
PatchTST. It highlights the importance of different patching lengths in forecasting tasks and designs a
method that can take different sizes of patch tokens as input simultaneously. The raw code is available
at https://github.com/networkslab/MTST.

Nonformer Nonformer Liu et al. (2022) analyzes the impact of non-stationarity in time series
forecasting tasks and its significant effect on results. They design a de-stationary attention module

1https://github.com/thuml/Time-Series-Library
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and incorporate normalization and denormalization steps before and after training to alleviate the
over-stationarization problem. The raw code is available at https://github.com/thuml/
Nonstationary_Transformers.

PatchTST PatchTST Nie et al. (2023) embeds a sequence of single-channel timestamps as a patch
token to replace the attention token used in the vanilla transformer. This approach enlarges the
receptive field and enhances forecasting ability. The raw code is available at https://github.
com/yuqinie98/PatchTST.

Reformer Reformer Kitaev et al. (2019) replaces dot-product attention with locality-sensitive hashing.
They also use a reversible residual layer instead of standard residuals. The raw code is available at
https://github.com/lucidrains/reformer-pytorch.

Transformer Transformer Vaswani et al. (2017), commonly known as the vanilla trans-
former, is introduced in the well-known paper "Attention is All You Need." It can also be
applied to time series by embedding each timestamp of all channels as an attention token.
The PyTorch version of the code is available at https://github.com/jadore801120/
attention-is-all-you-need-pytorch.

Medformer Medformer Wang et al. (2024a) uses cross-channel patch embedding to model spa-
tiotemporal dependencies.The raw code is available at https://github.com/DL4mHealth/
Medformer

MedGNN MedGNN Fan et al. (2025) employs multi-resolution spatiotemporal graph learning
to extract dynamic features across multiple time scales. The raw code is available at https:
//github.com/aikunyi/MedGNN.

C.1 EVALUATION METRICS

For all methods, the optimizer used is Adam, with a learning rate of 1e-4. The batch size is set to
{32,32,128,128,128} for the datasets APAVA, TDBrain, ADFD, PTB, and PTB-XL, respectively.
Training is conducted for 100 epochs, with early stopping triggered after 10 epochs without im-
provement in the F1 score on the validation set. We save the model with the best F1 score on the
validation set and evaluate it on the test set. We employ six evaluation metrics: accuracy, precision
(macro-averaged), recall (macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged),
and AUPRC (macro-averaged). Both subject-dependent and subject-independent setups are imple-
mented for different datasets. Each experiment is run with 5 random seeds (41-45) and fixed training,
validation, and test sets to compute the average results and standard deviations.

To comprehensively and fairly evaluate the performance of each model in the classification task, we
select five evaluation metrics: Accuracy, Precision, Recall, F1 score, and AUROC. The definitions
and specific calculation formulas for each metric are presented below:

Accuracy measures the proportion of correct predictions out of the total number of predictions. It’s
calculated as:

Accuracy =
Number of correct predictions
Total number of predictions

. (57)

This metric is useful when the classes are balanced but may be misleading in cases of class imbalance.

Precision focuses on the quality of positive predictions and measures the proportion of correctly
predicted positive instances out of all instances predicted as positive. It’s especially useful when false
positives need to be minimized. The formula is:

Precision =
True Positives

True Positives + False Positives
. (58)

Recall measures the proportion of actual positive instances that were correctly identified. It’s
important when false negatives are costly. The formula is:

Recall =
True Positives

True Positives + False Negatives
. (59)

It shows how well the model captures all relevant instances.
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The F1 score is the harmonic mean of precision and recall, balancing the two when one is more
important than the other. It’s particularly useful when dealing with imbalanced datasets, as it accounts
for both false positives and false negatives. The formula is:

F1 Score = 2× Precision × Recall
Precision + Recall

. (60)

It gives a single metric that reflects both precision and recall performance.

The Area Under the Receiver Operating Characteristic Curve (AUROC) measures the ability of a
model to distinguish between classes, defined as

AUROC =

∫ 1

0

TPR(FPR) d(FPR), (61)

where
TPR =

TP

TP + FN
, FPR =

FP

FP + TN
.

The Area Under the Precision–Recall Curve (AUPRC) summarizes the trade-off between precision
and recall across different thresholds, defined as

AUPRC =

∫ 1

0

Precision(Recall) d(Recall), (62)

where
Precision =

TP

TP + FP
, Recall =

TP

TP + FN
.
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D HM-BITCN STRUCTURE DESIGN AND THEORETICAL ANALYSIS

Modeling short-term and long-term dependencies in time series data is challenging. Traditional CNNs
excel at capturing local features but have limited receptive fields, hindering long-range dependency
learning. Transformer-based methods effectively model long-term dependencies, but their complex
design lacks interpretability, which is a key issue in medical time-series classification.To address these
limitations, TCNs use causal convolutions for explicit temporal modeling and dilated convolutions
to expand the receptive field, overcoming the constraints of traditional CNNs. Building on the
advantages of TCN, we propose the HM-BiTCN, which combines the benefits of dilated convolutions,
bidirectional causal convolution, and residual connections. This approach allows for better capture of
temporal dependencies while preserving causality.

D.1 DILATED CONVOLUTION

Dilated convolution expands the receptive field without significantly increasing computational cost Yu
& Koltun (2015). For a 1D input sequence x = [x1, x2, . . . , xT ], its output is defined as y(t) =∑k−1

i=0 x(t+ i · d) · w(i), where t is the current time step, k is the kernel size, d is the dilation factor,
and w(i) is the weight at the i-th position in the kernel. Increasing d effectively enlarges the receptive
field, enabling the network to capture longer-term temporal dependencies. When stacking multiple
dilated convolutional layers, the receptive field grows progressively. For the l-th layer, the receptive
field rl can be expressed as rl = k + (k − 1)

∑l−1
j=1 dj , where dj is the dilation factor of the j-th

layer. By gradually increasing dj , the network captures temporal dependencies across both global
and local scales, offering an effective way to model long-term dependencies in time series.

D.2 BIDIRECTIONAL CAUSAL CONVOLUTION STRUCTURE

In addition to dilated convolutions, HM-BiTCN introduces a bidirectional causal convolution struc-
ture, inspired by prior bidirectional temporal modeling approaches Hanson et al. (2018); Hu et al.
(2024); Yin et al. (2025). Unlike traditional TCNs that use only forward causal convolutions, our
architecture applies causal convolutions in both forward and backward directions, enabling the model
to capture dependencies from both past and future contexts while strictly preserving causality. The
forward causal convolution processes the input sequence x(t) in chronological order, producing
output yforward(t) =

∑k−1
i=0 x(t− i · d) · wforward(i), which depends only on current and past inputs.

For the backward causal convolution, we first reverse the input sequence as xflip(t) = x(T − t),
and then apply a causal convolution over this flipped sequence. This ensures that the model cap-
tures future-directed dependencies without introducing information leakage. The output is given by
ybackward(t) =

∑k−1
i=0 x(T − (t− i · d)) · wbackward(i). These two operations are implemented using

separate convolutional layers (convforward and convbackward), and their outputs are summed to
form the final bidirectional result: ybi(t) = yforward(t) + flip(ybackward(t)). By integrating both
directions under strict causality constraints, HM-BiTCN achieves superior temporal dependency
modeling compared to unidirectional causal approaches.

D.3 MULTI-SCALE FEATURE LEARNING AND RESIDUAL CONNECTIONS

To further improve the model’s capacity to capture dependencies at different temporal scales, HM-
BiTCN incorporates multi-scale feature learning and residual connections. Multi-scale Feature
Learning: In HM-BiTCN, we employ a hierarchy of dilation factors that decrease layer by layer
to capture temporal dependencies at multiple scales. Lower layers use larger dilation factors to
expand the receptive field, aggregating long-range information and smoothing short-term noise in
highly redundant medical time series; higher layers use smaller dilation factors to focus on local
dependencies and capture fine-grained features. This coarse-to-fine, global-to-local design enables
the network to extract broad patterns in its initial layers and refine precise details in its later layers,
thereby enhancing adaptability across a wide range of time series tasks. Residual connections:
Residual connections He et al. (2016) are introduced between the dilated convolutional layers to
facilitate the efficient flow of information through the network. The residual connection is defined as
y = F (x) + x, where F (x) is the convolutional output, and x is the input. This design alleviates the
vanishing gradient problem and improves the overall stability of the network during training.
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E PSEUDOCODE OF CIF METHOD AND KEY COMPONENTS OF HM-BITCN

Algorithm 1 CIF Module (Channel-Imposed Fusion with Physiological Ordering)

Require: Input xenc ∈ RB×T×C , hyperparameters t, n, a, b ▷ n must satisfy 1 ≤ n ≤ C (i.e.,
cannot exceed total number of channels)

1: Step 1: Physiological Channel Reordering (optional) ▷ Only applied if channels have
physiology-consistent structure (e.g., ECG, EEG). For general/unstructured data, skip this step.

2: if PhysiologyStructured(xenc) then
3: xenc ← PhysiologyReorder(xenc)
4: end if
5:
6: Step 2: Split into front and back segments
7: if n > C then
8: Error: n cannot exceed total number of channels C
9: end if

10: front← xenc[:, :, : n] ▷ Front segment: first n channels
11: back ← xenc[:, :,−n :] ▷ Back segment: last n channels
12:
13: Step 3: Fusion
14: xnew ← Clone(xenc)
15: added← front · a+ back · b
16: if t > 0 then
17: xnew[:, :, : n]← added
18: else
19: xnew[:, :,−n :]← added
20: end if
21: return xnew

Algorithm 2 Model with CCA-based Feature Interaction

Require: Encoded input xenc ∈ RB×L×D, task configs
1: Initialize encoder and task-specific heads
2: procedure FORWARD(xenc)
3: n← number of CCA components
4: Xfront ← first n features of xenc
5: Xback ← last n features of xenc
6: xenc_new ← xenc (clone)
7: Xfront_flat ← reshape Xfront to [B · L, n]
8: Xback_flat ← reshape Xback to [B · L, n]
9: Without gradient:

10: CCA1 ← TorchCCA(n)
11: (X1

c , Y
1
c )← CCA1.fit_transform(Xfront_flat, Xback_flat)

12: corr_scores← correlation coefficients for each canonical component
13: CCA2 ← TorchCCA(n)
14: (X2

c , Y
2
c )← CCA2.fit_transform(Xback_flat, Xfront_flat)

15: corr_scores2← correlation coefficients for each canonical component
16: xenc_new[:, :, : n]← Xfront ∗ corr_scores +Xback
17: xenc_new[:, :,−n :]← Xfront +Xback ∗ corr_scores2
18: return xenc_new
19: end procedure
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Algorithm 3 TorchCCA: PyTorch-style Canonical Correlation Analysis (CCA)

Require: Input datasets X ∈ RN×D1 , Y ∈ RN×D2

Require: Number of components k, scaling flag scale, regularization reg
1: Initialize TorchCCA(k,scale,reg)
2: procedure FIT(X,Y )
3: X,Y ← CENTER_AND_SCALE(X,Y )
4: N ← number of rows in X
5: Cxx ← X⊤X

N−1 + reg · I
6: Cyy ← Y ⊤Y

N−1 + reg · I
7: Cxy ← X⊤Y

N−1

8: C
−1/2
xx ← (Cholesky(Cxx)

−1)⊤

9: C
−1/2
yy ← (Cholesky(Cyy)

−1)⊤

10: T ← C
−1/2
xx CxyC

−1/2⊤
yy

11: (U, S, V ⊤)← SVD(T )
12: x_weights← first k columns of U
13: y_weights← first k columns of V
14: corr_scores← first k singular values S
15: end procedure
16: procedure TRANSFORM(X,Y )
17: X,Y ← CENTER_AND_SCALE(X,Y )
18: Xc ← X · x_weights
19: Yc ← Y · y_weights
20: return Xc, Yc

21: end procedure
22: procedure FIT_TRANSFORM(X,Y )
23: FIT(X,Y )
24: return TRANSFORM(X,Y )
25: end procedure
26: procedure CENTER_AND_SCALE(X,Y )
27: X ← X −mean(X)
28: Y ← Y −mean(Y )
29: if scale then
30: X ← X/std(X)
31: Y ← Y/std(Y )
32: end if
33: return X,Y
34: end procedure

Algorithm 4 BidirectionalCausalConv

Require: Input x ∈ RB×C×T , kernel size k, dilations df , db
1: Compute pf ← (k − 1) · df
2: Compute pb ← (k − 1) · db
3: xf ← PadLeft(x, pf )
4: xb ← PadLeft(Flip(x), pb)
5: yf ← Conv1D(xf , dilation = df )
6: yb ← Flip(Conv1D(xb, dilation = db))
7: return yf + yb
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Algorithm 5 BidirectionalDilatedConvBlock

Require: Input x, channels Cin, Cout, kernel size k, dilation d
1: if Cin ̸= Cout or final layer then
2: res← Conv1D(x, kernel = 1)
3: else
4: res← x
5: end if
6: x← GELU(x)
7: x← BidirectionalCausalConv(x, k, d, d)
8: x← GELU(x)
9: x← BidirectionalCausalConv(x, k, d, d)

10: return x+ res

F ABLATION EXPERIMENTS OF THE HM-BITCN STRUCTURE

Table 7: The ablation experiments of the HM-BiTCN structure, where “Forward” indicates using
only the forward part, and “Backward” indicates using only the backward part.

Datasets Models CIF Forward Backward Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑
APAVA

(2-Classes)
HM-BiTCN ✓ 82.31±2.34 83.29±2.50 80.39±2.65 81.02±2.63 91.50±1.80 91.66±1.82

HM-BiTCN ✓ 79.45±3.51 80.69±3.04 77.14±4.47 77.58±4.75 87.95±3.82 88.41±3.74

HM-BiTCN ✓ ✓ 82.49±1.40 82.38±1.79 81.20±1.32 81.60±1.39 91.10±1.63 91.30±1.71

APAVA
(2-Classes)

HM-BiTCN ✓ ✓ 80.43±5.60 80.46±5.23 79.56±5.98 79.50±5.97 89.23±4.44 89.62±4.25

HM-BiTCN ✓ ✓ 79.39±3.44 79.49±3.76 78.09±2.94 78.35±3.33 87.62±3.09 88.11±2.91

HM-BiTCN ✓ ✓ ✓ 85.16±1.55 84.76±1.62 85.33±1.27 84.82±1.49 94.06±1.07 94.21±0.99

ADFTD
(3-Classes)

HM-BiTCN ✓ 53.32±1.35 52.01±1.54 51.46±2.19 51.21±1.99 70.78±1.78 53.16±2.20

HM-BiTCN ✓ 52.80±1.18 50.16±0.77 49.23±1.22 49.24±1.02 68.65±0.71 49.95±0.97

HM-BiTCN ✓ ✓ 52.05±2.22 50.45±3.00 50.40±2.55 49.48±2.70 69.43±2.84 50.99±3.15

ADFTD
(3-Classes)

HM-BiTCN ✓ ✓ 56.06±0.47 53.21±1.03 53.54±1.36 52.82±1.33 72.93±0.88 55.71±1.03

HM-BiTCN ✓ ✓ 56.54±1.33 54.28±0.96 54.63±1.06 53.91±1.11 73.46±1.17 56.12±1.61

HM-BiTCN ✓ ✓ ✓ 58.56±0.93 55.65±0.81 55.86±0.79 55.42±0.82 76.07±0.59 59.75±0.67

TDBrain
(2-Classes)

HM-BiTCN ✓ 87.23±2.87 87.75±2.48 87.23±2.87 87.17±2.93 95.55±1.69 95.73±1.60

HM-BiTCN ✓ 86.92±3.46 87.41±3.17 86.92±3.46 86.86±3.51 95.28±1.78 95.42±1.70

HM-BiTCN ✓ ✓ 84.90±2.60 86.02±2.00 84.90±2.60 84.76±2.74 93.94±1.92 94.20±1.85

TDBrain
(2-Classes)

HM-BiTCN ✓ ✓ 93.29±1.73 93.34±1.73 93.29±1.73 93.29±1.73 98.50±0.63 98.56±0.60

HM-BiTCN ✓ ✓ 93.69±1.52 93.83±1.42 93.69±1.52 93.68±1.53 98.56±0.67 98.59±0.64

HM-BiTCN ✓ ✓ ✓ 93.13±1.41 93.33±1.37 93.13±1.41 93.12±1.42 98.62±0.66 98.68±0.63

PTB
(2-Classes)

HM-BiTCN ✓ 82.56±1.74 86.16±1.51 74.91±2.88 77.24±2.92 95.69±0.64 94.56±0.76

HM-BiTCN ✓ 81.07±4.24 85.36±2.71 72.50±6.59 74.33±6.71 92.83±2.38 91.28±2.79

HM-BiTCN ✓ ✓ 81.87±1.87 86.50±1.24 73.49±2.90 75.84±3.20 94.20±0.29 93.04±0.45

PTB
(2-Classes)

HM-BiTCN ✓ ✓ 87.33±1.41 90.26±1.24 81.64±2.04 84.19±1.97 96.21±1.30 95.67±1.52

HM-BiTCN ✓ ✓ 84.35±2.28 87.42±2.07 77.54±3.30 79.98±3.41 91.25±1.92 90.42±2.28

HM-BiTCN ✓ ✓ ✓ 88.29±1.45 90.66±1.48 83.21±2.02 85.59±1.96 94.28±0.93 93.78±1.11

FLAAP
(10-Classes)

HM-BiTCN ✓ 70.81±2.31 72.58±1.33 69.81±2.79 70.07±2.24 95.89±0.28 76.90±1.21

HM-BiTCN ✓ 70.29±2.04 72.77±2.09 68.86±2.39 69.56±1.98 95.61±0.26 76.56±1.56

HM-BiTCN ✓ ✓ 76.08±0.81 76.05±0.83 75.95±0.84 75.54±0.94 96.49±0.10 81.19±0.65

FLAAP
(10-Classes)

HM-BiTCN ✓ ✓ 72.30±1.50 72.98±1.61 71.65±1.35 71.54±1.50 95.92±0.55 77.87±2.27

HM-BiTCN ✓ ✓ 72.81±1.04 74.05±0.80 71.86±1.25 72.12±1.17 96.20±0.21 79.22±1.25

HM-BiTCN ✓ ✓ ✓ 76.82±1.32 77.38±0.85 76.52±1.24 76.39±1.18 96.48±0.06 81.77±0.81

UCI-HAR
(6-Classes)

HM-BiTCN ✓ 91.94±0.98 92.36±0.90 92.02±0.96 91.98±0.93 99.30±0.08 97.31±0.47

HM-BiTCN ✓ 93.03±0.62 93.28±0.63 93.12±0.60 93.05±0.62 99.36±0.19 97.72±0.46

HM-BiTCN ✓ ✓ 93.72±0.73 94.02±0.72 93.75±0.70 93.69±0.76 99.60±0.09 98.31±0.40

UCI-HAR
(6-Classes)

HM-BiTCN ✓ ✓ 92.18±0.45 92.42±0.47 92.21±0.44 92.14±0.44 99.17±0.11 97.04±0.15

HM-BiTCN ✓ ✓ 92.62±0.90 92.88±0.86 92.68±0.88 92.63±0.89 99.25±0.18 97.15±0.57

HM-BiTCN ✓ ✓ ✓ 93.78±0.32 94.08±0.26 93.79±0.32 93.74±0.34 99.34±0.19 97.60±0.46

As described in Section 2 of the Methods, HM-BiTCN is constructed by adding a backward branch
to the vanilla TCN architecture; therefore, using only the Forward part is essentially equivalent to the
vanilla TCN structure.

From the table 7, it can be observed that when both the Forward and Backward parts of the HM-
BiTCN structure are used simultaneously, the performance drops significantly compared to using
only one of them individually. We speculate that this is mainly due to the presence of substantial
noise within medical time-series data. When both parts of the structure are applied at the same time,
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it is akin to capturing noise from two different directions simultaneously. Instead of enhancing the
representation, this leads to noise accumulation, which ultimately results in degraded performance.

However, after processing the data with CIF to improve the signal-to-noise ratio, the combination of
the Forward and Backward parts of the HM-BiTCN structure eventually outperforms the use of either
part alone. This result strongly demonstrates the feature-capturing capability of the HM-BiTCN when
both directions are utilized together. It indicates that once noise interference is effectively reduced,
the bidirectional structure of HM-BiTCN can better leverage its strengths, thereby improving overall
performance.

Further observations show that using only the Forward part of HM-BiTCN outperforms the Backward
part. This is closely related to the inherent unidirectionality of medical time-series signals such as EEG
and ECG, where information typically propagates forward in time (e.g., neural signal transmission in
EEG or atrial-to-ventricular activation in ECG). Such characteristics enable the Forward structure
to capture key features and temporal evolution more effectively, yielding better performance. This
finding not only deepens the understanding of medical signal processing but also provides insights
for optimizing HM-BiTCN in related applications.

To evaluate the performance of our method on general time series, we follow the design of
Medformer Wang et al. (2024a) and test it on two human activity recognition (HAR) datasets:
FLAAP(13,123 samples, 10 classes) Kumar & Suresh (2022) and UCI-HAR(10,299 samples, 6
classes) Anguita et al. (2013).

Additionally, on the non-medical datasets FLAAP and UCI-HAR, we observed that integrating
the bidirectional structure significantly improves performance. This indicates that in high-SNR
scenarios, bidirectional modeling can more effectively capture both forward and backward feature
information, enhancing overall model performance. In contrast, CIF provides relatively limited gains
on these high-SNR datasets. This observation further highlights the design advantage of CIF: it is
specifically tailored for low-SNR medical time series, explicitly fusing inter-channel physiological
information to enhance signal quality and discriminative power, while its marginal benefit is smaller
for low-noise non-medical data. Overall, these findings not only reveal the differential adaptability of
model architectures under varying data characteristics but also underscore the unique value of CIF in
complex medical scenarios.

G FURTHER EXPLORATION OF PHYSIOLOGICAL STRUCTURES
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Figure 8: Physiological Placement Diagram of
EEG Channels.

The parameters (a, b, t, n) in CIF are explicit
hyperparameters that can be directly set and ad-
justed based on experience. For example, Fig-
ure. 8 shows the corresponding locations of EEG
channels on the human brain, we have adjusted
the AFAVA dataset, which comprises 16 chan-
nels: C3, C4, F3, F4, F7, F8, Fp1, Fp2, O1,
O2, P3, P4, T3, T4, T5, and T6. For the first
six channels, we performed pairwise fusion as
follows:

C3new = a · C3 + b · C4,

F3new = a · F3 + b · F4,

F7new = a · F7 + b · F8.

Here, the C3, F3, and F7 channels correspond
to C4, F4, and F8, respectively, exhibiting
left–right physiological symmetry, and they also
belong to the same functional region. We refer
to this type of fusion as Left–Right Physiologi-
cal Symmetry Fusion (LR-PSF). In contrast, the
channel fusion strategy introduced earlier in this
paper, controlled by the hyperparameter n, reflects fusion across different functional regions, and is
therefore termed Functional Region Fusion (FRF).
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Table 8: Results of Subject-Independent Setup. APAVA Dataset

Datasets Models Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑
APAVA

(2-Classes)
HM-BiTCN 82.49±1.40 82.38±1.79 81.20±1.32 81.60±1.39 91.10±1.63 91.30±1.71

HM-BiTCN + CIF (-Fp1 + Fp2) 82.70±1.90 83.34±1.96 80.73±2.14 81.47±2.13 91.24±2.25 91.62±2.08

HM-BiTCN + CIF (FRF) 86.30±1.05 86.16±1.09 85.47±1.12 85.71±1.09 94.26±0.54 94.42±0.49

HM-BiTCN + CIF (LR-PSF) 86.23±2.09 85.82±2.14 86.04±2.06 85.83±2.12 94.59±1.08 94.64±1.08

HM-BiTCN + CIF (CCA) 87.91±1.60 89.81±0.93 85.85±2.12 86.93±1.91 96.97±0.52 96.91±0.49

Building on these two types of physiologically motivated fusion, we further introduce a data-driven
fusion mechanism based on Canonical Correlation Analysis (CCA) Hotelling (1992) (For detailed
pseudocode, see Code 2 3.). Specifically, for each input sample we first select the first n channels and
the last n channels, denoted as

Xfront ∈ RB×L×n, Xback ∈ RB×L×n,

where B is the batch size, L is the sequence length, and n is the number of paired channels. We then
reshape them into two matrices

F ∈ R(BL)×n, B ∈ R(BL)×n,

by stacking all temporal positions and samples along the first dimension. We apply a CCA module to
these two matrices and obtain their canonical projections

Fc,Bc ∈ R(BL)×n.

For each canonical component i ∈ {1, . . . , n}, we compute the Pearson correlation coefficient
between the corresponding canonical variables F(i)

c and B
(i)
c , yielding a correlation score vector

ρ = (ρ1, . . . , ρn)
⊤ ∈ Rn.

These scores quantify the statistical dependence between the paired channels and are used as adaptive,
channel-wise fusion weights. Concretely, we broadcast ρ back to the original tensor shape and
construct two fused channel groups:

X̃front = Xfront ⊙ ρ+Xback, X̃back = Xfront +Xback ⊙ ρ′,

where ⊙ denotes element-wise (channel-wise) multiplication and ρ′ is another correlation score
vector obtained by swapping the roles of F and B in CCA. The fused tensors X̃front and X̃back are
then written back to the first and last n channels of the encoder input, respectively.

In this way, the proposed CCA-based fusion adaptively strengthens or attenuates each paired channel
according to its learned cross-channel correlation, providing a controllable and data-driven mechanism
that complements the physiologically defined LR-PSF and FRF fusion strategies.

We consider that a full theoretical and experimental treatment of CCA would require a more extensive
discussion. Therefore, here we present it solely as an exploratory method and do not include its
results in the main text.

We also examined the relationship between the Fp1 and Fp2 channels, as introduced in the Introduc-
tion. For this purpose, we conducted experiments using the following fusion approach:

Fp1new = −1 · Fp1+ 1 · Fp2,
which we refer to as CIF (−Fp1+ Fp2).

The results in the table 8 reveal that explicit fusion leveraging the prior knowledge of channels can
more effectively integrate channel features, thereby yielding more accurate classification outcomes.
Many previous methods, especially various general time series models, are unable to incorporate
such medical prior knowledge in a "controllable" manner.

H RESULTS ON GENERAL TIME SERIES

We compared our method with various approaches on the general time series UEA dataset. The
results of these methods were provided by TimeMixer++ Wang et al. (2025a). Experimental results
show that CIF can enhance the performance of HM-BiTCN on general time series classification tasks.
Moreover, the combination of HM-BiTCN with CIF achieves SOTA performance.
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Table 9: Full results for the classification task. ∗. in the Transformers indicates the name of ∗former.
We report the classification accuracy (%) as the result.

Datasets / Models
RNN TCN Transformers MLP CNN

LSTM LSTNet LSSL TCN Trans. Re. In. Pyra. Auto.Station.FED. ETS. Flow. iTrans.DLinearLightTS.TiDETimesNet Time
Mixer++ HM-BiTCN HM-BiTCN

+CIF
(1997)(2018)(2022)(2019) (2017) (2019)(2021)(2021)(2021) (2022) (2022)(2022)(2022b)(2024b) (2023) (2022) (2023) (2022a) (2025a) (Ours) (Ours)

EthanolConcentration 32.3 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 28.1 31.2 33.8 28.1 32.6 29.7 27.1 35.7 39.9 31.9 32.3
FaceDetection 57.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 66.3 68.0 67.5 65.3 68.6 71.8 66.8 67.2
Handwriting 15.2 25.8 24.6 53.3 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 24.2 27.0 26.1 23.2 32.1 26.5 49.5 51.2

Heartbeat 72.2 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.6 75.1 75.1 74.6 78.0 79.1 74.6 77.5
JapaneseVowels 79.7 98.1 98.4 98.9 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.6 96.2 96.2 95.6 98.4 97.9 97.8 98.3

PEMS-SF 39.9 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 87.9 75.1 88.4 86.9 89.6 91.0 82.6 86.1
SelfRegulationSCP1 68.9 84.0 90.8 84.6 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 90.2 87.3 89.8 89.2 91.8 93.1 89.7 91.1
SelfRegulationSCP2 46.6 52.8 52.2 55.6 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 54.4 50.5 51.1 53.4 57.2 65.6 61.6 62.2
SpokenArabicDigits 31.9 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0100.0 98.8 96.0 81.4 100.0 95.0 99.0 99.8 99.5 99.6

UWaveGestureLibrary 41.2 87.8 85.9 88.4 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 85.9 82.1 80.3 84.9 85.3 88.2 92.1 92.8

Average Accuracy 48.6 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 70.5 67.5 70.4 69.5 73.6 75.3 74.6 75.8

I REPRODUCED RESULTS OF EXISTING METHODS

I.1 RESULTS OF SUBJECT-DEPENDENT

In Table 10, we present the results of various models under the Subject-Dependent Setup on the
ADFTD (3-Classes) dataset. The results indicate that our proposed CIF method significantly improves
the performance of models, particularly in accuracy, F1 score, AUROC, and AUPRC metrics. Specifi-
cally, the combination of MedGNN + CIF outperforms MedGNN alone across all key performance
metrics, and similarly, Medformer + CIF surpasses Medformer in every critical evaluation metric.
These results convincingly demonstrate the effectiveness of the CIF method in enhancing model
performance. By integrating the CIF method, not only are the models’ performances significantly
improved across multiple evaluation metrics, but the broad applicability and substantial benefits
of the method across different model architectures are also highlighted. Notably, MedGNN + CIF
achieves a remarkable Accuracy of 99.60%, far surpassing other models, highlighting the advantage
of our approach in handling imbalanced datasets. Furthermore, MedGNN + CIF shows significant
improvements in F1 score and precision, indicating that the CIF method effectively enhances the
model’s ability to recognize both positive and negative samples. Thus, our experimental results
validate the effectiveness of the CIF method in boosting model generalization and precision.

Table 10: Results of Subject-Dependent Setup. The training, validation, and test sets are split based
on samples according to a predetermined ratio. Results of the ADFTD dataset under this setup are
presented here.

Datasets Models Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑

ADFTD
(3-Classes)
Reproduced

Autoformer 87.79±2.87 87.63±2.95 86.84±3.10 87.17±3.05 96.45±1.15 93.52±2.05

Crossformer 89.27±1.19 88.98±1.27 88.61±1.35 88.77±1.29 97.53±0.48 95.47±0.87

FEDformer 77.55±2.42 76.71±2.14 76.46±2.52 76.44±2.52 91.66±1.36 84.99±2.15

Informer 91.72±0.13 91.50±0.16 91.36±0.21 91.42±0.14 98.40±0.07 96.92±0.11

iTransformer 64.60±0.77 62.22±0.64 61.95±0.35 61.87±0.41 81.46±0.29 68.81±0.39

MTST 65.43±0.79 64.47±0.65 63.49±0.55 63.71±0.55 81.67±0.51 69.74±0.69

Nonformer 96.00±0.72 95.72±0.80 95.90±0.69 95.81±0.75 99.56±0.13 99.02±0.23

PatchTST 66.55±0.48 65.61±0.60 65.26±0.78 65.26±0.60 83.27±0.33 71.96±0.44

Reformer 90.74±2.18 90.87±2.15 90.61±2.01 90.44±2.25 98.69±0.50 97.57±0.85

Transformer 96.62±0.54 96.46±0.54 96.45±0.59 96.45±0.56 99.69±0.08 99.31±0.13

Medformer 95.76±1.03 95.54±1.10 95.62±1.05 95.58±1.08 99.53±0.18 99.09±0.36

Medformer + CIF 98.87±0.26 98.77±0.27 98.86±0.27 98.81±0.27 99.96±0.01 99.92±0.03

MedGNN 99.44±0.21 99.43±0.21 99.41±0.22 99.42±0.21 99.98±0.01 99.97±0.01
MedGNN + CIF 99.60±0.09 99.60±0.11 99.58±0.09 99.59±0.10 99.99±0.01 99.97±0.01

I.2 RESULTS OF SUBJECT-INDEPENDENT

Table 2 presents the results of various methods reported under the subject-independent setup, while
Table 11 shows the results of our reproduction of these methods. Our approach achieves the highest
scores on six metrics across four out of the five datasets. For the PTB-XL dataset, compared to the
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Table 11: Results of Subject-Independent Setup. The training, validation, and test sets are
distributed based on subjects according to a predetermined ratio/IDs. Results of the APAVA, TDBrain,
ADFTD, PTB, and PTB-XL datasets under this setup are presented here. Unfortunately, MedGNN
has only released the training parameters for the APAVA and ADFTD datasets.

Datasets Models Accuracy ↑ Precision ↑ Recall ↑ F1 score ↑ AUROC ↑ AUPRC ↑

APAVA
(2-Classes)
Reproduced

Autoformer 73.18±7.33 73.87±6.72 73.01±6.10 72.40±7.03 81.64±7.24 81.10±7.75
Crossformer 72.76±2.04 79.64±2.45 67.41±2.62 66.88±3.61 71.81±4.06 71.64±3.74
FEDformer 75.16±1.67 74.98±0.69 73.34±2.97 73.50±2.90 83.89±1.54 83.27±1.62
Informer 72.20±2.78 73.92±4.80 68.48±2.51 68.74±2.70 70.14±3.43 70.84±3.80
iTransformer 74.55±1.66 74.77±2.10 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57
MTST 69.24±1.24 75.87±2.80 63.28±1.81 61.62±2.75 66.09±3.27 68.08±2.93
Nonformer 71.81±4.20 71.31±4.40 70.15±3.38 70.38±3.74 71.54±2.73 72.79±2.50
PatchTST 68.27±2.11 78.56±1.88 61.53±2.60 58.52±4.07 64.61±2.18 67.14±2.06
Reformer 78.42±2.85 80.89±4.52 75.20±2.28 76.09±2.54 75.48±2.79 77.52±2.64
Transformer 75.53±4.28 76.90±5.05 72.14±4.87 72.64±5.44 72.30±6.04 73.04±7.15
Medformer 77.85±2.42 80.31±3.21 74.38±2.49 75.21±2.67 80.85±3.80 81.62±3.24
MedGNN 77.40±5.77 82.77±4.46 73.24±7.06 73.29±9.01 81.31±2.94 82.80±2.91
HM-BiTCN + CIF 85.16±1.55 84.76±1.62 85.33±1.27 84.82±1.49 94.06±1.07 94.21±0.99

TDBrain
(2-Classes)
Reproduced

Autoformer 90.38±3.03 91.16±2.42 90.38±3.03 90.31±3.09 95.83±2.14 95.43±2.31
Crossformer 82.15±2.60 82.81±2.11 82.15±2.60 82.04±2.70 91.20±2.23 91.47±2.16
FEDformer 77.60±1.23 78.25±1.52 77.60±1.23 77.48±1.19 86.31±1.23 86.48±1.36
Informer 88.42±2.99 89.01±2.45 88.42±2.99 88.36±3.05 96.54±0.90 96.66±0.85
iTransformer 74.69±1.02 74.76±1.04 74.69±1.02 74.67±1.02 83.35±1.24 83.65±1.41
MTST 77.67±3.58 78.97±4.37 77.67±3.58 77.45±3.55 86.47±4.84 84.99±6.43
Nonformer 88.10±2.39 88.76±1.74 88.10±2.39 88.04±2.47 96.56±0.91 96.36±1.21
PatchTST 77.98±2.64 79.30±3.73 77.98±2.64 77.76±2.65 86.67±4.03 84.93±5.47
Reformer 88.50±2.30 89.01±1.80 88.50±2.30 88.45±2.35 96.10±0.63 96.19±0.55
Transformer 85.13±1.86 86.39±1.56 85.13±1.86 84.99±1.93 95.61±1.05 95.63±0.91
Medformer 88.77±1.24 88.91±1.11 88.77±1.24 88.76±1.25 96.38±0.34 96.44±0.30
MedGNN - - - - - -
HM-BiTCN + CIF 93.13±1.41 93.33±1.37 93.13±1.41 93.12±1.42 98.62±0.66 98.68±0.63

ADFTD
(3-Classes)
Reproduced

Autoformer 46.90±2.89 45.59±2.37 44.91±2.23 44.34±2.52 63.49±2.44 45.63±2.29
Crossformer 50.18±1.97 45.97±1.84 46.30±1.73 45.90±1.84 66.68±1.67 48.65±1.89
FEDformer 45.75±0.78 45.71±1.29 44.27±1.28 43.51±1.00 62.64±1.64 45.88±1.35
Informer 48.42±1.99 46.94±1.60 46.41±0.99 45.76±0.43 65.99±1.14 47.49±1.07
iTransformer 52.85±1.36 46.97±1.05 47.31±1.03 46.84±0.78 67.46±0.96 49.90±0.89
MTST 45.77±1.70 44.39±1.73 43.70±1.82 43.36±1.98 61.38±1.57 44.01±1.60
Nonformer 50.81±1.06 48.71±1.40 48.55±1.47 48.36±1.38 66.95±1.54 48.08±1.82
PatchTST 43.32±0.53 41.95±0.38 41.45±1.26 40.75±1.62 60.21±0.29 42.49±0.57
Reformer 51.28±2.60 49.68±2.75 49.64±2.02 48.45±2.06 69.20±2.53 51.74±3.24
Transformer 50.53±0.94 49.31±0.87 48.57±1.23 48.42±1.28 67.98±0.90 49.07±1.35
Medformer 53.70±1.18 51.51±1.32 50.49±1.48 50.35±1.53 70.48±1.17 50.91±1.13
MedGNN 50.22±3.21 48.65±3.72 47.50±4.57 47.33±4.40 67.18±4.39 48.84±4.11
HM-BiTCN + CIF 58.56±0.93 55.65±0.81 55.86±0.79 55.42±0.82 76.07±0.59 59.75±0.67

PTB
(2-Classes)
Reproduced

Autoformer 71.99±2.74 69.60±3.85 61.50±4.23 61.43±5.07 74.29±1.89 70.26±2.00
Crossformer 78.06±3.44 81.53±3.13 68.62±5.63 69.76±6.53 88.31±2.07 85.81±2.43
FEDformer 74.54±2.27 77.99±4.10 63.14±3.29 63.28±4.36 84.63±4.27 80.91±5.55
Informer 79.59±0.65 83.33±0.77 70.58±0.95 72.58±1.08 92.77±0.48 90.89±0.57
iTransformer 83.43±1.19 88.06±1.47 75.64±1.55 78.29±1.70 91.38±1.41 91.08±1.30
MTST 75.53±2.45 78.72±1.87 64.78±4.06 65.30±4.81 87.76±4.09 83.60±3.92
Nonformer 78.93±1.46 82.48±1.53 69.68±2.15 71.50±2.56 90.54±0.59 87.78±1.46
PatchTST 75.28±2.44 77.05±2.44 64.86±4.05 65.41±5.28 88.11±2.59 82.65±2.87
Reformer 78.11±1.65 82.70±0.80 68.17±2.68 69.68±3.34 90.77±1.56 88.14±1.20
Transformer 76.43±1.98 81.25±1.15 65.64±3.29 66.44±4.39 90.21±1.24 87.28±1.49
Medformer 80.99±0.75 83.01±0.72 73.35±1.16 75.47±1.21 93.10±1.18 90.69±1.04
MedGNN - - - - - -
HM-BiTCN + CIF 88.29±1.45 90.66±1.48 83.21±2.02 85.59±1.96 94.28±0.93 93.78±1.11

PTB-XL
(5-Classes)
Reproduced

Autoformer 60.37±1.72 49.83±0.50 49.17±0.72 48.43±0.47 81.35±0.56 50.83±0.72
Crossformer 73.15±0.17 64.62±0.31 61.28±0.45 62.49±0.34 89.94±0.15 67.14±0.29
FEDformer 56.01±10.27 51.61±5.58 48.77±7.64 47.23±8.76 82.01±4.20 52.23±7.14
Informer 71.28±0.27 62.28±0.53 59.18±0.54 60.38±0.38 88.57±0.09 64.57±0.18
iTransformer 69.18±0.33 59.44±0.48 54.84±0.25 56.44±0.23 86.65±0.17 60.27±0.44
MTST 72.14±0.29 64.01±0.61 59.31±0.27 61.07±0.32 88.82±0.19 65.52±0.52
Nonformer 70.51±0.79 61.42±1.03 58.15±0.57 59.31±0.63 88.20±0.43 63.33±0.77
PatchTST 73.13±0.20 65.38±0.54 60.61±0.56 62.39±0.27 89.66±0.16 66.97±0.24
Reformer 71.24±0.46 61.78±0.79 59.67±0.99 60.51±0.65 88.67±0.21 64.29±0.29
Transformer 70.46±0.42 61.56±0.58 57.86±0.65 59.16±0.46 88.18±0.14 63.25±0.27
Medformer 72.94±0.15 64.39±0.32 59.98±0.49 61.61±0.33 89.67±0.10 66.25±0.25
MedGNN - - - - - -
HM-BiTCN + CIF 73.73±0.30 65.41±0.67 60.70±1.08 61.89±0.91 90.53±0.22 67.75±0.75
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results reported by other methods, our method achieves the highest AUROC, with Accuracy ranking
second.

In comparison with our reproduced results, our method ranks first in Accuracy, AUROC, and AUPRC,
and second in Precision and Recall. Additionally, it is noteworthy that under the subject-independent
setup, the F1 score for ADFTD is 55.42%, significantly lower than the 99.59% F1 score achieved under
the subject-dependent setup. This comparison highlights the challenge of the subject-independent
setup, which better simulates real-world scenarios.

J ABLATION STUDY

J.1 MODULE STUDY OF CIF

We conduct experiments by integrating our Channel-Imposed Fusion principle with other methods.

In the CIF structure, there are four different hyperparameters. First, t is the switch for forward and
backward feature fusion. When t = 1, it replaces the forward features with the fused features; when
t = −1, it replaces the backward features with the fused features. The second hyperparameter, n,
determines the number of selected channels. Additionally, there are two scaling factors associated
with the channels: a, the scaling factor for the first n channels, and b, the scaling factor for the
remaining n channels. Both a and b can either be learnable or fixed parameters. We use to
represent learnable parameters, and to represent non-learnable parameters.
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Figure 9: The case of Xnew
i = Xfused is marked by setting t = 1.
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Figure 10: The case of Xnew
j = Xfused is marked by setting t = −1.

Following the theoretical analysis of the parameters a and b in Appendix A, we perform an evenly
spaced grid search over the range [−1, 1]× [−1, 1] and report the overall performance trends as these
hyperparameters vary.

The ablation study(Table 12 13 14) reveals that the performance of the CIF architecture is highly
sensitive to its hyperparameters, with optimal configurations varying significantly across datasets.
For the APAVA dataset (16 channels), the best results (86.30% accuracy, 94.26% AUROC) are
achieved using backward fusion (t = −1) on 9 selected channels (n = 9), where the first 7 channels
apply fixed reinforcement weights (a = −0.8, learnable) and the rest use fixed suppression weights
(b = −0.6, learnable). Conversely, the ADFTD dataset (19 channels) performs best (58.56% accuracy,
76.07% AUROC) with forward fusion (t = 1) over 10 selected channels (n = 10) using dynamically
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learned weights for negative suppression (a = −0.19) and positive enhancement (b = 0.27). These
differences, also observed in PTB (APAVA: 78–85% accuracy vs. ADFTD: 50–58%), emphasize
the critical role of dataset-specific tuning. In particular, the number of selected channels (n) and
fusion direction (t) are pivotal, while adaptive weighting (a/b) further improves robustness. Overall,
the results highlight the necessity of careful hyperparameter optimization—especially in channel
selection and fusion strategy—for maximizing CIF performance across diverse medical time series
tasks.

Overall, the number of selected channels n and the fusion direction t are the key factors influencing
performance, while the adaptive weights a/b further enhance the robustness and generalization ability
of the model. Taken together, these results indicate that, for diverse medical time-series tasks, fully
leveraging the advantages of CIF requires careful and systematic optimization of hyperparameters
such as channel selection and fusion strategy.

Table 12: Ablation study of CIF structure hyperparameters on ADFTD dataset (19 Channels). We
use to represent learnable parameters, and to represent non-learnable parameters.

t n a b Accuracy Precision Recall F1 score AUROC AUPRC
- - - - 52.05±2.22 50.45±3.00 50.40±2.55 49.48±2.70 69.43±2.84 50.99±3.15

1 10 -0.20 -0.30 57.33±0.95 54.06±1.47 54.44±1.33 53.73±1.47 74.82±1.36 58.24±1.78

1 10 -0.25 -0.40 57.08±1.46 53.31±0.98 53.24±1.14 52.87±0.98 73.77±1.28 56.86±1.47

1 11 -0.20 -0.30 56.68±1.30 53.04±2.00 53.45±2.03 52.84±2.30 73.81±1.55 57.34±1.46

1 10 -0.19 -0.27 58.56±0.93 55.65±0.81 55.86±0.79 55.42±0.82 76.07±0.59 59.75±0.67

1 7 0.20 -0.60 56.36±0.58 53.91±1.10 54.34±1.03 53.78±0.91 74.19±0.69 56.62±1.28

1 9 -0.20 -0.60 55.20±1.50 53.05±1.14 53.21±1.06 52.76±1.02 73.09±1.13 55.50±1.71

1 10 -0.20 -0.20 57.11±0.92 55.04±1.43 55.53±1.57 54.58±1.29 75.13±1.33 58.47±1.43

1 11 -0.20 -0.30 57.83±1.16 54.32±1.22 54.51±1.18 54.01±1.21 74.74±1.12 57.96±1.08

1 11 -0.18 -0.25 57.00±1.32 53.00±2.28 53.17±1.94 52.32±2.19 73.97±1.89 57.00±1.93

1 7 -1.00 -1.00 51.29±1.14 49.72±1.46 49.95±1.65 49.35±1.44 69.13±0.82 51.01±1.19

1 7 -1.00 -1.00 50.46±1.57 48.50±1.19 48.68±1.29 48.20±1.38 68.18±1.08 49.73±1.24

1 7 -1.00 -0.80 50.62±2.38 49.34±2.17 49.49±2.18 48.97±2.34 68.55±1.78 50.52±2.40

1 7 -1.00 -0.80 50.51±2.57 49.04±2.31 49.26±2.60 48.73±2.66 68.32±2.13 50.38±2.53

1 7 -1.00 -0.60 51.51±1.56 50.15±1.36 50.35±1.03 49.80±1.24 69.03±0.92 51.09±1.48

1 7 -1.00 -0.60 51.09±2.05 49.84±1.97 50.24±2.16 49.33±1.84 69.04±1.83 51.15±2.55

1 7 -1.00 -0.40 51.17±1.27 48.47±1.03 48.45±1.36 47.83±1.38 68.20±0.79 49.55±1.06

1 7 -1.00 -0.40 53.59±1.01 52.16±2.37 52.16±3.11 51.01±3.24 70.77±2.29 53.17±3.59

1 7 -1.00 -0.40 51.27±0.91 48.14±0.91 48.28±1.15 47.66±1.18 67.95±1.05 48.92±1.71

1 7 -1.00 -0.40 53.03±1.70 52.41±2.70 51.95±3.09 50.35±3.43 70.69±2.34 52.99±3.58

1 7 -1.00 -0.20 51.11±0.61 48.09±0.51 47.88±0.59 47.40±0.59 67.73±0.67 48.74±0.89

1 7 -1.00 -0.20 54.26±0.58 52.53±1.78 51.58±2.01 51.31±2.32 70.87±1.43 53.25±2.30

1 7 -1.00 -0.20 50.21±2.53 47.75±2.54 47.84±2.62 47.38±2.51 67.34±2.67 48.72±3.07

1 7 -1.00 -0.20 54.91±1.15 53.99±1.35 53.54±2.01 53.16±1.56 72.41±1.23 55.67±1.70

1 8 -1.00 -1.00 51.22±0.94 49.68±1.50 49.67±2.01 49.18±1.59 68.92±1.00 51.02±1.05

1 8 -1.00 -1.00 52.00±1.48 50.10±1.12 49.87±1.43 49.56±1.17 69.38±0.97 51.20±1.26

1 8 -1.00 -0.80 52.20±1.50 49.88±1.71 49.90±1.85 49.69±1.75 69.44±1.36 51.39±1.69

1 8 -1.00 -0.80 51.19±2.06 47.57±1.30 47.61±1.79 47.18±1.62 67.52±1.78 48.94±1.69

1 8 -1.00 -0.60 51.67±1.42 47.79±0.92 47.97±1.22 47.49±1.21 67.89±1.31 49.35±1.62

1 8 -1.00 -0.60 51.15±1.78 47.52±0.70 47.29±1.10 46.62±0.71 67.69±1.50 48.90±1.31

1 8 -1.00 -0.40 52.58±1.40 49.21±2.48 49.35±1.80 48.50±2.27 68.95±1.57 50.26±2.08

1 8 -1.00 -0.40 52.40±0.54 50.11±2.26 49.92±2.13 48.87±2.64 69.13±1.85 50.62±2.47

1 8 -1.00 -0.40 52.61±1.20 49.38±2.01 49.07±1.57 48.32±1.97 68.92±1.50 50.01±1.66

1 8 -1.00 -0.40 52.47±1.46 49.68±1.96 49.59±1.70 48.30±2.21 68.60±1.70 49.58±2.21

1 8 -1.00 -0.20 51.83±1.52 48.65±2.57 48.79±2.05 48.16±2.45 67.83±1.86 49.21±2.17

1 8 -1.00 -0.20 52.14±1.35 50.70±2.37 50.25±2.35 49.75±2.07 69.64±1.73 51.02±2.65

1 8 -1.00 -0.20 52.70±1.14 50.10±1.76 49.66±1.42 48.99±1.71 69.22±1.06 50.20±1.09
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t n a b Accuracy Precision Recall F1 score AUROC AUPRC

1 8 -1.00 -0.20 52.64±0.73 49.69±2.78 50.02±1.94 48.95±2.76 69.15±1.81 50.69±2.16

1 9 -1.00 -1.00 53.35±1.53 49.43±0.75 49.65±0.54 49.05±1.03 69.05±0.60 51.18±0.44

1 9 -1.00 -1.00 53.42±2.39 50.34±1.98 50.23±1.85 49.47±2.21 69.43±1.40 51.76±1.87

1 9 -1.00 -0.80 52.60±1.52 50.27±0.83 50.10±0.85 49.49±0.70 69.19±0.43 51.16±0.76

1 9 -1.00 -0.80 52.41±1.31 49.15±0.81 49.14±1.22 48.13±1.43 68.53±0.45 50.22±0.82

1 9 -1.00 -0.60 52.18±0.91 49.49±1.11 49.40±1.37 48.90±0.85 68.75±1.16 50.44±1.61

1 9 -1.00 -0.60 51.92±1.60 49.03±0.83 48.73±0.78 48.13±0.88 68.31±0.40 49.95±0.46

1 9 -1.00 -0.40 51.34±0.70 49.72±0.34 49.90±0.42 49.32±0.42 68.67±0.31 50.21±0.90

1 9 -1.00 -0.40 51.36±2.78 49.89±1.37 49.48±1.07 48.83±1.52 69.11±1.57 50.22±1.88

1 9 -1.00 -0.40 52.24±1.09 49.96±0.92 49.42±0.99 49.01±0.85 68.50±0.91 49.71±1.22

1 9 -1.00 -0.40 51.23±2.51 50.34±0.95 49.68±0.70 48.94±1.37 69.81±1.24 51.01±1.47

1 9 -1.00 -0.20 51.30±0.83 49.86±0.96 49.61±0.99 49.00±0.83 68.90±0.99 50.08±1.43

1 9 -1.00 -0.20 50.63±2.05 49.20±1.98 48.76±1.75 48.08±1.47 68.55±1.89 49.46±2.35

1 9 -1.00 -0.20 53.22±2.54 51.76±2.90 50.85±3.02 50.22±3.38 69.92±2.50 51.51±3.36

1 9 -1.00 -0.20 51.03±2.23 49.86±1.36 49.59±1.59 49.03±1.66 69.13±1.44 50.35±2.08

1 10 -1.00 -1.00 51.76±1.87 49.07±2.33 48.94±2.07 48.35±2.23 68.73±1.56 50.36±2.20

1 10 -1.00 -1.00 49.94±1.17 47.35±2.22 47.48±1.98 46.89±2.20 67.17±0.98 48.61±1.84

1 10 -1.00 -0.80 52.94±2.14 50.68±2.19 50.17±2.00 49.79±1.94 69.46±1.79 51.11±2.61

1 10 -1.00 -0.80 52.13±2.00 49.49±2.73 49.51±2.54 48.81±2.72 68.65±1.77 50.42±2.08

1 10 -1.00 -0.60 51.87±2.46 49.68±2.77 49.99±2.84 49.24±2.95 69.18±2.01 51.03±2.77

1 10 -1.00 -0.60 51.86±1.69 49.10±1.32 49.76±1.38 48.69±1.49 69.01±1.02 50.41±1.35

1 10 -1.00 -0.40 52.66±1.03 47.97±1.50 48.38±0.97 47.34±1.41 68.12±1.15 49.01±1.38

1 10 -1.00 -0.40 52.51±2.82 51.49±3.07 51.10±3.57 50.33±3.43 70.03±3.22 51.80±4.02

1 10 -1.00 -0.40 52.41±1.03 48.62±1.93 49.14±1.60 47.99±1.75 68.41±1.13 49.39±1.37

1 10 -1.00 -0.40 51.49±1.49 50.82±1.60 50.21±1.68 49.51±1.59 69.39±1.74 50.83±2.24

1 10 -1.00 -0.20 52.93±0.91 50.09±2.50 49.23±1.64 48.63±1.98 69.06±1.84 50.34±2.30

1 10 -1.00 -0.20 54.29±2.40 52.85±2.43 51.05±1.91 50.86±2.26 71.26±2.20 53.12±2.65

1 10 -1.00 -0.20 53.17±2.38 49.78±3.85 50.04±3.26 49.42±3.77 69.42±3.45 50.81±4.85

1 10 -1.00 -0.20 52.73±3.06 51.96±2.78 51.07±2.84 50.37±3.15 70.70±2.84 52.46±3.47

1 11 -1.00 -1.00 52.58±0.58 48.82±1.37 49.03±1.32 48.54±1.36 68.70±0.98 50.46±1.21

1 11 -1.00 -1.00 51.62±1.79 48.69±2.60 48.58±2.66 48.48±2.49 68.51±1.74 50.69±2.33

1 11 -1.00 -0.80 52.30±1.30 49.28±1.37 48.77±0.61 48.05±1.12 68.63±1.10 50.61±1.37

1 11 -1.00 -0.80 53.35±2.23 49.09±2.26 49.08±2.12 47.91±2.25 68.62±1.60 50.38±1.64

1 11 -1.00 -0.60 51.63±1.71 49.23±1.82 48.99±1.43 48.42±1.59 69.21±1.40 51.41±1.71

1 11 -1.00 -0.60 52.79±2.04 48.88±3.26 49.16±2.06 48.29±2.78 68.38±2.51 50.14±2.64

1 11 -1.00 -0.40 51.21±2.03 48.89±1.47 48.68±0.96 47.98±1.63 68.61±1.26 50.42±1.04

1 11 -1.00 -0.40 52.76±1.32 48.29±3.35 48.87±2.77 47.83±3.61 68.48±2.72 50.29±3.06

1 11 -1.00 -0.20 52.17±2.07 49.95±1.95 49.34±1.79 48.76±2.17 69.64±1.89 51.36±1.79

1 11 -1.00 -0.20 52.94±1.57 50.48±1.48 50.62±1.19 49.65±1.34 69.49±1.11 50.60±1.77

1 11 -1.00 -0.20 52.86±1.18 49.30±2.91 49.10±2.10 48.35±2.69 69.00±1.91 50.58±2.21

1 11 -1.00 -0.20 52.79±1.55 50.06±1.70 50.33±1.44 49.25±1.58 69.63±1.11 50.74±1.63

1 12 -1.00 -1.00 52.23±0.70 49.02±1.30 48.85±1.39 48.42±1.79 69.42±1.28 51.53±1.57

1 12 -1.00 -1.00 52.87±0.91 48.84±1.15 48.80±1.09 48.17±1.61 69.83±1.51 51.81±1.39

1 12 -1.00 -0.80 51.77±1.81 49.15±1.61 48.85±1.60 48.10±1.99 69.28±1.63 51.18±1.62

1 12 -1.00 -0.80 51.30±1.90 48.55±2.06 48.64±2.13 48.15±2.30 68.67±1.85 50.49±2.12

1 12 -1.00 -0.60 51.09±2.09 48.78±1.64 48.58±1.66 48.01±1.97 68.73±1.96 50.50±2.11

1 12 -1.00 -0.60 50.75±2.02 48.16±2.49 47.98±2.48 47.38±2.42 68.05±2.19 49.60±2.52

1 12 -1.00 -0.40 50.24±1.48 47.38±1.71 47.13±1.68 46.79±1.63 67.87±1.12 49.14±1.11

1 12 -1.00 -0.40 49.54±2.95 47.32±2.66 47.10±2.16 46.00±2.48 67.31±1.79 48.73±2.04

1 12 -1.00 -0.20 50.92±1.56 48.17±1.85 48.04±1.63 47.63±1.68 68.12±1.42 49.36±1.84

1 12 -1.00 -0.20 51.41±2.32 49.46±2.48 49.58±2.61 48.42±2.26 68.68±2.27 49.71±2.82

1 12 -1.00 -0.20 51.05±1.58 48.59±2.39 48.22±1.78 47.63±1.73 68.61±1.48 49.90±1.68

1 12 -1.00 -0.20 52.52±0.88 49.16±2.35 49.51±2.45 48.47±1.92 69.29±2.02 50.12±2.34
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Table 13: Ablation study of CIF structure hyperparameters on PTB dataset (15 Channels). We use
to represent learnable parameters, and to represent non-learnable parameters.

t n a b Accuracy Precision Recall F1 score AUROC AUPRC
- - - - 81.87±1.87 86.50±1.24 73.49±2.90 75.84±3.20 94.20±0.29 93.04±0.45

1 8 0.21 -0.50 88.29±1.45 90.66±1.48 83.21±2.02 85.59±1.96 94.28±0.93 93.78±1.11
1 8 0.20 -0.50 84.45±2.15 88.34±1.15 77.40±3.52 79.89±3.51 93.15±0.70 91.94±0.67

1 9 0.22 -0.50 85.14±0.22 87.42±1.08 79.05±0.52 81.42±0.35 93.82±1.19 92.73±1.27

1 10 0.22 -0.50 85.40±2.08 88.17±1.96 79.17±3.12 81.57±3.07 94.57±1.13 93.53±1.44

1 11 0.22 -0.50 84.47±0.84 88.02±0.59 77.50±1.26 80.10±1.28 92.77±0.89 92.02±0.78

1 8 0.23 -0.50 83.96±5.41 87.13±3.96 76.89±8.22 78.66±9.51 92.49±2.91 91.14±3.79

1 8 0.25 -0.50 85.56±2.09 88.96±1.77 79.03±3.03 81.61±3.14 93.61±1.11 93.07±1.03

-1 7 -1.00 -1.00 82.57±0.88 86.88±0.94 74.58±1.26 77.09±1.35 93.75±1.30 92.74±1.65

-1 7 -1.00 -1.00 82.26±3.27 86.11±2.38 74.28±4.93 76.48±5.44 92.94±2.37 91.53±2.75

-1 7 -1.00 -0.90 81.49±3.97 86.49±2.89 72.81±6.00 74.78±6.87 93.41±1.80 92.62±2.04

-1 7 -1.00 -0.90 78.44±4.44 84.94±2.03 68.22±7.05 69.04±8.81 92.58±2.17 91.48±2.14

-1 7 -1.00 -0.80 79.94±3.18 85.35±2.61 70.48±4.79 72.26±6.02 93.43±1.49 92.30±1.61

-1 7 -1.00 -0.80 80.57±4.70 85.89±3.20 71.38±7.18 72.86±9.26 92.43±0.59 91.48±1.19

-1 7 -1.00 -0.70 81.01±2.74 86.90±0.99 71.93±4.34 73.99±5.25 92.44±2.72 91.70±2.53

-1 7 -1.00 -0.70 83.64±1.03 87.21±0.54 76.36±1.71 78.88±1.65 93.50±0.94 92.83±0.73

-1 7 -1.00 -0.60 80.22±1.47 86.35±1.48 70.72±2.19 72.82±2.57 92.61±1.47 91.70±1.77

-1 7 -1.00 -0.60 81.73±2.77 86.55±1.78 73.24±4.32 75.45±4.82 90.80±1.65 90.14±1.62

-1 8 -1.00 -1.00 82.23±3.14 86.39±1.88 74.18±4.86 76.40±5.01 94.31±1.14 93.25±1.17

-1 8 -1.00 -1.00 80.07±1.79 84.28±2.52 71.10±2.50 73.16±2.85 93.63±0.95 92.04±1.42

-1 8 -1.00 -0.90 81.36±2.30 86.49±1.89 72.62±3.49 74.87±3.81 92.14±2.56 91.19±2.68

-1 8 -1.00 -0.90 79.96±1.46 84.20±1.84 70.92±2.02 72.98±2.32 92.00±1.97 90.66±2.01

-1 8 -1.00 -0.80 80.34±1.93 86.14±1.65 71.00±3.00 73.07±3.40 91.44±2.64 91.01±2.55

-1 8 -1.00 -0.80 77.08±4.30 84.12±3.23 66.14±6.66 66.44±9.24 89.68±3.65 88.73±3.53

-1 8 -1.00 -0.70 79.17±2.48 85.39±1.26 69.35±4.22 70.91±5.05 92.43±1.29 91.69±0.98

-1 8 -1.00 -0.70 80.03±4.82 85.46±2.00 70.75±7.74 71.98±8.94 91.05±2.98 90.05±3.18

-1 9 -1.00 -1.00 81.23±2.67 86.60±1.43 72.39±4.23 74.52±4.64 92.20±1.22 91.55±1.57

-1 9 -1.00 -1.00 80.05±4.78 86.50±2.17 70.45±7.40 71.73±9.27 92.73±0.93 91.87±1.14

-1 9 -1.00 -0.90 80.89±4.06 87.74±1.78 71.49±6.25 73.24±7.85 93.83±2.39 93.33±2.64

-1 9 -1.00 -0.90 82.34±3.22 87.35±2.06 74.12±5.14 76.30±5.62 94.05±2.17 93.54±2.08

-1 9 -1.00 -0.80 84.06±3.49 88.91±1.67 76.49±5.44 78.88±5.80 92.73±1.43 92.39±1.26

-1 9 -1.00 -0.80 82.50±2.14 88.19±1.12 74.03±3.33 76.51±3.67 94.33±0.84 93.83±1.05

-1 9 -1.00 -0.70 81.44±4.04 87.88±1.77 72.37±6.23 74.28±7.32 92.35±1.77 91.86±1.50

-1 9 -1.00 -0.70 80.07±3.15 87.48±1.01 70.24±4.97 71.96±6.03 92.83±2.18 92.43±2.24

-1 10 -1.00 -1.00 79.43±3.39 85.03±2.12 69.86±5.42 71.34±6.75 90.25±3.82 89.29±4.14

-1 10 -1.00 -1.00 82.20±1.03 86.48±1.03 74.07±1.47 76.53±1.61 92.05±2.25 91.29±2.26

-1 10 -1.00 -0.90 83.08±3.17 87.22±1.54 75.41±5.02 77.64±5.69 90.27±3.83 89.89±3.83

-1 10 -1.00 -0.90 80.74±3.10 86.14±1.21 71.72±4.94 73.63±5.85 92.44±1.50 91.53±1.55

-1 10 -1.00 -0.80 78.96±3.54 86.02±2.07 68.75±5.52 70.07±6.74 90.23±3.34 89.36±3.48

-1 10 -1.00 -0.80 79.20±3.45 85.98±0.63 69.31±5.83 70.58±6.97 93.24±1.60 92.07±1.78

-1 10 -1.00 -0.70 82.37±1.89 87.63±0.88 74.00±3.03 76.44±3.21 93.05±1.90 92.39±1.83

-1 10 -1.00 -0.70 77.99±4.51 85.22±0.87 67.50±7.35 67.94±9.84 91.94±3.85 90.81±3.67

-1 11 -1.00 -1.00 81.63±3.29 86.31±2.32 73.11±5.00 75.22±5.90 91.76±2.02 90.82±2.04

-1 11 -1.00 -1.00 79.09±3.82 86.30±1.79 68.91±5.95 70.15±7.70 91.35±3.78 90.46±3.63

-1 11 -1.00 -0.90 79.68±2.84 86.22±1.10 69.89±4.48 71.60±5.35 92.11±1.09 91.33±1.27

-1 11 -1.00 -0.90 78.44±3.40 86.20±1.44 67.84±5.36 68.96±6.63 90.75±5.55 90.19±5.31

-1 11 -1.00 -0.80 80.05±2.78 87.14±1.09 70.25±4.35 72.08±5.08 92.86±2.82 92.27±2.86

-1 11 -1.00 -0.80 82.18±0.99 86.96±1.56 73.88±1.47 76.36±1.56 91.48±3.29 90.85±3.31

-1 11 -1.00 -0.70 80.82±2.07 85.72±1.44 71.94±3.23 74.08±3.62 89.25±2.75 88.51±2.83

-1 11 -1.00 -0.70 78.20±2.54 84.96±1.72 67.72±3.95 69.00±5.18 90.29±0.65 89.52±0.96

Continued on next page

35



Under review as a conference paper at ICLR 2026

t n a b Accuracy Precision Recall F1 score AUROC AUPRC

-1 12 -1.00 -1.00 78.27±3.04 86.34±1.19 67.54±4.80 68.65±6.04 91.52±2.68 90.92±2.48

-1 12 -1.00 -1.00 82.45±1.76 87.85±0.79 74.10±3.00 76.55±3.05 92.78±1.02 92.30±0.82

-1 12 -1.00 -0.90 79.49±1.84 85.59±2.16 69.67±2.57 71.57±3.17 91.80±1.78 90.84±1.96

-1 12 -1.00 -0.90 82.03±1.90 88.37±0.83 73.22±3.06 75.64±3.42 93.21±1.67 92.67±1.74

-1 12 -1.00 -0.80 80.02±2.82 86.84±2.62 70.21±4.03 72.15±4.65 91.42±0.95 90.99±1.27

-1 12 -1.00 -0.80 81.67±3.24 87.40±2.30 72.82±4.86 75.00±5.75 92.56±1.50 91.81±1.68

-1 12 -1.00 -0.70 80.32±4.95 87.36±2.58 70.62±7.57 72.03±8.91 93.41±3.07 92.78±3.34

-1 12 -1.00 -0.70 79.00±1.99 87.52±0.83 68.43±3.05 70.02±3.74 92.27±2.22 92.16±1.82

1 7 -1.00 -1.00 85.02±1.35 88.50±1.01 78.27±1.99 80.88±1.99 95.79±0.74 95.11±0.72

1 7 -1.00 -1.00 84.81±1.84 88.77±1.20 77.86±3.06 80.43±2.94 96.33±1.03 95.64±1.19

1 7 -1.00 -0.90 83.37±2.41 87.74±1.09 75.71±3.86 78.15±4.02 94.66±1.34 93.86±1.44

1 7 -1.00 -0.90 83.70±1.62 87.88±1.13 76.19±2.45 78.77±2.47 95.73±0.89 95.00±0.68

1 7 -1.00 -0.80 84.10±1.64 88.14±1.54 76.78±2.28 79.40±2.41 95.46±1.68 94.73±1.86

1 7 -1.00 -0.80 83.59±2.52 88.30±1.38 75.88±3.99 78.38±4.01 93.55±1.14 93.01±1.42

1 7 -1.00 -0.70 82.68±2.56 87.55±1.12 74.56±4.03 76.94±4.37 95.07±1.61 94.34±1.52

1 7 -1.00 -0.70 86.59±1.96 89.57±1.34 80.67±3.11 83.14±2.92 95.86±0.99 95.33±1.08

1 7 -1.00 -0.60 83.42±3.53 87.76±2.07 75.78±5.45 78.08±5.59 95.23±1.66 94.35±1.82

1 7 -1.00 -0.60 84.09±2.80 87.38±1.49 77.12±4.43 79.45±4.54 93.88±1.22 93.14±1.40

1 8 -1.00 -1.00 82.84±2.54 84.33±2.58 76.30±3.90 78.32±3.72 94.66±1.53 92.85±1.97

1 8 -1.00 -1.00 81.17±1.65 84.79±1.21 72.91±2.68 75.10±2.91 94.65±1.08 92.31±2.18

1 8 -1.00 -0.90 83.41±0.89 86.62±1.18 76.22±1.40 78.67±1.40 94.87±1.00 93.35±1.07

1 8 -1.00 -0.90 81.23±2.07 84.90±1.55 73.00±3.35 75.14±3.64 94.30±1.54 92.69±2.04

1 8 -1.00 -0.80 82.75±2.09 85.86±1.82 75.41±3.40 77.66±3.50 94.49±1.21 92.78±1.69

1 8 -1.00 -0.80 83.49±2.10 85.88±2.27 76.66±2.93 78.97±3.02 95.08±2.27 93.62±2.66

1 8 -1.00 -0.70 82.14±2.38 85.38±1.66 74.44±3.79 76.63±4.11 94.74±1.66 93.38±1.67

1 8 -1.00 -0.70 83.04±1.70 85.52±1.90 76.05±2.52 78.33±2.58 94.25±1.34 92.44±1.50

1 8 -1.00 -0.60 83.87±2.61 86.85±2.41 76.95±4.01 79.26±4.08 95.20±2.86 93.94±3.31

1 8 -1.00 -0.60 84.24±2.01 87.41±1.67 77.34±2.97 79.81±3.00 94.88±0.96 93.38±1.20

1 9 -1.00 -1.00 82.58±3.05 86.28±1.69 74.89±4.91 77.07±4.91 93.56±2.06 92.48±1.79

1 9 -1.00 -1.00 81.97±2.26 85.64±1.61 73.99±3.46 76.26±3.77 93.68±1.04 92.21±1.27

1 9 -1.00 -0.90 81.24±2.88 84.95±2.58 72.97±4.37 75.05±4.74 94.07±2.15 92.79±2.34

1 9 -1.00 -0.90 83.23±1.06 86.49±2.05 75.95±1.17 78.42±1.32 93.78±1.86 92.82±2.05

1 9 -1.00 -0.80 81.84±2.15 86.93±1.44 73.30±3.27 75.65±3.53 93.56±0.88 92.60±1.15

1 9 -1.00 -0.80 82.90±1.57 86.86±1.99 75.18±2.19 77.67±2.29 94.64±0.85 93.78±0.94

1 9 -1.00 -0.70 83.52±2.03 86.44±2.85 76.45±2.50 78.89±2.76 93.94±1.29 92.76±1.71

1 9 -1.00 -0.70 79.94±3.23 84.83±2.00 70.69±5.00 72.45±5.82 93.59±1.56 92.47±1.42

1 9 -1.00 -0.60 81.79±3.50 87.48±1.74 73.12±5.52 75.20±6.04 94.39±1.57 93.35±2.09

1 9 -1.00 -0.60 82.20±1.47 87.39±2.01 73.78±2.18 76.26±2.31 94.56±3.17 93.59±3.93

1 10 -1.00 -1.00 82.13±3.26 87.02±1.61 73.82±5.11 75.97±5.88 93.67±1.96 92.80±2.01

1 10 -1.00 -1.00 82.69±4.49 86.75±2.85 74.85±7.00 76.75±7.98 94.19±0.91 93.34±0.96

1 10 -1.00 -0.90 81.80±2.20 86.99±2.63 73.17±3.06 75.57±3.48 92.92±1.69 92.09±2.04

1 10 -1.00 -0.90 86.15±1.41 88.87±0.92 80.15±2.16 82.62±2.05 95.97±0.65 95.32±0.57

1 10 -1.00 -0.80 82.52±2.43 87.71±1.90 74.19±3.65 76.64±4.01 93.67±3.19 92.93±3.20

1 10 -1.00 -0.80 82.92±1.74 87.86±1.61 74.83±2.52 77.40±2.76 93.42±3.18 92.76±2.99

1 10 -1.00 -0.70 84.52±1.47 88.52±0.74 77.38±2.32 80.01±2.38 95.45±1.12 94.74±1.04

1 10 -1.00 -0.70 83.00±1.47 87.12±0.99 75.26±2.31 77.76±2.42 94.24±1.35 93.54±1.19

1 11 -1.00 -1.00 83.24±2.22 87.34±1.29 75.60±3.43 78.05±3.68 94.73±1.95 93.82±1.85

1 11 -1.00 -1.00 82.60±0.88 87.11±0.95 74.55±1.37 77.08±1.43 92.63±1.52 91.79±1.51

1 11 -1.00 -0.90 80.82±2.45 85.77±1.59 71.90±3.72 74.02±4.24 93.53±1.82 92.37±1.58

1 11 -1.00 -0.90 81.41±3.01 86.76±2.08 72.68±4.66 74.78±5.44 94.61±1.16 93.24±1.68

1 11 -1.00 -0.80 82.73±2.62 87.66±2.10 74.59±3.93 77.01±4.30 94.59±0.65 93.61±0.69

1 11 -1.00 -0.80 77.98±2.41 85.65±1.32 67.28±4.08 68.40±4.92 92.95±3.27 92.12±3.26

1 11 -1.00 -0.70 83.28±3.98 87.98±2.44 75.47±6.08 77.72±6.22 94.63±1.63 93.23±2.43
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t n a b Accuracy Precision Recall F1 score AUROC AUPRC

1 11 -1.00 -0.70 81.95±3.19 87.27±1.44 73.43±5.07 75.57±5.85 94.49±1.31 93.62±1.35

1 12 -1.00 -1.00 82.56±2.11 85.78±2.15 75.05±3.29 77.34±3.22 92.70±3.46 91.46±4.17

1 12 -1.00 -1.00 79.36±2.38 85.74±2.69 69.50±3.66 71.23±4.45 89.66±2.53 88.86±2.93

1 12 -1.00 -0.90 79.23±3.52 86.61±1.48 69.12±5.66 70.47±6.76 92.23±2.15 91.33±2.28

1 12 -1.00 -0.90 82.68±2.77 88.63±1.29 74.20±4.25 76.64±4.70 94.50±2.22 94.05±2.22

1 12 -1.00 -0.80 80.16±4.61 84.27±5.05 71.06±6.59 72.75±7.90 92.14±2.38 90.81±3.40

1 12 -1.00 -0.80 81.78±3.53 86.61±2.21 73.41±5.56 75.44±6.14 92.98±2.44 92.10±2.42

1 12 -1.00 -0.70 81.35±2.77 87.19±2.53 72.42±4.21 74.62±4.55 94.66±1.02 93.97±1.37

1 12 -1.00 -0.70 85.25±2.74 88.51±2.37 78.74±4.12 81.17±3.99 95.07±1.05 94.48±1.36
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Table 14: Ablation study of CIF structure hyperparameters on APAVA dataset (16 Channels). We
use to represent learnable parameters, and to represent non-learnable parameters.

t n a b Accuracy Precision Recall F1 score AUROC AUPRC
- - - - 82.49±1.40 82.38±1.79 81.20±1.32 81.60±1.39 91.10±1.63 91.30±1.71

-1 5 1 1 81.48±1.96 81.99±2.38 79.52±2.00 80.21±2.07 90.93±1.74 91.17±1.77

-1 6 1 1 84.00±2.37 84.33±2.61 82.37±2.44 83.02±2.50 92.67±2.57 92.87±2.55

-1 7 1 1 81.77±2.31 82.67±3.24 79.78±2.04 80.49±2.26 89.92±2.60 90.23±2.53

1 9 1 1 85.16±1.55 84.76±1.62 85.33±1.27 84.82±1.49 94.06±1.07 94.21±0.99

-1 10 1 1 82.60±1.82 82.30±2.04 81.92±2.29 81.92±1.95 91.94±1.55 92.16±1.50

-1 11 1 2 78.98±0.97 78.57±1.09 77.60±0.93 77.93±0.97 87.29±0.93 87.35±0.96

1 6 -1.00 -1.00 81.20±1.28 81.50±1.16 79.51±1.84 80.01±1.67 90.03±1.00 90.28±1.03

1 6 -1.00 -1.00 81.24±1.16 81.57±0.95 79.56±1.81 80.05±1.62 90.29±0.90 90.61±0.88

1 7 -1.00 -1.00 81.33±2.24 81.36±2.52 79.71±2.22 80.24±2.31 89.57±1.98 90.02±1.89

1 7 -1.00 -1.00 81.33±2.24 81.36±2.52 79.71±2.22 80.24±2.31 89.57±1.98 90.02±1.89

1 7 -1.00 -1.00 81.62±2.58 81.63±2.95 80.09±2.48 80.60±2.62 89.94±2.18 90.33±2.07

1 7 -1.00 -0.90 81.45±2.29 81.48±2.56 79.83±2.31 80.37±2.39 89.73±1.95 90.17±1.85

1 7 -1.00 -0.90 81.58±2.27 81.72±2.66 79.88±2.21 80.47±2.33 89.67±2.01 90.10±1.93

1 7 -1.00 -0.80 82.28±1.80 82.97±1.82 80.30±2.14 81.01±2.09 90.47±1.67 90.83±1.58

1 7 -1.00 -0.80 81.80±1.95 82.45±2.33 80.01±2.01 80.59±2.07 89.90±1.61 90.35±1.53

1 7 -1.00 -0.70 82.17±2.06 82.87±2.44 80.41±2.08 80.99±2.16 90.51±1.76 90.91±1.64

1 7 -1.00 -0.70 82.05±1.11 83.13±1.64 79.89±1.42 80.66±1.33 90.47±1.20 90.86±1.11

1 7 -1.00 -0.60 82.38±1.55 83.21±2.12 80.41±1.74 81.12±1.69 90.96±1.20 91.26±1.16

1 7 -1.00 -0.60 82.19±1.49 83.02±2.15 80.23±1.61 80.93±1.60 90.81±1.26 91.15±1.18

1 7 -1.00 -0.50 82.94±0.93 83.86±1.07 80.95±1.45 81.68±1.27 91.39±0.77 91.69±0.71

1 7 -1.00 -0.50 82.52±1.10 83.35±1.63 80.60±1.40 81.28±1.30 91.17±0.98 91.49±0.92

1 7 -1.00 -0.40 82.96±0.89 83.73±1.10 81.07±1.32 81.77±1.16 91.79±0.60 92.03±0.60

1 7 -1.00 -0.40 83.02±0.79 83.82±1.14 81.08±1.05 81.82±0.95 91.85±0.60 92.09±0.60

1 7 -1.00 -0.30 83.00±1.71 83.51±2.29 81.31±1.43 81.95±1.61 91.78±1.64 92.02±1.63

1 7 -1.00 -0.30 82.78±1.68 83.49±2.38 81.10±1.04 81.70±1.43 91.98±1.35 92.19±1.36

1 7 -1.00 -0.20 83.13±1.72 83.47±2.29 81.71±1.60 82.18±1.67 92.09±1.65 92.25±1.65

1 7 -1.00 -0.20 83.16±1.93 83.61±2.47 81.55±1.79 82.14±1.91 92.13±1.74 92.30±1.72

1 7 -1.00 -0.10 84.39±0.90 84.68±0.94 82.92±1.22 83.48±1.06 93.08±0.92 93.20±0.98

1 7 -1.00 -0.10 84.56±0.97 84.89±0.69 83.05±1.42 83.64±1.20 93.19±0.94 93.30±1.01

1 7 -1.00 0.10 84.25±1.46 84.47±1.37 82.77±1.79 83.33±1.64 92.77±1.08 92.90±1.13

1 7 -1.00 0.10 84.39±1.55 84.56±1.49 82.96±1.83 83.50±1.71 92.84±1.18 92.95±1.22

1 7 -1.00 0.20 84.02±1.48 84.15±1.52 82.56±1.61 83.12±1.60 92.51±1.21 92.66±1.20

1 7 -1.00 0.20 83.37±1.81 83.65±2.04 81.85±1.83 82.40±1.87 92.11±1.31 92.27±1.26

1 7 -1.00 0.30 82.95±2.19 82.86±2.64 81.70±1.98 82.11±2.18 91.84±1.67 92.01±1.62

1 7 -1.00 0.30 82.66±1.88 82.62±2.43 81.40±1.56 81.79±1.81 91.34±1.88 91.43±1.94

1 7 -1.00 0.40 82.33±1.91 82.35±2.29 80.91±1.87 81.38±1.97 91.20±1.98 91.32±2.00

1 7 -1.00 0.40 83.12±1.75 83.32±2.07 81.57±1.79 82.13±1.84 91.91±1.65 92.08±1.59

1 7 -1.00 0.50 82.07±1.77 82.32±2.31 80.33±1.61 80.96±1.78 90.99±1.65 91.21±1.59

1 7 -1.00 0.50 82.35±2.42 82.57±2.49 80.63±2.64 81.24±2.63 91.04±1.86 91.27±1.79

1 7 -1.00 0.60 82.03±2.11 82.19±2.65 80.39±2.01 80.97±2.16 90.74±1.94 90.95±1.87

1 7 -1.00 0.60 82.08±2.01 82.22±2.48 80.48±1.97 81.04±2.08 90.80±1.92 91.00±1.86

1 7 -1.00 0.70 81.73±2.22 81.66±2.39 80.24±2.36 80.72±2.38 90.43±1.90 90.63±1.82

1 7 -1.00 0.70 81.79±2.20 81.87±2.48 80.13±2.25 80.70±2.32 90.50±1.90 90.71±1.84

1 7 -1.00 0.80 81.37±1.94 81.69±2.61 79.56±1.75 80.19±1.94 90.28±2.07 90.50±2.00

1 7 -1.00 0.80 81.83±2.37 81.99±2.63 80.10±2.44 80.71±2.52 90.31±1.97 90.54±1.91

1 7 -1.00 0.90 81.72±1.73 82.11±2.28 79.84±1.62 80.52±1.76 90.29±1.72 90.49±1.67

1 7 -1.00 0.90 82.07±2.30 82.18±2.41 80.39±2.48 80.98±2.48 90.38±1.84 90.59±1.78

1 7 -1.00 1.00 81.29±1.73 81.08±1.65 79.84±2.05 80.27±1.93 89.88±1.38 90.09±1.36

1 7 -1.00 1.00 81.31±2.34 82.15±2.11 79.34±3.26 79.89±2.98 89.94±1.88 90.14±1.84
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t n a b Accuracy Precision Recall F1 score AUROC AUPRC

1 7 -0.90 -1.00 81.34±2.29 81.35±2.56 79.74±2.33 80.26±2.41 89.54±2.01 89.96±1.97

1 7 -0.90 -1.00 81.30±2.17 81.41±2.48 79.59±2.20 80.16±2.28 89.53±1.99 89.96±1.95

1 7 -0.90 -0.90 81.58±2.33 81.58±2.82 80.05±2.21 80.56±2.36 89.96±2.13 90.33±2.04

1 7 -0.90 -0.90 81.89±2.19 82.12±2.15 80.15±2.54 80.73±2.47 90.10±2.14 90.41±2.09

1 7 -0.90 -0.80 82.00±1.62 82.67±1.83 80.05±1.93 80.73±1.86 90.12±1.47 90.49±1.41

1 7 -0.90 -0.80 81.75±1.77 82.20±2.33 80.00±1.77 80.58±1.82 89.88±1.42 90.30±1.36

1 7 -0.90 -0.70 81.31±1.74 81.92±2.21 79.29±1.77 79.99±1.84 89.40±1.63 89.88±1.52

1 7 -0.90 -0.70 81.87±2.08 82.28±2.50 80.18±2.09 80.74±2.16 90.02±1.74 90.44±1.63

1 7 -0.90 -0.60 81.98±1.47 82.62±1.97 80.09±1.50 80.75±1.54 90.37±1.07 90.73±1.03

1 7 -0.90 -0.60 81.93±1.35 82.56±2.14 80.08±0.93 80.73±1.17 90.09±1.10 90.49±1.07

1 7 -0.90 -0.50 81.72±1.50 82.60±2.15 79.70±1.32 80.40±1.44 90.11±1.68 90.46±1.61

1 7 -0.90 -0.50 81.33±1.40 81.65±2.17 79.66±1.26 80.19±1.32 90.08±1.36 90.45±1.21

1 7 -0.90 -0.40 82.35±0.75 82.80±1.60 80.67±0.25 81.25±0.47 91.06±0.76 91.35±0.71

1 7 -0.90 -0.40 82.45±0.46 82.95±1.18 80.68±0.54 81.31±0.41 91.13±0.59 91.40±0.55

1 7 -0.90 -0.30 81.38±1.83 81.35±2.47 80.09±1.34 80.46±1.64 90.22±1.37 90.48±1.47

1 7 -0.90 -0.30 81.31±1.88 81.24±2.53 80.15±1.24 80.44±1.63 90.21±1.42 90.47±1.52

1 7 -0.90 -0.20 82.01±1.85 81.92±2.42 80.77±1.62 81.13±1.79 90.86±1.71 91.07±1.77

1 7 -0.90 -0.20 82.42±1.76 82.42±2.22 80.98±1.67 81.47±1.77 91.10±1.67 91.28±1.72

1 7 -0.90 -0.10 83.94±0.79 84.11±0.90 82.51±1.01 83.04±0.89 92.50±0.78 92.65±0.83

1 7 -0.90 -0.10 82.92±1.67 83.22±1.78 81.44±2.00 81.92±1.87 91.66±1.60 91.82±1.62

1 7 -0.90 0.10 83.61±1.65 83.89±1.99 82.02±1.54 82.64±1.67 92.12±1.49 92.28±1.51

1 7 -0.90 0.10 83.75±2.23 84.27±2.21 81.95±2.53 82.66±2.49 92.21±2.01 92.36±1.99

1 7 -0.90 0.20 83.37±1.46 83.92±2.01 81.60±1.40 82.29±1.47 92.18±1.65 92.33±1.64

1 7 -0.90 0.20 83.51±1.25 84.15±1.64 81.66±1.33 82.40±1.32 92.33±1.47 92.47±1.48

1 7 -0.90 0.30 82.99±1.52 83.25±1.74 81.45±1.87 81.98±1.70 92.01±1.52 92.15±1.50

1 7 -0.90 0.30 81.62±1.47 81.77±2.19 80.25±1.19 80.64±1.34 90.76±1.81 90.98±1.74

1 7 -0.90 0.40 81.50±1.62 81.95±2.46 79.67±1.41 80.30±1.57 90.76±1.91 90.97±1.86

1 7 -0.90 0.40 81.59±1.74 81.90±2.32 79.81±1.63 80.43±1.76 90.73±1.84 90.94±1.79

1 7 -0.90 0.50 81.68±1.91 81.84±2.40 80.16±2.12 80.62±2.04 90.85±1.90 91.04±1.84

1 7 -0.90 0.50 81.71±1.71 82.05±2.40 79.99±1.72 80.56±1.76 90.82±1.98 91.01±1.93

1 7 -0.90 0.60 81.45±2.07 81.58±2.65 79.96±2.13 80.41±2.16 90.34±1.90 90.54±1.86

1 7 -0.90 0.60 81.52±1.84 81.68±2.44 80.00±1.89 80.47±1.90 90.34±1.84 90.55±1.79

1 7 -0.90 0.70 81.44±2.60 81.43±2.92 79.84±2.66 80.37±2.75 89.97±2.15 90.19±2.10

1 7 -0.90 0.70 81.02±1.46 81.49±2.75 79.19±1.13 79.80±1.29 90.21±2.15 90.38±2.09

1 7 -0.90 0.80 81.05±1.88 81.28±2.59 79.29±1.71 79.88±1.87 89.82±2.03 89.96±2.01

1 7 -0.90 0.80 81.41±2.61 81.44±2.87 79.75±2.70 80.31±2.77 89.82±2.10 90.00±2.05

1 7 -0.90 0.90 81.23±1.87 81.02±1.80 79.77±2.18 80.21±2.08 89.72±1.71 89.91±1.67

1 7 -0.90 0.90 81.59±2.37 81.53±2.33 80.01±2.69 80.52±2.60 89.95±1.92 90.17±1.87

1 7 -0.90 1.00 81.26±2.06 81.47±2.19 79.39±2.20 80.03±2.23 89.73±1.76 89.91±1.74

1 7 -0.90 1.00 80.78±1.60 80.71±1.59 79.13±1.81 79.65±1.76 89.51±1.56 89.63±1.48

1 7 -0.80 -1.00 81.24±2.14 81.34±2.24 79.59±2.40 80.11±2.36 89.28±1.74 89.65±1.80

1 7 -0.80 -1.00 81.24±1.98 81.67±2.43 79.34±2.05 79.98±2.11 89.23±1.77 89.63±1.83

1 7 -0.80 -0.90 81.44±2.14 81.48±2.46 79.88±2.12 80.38±2.22 89.56±1.82 89.93±1.83

1 7 -0.80 -0.90 81.12±1.93 81.32±2.23 79.44±1.93 79.97±2.01 89.23±1.52 89.66±1.56

1 7 -0.80 -0.80 81.22±1.66 81.38±2.25 79.53±1.40 80.09±1.59 89.32±1.30 89.77±1.30

1 7 -0.80 -0.80 80.96±1.29 81.22±2.05 79.24±1.08 79.79±1.18 88.96±1.01 89.44±1.05

1 7 -0.80 -0.70 81.73±1.63 82.03±2.08 80.00±1.63 80.59±1.66 89.71±1.26 90.08±1.25

1 7 -0.80 -0.70 81.93±1.59 82.45±2.15 80.08±1.61 80.73±1.64 89.96±1.34 90.30±1.33

1 7 -0.80 -0.60 81.73±1.42 81.72±1.72 80.22±1.34 80.71±1.42 89.55±1.25 89.95±1.21

1 7 -0.80 -0.60 81.52±1.45 81.87±2.22 79.83±1.16 80.39±1.31 89.60±1.05 90.00±1.04

1 7 -0.80 -0.50 81.40±1.46 81.51±1.70 79.76±1.51 80.29±1.52 89.54±1.56 89.88±1.47

1 7 -0.80 -0.50 80.99±1.82 81.09±1.84 79.30±2.07 79.83±2.03 89.14±1.94 89.44±1.89

1 7 -0.80 -0.40 81.09±1.65 81.21±1.75 79.40±1.80 79.94±1.79 89.26±1.86 89.49±1.78
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1 7 -0.80 -0.40 80.98±1.50 81.04±1.59 79.32±1.68 79.84±1.65 89.21±1.65 89.48±1.66

1 7 -0.80 -0.30 82.03±1.41 82.48±2.02 80.30±1.15 80.90±1.31 90.40±1.25 90.68±1.21

1 7 -0.80 -0.30 82.08±1.29 82.60±1.95 80.30±0.89 80.93±1.12 90.39±1.17 90.69±1.14

1 7 -0.80 -0.20 81.93±1.35 82.02±1.85 80.40±0.99 80.91±1.21 90.31±1.25 90.60±1.27

1 7 -0.80 -0.20 81.33±1.84 81.22±2.32 79.94±1.59 80.36±1.77 89.96±1.68 90.25±1.72

1 7 -0.80 -0.10 82.59±1.87 82.58±2.35 81.24±1.57 81.68±1.79 91.01±1.85 91.20±1.87

1 7 -0.80 -0.10 81.73±1.76 81.47±2.19 80.55±1.54 80.88±1.72 90.39±1.72 90.60±1.76

1 7 -0.80 0.10 82.89±1.77 83.56±2.02 81.01±1.90 81.72±1.91 91.67±1.74 91.83±1.74

1 7 -0.80 0.10 82.25±1.79 82.78±2.06 80.35±1.89 81.04±1.91 91.08±1.69 91.28±1.69

1 7 -0.80 0.20 82.03±2.50 82.65±2.68 80.14±2.73 80.78±2.76 90.83±2.46 91.04±2.40

1 7 -0.80 0.20 82.70±1.52 83.16±2.03 80.95±1.45 81.59±1.52 91.58±1.60 91.73±1.62

1 7 -0.80 0.30 82.07±1.68 82.51±2.06 80.25±1.76 80.89±1.80 90.43±2.29 90.65±2.22

1 7 -0.80 0.30 81.27±1.65 81.43±2.11 79.82±1.66 80.23±1.70 90.11±2.22 90.33±2.14

1 7 -0.80 0.40 81.23±1.54 81.37±2.17 79.65±1.41 80.15±1.51 90.19±1.80 90.43±1.75

1 7 -0.80 0.40 82.29±1.25 82.70±1.85 80.50±1.06 81.16±1.18 90.92±1.67 91.11±1.64

1 7 -0.80 0.50 80.92±1.92 81.08±2.68 79.51±1.75 79.89±1.85 89.95±2.06 90.15±2.03

1 7 -0.80 0.50 80.94±1.93 80.81±2.53 79.72±1.83 80.01±1.91 89.87±2.00 90.07±1.99

1 7 -0.80 0.60 80.92±1.66 80.55±1.65 79.75±1.98 80.02±1.85 89.67±1.66 89.82±1.68

1 7 -0.80 0.60 80.99±1.90 80.75±2.03 79.70±2.09 80.04±2.04 89.65±1.59 89.87±1.57

1 8 -1.00 -1.00 84.12±1.05 84.18±1.59 82.90±0.95 83.32±1.01 92.68±0.93 92.78±0.89

1 8 -1.00 -1.00 84.91±0.96 85.15±1.53 83.57±0.62 84.09±0.85 93.08±0.98 93.16±0.87

1 8 -1.00 -0.90 84.32±1.62 84.10±1.90 83.36±1.39 83.64±1.57 92.63±1.28 92.79±1.21

1 8 -1.00 -0.90 84.89±1.03 85.03±1.45 83.63±0.85 84.11±0.98 92.88±1.08 93.06±1.05

1 8 -1.00 -0.80 85.27±0.85 85.49±1.00 84.10±1.06 84.51±0.90 93.30±0.76 93.44±0.74

1 8 -1.00 -0.80 85.10±0.87 85.61±1.22 83.72±1.26 84.24±1.03 93.38±0.90 93.52±0.86

1 8 -1.00 -0.70 84.91±0.91 85.51±1.65 83.42±0.99 84.00±0.91 93.67±1.08 93.80±1.07

1 8 -1.00 -0.70 84.56±0.64 85.52±1.80 82.89±0.74 83.55±0.52 93.70±1.03 93.81±1.03

1 8 -1.00 -0.60 84.40±0.69 85.27±1.55 82.70±0.97 83.37±0.77 93.56±1.25 93.70±1.19

1 8 -1.00 -0.60 84.98±0.66 85.65±1.36 83.45±1.01 84.05±0.77 93.82±1.08 93.95±1.03

1 8 -1.00 -0.50 85.21±0.92 85.91±1.28 83.61±1.16 84.28±1.02 93.70±1.11 93.83±1.07

1 8 -1.00 -0.50 85.34±0.93 85.35±0.76 84.18±1.28 84.60±1.09 93.49±0.94 93.63±0.90

1 8 -1.00 -0.40 84.98±0.90 85.77±1.28 83.22±1.02 83.97±0.97 93.80±0.85 93.92±0.84

1 8 -1.00 -0.40 84.47±1.51 85.36±1.72 82.54±1.64 83.37±1.65 93.27±1.55 93.45±1.46

1 8 -1.00 -0.30 84.25±1.35 85.00±1.36 82.38±1.61 83.16±1.53 93.02±1.34 93.17±1.26

1 8 -1.00 -0.30 84.56±0.86 85.30±0.89 82.75±1.15 83.51±1.02 93.59±0.72 93.72±0.69

1 8 -1.00 -0.20 83.35±2.14 83.95±2.93 81.69±1.57 82.34±1.96 92.57±2.06 92.73±1.95

1 8 -1.00 -0.20 83.87±1.29 84.91±1.72 81.79±1.22 82.67±1.33 93.04±1.41 93.18±1.31

1 8 -1.00 -0.10 83.47±2.14 83.80±2.53 81.93±2.24 82.49±2.21 92.22±1.91 92.39±1.80

1 8 -1.00 -0.10 83.58±2.04 83.92±2.43 81.99±2.02 82.60±2.09 92.37±1.95 92.53±1.84

1 8 -1.00 0.10 83.59±1.46 83.74±1.51 82.09±1.67 82.65±1.60 92.21±1.25 92.36±1.22

1 8 -1.00 0.10 82.91±2.16 83.13±2.21 81.23±2.38 81.85±2.36 91.17±2.32 91.37±2.17

1 8 -1.00 0.20 81.31±2.64 81.25±2.71 79.83±2.89 80.27±2.87 90.09±2.07 90.27±2.07

1 8 -1.00 0.20 80.77±2.03 80.77±2.39 79.25±2.13 79.69±2.16 89.65±2.12 89.73±2.13

1 8 -1.00 0.30 81.29±2.45 81.41±2.65 79.66±2.56 80.17±2.60 89.46±2.36 89.71±2.24

1 8 -1.00 0.30 81.30±2.50 81.36±2.75 79.72±2.57 80.21±2.63 89.43±2.52 89.69±2.40

1 8 -1.00 0.40 80.31±2.06 80.88±2.68 78.15±1.95 78.87±2.09 89.10±2.26 89.35±2.17

1 8 -1.00 0.40 80.17±2.20 80.59±2.73 78.06±2.13 78.76±2.28 88.60±2.62 88.90±2.50

1 8 -1.00 0.50 79.04±2.24 79.87±3.14 76.60±2.07 77.34±2.24 87.44±2.78 87.79±2.67

1 8 -1.00 0.50 79.40±2.11 79.94±2.83 77.16±1.89 77.86±2.08 88.00±2.29 88.35±2.21

1 8 -1.00 0.60 78.32±2.40 78.88±2.95 76.20±2.09 76.76±2.29 86.79±2.20 87.16±2.11

1 8 -1.00 0.60 78.53±2.37 79.03±2.94 76.44±2.10 77.01±2.29 87.11±2.10 87.48±2.06

1 8 -1.00 0.70 78.16±2.00 78.58±2.40 75.89±1.95 76.51±2.07 86.46±2.07 86.89±2.01

1 8 -1.00 0.70 77.83±1.94 78.63±2.46 75.29±1.89 75.96±2.01 85.92±2.25 86.34±2.19
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1 8 -1.00 0.80 77.23±1.36 77.84±1.99 74.72±1.32 75.35±1.38 85.34±1.85 85.69±1.77

1 8 -1.00 0.80 77.23±1.63 78.03±2.45 74.63±1.34 75.29±1.49 85.38±2.03 85.82±2.03

1 8 -1.00 0.90 76.79±1.74 77.49±2.37 74.23±1.77 74.82±1.83 84.53±2.01 85.01±2.00

1 8 -1.00 0.90 76.52±1.27 76.86±1.96 74.11±1.03 74.68±1.13 84.70±1.39 85.11±1.30

1 8 -1.00 1.00 77.04±1.46 77.68±2.25 74.54±0.97 75.16±1.16 84.76±1.19 85.27±1.21

1 8 -1.00 1.00 76.90±1.48 77.73±2.41 74.32±0.83 74.94±1.05 84.52±1.16 85.02±1.15

1 8 -0.90 -1.00 83.35±1.73 83.28±1.97 82.35±1.80 82.59±1.79 92.15±0.89 92.26±0.86

1 8 -0.90 -1.00 83.07±1.89 82.95±2.03 82.08±2.08 82.30±2.01 91.80±1.12 91.91±1.09

1 8 -0.90 -0.90 83.58±1.84 83.36±2.19 82.69±1.73 82.88±1.84 92.20±1.08 92.31±1.04

1 8 -0.90 -0.90 84.43±1.40 84.28±1.65 83.42±1.39 83.72±1.43 92.62±0.87 92.67±0.85

1 8 -0.90 -0.80 83.86±2.07 83.70±2.40 82.92±1.89 83.16±2.04 92.31±1.21 92.44±1.21

1 8 -0.90 -0.80 83.70±1.81 83.76±2.48 82.63±1.49 82.94±1.69 92.52±1.24 92.64±1.27

1 8 -0.90 -0.70 84.36±0.98 84.79±1.91 82.93±0.80 83.47±0.86 92.78±1.16 92.93±1.16

1 8 -0.90 -0.70 83.97±1.05 84.46±2.13 82.56±0.81 83.06±0.88 92.77±1.07 92.92±1.07

1 8 -0.90 -0.60 84.74±1.29 84.95±1.72 83.49±1.01 83.94±1.21 93.28±0.90 93.38±0.89

1 8 -0.90 -0.60 84.58±1.37 85.19±2.20 83.14±0.87 83.70±1.18 93.33±1.18 93.43±1.16

1 8 -0.90 -0.50 84.64±1.22 84.72±1.40 83.44±1.35 83.86±1.29 93.01±1.12 93.17±1.07

1 8 -0.90 -0.50 84.72±1.08 85.00±1.39 83.29±1.05 83.86±1.10 93.01±1.17 93.17±1.12

1 8 -0.90 -0.40 84.75±1.32 84.76±1.42 83.51±1.45 83.97±1.41 93.01±1.02 93.14±1.02

1 8 -0.90 -0.40 84.57±0.89 84.90±1.15 83.05±0.96 83.66±0.94 93.08±0.92 93.20±0.93

1 8 -0.90 -0.30 84.92±1.28 85.22±1.41 83.47±1.46 84.05±1.40 93.35±1.01 93.45±1.02

1 8 -0.90 -0.30 84.25±1.82 84.32±2.00 82.91±1.89 83.41±1.90 92.82±1.33 92.92±1.37

1 8 -0.90 -0.20 84.44±1.35 84.82±1.20 82.87±1.72 83.49±1.56 92.75±1.31 92.89±1.26

1 8 -0.90 -0.20 83.97±1.12 84.59±1.12 82.14±1.29 82.89±1.26 92.55±1.22 92.71±1.14

1 8 -0.90 -0.10 83.90±0.94 84.18±0.92 82.35±1.26 82.94±1.10 92.53±0.92 92.69±0.88

1 8 -0.90 -0.10 83.61±0.93 84.06±1.27 81.91±1.05 82.57±1.00 92.44±1.04 92.60±1.03

1 8 -0.90 0.10 82.14±2.78 82.44±3.33 80.65±2.35 81.15±2.65 91.02±2.35 91.26±2.25

1 8 -0.90 0.10 82.38±1.98 82.59±2.42 80.78±1.74 81.35±1.94 91.09±2.04 91.31±1.97

1 8 -0.90 0.20 82.18±2.34 82.46±2.89 80.66±2.11 81.16±2.29 90.44±2.32 90.70±2.24

1 8 -0.90 0.20 81.24±2.99 81.32±3.43 79.81±2.77 80.24±2.98 89.57±2.76 89.77±2.69

1 8 -0.90 0.30 80.75±2.19 80.96±2.76 79.06±2.09 79.59±2.20 88.97±2.63 89.23±2.54

1 8 -0.90 0.30 80.66±2.40 80.85±2.84 78.97±2.38 79.49±2.46 89.08±2.65 89.35±2.56

1 8 -0.90 0.40 79.64±2.51 79.80±3.08 77.79±2.29 78.35±2.48 88.31±2.32 88.62±2.25

1 8 -0.90 0.40 79.76±2.79 79.68±3.28 78.15±2.63 78.62±2.80 88.16±2.37 88.48±2.32

1 8 -0.90 0.50 78.55±2.61 78.46±3.01 76.71±2.53 77.22±2.67 86.46±2.46 86.85±2.44

1 8 -0.90 0.50 78.46±2.48 78.51±2.87 76.57±2.47 77.08±2.57 86.58±2.23 86.96±2.21

1 8 -0.90 0.60 77.90±1.95 77.77±2.17 76.02±2.07 76.51±2.11 85.68±2.56 86.09±2.56

1 8 -0.90 0.60 78.36±1.87 78.18±2.15 76.55±1.86 77.05±1.93 86.32±1.81 86.69±1.86

1 8 -0.90 0.70 78.03±1.81 78.65±2.39 75.67±1.81 76.29±1.89 85.96±2.14 86.36±2.11

1 8 -0.90 0.70 77.76±1.79 78.52±2.30 75.11±1.76 75.83±1.87 85.64±2.09 86.08±2.07

1 8 -0.90 0.80 77.64±2.23 77.93±2.83 75.36±2.06 75.98±2.20 85.53±1.89 85.99±1.91

1 8 -0.90 0.80 77.41±1.95 78.00±2.28 74.82±2.10 75.49±2.15 85.18±2.41 85.53±2.47

1 8 -0.90 0.90 76.72±2.13 77.53±2.91 74.22±1.95 74.77±2.11 84.26±2.17 84.69±2.23

1 8 -0.90 0.90 76.70±1.98 77.20±2.64 74.36±1.82 74.89±1.95 84.27±2.06 84.68±2.15

1 8 -0.90 1.00 77.01±1.66 77.79±2.43 74.34±1.23 75.02±1.41 84.23±1.65 84.73±1.64

1 8 -0.90 1.00 77.09±1.36 77.87±2.13 74.47±1.04 75.12±1.18 84.27±1.44 84.70±1.52

1 8 -0.80 -1.00 83.51±1.91 83.37±1.61 82.43±2.47 82.70±2.24 91.74±1.31 91.81±1.33

1 8 -0.80 -1.00 83.33±1.98 83.22±1.60 82.31±2.64 82.51±2.38 91.59±1.46 91.68±1.46

1 8 -0.80 -0.90 83.44±1.35 83.84±2.08 82.11±1.44 82.52±1.37 92.12±0.96 92.23±1.04

1 8 -0.80 -0.90 83.72±1.48 83.55±1.62 82.97±1.74 83.05±1.58 92.21±0.94 92.26±0.98

1 8 -0.80 -0.80 83.86±1.36 84.20±2.17 82.59±1.33 83.00±1.30 92.50±1.00 92.58±1.04

1 8 -0.80 -0.80 83.87±1.40 83.95±1.92 82.76±1.41 83.08±1.38 92.48±1.02 92.57±1.05

1 8 -0.80 -0.70 83.89±1.05 84.03±2.00 82.76±0.86 83.10±0.91 92.50±1.13 92.62±1.15
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1 8 -0.80 -0.70 83.72±1.05 83.94±2.00 82.58±0.99 82.91±0.93 92.52±1.11 92.63±1.14

1 8 -0.80 -0.60 84.30±1.36 84.49±2.21 83.14±0.97 83.53±1.21 92.69±1.25 92.78±1.28

1 8 -0.80 -0.60 84.29±1.12 84.50±1.95 83.16±0.81 83.52±0.95 92.73±1.18 92.81±1.21

1 8 -0.80 -0.50 84.33±1.52 84.47±2.04 83.07±1.26 83.53±1.45 92.61±1.20 92.72±1.16

1 8 -0.80 -0.50 84.28±1.48 84.19±1.77 83.14±1.37 83.52±1.48 92.58±1.10 92.71±1.06

1 8 -0.80 -0.40 84.01±1.26 83.98±1.67 82.81±1.01 83.22±1.19 92.53±0.98 92.69±0.96

1 8 -0.80 -0.40 83.86±1.77 83.75±2.12 82.70±1.70 83.08±1.79 92.17±1.43 92.34±1.40

1 8 -0.80 -0.30 83.84±1.98 83.97±2.53 82.59±2.03 83.01±2.02 92.42±1.58 92.54±1.61

1 8 -0.80 -0.30 83.98±1.79 84.35±1.64 82.36±2.16 82.98±2.04 92.34±1.49 92.50±1.45

1 8 -0.80 -0.20 83.82±1.36 83.99±1.36 82.28±1.54 82.87±1.49 92.19±1.17 92.35±1.16

1 8 -0.80 -0.20 83.40±1.55 83.71±1.40 81.74±1.88 82.36±1.78 91.81±1.25 91.99±1.18

1 8 -0.80 -0.10 83.61±1.09 83.97±1.26 81.94±1.17 82.59±1.17 92.05±1.05 92.19±1.09

1 8 -0.80 -0.10 83.49±1.10 83.75±1.18 81.86±1.18 82.49±1.18 92.00±1.16 92.16±1.18

1 8 -0.80 0.10 80.88±2.92 81.02±3.31 79.41±2.37 79.85±2.74 89.83±2.36 90.14±2.27

1 8 -0.80 0.10 81.72±3.09 81.92±3.52 80.36±2.59 80.77±2.93 90.46±2.33 90.72±2.27

1 8 -0.80 0.20 81.36±1.99 81.66±2.51 79.67±1.84 80.22±1.97 89.72±2.24 89.99±2.21

1 8 -0.80 0.20 81.06±2.13 81.59±2.58 79.18±2.12 79.79±2.19 89.30±2.43 89.60±2.33

1 8 -0.80 0.30 79.82±2.62 80.09±3.48 78.20±2.10 78.66±2.42 88.38±2.57 88.69±2.51

1 8 -0.80 0.30 80.84±2.17 81.23±2.76 79.13±1.84 79.66±2.06 89.12±2.10 89.41±2.09

1 8 -0.80 0.40 79.54±2.09 79.91±2.97 77.54±1.65 78.17±1.91 87.71±2.30 88.05±2.27

1 8 -0.80 0.40 79.50±2.29 79.84±3.09 77.50±1.94 78.12±2.17 87.79±2.39 88.12±2.34

1 8 -0.80 0.50 78.56±2.26 78.97±3.48 76.50±1.65 77.11±1.97 86.58±2.73 86.88±2.66

1 8 -0.80 0.50 78.18±2.26 78.50±3.41 76.17±1.67 76.74±1.97 86.59±2.73 86.97±2.71

1 8 -0.80 0.60 77.86±1.91 77.81±2.33 75.84±1.89 76.39±1.99 85.38±2.65 85.79±2.67

1 8 -0.80 0.60 78.25±1.87 78.47±2.91 76.18±1.47 76.77±1.69 86.13±2.27 86.51±2.29

1 9 -1.00 -1.00 86.16±1.34 85.62±1.38 86.00±1.37 85.77±1.37 94.32±1.02 94.47±0.99

1 9 -1.00 -1.00 86.07±1.14 85.54±1.21 86.20±1.51 85.73±1.24 94.53±1.28 94.66±1.22

1 9 -1.00 -0.90 85.48±2.00 85.21±1.97 85.39±1.57 85.08±1.92 94.20±1.28 94.35±1.23

1 9 -1.00 -0.90 85.70±2.10 85.35±2.03 85.65±1.80 85.32±2.06 94.25±1.28 94.40±1.24

1 9 -1.00 -0.80 85.81±1.73 85.47±1.72 85.78±1.38 85.44±1.67 94.35±1.09 94.48±1.05

1 9 -1.00 -0.80 85.37±2.62 85.34±2.22 85.34±1.87 84.97±2.49 94.12±1.18 94.27±1.15

1 9 -1.00 -0.70 82.91±4.09 83.81±3.21 83.49±2.51 82.57±3.81 93.75±1.11 93.92±1.09

1 9 -1.00 -0.70 84.01±3.68 84.45±2.76 84.01±2.30 83.57±3.44 93.89±1.01 94.04±0.99

1 9 -1.00 -0.60 85.31±1.43 84.94±1.55 85.29±1.13 84.93±1.35 94.10±0.93 94.26±0.87

1 9 -1.00 -0.60 86.26±0.76 85.84±0.76 86.17±0.49 85.88±0.67 94.49±0.44 94.62±0.42

1 9 -1.00 -0.50 86.54±1.55 86.33±1.88 86.10±1.11 86.08±1.46 94.43±0.70 94.57±0.67

1 9 -1.00 -0.50 86.39±1.06 86.04±1.20 86.14±0.66 85.97±0.96 94.53±0.50 94.66±0.49

1 9 -1.00 -0.40 85.74±1.00 85.57±1.09 85.18±1.26 85.20±1.07 94.29±0.59 94.43±0.57

1 9 -1.00 -0.40 85.77±1.17 85.60±1.22 85.19±1.35 85.23±1.24 94.19±0.58 94.34±0.54

1 9 -1.00 -0.30 85.56±1.36 85.57±1.26 84.83±1.99 84.93±1.62 93.99±0.82 94.14±0.78

1 9 -1.00 -0.30 85.34±1.66 85.45±1.64 84.50±2.06 84.67±1.87 93.87±0.82 94.03±0.76

1 9 -1.00 -0.20 85.31±0.85 85.05±1.04 84.51±0.82 84.70±0.84 93.58±0.71 93.75±0.67

1 9 -1.00 -0.20 85.52±1.39 85.49±1.78 84.50±1.14 84.85±1.34 93.65±0.88 93.81±0.82

1 9 -1.00 -0.10 84.65±0.96 84.43±1.24 83.79±0.92 84.00±0.94 93.34±0.74 93.51±0.72

1 9 -1.00 -0.10 85.03±1.42 85.30±2.07 83.69±1.03 84.23±1.32 93.62±0.93 93.77±0.88

1 9 -1.00 0.10 83.35±0.99 84.57±1.70 81.21±0.99 82.07±1.03 92.63±1.25 92.79±1.15

1 9 -1.00 0.10 83.65±1.32 84.36±1.72 81.81±1.37 82.54±1.38 92.57±1.34 92.74±1.25

1 9 -1.00 0.20 83.90±2.14 84.40±2.06 82.13±2.45 82.83±2.39 92.65±1.78 92.81±1.66

1 9 -1.00 0.20 83.41±1.93 83.88±1.94 81.62±2.15 82.32±2.14 92.21±1.67 92.38±1.52

1 9 -1.00 0.30 83.16±2.07 83.70±1.92 81.31±2.47 82.01±2.38 92.20±1.86 92.34±1.73

1 9 -1.00 0.30 83.10±1.87 83.90±1.95 81.06±2.07 81.87±2.08 92.02±1.84 92.18±1.72

1 9 -1.00 0.40 82.84±1.76 83.51±1.33 80.89±2.31 81.60±2.16 91.59±1.89 91.73±1.73

1 9 -1.00 0.40 81.84±1.34 82.72±1.52 79.61±1.45 80.44±1.49 90.87±1.86 91.04±1.66
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1 9 -1.00 0.50 81.91±2.08 81.99±2.27 80.27±2.18 80.84±2.20 91.05±2.02 91.20±1.78

1 9 -1.00 0.50 81.50±1.66 81.65±1.87 79.77±1.79 80.35±1.77 90.67±1.72 90.79±1.47

1 9 -1.00 0.60 81.38±1.09 81.89±1.47 79.36±1.06 80.08±1.11 90.67±1.42 90.73±1.33

1 9 -1.00 0.60 81.44±0.93 82.07±1.00 79.32±1.10 80.08±1.07 90.78±1.29 90.84±1.22

1 9 -1.00 0.70 81.09±0.90 82.04±0.97 78.79±1.28 79.57±1.15 90.33±1.26 90.35±1.10

1 9 -1.00 0.70 81.23±0.71 81.92±0.61 79.07±1.05 79.82±0.95 90.42±1.15 90.46±1.03

1 9 -1.00 0.80 80.52±0.98 81.47±1.32 78.10±1.03 78.92±1.06 89.87±1.24 89.80±1.24

1 9 -1.00 0.80 80.17±1.14 81.05±1.37 77.76±1.33 78.54±1.32 89.68±1.13 89.65±1.09

1 9 -1.00 0.90 79.92±0.64 80.92±0.83 77.36±0.64 78.19±0.68 89.39±1.07 89.30±1.05

1 9 -1.00 0.90 79.99±0.84 80.70±1.14 77.66±0.97 78.41±0.95 89.50±1.11 89.37±1.07

1 9 -1.00 1.00 79.27±0.64 79.94±1.08 76.90±0.67 77.62±0.66 88.76±1.02 88.54±1.14

1 9 -1.00 1.00 78.91±1.49 80.03±1.67 76.16±1.62 76.97±1.69 88.21±2.36 88.14±2.21

1 9 -0.90 -1.00 85.58±2.16 85.25±1.89 85.67±1.94 85.22±2.14 93.97±1.34 94.13±1.32

1 9 -0.90 -1.00 85.76±2.20 85.40±2.06 85.78±2.04 85.39±2.20 94.03±1.44 94.18±1.41

1 9 -0.90 -0.90 85.81±1.11 85.23±1.13 85.83±1.19 85.46±1.15 94.12±0.98 94.29±0.94

1 9 -0.90 -0.90 85.65±1.63 85.48±1.80 85.39±1.02 85.20±1.49 94.14±0.90 94.29±0.87

1 9 -0.90 -0.80 85.39±2.84 85.26±2.48 85.48±1.93 85.04±2.68 94.04±1.05 94.18±1.05

1 9 -0.90 -0.80 85.26±3.24 85.15±2.81 85.33±2.33 84.90±3.09 94.01±1.18 94.15±1.18

1 9 -0.90 -0.70 85.23±2.83 85.34±2.47 85.06±2.08 84.78±2.67 94.23±1.11 94.38±1.07

1 9 -0.90 -0.70 85.23±2.88 85.30±2.44 85.09±2.07 84.79±2.71 94.23±1.16 94.38±1.14

1 9 -0.90 -0.60 84.00±3.17 84.01±2.61 84.68±2.39 83.76±3.04 93.89±1.28 94.04±1.22

1 9 -0.90 -0.60 85.74±2.99 85.56±2.43 85.91±2.20 85.42±2.86 94.44±1.14 94.58±1.10

1 9 -0.90 -0.50 86.01±0.83 85.89±1.17 85.53±0.97 85.50±0.82 94.34±0.45 94.49±0.42

1 9 -0.90 -0.50 84.85±2.47 85.08±2.36 84.56±1.95 84.34±2.34 94.14±0.89 94.29±0.85

1 9 -0.90 -0.40 85.45±1.78 85.68±2.13 84.67±2.06 84.80±1.87 93.88±1.21 94.04±1.16

1 9 -0.90 -0.40 85.46±1.62 85.56±1.93 84.80±1.90 84.86±1.70 93.92±1.26 94.08±1.22

1 9 -0.90 -0.30 85.59±1.58 85.46±1.68 85.02±1.71 85.04±1.63 93.95±0.86 94.11±0.81

1 9 -0.90 -0.30 85.14±1.96 84.89±2.06 84.51±2.26 84.56±2.08 93.45±1.52 93.62±1.45

1 9 -0.90 -0.20 85.00±1.14 85.29±1.28 84.03±1.91 84.25±1.49 93.49±0.63 93.66±0.59

1 9 -0.90 -0.20 84.40±2.40 84.20±2.47 83.33±2.64 83.66±2.57 92.83±1.83 93.07±1.77

1 9 -0.90 -0.10 84.89±0.93 85.20±1.54 83.66±1.03 84.09±0.95 93.41±0.79 93.58±0.75

1 9 -0.90 -0.10 84.79±1.06 84.88±1.53 83.67±0.82 84.05±0.97 93.44±0.72 93.60±0.69

1 9 -0.90 0.10 84.21±1.85 84.73±2.37 82.51±1.67 83.22±1.85 92.75±1.64 92.94±1.55

1 9 -0.90 0.10 84.04±1.91 84.66±2.38 82.26±1.84 83.00±1.96 92.82±1.64 93.01±1.55

1 9 -0.90 0.20 83.82±1.99 84.27±2.17 82.10±2.16 82.78±2.16 92.62±1.74 92.80±1.64

1 9 -0.90 0.20 83.93±2.12 84.38±2.25 82.22±2.30 82.90±2.30 92.63±1.80 92.82±1.69

1 9 -0.90 0.30 83.06±1.92 83.52±1.95 81.26±2.20 81.94±2.16 92.13±1.86 92.29±1.73

1 9 -0.90 0.30 83.91±1.34 84.43±1.38 82.20±1.62 82.87±1.52 92.59±1.48 92.71±1.35

1 9 -0.90 0.40 82.99±1.07 83.76±1.19 81.01±1.36 81.77±1.24 91.72±1.28 91.82±1.25

1 9 -0.90 0.40 83.45±1.14 84.40±1.42 81.39±1.19 82.23±1.21 92.28±1.39 92.41±1.32

1 9 -0.90 0.50 82.73±1.34 83.39±1.40 80.72±1.49 81.49±1.48 91.71±1.39 91.77±1.37

1 9 -0.90 0.50 82.71±1.31 83.34±1.55 80.75±1.39 81.51±1.40 91.80±1.40 91.85±1.34

1 9 -0.90 0.60 82.03±1.18 82.84±1.20 79.86±1.37 80.66±1.34 91.20±1.10 91.20±1.06

1 9 -0.90 0.60 81.97±1.26 82.81±1.29 79.79±1.48 80.59±1.45 91.15±1.22 91.12±1.18

1 9 -0.90 0.70 81.58±1.13 82.53±1.21 79.32±1.44 80.12±1.35 90.72±1.24 90.70±1.19

1 9 -0.90 0.70 80.92±0.64 81.94±0.93 78.50±0.63 79.35±0.66 90.35±1.14 90.30±1.10

1 9 -0.90 0.80 79.69±1.67 80.50±2.38 77.32±1.40 78.08±1.57 88.77±1.94 88.78±1.85

1 9 -0.90 0.80 80.03±1.27 80.91±1.87 77.60±1.08 78.40±1.21 89.27±1.66 89.27±1.60

1 9 -0.90 0.90 79.80±0.84 81.00±1.11 77.13±0.84 77.99±0.89 89.43±1.03 89.35±1.03

1 9 -0.90 0.90 79.82±0.94 81.20±1.20 77.06±0.97 77.94±1.02 89.43±1.15 89.24±1.17

1 9 -0.90 1.00 79.36±0.74 80.15±1.22 76.89±0.67 77.66±0.71 88.77±1.28 88.57±1.26

1 9 -0.90 1.00 79.23±0.91 80.23±0.95 76.59±1.04 77.40±1.07 88.79±1.17 88.64±1.18

1 9 -0.80 -1.00 85.37±1.64 85.90±0.60 84.34±2.90 84.54±2.30 93.82±1.30 94.00±1.21
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1 9 -0.80 -1.00 84.46±1.74 85.26±1.23 83.67±2.36 83.67±2.05 93.72±1.05 93.92±1.00

1 9 -0.80 -0.90 85.65±1.36 86.08±0.56 84.55±2.41 84.86±1.86 93.96±0.79 94.13±0.76

1 9 -0.80 -0.90 85.95±1.70 86.43±0.92 84.76±2.68 85.14±2.19 94.10±0.89 94.27±0.86

1 9 -0.80 -0.80 85.95±1.20 86.05±0.99 85.26±1.92 85.34±1.51 94.28±0.77 94.44±0.72

1 9 -0.80 -0.80 86.00±1.20 86.01±1.14 85.32±1.74 85.40±1.42 94.20±0.76 94.36±0.72

1 9 -0.80 -0.70 85.19±2.09 85.57±2.04 84.32±1.74 84.50±2.02 94.10±0.86 94.26±0.83

1 9 -0.80 -0.70 85.41±2.39 85.68±2.21 84.70±2.05 84.79±2.33 93.98±0.91 94.14±0.87

1 9 -0.80 -0.60 86.23±1.17 86.35±1.35 85.14±1.24 85.55±1.22 94.09±0.81 94.27±0.75

1 9 -0.80 -0.60 86.30±1.05 86.16±1.09 85.47±1.12 85.71±1.09 94.26±0.54 94.42±0.49

1 9 -0.80 -0.50 85.67±2.74 85.40±2.42 85.61±2.03 85.30±2.60 94.18±1.24 94.34±1.20

1 9 -0.80 -0.50 85.67±1.39 85.34±1.59 85.20±1.02 85.18±1.30 94.07±0.66 94.24±0.63

1 9 -0.80 -0.40 86.08±1.04 85.69±1.09 85.51±1.17 85.57±1.09 93.97±0.94 94.14±0.89

1 9 -0.80 -0.40 86.18±0.77 85.81±0.86 85.74±0.91 85.70±0.79 94.14±0.70 94.30±0.65

1 9 -0.80 -0.30 85.49±1.89 85.45±2.18 84.68±2.02 84.87±1.94 93.73±1.45 93.87±1.37

1 9 -0.80 -0.30 85.02±0.76 84.90±0.99 84.06±0.84 84.34±0.76 93.43±0.63 93.63±0.60

1 9 -0.80 -0.20 84.84±2.03 85.20±2.56 83.38±1.87 83.98±2.02 93.22±1.64 93.44±1.57

1 9 -0.80 -0.20 84.28±1.67 84.97±2.20 82.55±1.54 83.26±1.65 93.04±1.47 93.26±1.41

1 9 -0.80 -0.10 84.07±1.50 84.56±1.98 82.37±1.38 83.07±1.51 92.70±1.15 92.96±1.05

1 9 -0.80 -0.10 83.83±2.37 84.58±3.02 81.99±2.32 82.75±2.44 92.33±1.96 92.60±1.88

1 9 -0.80 0.10 84.21±1.34 85.39±1.96 82.14±1.24 83.03±1.33 92.98±1.31 93.20±1.20

1 9 -0.80 0.10 84.29±1.48 85.49±1.95 82.23±1.52 83.11±1.57 92.95±1.33 93.17±1.23

1 9 -0.80 0.20 84.32±1.36 84.94±1.39 82.54±1.57 83.28±1.51 92.76±1.43 92.97±1.32

1 9 -0.80 0.20 83.83±1.93 84.13±2.52 82.35±1.71 82.91±1.88 92.37±1.75 92.57±1.66

1 9 -0.80 0.30 83.48±1.29 84.23±1.50 81.54±1.39 82.32±1.39 92.28±1.43 92.47±1.33

1 9 -0.80 0.30 83.44±1.09 84.45±1.17 81.33±1.28 82.19±1.23 92.35±1.32 92.53±1.23

1 9 -0.80 0.40 82.66±1.24 83.38±1.47 80.65±1.39 81.41±1.36 91.36±1.59 91.50±1.43

1 9 -0.80 0.40 83.05±1.19 83.81±1.18 81.04±1.42 81.82±1.36 91.86±1.36 91.94±1.24

1 9 -0.80 0.50 82.63±1.22 83.53±1.38 80.47±1.32 81.31±1.34 91.70±1.26 91.70±1.33

1 9 -0.80 0.50 82.35±1.09 83.13±1.13 80.25±1.30 81.04±1.25 91.58±1.31 91.57±1.33

1 9 -0.80 0.60 81.38±1.59 82.08±1.55 79.21±1.89 79.97±1.84 90.25±2.10 90.37±1.94

1 9 -0.80 0.60 81.75±0.95 82.79±1.28 79.46±1.20 80.29±1.12 90.97±1.32 91.01±1.29

1 10 -1.00 -1.00 82.39±1.78 82.06±1.69 81.98±1.15 81.83±1.61 91.79±0.89 91.99±0.84

1 10 -1.00 -1.00 82.10±1.92 81.76±1.63 81.89±1.15 81.60±1.73 91.81±0.77 92.01±0.74

1 10 -1.00 -0.90 83.10±2.42 83.35±2.48 82.35±1.46 82.41±2.15 92.36±1.11 92.55±1.08

1 10 -1.00 -0.90 82.92±1.43 83.61±1.93 81.32±1.96 81.82±1.76 91.78±1.19 92.04±1.07

1 10 -1.00 -0.80 84.00±1.41 84.69±0.61 82.39±2.37 82.93±2.02 92.73±1.12 92.93±1.00

1 10 -1.00 -0.80 83.13±1.40 83.55±1.35 81.69±2.11 82.12±1.85 91.99±0.97 92.24±0.85

1 10 -1.00 -0.70 83.02±1.22 83.67±1.74 81.51±1.96 81.96±1.56 91.92±1.09 92.20±0.97

1 10 -1.00 -0.70 83.93±1.30 84.13±1.04 82.68±2.01 83.05±1.67 92.64±1.28 92.86±1.15

1 10 -1.00 -0.60 83.09±1.47 83.24±1.73 81.98±1.92 82.24±1.66 92.03±1.14 92.31±0.99

1 10 -1.00 -0.60 83.31±1.34 83.63±1.34 82.04±2.18 82.38±1.72 91.86±1.11 92.16±0.95

1 10 -1.00 -0.50 83.63±1.38 83.31±1.76 83.30±1.35 83.12±1.32 92.94±1.13 93.05±1.07

1 10 -1.00 -0.50 83.84±1.54 83.50±1.90 83.36±1.48 83.29±1.50 92.92±1.14 93.04±1.07

1 10 -1.00 -0.40 83.44±1.22 83.16±1.60 82.60±1.28 82.76±1.23 92.10±0.94 92.32±0.86

1 10 -1.00 -0.40 83.68±1.47 83.26±1.69 82.90±1.40 83.04±1.48 92.41±1.30 92.60±1.17

1 10 -1.00 -0.30 84.14±1.54 84.13±1.65 83.02±1.94 83.35±1.70 92.59±1.25 92.85±1.10

1 10 -1.00 -0.30 84.14±1.51 84.26±1.76 82.97±1.83 83.33±1.63 92.54±1.17 92.80±1.02

1 10 -1.00 -0.20 84.49±1.39 84.53±1.51 83.19±1.53 83.67±1.48 92.77±1.18 92.96±0.97

1 10 -1.00 -0.20 84.99±1.11 84.68±1.17 84.10±1.17 84.35±1.17 93.07±1.01 93.22±0.88

1 10 -1.00 -0.10 85.12±1.28 84.99±1.30 84.03±1.45 84.40±1.38 93.20±1.06 93.40±0.90

1 10 -1.00 -0.10 85.07±1.18 84.90±1.22 84.03±1.31 84.38±1.26 93.20±0.98 93.41±0.84

1 10 -1.00 0.10 85.20±1.27 85.52±1.67 83.79±1.30 84.36±1.31 93.83±0.98 93.95±0.84

1 10 -1.00 0.10 85.39±0.95 85.67±1.26 84.03±1.05 84.58±1.01 93.85±0.93 93.96±0.81
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1 10 -1.00 0.20 84.61±2.08 84.76±2.42 83.28±2.06 83.79±2.13 93.05±1.55 93.15±1.51

1 10 -1.00 0.20 83.96±1.32 84.31±1.63 82.40±1.41 83.00±1.38 92.88±1.26 92.97±1.16

1 10 -1.00 0.30 82.95±1.59 84.10±1.90 80.95±2.19 81.65±2.02 92.40±1.45 92.51±1.41

1 10 -1.00 0.30 82.36±1.83 83.87±2.10 80.25±2.70 80.91±2.54 92.27±1.35 92.38±1.32

1 10 -1.00 0.40 82.33±1.92 84.13±2.36 79.84±2.27 80.75±2.23 91.95±1.82 92.11±1.74

1 10 -1.00 0.40 82.08±1.93 84.03±2.22 79.57±2.57 80.41±2.50 91.87±1.80 92.03±1.74

1 10 -1.00 0.50 81.20±2.56 83.46±2.24 78.47±3.40 79.26±3.51 91.14±2.18 91.32±2.13

1 10 -1.00 0.50 82.10±2.55 84.46±1.10 79.38±3.61 80.21±3.66 92.01±1.75 92.19±1.77

1 10 -1.00 0.60 82.56±2.79 84.15±3.28 80.11±2.92 81.05±3.03 91.53±3.05 91.68±2.95

1 10 -1.00 0.60 82.43±2.81 83.64±3.29 80.12±2.90 81.01±3.01 90.84±3.48 91.09±3.34

1 10 -1.00 0.70 82.85±1.77 84.55±1.60 80.32±2.11 81.30±2.12 91.51±2.11 91.75±2.01

1 10 -1.00 0.70 82.01±2.88 83.43±3.38 79.59±2.98 80.49±3.10 90.63±3.37 90.85±3.24

1 10 -1.00 0.80 82.50±1.48 84.59±1.19 79.75±1.79 80.80±1.81 90.85±2.07 91.15±1.98

1 10 -1.00 0.80 82.63±1.73 84.52±1.40 79.98±2.10 80.99±2.11 90.85±2.43 91.08±2.44

1 10 -1.00 0.90 81.82±2.02 83.59±2.26 79.11±2.16 80.11±2.26 90.07±3.10 90.44±2.88

1 10 -1.00 0.90 81.59±1.80 83.13±2.47 79.02±1.71 79.96±1.84 89.65±3.19 90.07±2.93

1 10 -1.00 1.00 81.13±1.69 82.88±1.79 78.36±1.88 79.32±1.95 89.14±2.90 89.58±2.66

1 10 -1.00 1.00 81.10±1.70 82.79±1.98 78.36±1.83 79.32±1.90 89.02±3.03 89.47±2.76

1 10 -0.90 -1.00 82.59±2.68 82.56±2.82 81.84±1.90 81.91±2.44 91.85±1.39 92.04±1.33

1 10 -0.90 -1.00 83.28±2.87 83.28±2.41 82.93±1.80 82.75±2.62 92.44±0.97 92.59±1.00

1 10 -0.90 -0.90 83.91±2.02 83.97±2.62 83.04±1.41 83.23±1.82 92.80±1.18 92.94±1.19

1 10 -0.90 -0.90 83.90±1.48 84.63±1.54 82.33±2.23 82.86±1.93 92.59±1.29 92.79±1.19

1 10 -0.90 -0.80 83.69±1.20 84.52±1.09 82.10±2.17 82.61±1.76 92.59±0.84 92.78±0.76

1 10 -0.90 -0.80 83.72±1.01 83.93±0.61 82.53±1.91 82.84±1.51 92.38±1.01 92.60±0.91

1 10 -0.90 -0.70 83.52±1.21 83.79±0.44 82.42±2.31 82.64±1.83 92.53±1.04 92.74±0.93

1 10 -0.90 -0.70 83.02±2.15 83.25±2.19 82.83±1.28 82.49±1.88 92.67±0.95 92.83±0.95

1 10 -0.90 -0.60 84.05±1.60 84.14±2.22 83.16±1.74 83.34±1.63 92.85±1.20 93.01±1.16

1 10 -0.90 -0.60 83.55±1.59 83.72±2.20 82.50±1.81 82.75±1.65 92.31±1.35 92.57±1.21

1 10 -0.90 -0.50 83.41±1.23 83.06±1.42 82.63±1.44 82.74±1.31 92.32±0.92 92.53±0.92

1 10 -0.90 -0.50 84.28±1.78 84.12±2.11 83.44±2.07 83.60±1.90 92.76±1.27 92.91±1.20

1 10 -0.90 -0.40 83.73±1.30 84.51±1.75 82.02±1.61 82.66±1.45 92.44±1.13 92.73±1.01

1 10 -0.90 -0.40 83.58±1.75 83.79±2.16 82.18±1.77 82.67±1.79 92.26±1.36 92.52±1.26

1 10 -0.90 -0.30 83.02±1.73 83.49±1.89 81.56±2.52 81.98±2.15 92.01±1.34 92.28±1.26

1 10 -0.90 -0.30 83.30±2.09 83.70±2.11 81.87±2.82 82.29±2.48 92.21±1.43 92.46±1.34

1 10 -0.90 -0.20 84.79±1.35 84.91±1.27 83.52±1.79 83.98±1.56 92.90±1.31 93.16±1.15

1 10 -0.90 -0.20 84.93±1.34 85.25±1.30 83.45±1.62 84.05±1.50 92.89±1.25 93.15±1.08

1 10 -0.90 -0.10 84.75±1.72 84.97±1.26 83.42±2.34 83.88±2.08 93.04±1.28 93.26±1.20

1 10 -0.90 -0.10 85.28±0.92 85.48±0.80 83.97±1.31 84.48±1.10 93.47±0.87 93.67±0.76

1 10 -0.90 0.10 85.17±1.27 85.83±1.30 83.45±1.48 84.20±1.42 93.55±1.07 93.71±0.95

1 10 -0.90 0.10 85.26±1.33 86.12±1.10 83.45±1.76 84.23±1.59 93.62±1.02 93.79±0.90

1 10 -0.90 0.20 84.40±1.92 85.22±2.03 82.53±2.18 83.31±2.12 93.24±1.44 93.38±1.36

1 10 -0.90 0.20 84.64±1.99 85.41±2.03 82.81±2.26 83.58±2.21 93.42±1.53 93.54±1.45

1 10 -0.90 0.30 83.79±2.29 84.16±2.57 82.12±2.35 82.79±2.41 92.42±2.07 92.59±2.04

1 10 -0.90 0.30 84.09±1.92 84.88±2.27 82.26±2.09 83.01±2.06 92.83±1.68 92.96±1.57

1 10 -0.90 0.40 83.35±2.22 84.75±2.58 81.09±2.41 82.00±2.42 92.22±2.03 92.41±1.94

1 10 -0.90 0.40 83.19±2.04 84.21±2.33 81.16±2.40 81.93±2.30 92.01±1.82 92.19±1.72

1 10 -0.90 0.50 82.78±2.16 83.87±2.50 80.63±2.41 81.45±2.40 91.52±2.15 91.72±2.05

1 10 -0.90 0.50 82.80±2.00 84.12±2.53 80.49±2.06 81.39±2.13 91.62±2.16 91.81±2.05

1 10 -0.90 0.60 83.05±2.85 84.44±3.08 80.73±3.14 81.63±3.19 91.27±3.08 91.47±2.97

1 10 -0.90 0.60 82.81±3.02 84.38±3.45 80.40±3.21 81.33±3.31 91.19±3.06 91.42±2.94

1 10 -0.90 0.70 81.83±2.43 83.46±2.89 79.29±2.59 80.21±2.69 90.11±3.29 90.38±3.17

1 10 -0.90 0.70 81.98±2.43 83.45±2.84 79.49±2.55 80.42±2.65 90.19±3.28 90.46±3.15

1 10 -0.90 0.80 82.12±1.91 83.59±2.32 79.61±1.95 80.57±2.05 90.15±2.89 90.52±2.76
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1 10 -0.90 0.80 82.57±1.51 84.47±1.03 79.92±1.91 80.92±1.91 90.53±2.37 90.85±2.32

1 10 -0.90 0.90 81.33±2.10 82.93±2.05 78.65±2.43 79.58±2.46 89.00±2.80 89.45±2.63

1 10 -0.90 0.90 81.22±2.00 82.72±2.31 78.57±2.11 79.50±2.21 88.90±3.00 89.35±2.80

1 10 -0.90 1.00 80.70±2.22 82.20±2.75 78.02±2.29 78.93±2.39 88.22±3.63 88.72±3.36

1 10 -0.90 1.00 80.84±2.14 82.29±2.62 78.19±2.19 79.10±2.30 88.31±3.29 88.81±3.03

1 10 -0.80 -1.00 82.64±3.04 82.99±2.51 82.27±1.67 82.05±2.71 92.09±0.93 92.24±0.97

1 10 -0.80 -1.00 82.47±2.87 83.03±2.53 82.02±1.49 81.83±2.51 92.11±0.90 92.25±0.94

1 10 -0.80 -0.90 82.07±2.68 82.37±3.01 81.16±1.80 81.28±2.39 91.27±1.31 91.53±1.19

1 10 -0.80 -0.90 82.43±2.88 82.81±3.05 81.66±2.12 81.69±2.63 91.91±1.28 92.11±1.22

1 10 -0.80 -0.80 83.51±1.48 83.71±1.00 82.42±2.24 82.65±1.93 92.39±1.38 92.59±1.28

1 10 -0.80 -0.80 83.77±1.48 84.19±1.37 82.44±2.02 82.84±1.81 92.45±1.33 92.65±1.24

1 10 -0.80 -0.70 83.03±1.77 83.59±2.51 82.29±1.90 82.26±1.80 92.56±0.98 92.73±0.99

1 10 -0.80 -0.70 83.02±1.81 83.61±2.58 82.29±1.82 82.26±1.79 92.59±1.03 92.75±1.05

1 10 -0.80 -0.60 84.28±1.33 84.09±1.49 83.34±1.59 83.58±1.43 92.56±1.14 92.74±1.10

1 10 -0.80 -0.60 83.80±1.20 84.28±1.81 82.55±1.97 82.89±1.55 92.78±1.16 92.94±1.13

1 10 -0.80 -0.50 83.84±1.44 83.72±1.74 82.79±1.55 83.09±1.50 92.19±1.06 92.40±1.09

1 10 -0.80 -0.50 83.87±1.89 83.54±1.91 83.09±2.22 83.21±2.04 92.40±1.36 92.57±1.29

1 10 -0.80 -0.40 83.96±1.86 83.83±2.24 83.00±1.66 83.25±1.80 92.54±1.42 92.73±1.41

1 10 -0.80 -0.40 83.96±1.79 83.97±2.33 83.00±1.53 83.24±1.68 92.50±1.40 92.69±1.38

1 10 -0.80 -0.30 83.79±1.79 84.27±2.40 82.24±1.80 82.82±1.83 92.62±1.39 92.83±1.36

1 10 -0.80 -0.30 83.91±1.84 84.44±2.58 82.34±1.79 82.94±1.84 92.46±1.59 92.71±1.51

1 10 -0.80 -0.20 84.07±1.86 84.76±2.30 82.25±1.93 83.00±1.97 92.69±1.80 92.93±1.69

1 10 -0.80 -0.20 84.39±2.20 84.78±2.25 82.77±2.45 83.42±2.40 92.80±1.70 93.03±1.61

1 10 -0.80 -0.10 84.91±1.21 85.39±1.19 83.33±1.56 83.97±1.40 93.02±1.31 93.28±1.16

1 10 -0.80 -0.10 85.03±1.17 85.57±0.97 83.41±1.55 84.08±1.37 93.22±1.11 93.46±0.99

1 10 -0.80 0.10 85.05±1.42 86.16±1.20 83.04±1.73 83.93±1.66 93.39±1.18 93.60±1.09

1 10 -0.80 0.10 84.81±1.82 85.62±1.86 82.99±2.13 83.76±2.04 93.32±1.34 93.48±1.29

1 10 -0.80 0.20 84.86±2.12 85.58±2.18 83.14±2.48 83.85±2.37 93.29±1.67 93.43±1.60

1 10 -0.80 0.20 84.91±1.94 85.70±2.08 83.17±2.28 83.89±2.16 93.28±1.60 93.43±1.54

1 10 -0.80 0.30 83.83±2.15 84.81±2.52 81.92±2.43 82.67±2.38 92.32±1.75 92.47±1.68

1 10 -0.80 0.30 84.18±2.32 85.02±2.50 82.32±2.62 83.07±2.55 92.58±1.94 92.76±1.88

1 10 -0.80 0.40 83.80±2.71 84.93±2.96 81.71±2.94 82.56±2.96 92.10±2.30 92.30±2.22

1 10 -0.80 0.40 82.77±2.13 84.13±2.48 80.54±2.53 81.36±2.42 91.49±1.87 91.71±1.78

1 10 -0.80 0.50 82.92±2.35 84.52±2.66 80.48±2.54 81.44±2.61 91.33±2.48 91.54±2.42

1 10 -0.80 0.50 82.75±2.39 84.39±2.53 80.27±2.69 81.22±2.72 91.14±2.45 91.38±2.39

1 10 -0.80 0.60 82.82±2.70 84.30±2.92 80.42±2.94 81.35±3.00 90.82±2.86 91.08±2.77

1 10 -0.80 0.60 82.70±2.69 84.47±2.95 80.17±2.96 81.13±3.02 90.79±2.98 91.05±2.90

1 11 -1.00 -1.00 79.22±1.88 79.78±2.26 77.02±1.89 77.66±1.98 87.90±2.48 87.61±2.56

1 11 -1.00 -1.00 78.95±2.00 79.44±2.13 76.75±2.24 77.36±2.30 87.35±2.75 87.03±2.91

1 11 -1.00 -0.90 80.32±1.48 80.55±1.47 78.51±2.08 79.03±1.80 88.71±2.44 88.42±2.46

1 11 -1.00 -0.90 79.55±1.68 80.46±1.44 77.03±2.11 77.79±2.10 87.82±2.48 87.56±2.60

1 11 -1.00 -0.80 80.14±3.22 80.91±2.61 77.92±4.12 78.49±4.09 88.18±3.57 87.92±3.74

1 11 -1.00 -0.80 80.95±2.34 81.48±1.94 78.87±2.97 79.52±2.83 89.08±2.46 88.89±2.49

1 11 -1.00 -0.70 80.50±2.96 81.16±2.38 78.33±3.71 78.94±3.70 88.26±3.57 88.11±3.71

1 11 -1.00 -0.70 80.69±2.81 81.34±2.24 78.50±3.52 79.15±3.50 88.48±3.45 88.33±3.59

1 11 -1.00 -0.60 80.80±2.83 80.97±2.55 79.02±3.42 79.52±3.37 88.66±3.59 88.57±3.74

1 11 -1.00 -0.60 80.60±2.85 80.78±2.74 78.74±3.32 79.30±3.32 88.66±3.45 88.57±3.59

1 11 -1.00 -0.50 81.15±3.63 81.83±1.84 79.62±5.33 79.70±5.11 89.42±3.83 89.32±3.93

1 11 -1.00 -0.50 81.54±2.37 81.54±1.82 80.24±3.35 80.49±2.99 89.61±3.25 89.50±3.33

1 11 -1.00 -0.40 81.54±2.67 81.72±2.38 79.89±3.50 80.35±3.16 89.57±3.11 89.58±3.15

1 11 -1.00 -0.40 81.33±3.16 81.79±2.42 79.45±4.14 79.95±3.95 89.35±3.30 89.37±3.31

1 11 -1.00 -0.30 82.12±1.82 82.48±1.78 80.38±2.26 80.96±2.13 90.11±2.71 90.25±2.84

1 11 -1.00 -0.30 81.01±3.27 82.10±2.88 78.56±3.96 79.31±4.08 89.49±3.67 89.35±4.16
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1 11 -1.00 -0.20 83.20±1.45 83.60±1.84 81.46±1.37 82.14±1.48 91.53±1.64 91.71±1.66

1 11 -1.00 -0.20 83.10±1.53 83.60±1.87 81.27±1.50 81.99±1.58 91.58±1.63 91.77±1.63

1 11 -1.00 -0.10 84.37±1.54 84.57±2.01 82.99±1.33 83.53±1.50 92.48±1.38 92.56±1.54

1 11 -1.00 -0.10 84.46±1.33 84.87±1.86 82.99±1.31 83.56±1.35 92.81±1.37 92.88±1.51

1 11 -1.00 0.10 83.73±1.69 84.85±2.98 82.21±1.05 82.73±1.36 93.46±1.44 93.53±1.44

1 11 -1.00 0.10 82.74±2.32 84.99±2.84 80.43±2.60 81.21±2.61 93.20±1.45 93.22±1.50

1 11 -1.00 0.20 83.62±2.29 84.44±3.21 82.16±1.83 82.66±2.13 92.80±1.99 92.81±2.07

1 11 -1.00 0.20 83.89±2.04 84.90±2.93 82.32±1.74 82.88±1.92 93.41±1.67 93.48±1.65

1 11 -1.00 0.30 83.82±2.04 84.80±2.93 82.24±1.38 82.82±1.79 93.31±1.81 93.37±1.80

1 11 -1.00 0.30 82.96±1.90 84.00±2.84 81.31±1.82 81.85±1.84 92.42±2.02 92.52±1.95

1 11 -1.00 0.40 83.59±2.03 84.92±3.01 81.71±1.68 82.43±1.93 93.09±2.10 93.15±2.08

1 11 -1.00 0.40 83.72±2.15 85.07±3.14 81.84±1.68 82.57±2.00 93.11±2.17 93.17±2.14

1 11 -1.00 0.50 81.58±2.82 83.88±2.85 79.04±3.47 79.77±3.58 92.37±1.95 92.40±1.99

1 11 -1.00 0.50 81.38±2.67 83.85±2.80 78.72±3.23 79.50±3.40 92.17±1.82 92.21±1.85

1 11 -1.00 0.60 81.27±2.91 83.59±3.45 78.66±3.11 79.46±3.33 91.70±2.11 91.73±2.11

1 11 -1.00 0.60 81.64±3.07 83.33±3.43 79.29±3.24 80.05±3.46 91.73±2.16 91.77±2.16

1 11 -1.00 0.70 82.84±1.59 85.24±1.04 80.22±2.58 81.13±2.37 92.97±0.53 93.03±0.47

1 11 -1.00 0.70 83.37±1.53 85.39±1.02 80.92±2.38 81.83±2.19 93.12±0.44 93.17±0.41

1 11 -1.00 0.80 83.21±1.26 85.12±1.01 80.78±2.07 81.69±1.82 92.67±0.56 92.72±0.50

1 11 -1.00 0.80 81.71±2.85 84.43±1.93 78.82±3.93 79.66±3.81 91.85±1.61 91.91±1.67

1 11 -1.00 0.90 81.12±1.64 83.78±1.27 78.20±2.68 79.06±2.50 91.78±0.87 91.84±0.80

1 11 -1.00 0.90 82.00±1.53 83.96±1.20 79.41±2.35 80.28±2.18 91.47±0.66 91.56±0.56

1 11 -1.00 1.00 81.36±1.50 83.66±1.26 78.52±2.24 79.43±2.21 91.25±0.61 91.32±0.55

1 11 -1.00 1.00 80.85±1.66 83.29±1.40 77.91±2.43 78.80±2.42 91.21±0.51 91.29±0.49

1 11 -0.90 -1.00 80.14±1.22 80.37±1.18 78.14±1.45 78.78±1.41 87.82±2.40 87.65±2.41

1 11 -0.90 -1.00 79.36±2.28 79.55±2.03 77.39±2.81 77.92±2.81 87.28±2.79 87.05±2.90

1 11 -0.90 -0.90 79.34±1.81 80.12±2.30 77.02±2.02 77.70±2.04 87.42±3.02 87.18±3.21

1 11 -0.90 -0.90 79.64±1.46 80.28±2.29 77.48±1.31 78.13±1.38 87.80±2.46 87.62±2.54

1 11 -0.90 -0.80 79.99±1.70 80.35±2.32 78.03±1.33 78.65±1.54 88.22±2.41 88.02±2.55

1 11 -0.90 -0.80 80.08±1.43 80.51±2.03 78.05±1.27 78.70±1.37 88.32±2.07 88.16±2.20

1 11 -0.90 -0.70 80.13±1.81 80.51±2.14 78.09±2.04 78.72±2.02 88.30±3.05 88.19±3.26

1 11 -0.90 -0.70 80.46±1.64 81.08±1.97 78.33±1.94 79.01±1.88 88.73±2.75 88.60±2.93

1 11 -0.90 -0.60 80.95±2.47 81.47±2.49 78.90±2.85 79.56±2.88 89.18±2.81 89.13±2.98

1 11 -0.90 -0.60 81.15±1.86 81.78±1.94 79.03±2.12 79.75±2.13 89.45±1.97 89.39±2.06

1 11 -0.90 -0.50 81.48±1.97 81.81±2.02 80.02±2.69 80.37±2.37 89.74±2.37 89.70±2.46

1 11 -0.90 -0.50 81.48±2.50 82.06±2.28 79.74±3.32 80.20±3.09 89.57±2.98 89.54±3.09

1 11 -0.90 -0.40 81.22±3.24 81.77±2.51 79.45±4.52 79.83±4.12 89.10±3.93 89.12±3.95

1 11 -0.90 -0.40 81.10±3.01 81.01±2.73 79.59±3.72 79.98±3.54 88.97±3.37 89.03±3.47

1 11 -0.90 -0.30 82.32±1.46 82.67±1.14 80.71±2.18 81.21±1.87 90.17±1.98 90.32±1.97

1 11 -0.90 -0.30 82.77±2.66 82.67±2.04 81.85±3.76 81.91±3.29 90.29±3.45 90.29±3.53

1 11 -0.90 -0.20 82.33±1.09 83.49±1.87 80.24±1.52 80.98±1.30 90.80±1.66 90.96±1.71

1 11 -0.90 -0.20 82.77±1.68 83.45±1.65 80.87±2.20 81.55±2.01 90.88±1.98 91.04±2.08

1 11 -0.90 -0.10 84.37±1.46 84.89±1.69 82.85±1.56 83.43±1.53 92.36±1.32 92.45±1.49

1 11 -0.90 -0.10 84.14±1.71 84.40±2.14 82.80±1.63 83.28±1.71 92.31±1.42 92.40±1.58

1 11 -0.90 0.10 85.19±1.31 86.08±1.29 83.39±1.68 84.16±1.53 93.98±0.84 94.08±0.91

1 11 -0.90 0.10 84.25±2.52 85.39±2.50 82.41±2.92 83.10±2.90 93.15±2.03 93.18±2.23

1 11 -0.90 0.20 83.24±1.93 84.15±2.38 81.61±2.19 82.15±2.14 92.52±1.61 92.61±1.56

1 11 -0.90 0.20 82.68±1.90 83.89±2.25 80.90±2.49 81.43±2.29 92.36±1.49 92.42±1.43

1 11 -0.90 0.30 81.52±1.86 83.80±2.72 79.08±2.15 79.83±2.12 92.12±1.77 92.19±1.72

1 11 -0.90 0.30 81.72±2.91 84.83±3.05 79.04±3.60 79.77±3.77 93.15±1.85 93.18±1.85

1 11 -0.90 0.40 82.68±2.38 84.76±3.01 80.42±2.63 81.19±2.65 92.73±1.87 92.79±1.89

1 11 -0.90 0.40 82.33±2.22 84.56±2.94 79.99±2.52 80.75±2.53 92.73±1.87 92.79±1.89

1 11 -0.90 0.50 80.22±2.26 83.74±3.01 77.06±2.85 77.86±3.00 91.89±1.90 91.96±1.91
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1 11 -0.90 0.50 82.25±1.63 84.45±2.98 79.83±1.60 80.67±1.67 92.55±1.83 92.59±1.80

1 11 -0.90 0.60 81.94±3.27 85.51±1.67 78.75±4.37 79.66±4.48 93.08±1.12 93.08±1.12

1 11 -0.90 0.60 80.59±3.45 83.82±3.66 77.69±4.10 78.38±4.36 91.83±2.16 91.87±2.14

1 11 -0.90 0.70 81.48±3.27 84.64±1.36 78.39±4.45 79.21±4.53 92.24±1.32 92.25±1.22

1 11 -0.90 0.70 81.65±2.80 85.06±1.38 78.49±3.90 79.40±3.87 92.44±1.43 92.47±1.41

1 11 -0.90 0.80 82.43±2.13 84.70±1.00 79.76±3.07 80.65±2.99 92.18±0.69 92.20±0.61

1 11 -0.90 0.80 82.38±1.89 84.62±1.17 79.77±2.88 80.63±2.75 92.13±0.82 92.19±0.77

1 11 -0.90 0.90 80.80±1.61 83.74±1.34 77.75±2.67 78.60±2.53 91.39±1.01 91.46±0.95

1 11 -0.90 0.90 80.20±1.74 83.09±2.11 77.10±2.67 77.93±2.53 90.86±1.74 90.93±1.78

1 11 -0.90 1.00 80.77±1.59 83.06±1.41 77.92±2.45 78.76±2.39 90.62±0.65 90.70±0.66

1 11 -0.90 1.00 80.71±1.75 83.07±1.14 77.87±2.78 78.67±2.76 90.46±0.67 90.55±0.62

1 11 -0.80 -1.00 80.31±0.95 80.70±1.70 78.46±1.16 79.01±1.05 88.49±1.64 88.43±1.68

1 11 -0.80 -1.00 80.07±0.97 80.54±1.85 78.10±0.62 78.71±0.75 88.22±1.85 88.17±1.95

1 11 -0.80 -0.90 79.85±1.16 80.44±1.54 77.69±1.39 78.34±1.35 88.06±2.13 87.98±2.23

1 11 -0.80 -0.90 79.93±1.22 80.24±1.97 78.05±1.05 78.62±1.11 88.02±2.16 87.92±2.29

1 11 -0.80 -0.80 80.31±1.34 81.35±1.74 77.82±1.43 78.64±1.47 88.31±2.37 88.23±2.52

1 11 -0.80 -0.80 80.10±1.45 80.86±1.73 77.87±1.73 78.55±1.69 88.30±2.41 88.17±2.58

1 11 -0.80 -0.70 80.22±2.11 80.68±2.41 78.13±2.34 78.80±2.32 88.09±3.14 87.99±3.35

1 11 -0.80 -0.70 80.42±2.33 80.79±2.78 78.45±2.48 79.08±2.49 88.28±3.28 88.18±3.51

1 11 -0.80 -0.60 80.50±2.06 81.00±2.64 78.55±2.19 79.16±2.15 88.78±3.01 88.71±3.22

1 11 -0.80 -0.60 80.75±2.27 81.63±2.17 78.52±2.94 79.20±2.85 88.94±2.83 88.92±3.00

1 11 -0.80 -0.50 80.99±2.48 81.13±2.94 79.36±2.54 79.87±2.56 88.87±3.30 88.92±3.45

1 11 -0.80 -0.50 81.01±2.16 81.34±2.34 79.36±2.66 79.81±2.52 89.09±2.76 89.15±2.86

1 11 -0.80 -0.40 81.15±2.14 81.62±2.19 79.36±2.79 79.87±2.60 88.92±2.87 89.03±2.99

1 11 -0.80 -0.40 81.19±2.06 81.17±1.63 79.70±2.78 80.08±2.59 88.93±2.74 89.02±2.80

1 11 -0.80 -0.30 82.22±1.90 82.63±1.73 80.62±2.50 81.10±2.32 89.95±2.94 90.08±3.07

1 11 -0.80 -0.30 82.14±1.92 82.55±1.57 80.49±2.58 80.98±2.40 89.90±2.73 90.08±2.81

1 11 -0.80 -0.20 82.18±1.22 83.92±1.86 79.72±1.70 80.60±1.58 90.70±2.02 90.93±2.10

1 11 -0.80 -0.20 82.71±1.97 83.36±2.01 80.95±2.45 81.54±2.33 90.79±2.29 90.95±2.37

1 11 -0.80 -0.10 83.70±1.39 84.68±1.85 81.92±1.80 82.58±1.61 92.13±1.48 92.33±1.54

1 11 -0.80 -0.10 83.87±1.55 84.82±1.89 82.23±1.91 82.80±1.74 92.14±1.53 92.36±1.56

1 11 -0.80 0.10 84.17±1.31 85.52±2.56 82.50±1.43 83.09±1.31 93.34±1.36 93.43±1.40

1 11 -0.80 0.10 84.50±1.85 85.22±2.27 83.16±2.08 83.60±2.00 93.11±1.23 93.21±1.27

1 11 -0.80 0.20 84.18±2.35 85.30±2.13 82.11±2.81 82.96±2.71 93.22±1.82 93.26±1.85

1 11 -0.80 0.20 83.61±1.84 85.27±2.07 81.21±2.10 82.19±2.08 93.07±1.62 93.11±1.65

1 11 -0.80 0.30 81.97±3.23 83.74±2.62 79.74±4.14 80.34±4.16 92.14±1.82 92.17±1.83

1 11 -0.80 0.30 82.22±2.81 83.93±2.42 80.01±3.62 80.66±3.54 92.15±1.74 92.19±1.75

1 11 -0.80 0.40 82.52±2.69 85.46±1.58 79.52±3.50 80.54±3.50 93.40±1.17 93.43±1.26

1 11 -0.80 0.40 82.52±2.69 85.44±1.65 79.53±3.48 80.54±3.56 93.48±1.00 93.50±1.10

1 11 -0.80 0.50 82.04±2.79 84.87±1.69 79.13±3.81 80.02±3.81 92.83±0.97 92.87±1.01

1 11 -0.80 0.50 82.19±3.01 85.03±1.60 79.33±4.16 80.18±4.12 92.96±0.94 93.00±0.99

1 12 -1.00 -1.00 84.18±2.02 84.30±2.64 83.31±1.89 83.49±1.94 92.87±1.55 92.95±1.61

1 12 -1.00 -1.00 83.59±1.61 83.64±1.85 83.17±0.85 83.02±1.36 92.53±1.00 92.60±1.04

1 12 -1.00 -0.90 84.30±1.87 84.23±2.35 83.67±1.63 83.71±1.77 92.93±1.25 92.99±1.35

1 12 -1.00 -0.90 84.46±2.02 84.24±2.35 83.84±1.87 83.88±1.99 92.75±1.60 92.86±1.59

1 12 -1.00 -0.80 84.88±2.12 84.88±2.73 84.08±2.16 84.24±2.13 93.34±1.55 93.42±1.62

1 12 -1.00 -0.80 84.58±2.26 84.43±2.63 83.82±2.08 83.97±2.22 92.96±1.41 93.06±1.46

1 12 -1.00 -0.70 85.19±1.93 85.16±2.35 84.34±1.91 84.55±1.93 93.39±1.39 93.46±1.47

1 12 -1.00 -0.70 85.19±1.78 85.04±2.09 84.32±1.84 84.55±1.83 93.24±1.39 93.32±1.47

1 12 -1.00 -0.60 85.35±1.94 85.64±2.67 84.55±2.14 84.69±1.99 93.76±1.56 93.90±1.56

1 12 -1.00 -0.60 85.41±1.65 85.79±2.22 84.48±2.21 84.69±1.83 93.77±1.35 93.93±1.34

1 12 -1.00 -0.50 85.14±1.30 85.62±1.70 83.78±1.67 84.29±1.43 93.52±1.33 93.70±1.27

1 12 -1.00 -0.50 85.52±1.80 85.49±1.87 84.52±2.07 84.83±1.94 93.54±1.44 93.71±1.39
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1 12 -1.00 -0.40 84.03±1.12 84.71±2.00 82.58±1.36 83.07±1.19 93.14±0.98 93.30±0.95

1 12 -1.00 -0.40 83.98±1.14 84.70±2.22 82.42±0.60 83.01±0.88 92.91±1.18 93.09±1.13

1 12 -1.00 -0.30 84.05±1.06 84.61±1.59 82.58±1.51 83.09±1.28 92.92±0.78 93.08±0.78

1 12 -1.00 -0.30 83.97±1.24 84.45±1.65 82.61±1.74 83.04±1.51 92.91±0.79 93.06±0.79

1 12 -1.00 -0.20 85.24±0.88 85.64±1.45 83.77±0.73 84.39±0.83 93.51±0.87 93.67±0.82

1 12 -1.00 -0.20 85.19±1.04 85.49±1.37 83.76±0.98 84.35±1.05 93.45±0.89 93.61±0.84

1 12 -1.00 -0.10 83.69±1.77 84.82±1.96 81.70±2.22 82.46±2.15 92.87±1.30 93.03±1.28

1 12 -1.00 -0.10 83.62±2.13 85.05±1.89 81.46±2.78 82.27±2.63 92.81±1.47 92.96±1.46

1 12 -1.00 0.10 84.25±1.76 84.32±2.16 82.92±1.65 83.42±1.79 92.53±1.45 92.65±1.46

1 12 -1.00 0.10 84.33±1.73 84.54±2.03 82.88±1.72 83.45±1.80 92.63±1.45 92.74±1.46

1 12 -1.00 0.20 82.74±1.78 83.24±1.66 80.88±2.12 81.57±2.03 91.24±1.56 91.40±1.55

1 12 -1.00 0.20 82.21±1.51 82.63±1.77 80.39±1.64 81.04±1.63 90.98±1.67 91.05±1.76

1 12 -1.00 0.30 80.52±2.72 80.56±3.10 79.14±2.51 79.49±2.72 89.65±2.26 89.66±2.42

1 12 -1.00 0.30 80.64±2.87 80.62±3.13 79.39±2.69 79.68±2.89 89.80±2.23 89.80±2.44

1 12 -1.00 0.40 79.37±2.80 79.60±2.74 78.00±2.38 78.26±2.69 88.59±2.08 88.71±2.21

1 12 -1.00 0.40 79.55±2.75 79.95±3.15 77.86±2.33 78.30±2.64 88.76±2.13 88.87±2.26

1 12 -1.00 0.50 77.61±2.79 78.16±3.04 75.85±2.19 76.17±2.56 86.92±1.93 87.05±2.14

1 12 -1.00 0.50 77.75±2.77 78.29±2.93 76.01±2.18 76.33±2.56 87.06±1.87 87.16±2.12

1 12 -1.00 0.60 76.59±2.74 76.89±2.96 74.58±2.54 74.97±2.77 85.51±1.86 85.68±2.08

1 12 -1.00 0.60 76.80±2.77 77.22±3.10 74.67±2.60 75.11±2.83 85.64±1.94 85.82±2.16

1 12 -1.00 0.70 74.58±1.66 75.08±1.90 72.82±1.73 72.87±1.76 83.55±0.69 83.69±0.95

1 12 -1.00 0.70 74.14±2.41 75.06±1.99 72.17±3.45 72.02±3.77 83.26±1.57 83.38±1.80

1 12 -1.00 0.80 72.86±0.93 73.07±1.82 70.88±1.55 70.94±1.47 81.88±0.69 81.97±0.94

1 12 -1.00 0.80 72.38±1.91 72.81±1.18 70.22±3.39 70.05±3.82 81.26±1.44 81.39±1.58

1 12 -1.00 0.90 72.69±1.54 72.52±1.88 70.35±1.86 70.63±1.91 80.94±1.12 81.00±1.17

1 12 -1.00 0.90 72.30±1.19 72.15±1.49 69.91±1.78 70.14±1.79 80.65±1.03 80.73±1.06

1 12 -1.00 1.00 72.82±1.82 72.76±1.85 70.16±2.39 70.48±2.47 80.34±1.35 80.52±1.41

1 12 -1.00 1.00 72.30±2.14 72.34±2.32 69.73±2.70 69.93±2.98 79.28±2.79 79.61±2.69

1 12 -0.90 -1.00 82.81±2.69 83.16±3.15 81.99±2.68 82.04±2.64 91.96±2.05 92.09±2.05

1 12 -0.90 -1.00 84.29±1.64 83.94±1.78 83.60±1.85 83.68±1.73 92.44±1.44 92.58±1.41

1 12 -0.90 -0.90 84.19±1.82 84.06±2.20 83.58±1.73 83.60±1.78 92.65±1.14 92.73±1.19

1 12 -0.90 -0.90 84.12±1.68 84.03±2.13 83.37±1.63 83.48±1.64 92.39±1.34 92.52±1.33

1 12 -0.90 -0.80 84.10±1.29 84.81±2.47 82.86±1.63 83.21±1.28 93.24±1.59 93.30±1.67

1 12 -0.90 -0.80 84.47±1.62 84.60±2.31 83.65±1.61 83.80±1.57 93.11±1.30 93.18±1.39

1 12 -0.90 -0.70 84.56±1.58 85.14±2.61 83.39±1.79 83.74±1.57 92.90±1.45 93.07±1.46

1 12 -0.90 -0.70 84.51±2.21 84.74±2.93 83.60±2.04 83.82±2.14 92.89±1.70 93.04±1.69

1 12 -0.90 -0.60 84.65±2.23 85.00±2.71 83.52±2.45 83.86±2.34 93.03±1.75 93.21±1.71

1 12 -0.90 -0.60 85.00±1.91 85.23±2.24 83.81±2.17 84.22±2.04 93.19±1.58 93.34±1.56

1 12 -0.90 -0.50 85.51±1.90 85.74±1.89 84.36±2.36 84.74±2.14 93.45±1.53 93.61±1.50

1 12 -0.90 -0.50 85.13±1.85 85.42±1.88 83.84±2.27 84.31±2.07 93.20±1.51 93.33±1.42

1 12 -0.90 -0.40 85.13±2.39 85.22±2.55 83.93±2.63 84.36±2.56 93.20±1.56 93.33±1.46

1 12 -0.90 -0.40 85.55±2.00 85.49±2.36 84.69±2.00 84.92±2.02 93.40±1.36 93.52±1.28

1 12 -0.90 -0.30 84.57±1.39 85.00±2.08 83.07±1.20 83.67±1.35 93.11±1.20 93.28±1.14

1 12 -0.90 -0.30 83.90±1.33 85.12±1.39 81.87±1.84 82.67±1.66 92.70±0.87 92.85±0.85

1 12 -0.90 -0.20 84.49±1.17 84.66±1.76 83.14±0.85 83.66±1.08 92.85±0.96 93.03±0.90

1 12 -0.90 -0.20 84.72±1.32 84.68±1.71 83.55±1.11 83.97±1.29 93.13±1.09 93.25±1.04

1 12 -0.90 -0.10 83.91±1.50 84.79±1.54 82.10±1.97 82.79±1.81 92.70±1.23 92.86±1.19

1 12 -0.90 -0.10 84.15±1.58 84.99±1.58 82.26±1.89 83.03±1.82 92.89±1.28 93.00±1.24

1 12 -0.90 0.10 84.04±1.85 84.19±1.99 82.61±1.99 83.14±1.99 92.08±1.52 92.21±1.55

1 12 -0.90 0.10 83.41±2.31 83.47±2.29 81.95±2.59 82.47±2.51 91.81±1.88 91.93±1.93

1 12 -0.90 0.20 81.77±2.66 81.92±2.74 80.48±2.58 80.81±2.71 90.51±2.00 90.50±2.17

1 12 -0.90 0.20 80.66±1.85 80.78±1.60 79.51±2.69 79.64±2.31 89.94±1.79 89.97±1.88

1 12 -0.90 0.30 80.22±2.29 80.42±2.57 78.60±2.23 79.04±2.34 89.09±2.03 89.06±2.27

Continued on next page

49



Under review as a conference paper at ICLR 2026

t n a b Accuracy Precision Recall F1 score AUROC AUPRC

1 12 -0.90 0.30 80.24±2.39 80.57±2.60 78.68±2.22 79.07±2.39 89.24±2.15 89.19±2.41

1 12 -0.90 0.40 78.23±3.06 78.77±2.11 76.39±4.18 76.58±4.21 87.60±2.29 87.70±2.39

1 12 -0.90 0.40 78.21±3.00 78.94±2.08 76.13±4.20 76.41±4.14 87.42±2.65 87.53±2.74

1 12 -0.90 0.50 77.44±2.18 77.78±2.37 75.35±2.23 75.82±2.33 86.03±1.63 86.14±1.89

1 12 -0.90 0.50 76.73±2.99 77.57±2.51 74.30±3.78 74.64±4.06 85.69±2.08 85.84±2.31

1 12 -0.90 0.60 76.27±2.64 76.83±2.90 74.00±2.56 74.42±2.76 84.85±1.71 84.99±1.96

1 12 -0.90 0.60 75.74±2.75 76.63±2.59 73.23±3.24 73.55±3.53 84.34±1.82 84.46±2.11

1 12 -0.90 0.70 75.22±2.41 75.97±2.68 72.67±2.36 73.07±2.61 83.65±1.55 83.67±1.87

1 12 -0.90 0.70 74.03±1.66 74.65±2.27 71.90±1.85 72.03±1.81 83.04±0.82 82.99±1.05

1 12 -0.90 0.80 73.00±1.76 73.29±2.36 70.68±1.86 70.87±1.92 81.77±0.94 81.75±1.20

1 12 -0.90 0.80 73.11±1.55 73.26±2.04 70.86±1.66 71.07±1.69 81.76±0.93 81.69±1.23

1 12 -0.90 0.90 73.24±1.86 73.84±2.05 70.25±2.31 70.57±2.50 81.18±1.01 81.02±1.42

1 12 -0.90 0.90 72.12±1.04 72.84±2.07 69.16±1.45 69.33±1.54 80.58±0.57 80.50±0.91

1 12 -0.90 1.00 72.33±1.92 73.19±1.90 68.99±2.68 69.16±2.95 79.75±1.64 79.69±1.81

1 12 -0.90 1.00 71.73±2.72 72.00±3.35 68.88±2.88 69.10±3.16 79.28±2.16 79.35±2.25

1 12 -0.80 -1.00 84.43±1.79 84.12±2.00 83.83±1.94 83.85±1.83 92.42±1.46 92.51±1.44

1 12 -0.80 -1.00 84.28±1.52 83.87±1.75 83.75±1.53 83.73±1.52 92.46±1.43 92.51±1.39

1 12 -0.80 -0.90 83.47±1.22 83.33±1.42 83.08±0.90 82.91±1.05 92.20±0.98 92.28±1.00

1 12 -0.80 -0.90 83.87±1.72 83.65±2.13 83.45±1.51 83.34±1.64 92.49±1.40 92.54±1.40

1 12 -0.80 -0.80 84.07±1.47 83.83±1.68 83.54±1.65 83.49±1.51 92.49±1.19 92.61±1.26

1 12 -0.80 -0.80 84.08±1.57 84.21±2.13 83.25±1.69 83.38±1.56 92.63±1.37 92.71±1.43

1 12 -0.80 -0.70 84.35±1.59 84.69±2.35 83.18±1.55 83.54±1.54 92.81±1.58 92.87±1.68

1 12 -0.80 -0.70 84.22±2.03 84.39±2.67 83.07±2.07 83.43±2.04 92.61±1.85 92.76±1.81

1 12 -0.80 -0.60 84.91±2.08 85.43±2.01 83.42±2.56 83.98±2.35 92.77±1.68 92.97±1.59

1 12 -0.80 -0.60 84.65±1.82 84.98±2.11 83.30±2.03 83.80±1.96 92.74±1.63 92.90±1.58

1 12 -0.80 -0.50 84.33±2.12 85.09±1.94 82.86±2.92 83.33±2.52 92.82±1.78 92.99±1.71

1 12 -0.80 -0.50 84.57±1.91 85.18±1.95 83.12±2.52 83.62±2.23 93.02±1.69 93.19±1.63

1 12 -0.80 -0.40 84.30±1.52 85.33±2.20 82.42±1.70 83.20±1.64 92.90±1.53 93.01±1.44

1 12 -0.80 -0.40 84.05±1.41 84.94±2.21 82.42±1.82 83.01±1.57 92.92±1.57 93.05±1.46

1 12 -0.80 -0.30 84.23±1.66 85.00±1.84 82.54±1.99 83.19±1.89 92.87±1.22 93.03±1.15

1 12 -0.80 -0.30 84.30±1.38 85.64±1.53 82.33±2.16 83.10±1.72 93.14±1.40 93.27±1.32

1 12 -0.80 -0.20 84.46±1.62 85.23±1.53 82.63±1.94 83.39±1.87 92.85±1.15 92.98±1.07

1 12 -0.80 -0.20 84.26±1.58 85.56±1.83 82.18±1.88 83.05±1.82 92.96±1.30 93.11±1.25

1 12 -0.80 -0.10 83.69±0.93 84.36±1.98 81.99±0.32 82.65±0.67 92.33±1.16 92.44±1.28

1 12 -0.80 -0.10 83.42±1.18 84.76±1.61 81.21±1.44 82.10±1.39 92.74±0.96 92.85±0.96

1 12 -0.80 0.10 81.87±1.80 82.34±2.45 80.32±1.48 80.80±1.69 90.48±2.20 90.59±2.21

1 12 -0.80 0.10 82.39±1.66 82.48±1.35 80.87±2.25 81.35±1.99 90.82±1.77 90.87±1.86

1 12 -0.80 0.20 81.33±2.44 81.99±2.04 79.28±3.06 79.92±3.00 90.08±1.91 90.21±1.93

1 12 -0.80 0.20 81.08±2.25 81.50±2.14 79.16±2.70 79.76±2.64 89.78±1.94 89.90±1.97

1 12 -0.80 0.30 80.32±1.87 80.76±2.18 78.45±1.95 79.00±1.98 88.72±1.82 88.61±2.11

1 12 -0.80 0.30 79.55±1.02 79.72±1.23 78.22±1.77 78.42±1.32 88.34±1.65 88.22±1.85

1 12 -0.80 0.40 77.65±3.37 78.93±1.57 75.15±4.83 75.37±5.30 86.89±1.51 87.04±1.63

1 12 -0.80 0.40 78.07±2.81 79.33±1.61 75.53±4.00 75.93±4.22 87.00±1.53 87.14±1.61

1 12 -0.80 0.50 77.51±2.91 78.32±3.86 75.04±2.90 75.65±3.12 86.13±3.08 86.21±3.24

1 12 -0.80 0.50 77.33±2.74 77.67±2.78 75.09±3.15 75.59±3.17 85.76±2.27 85.88±2.52
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J.2 GENERALIZABILITY OF HYPERPARAMETERS

We transfer the key hyperparameters obtained from HM-BiTCN—such as the fusion coefficients
(a, b), and segment length (n)—to other baseline models. This experiment evaluates whether
these hyperparameters retain effectiveness when applied to different architectures, indicating their
robustness and broader applicability.

Table 15: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

APAVA
(2-Classes)
Reproduced

Autoformer 73.18±7.33 73.87±6.72 73.01±6.10 72.40±7.03 81.64±7.24 81.10±7.75

Autoformer + CIF 75.96±2.68 76.33±3.47 75.11±1.10 74.97±1.90 83.42±1.99 83.15±2.63

Crossformer 72.76±2.04 79.64±2.45 67.41±2.62 66.88±3.61 71.81±4.06 71.64±3.74

Crossformer + CIF 82.32±2.60 85.35±1.83 79.21±3.17 80.29±3.30 90.39±1.58 90.02±1.47

FEDformer 75.16±1.67 74.98±0.69 73.34±2.97 73.50±2.90 83.89±1.54 83.27±1.62

FEDformer + CIF 77.20±2.17 76.97±2.07 77.02±2.60 76.55±2.40 86.70±1.73 86.53±1.76

Informer 72.20±2.78 73.92±4.80 68.48±2.51 68.74±2.70 70.14±3.43 70.84±3.80

Informer + CIF 79.78±2.07 82.29±3.03 76.55±2.05 77.53±2.23 78.56±1.33 78.58±1.14

iTransformer 74.55±1.66 74.77±2.10 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57

iTransformer + CIF 74.95±0.87 74.40±0.75 73.79±1.78 73.81±1.43 84.30±0.88 82.49±0.96

MTST 69.24±1.24 75.87±2.80 63.28±1.81 61.62±2.75 66.09±3.27 68.08±2.93

MTST + CIF 76.20±2.39 81.46±1.11 71.67±3.06 72.06±3.73 77.65±3.37 77.98±2.73

Nonformer 71.81±4.20 71.31±4.40 70.15±3.38 70.38±3.74 71.54±2.73 72.79±2.50

Nonformer + CIF 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08

Reformer 78.42±2.85 80.89±4.52 75.20±2.28 76.09±2.54 75.48±2.79 77.52±2.64

Reformer + CIF 81.51±0.57 84.90±0.86 78.18±0.60 79.32±0.64 79.10±2.50 80.77±2.21

Transformer 75.53±4.28 76.90±5.05 72.14±4.87 72.64±5.44 72.30±6.04 73.04±7.15

Transformer + CIF 77.96±2.82 79.34±3.86 75.07±2.52 75.87±2.73 74.75±1.62 74.76±2.33

Medformer 77.85±2.42 80.31±3.21 74.38±2.49 75.21±2.67 80.85±3.80 81.62±3.24

Medformer + CIF 81.06±1.58 82.97±2.23 78.26±1.52 79.23±1.65 85.74±1.85 86.32±1.48

MedGNN 77.40±5.77 82.77±4.46 73.24±7.06 73.29±9.01 81.31±2.94 82.80±2.91

MedGNN + CIF 81.02±1.51 84.21±2.62 77.76±1.52 78.83±1.64 86.27±2.79 87.45±2.40

HM-BiTCN 82.49±1.40 82.38±1.79 81.20±1.32 81.60±1.39 91.10±1.63 91.30±1.71

HM-BiTCN + CIF 85.16±1.55 84.76±1.62 85.33±1.27 84.82±1.49 94.06±1.07 94.21±0.99

Table 16: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

TDBrain
(2-Classes)
Reproduced

Autoformer 90.38±3.03 91.16±2.42 90.38±3.03 90.31±3.09 95.83±2.14 95.43±2.31

Autoformer + CIF 93.42±2.49 93.71±2.27 93.42±2.49 93.40±2.51 97.46±1.08 97.21±1.15

Crossformer 82.15±2.60 82.81±2.11 82.15±2.60 82.04±2.70 91.20±2.23 91.47±2.16

Crossformer + CIF 89.40±1.26 89.83±1.18 89.40±1.26 89.37±1.27 96.76±0.62 96.80±0.62

FEDformer 77.60±1.23 78.25±1.52 77.60±1.23 77.48±1.19 86.31±1.23 86.48±1.36

FEDformer + CIF 78.87±1.94 79.19±2.00 78.88±1.94 78.82±1.94 88.12±1.87 88.39±1.92

Informer 88.42±2.99 89.01±2.45 88.42±2.99 88.36±3.05 96.54±0.90 96.66±0.85

Informer + CIF 89.38±1.66 89.71±1.37 89.38±1.66 89.35±1.68 96.92±0.66 97.03±0.64

iTransformer 74.69±1.02 74.76±1.04 74.69±1.02 74.67±1.02 83.35±1.24 83.65±1.41

iTransformer + CIF 72.79±1.12 72.89±1.16 72.79±1.12 72.76±1.11 81.08±1.03 81.31±0.93

MTST 77.67±3.58 78.97±4.37 77.67±3.58 77.45±3.55 86.47±4.84 84.99±6.43

MTST + CIF 87.21±1.99 87.30±2.06 87.21±1.99 87.20±1.99 94.14±1.83 93.24±2.63

Nonformer 88.10±2.39 88.76±1.74 88.10±2.39 88.04±2.47 96.56±0.91 96.36±1.21

Nonformer + CIF 88.00±2.06 88.91±1.68 88.00±2.06 87.92±2.12 97.10±1.10 97.17±1.09

PatchTST 77.98±2.64 79.30±3.73 77.98±2.64 77.76±2.65 86.67±4.03 84.93±5.47

PatchTST + CIF 79.58±0.86 80.22±0.82 79.58±0.86 79.47±0.88 87.20±1.57 85.81±1.17

Reformer 88.50±2.30 89.01±1.80 88.50±2.30 88.45±2.35 96.10±0.63 96.19±0.55

Reformer + CIF 89.08±1.19 89.47±0.70 89.08±1.19 89.05±1.23 96.88±0.35 97.00±0.35

Transformer 85.13±1.86 86.39±1.56 85.13±1.86 84.99±1.93 95.61±1.05 95.63±0.91

Transformer + CIF 89.96±1.57 90.53±1.26 89.96±1.57 89.92±1.60 97.73±0.45 97.77±0.46

Medformer 88.77±1.24 88.91±1.11 88.77±1.24 88.76±1.25 96.38±0.34 96.44±0.30

Medformer + CIF 90.88±0.87 90.94±0.81 90.88±0.87 90.87±0.87 97.39±0.30 97.46±0.28

HM-BiTCN 84.90±2.60 86.02±2.00 84.90±2.60 84.76±2.74 93.94±1.92 94.20±1.85

HM-BiTCN + CIF 93.13±1.41 93.33±1.37 93.13±1.41 93.12±1.42 98.62±0.66 98.68±0.63
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Table 17: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

ADFTD
(3-Classes)
Reproduced

Autoformer 46.90±2.89 45.59±2.37 44.91±2.23 44.34±2.52 63.49±2.44 45.63±2.29

Autoformer + CIF 45.92±2.78 44.81±2.44 44.66±2.25 44.26±2.38 62.69±2.21 44.93±2.68

Crossformer 50.18±1.97 45.97±1.84 46.30±1.73 45.90±1.84 66.68±1.67 48.65±1.89

Crossformer + CIF 54.58±1.22 47.85±0.67 48.96±0.89 48.22±0.72 69.10±1.05 52.23±0.98

FEDformer 45.75±0.78 45.71±1.29 44.27±1.28 43.51±1.00 62.64±1.64 45.88±1.35

FEDformer + CIF 48.63±1.99 46.97±1.58 46.87±1.63 46.69±1.54 65.56±2.14 48.30±2.30

Informer 48.42±1.99 46.94±1.60 46.41±0.99 45.76±0.43 65.99±1.14 47.49±1.07

Informer + CIF 50.12±0.66 47.23±0.47 46.77±0.39 46.62±0.38 65.13±0.52 46.84±0.54

iTransformer 52.85±1.36 46.97±1.05 47.31±1.03 46.84±0.78 67.46±0.96 49.90±0.89

iTransformer + CIF 50.76±0.50 47.11±0.67 47.29±0.59 47.10±0.66 67.00±0.55 49.60±0.69

MTST 45.77±1.70 44.39±1.73 43.70±1.82 43.36±1.98 61.38±1.57 44.01±1.60

MTST + CIF 46.36±0.93 45.04±0.65 45.47±0.88 44.87±0.81 63.57±1.24 47.35±1.36

Nonformer 50.81±1.06 48.71±1.40 48.55±1.47 48.36±1.38 66.95±1.54 48.08±1.82

Nonformer + CIF 51.81±2.11 49.93±0.81 49.66±0.36 49.10±0.57 68.59±0.60 50.44±0.94

Reformer 51.28±2.60 49.68±2.75 49.64±2.02 48.45±2.06 69.20±2.53 51.74±3.24

Reformer + CIF 52.50±0.91 52.10±2.91 49.01±2.74 47.53±4.23 68.25±1.79 50.44±2.59

Transformer 50.53±0.94 49.31±0.87 48.57±1.23 48.42±1.28 67.98±0.90 49.07±1.35

Transformer + CIF 52.84±2.50 51.27±2.33 51.53±2.37 51.10±2.21 70.25±2.42 52.35±2.94

Medformer 53.70±1.18 51.51±1.32 50.49±1.48 50.35±1.53 70.48±1.17 50.91±1.13

Medformer + CIF 55.88±0.82 51.91±1.90 50.80±1.63 50.29±1.92 70.45±1.33 53.73±1.70

MedGNN 50.22±3.21 48.65±3.72 47.50±4.57 47.33±4.40 67.18±4.39 48.84±4.11

MedGNN + CIF 54.89±1.23 51.57±1.57 51.46±1.68 50.85±2.05 71.98±1.59 53.89±1.73

HM-BiTCN 52.05±2.22 50.45±3.00 50.40±2.55 49.48±2.70 69.43±2.84 50.99±3.15

HM-BiTCN + CIF 58.56±0.93 55.65±0.81 55.86±0.79 55.42±0.82 76.07±0.59 59.75±0.67

Table 18: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

PTB
(2-Classes)

Autoformer 71.99±2.74 69.60±3.85 61.50±4.23 61.43±5.07 74.29±1.89 70.26±2.00

Autoformer + CIF 77.71±0.63 77.15±1.29 70.32±1.62 71.77±1.60 81.20±4.15 78.13±4.80

Crossformer 78.06±3.44 81.53±3.13 68.62±5.63 69.76±6.53 88.31±2.07 85.81±2.43

Crossformer + CIF 84.55±4.80 85.96±3.63 78.64±7.49 80.25±7.89 92.17±2.99 91.16±3.70

FEDformer 74.54±2.27 77.99±4.10 63.14±3.29 63.28±4.36 84.63±4.27 80.91±5.55

FEDformer + CIF 77.93±1.86 80.65±3.50 68.59±2.20 70.23±2.63 86.00±3.51 83.42±4.76

Informer 79.59±0.65 83.33±0.77 70.58±0.95 72.58±1.08 92.77±0.48 90.89±0.57

Informer + CIF 83.63±2.32 85.31±1.80 77.28±3.67 79.37±3.45 93.87±0.48 92.29±0.63

iTransformer 83.43±1.19 88.06±1.47 75.64±1.55 78.29±1.70 91.38±1.41 91.08±1.30

iTransformer + CIF 81.62±2.96 87.48±2.03 72.74±4.41 74.99±4.91 90.25±3.29 89.80±3.28

MTST 75.53±2.45 78.72±1.87 64.78±4.06 65.30±4.81 87.76±4.09 83.60±3.92

MTST + CIF 81.80±1.60 84.19±2.05 74.28±2.05 76.52±2.25 91.30±2.48 88.41±3.30

Nonformer 78.93±1.46 82.48±1.53 69.68±2.15 71.50±2.56 90.54±0.59 87.78±1.46

Nonformer + CIF 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08

PatchTST 75.28±2.44 77.05±2.44 64.86±4.05 65.41±5.28 88.11±2.59 82.65±2.87

PatchTST + CIF 80.80±1.90 82.46±1.75 73.23±2.81 75.24±2.95 92.45±0.91 88.23±1.61

Reformer 78.11±1.65 82.70±0.80 68.17±2.68 69.68±3.34 90.77±1.56 88.14±1.20

Reformer + CIF 81.95±2.09 84.63±1.07 74.44±3.53 76.55±3.64 93.36±0.87 91.53±1.05

Transformer 76.43±1.98 81.25±1.15 65.64±3.29 66.44±4.39 90.21±1.24 87.28±1.49

Transformer + CIF 78.80±2.44 82.45±2.36 69.42±3.62 71.10±4.33 92.50±1.17 89.07±1.39

Medformer 80.99±0.75 83.01±0.72 73.35±1.16 75.47±1.21 93.10±1.18 90.69±1.04

Medformer + CIF 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92

HM-BiTCN 81.87±1.87 86.50±1.24 73.49±2.90 75.84±3.20 94.20±0.29 93.04±0.45

HM-BiTCN + CIF 88.29±1.45 90.66±1.48 83.21±2.02 85.59±1.96 94.28±0.93 93.78±1.11

During the process of transferring the optimized CIF hyperparameter configurations from the HM-
BiTCN architecture to other model structures, we observed significant improvements in performance
across most models and evaluation metrics. This result strongly demonstrates that the CIF module
not only exhibits high generalizability but also possesses well-transferable hyperparameters that can
be effectively adapted to various architectures. These hyperparameters enhance feature extraction
and representation capabilities across different model designs. This finding further highlights the
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potential of the CIF architecture in diverse tasks and provides valuable insights for future model
design and parameter sharing.

J.3 FINE-TUNING TRANSFERRED PARAMETERS

For models where the transferred hyperparameters from HM-BiTCN do not yield optimal results, we
perform additional fine-tuning. This step investigates the adaptability of CIF-related parameters and
explores how they can be optimized for other model structures.

Table 19: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

TDBrain
(2-Classes)
Reproduced

iTransformer 74.69±1.02 74.76±1.04 74.69±1.02 74.67±1.02 83.35±1.24 83.65±1.41

iTransformer + CIF(HM-BiTCN) 72.79±1.12 72.89±1.16 72.79±1.12 72.76±1.11 81.08±1.03 81.31±0.93

iTransformer + CIF(New) 76.10±0.76 76.16±0.75 76.10±0.76 76.09±0.76 84.79±1.15 85.13±1.11

Nonformer 88.10±2.39 88.76±1.74 88.10±2.39 88.04±2.47 96.56±0.91 96.36±1.21

Nonformer + CIF(HM-BiTCN) 88.00±2.06 88.91±1.68 88.00±2.06 87.92±2.12 97.10±1.10 97.17±1.09

Nonformer + CIF (New) 88.67±1.30 89.34±0.93 88.67±1.30 88.61±1.33 96.89±0.31 96.91±0.37

Table 20: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

ADFTD
(3-Classes)
Reproduced

Autoformer 46.90±2.89 45.59±2.37 44.91±2.23 44.34±2.52 63.49±2.44 45.63±2.29

Autoformer + CIF((HM-BiTCN)) 45.92±2.78 44.81±2.44 44.66±2.25 44.26±2.38 62.69±2.21 44.93±2.68

Autoformer + CIF(New) 48.49±1.31 46.42±1.07 45.39±1.80 44.94±1.97 63.75±1.46 46.10±1.84

iTransformer 52.85±1.36 46.97±1.05 47.31±1.03 46.84±0.78 67.46±0.96 49.90±0.89

iTransformer + CIF(HM-BiTCN) 50.76±0.50 47.11±0.67 47.29±0.59 47.10±0.66 67.00±0.55 49.60±0.69

iTransformer + CIF(New) 53.93±1.52 48.44±0.89 49.13±1.17 48.56±0.84 68.70±0.94 50.88±1.20

Reformer 51.28±2.60 49.68±2.75 49.64±2.02 48.45±2.06 69.20±2.53 51.74±3.24

Reformer + CIF(HM-BiTCN) 52.50±0.91 52.10±2.91 49.01±2.74 47.53±4.23 68.25±1.79 50.44±2.59

Reformer + CIF(New) 53.11±1.71 52.14±1.42 52.42±1.90 51.73±2.01 70.47±1.64 51.88±1.92

Medformer 53.70±1.18 51.51±1.32 50.49±1.48 50.35±1.53 70.48±1.17 50.91±1.13

Medformer + CIF(HM-BiTCN) 55.88±0.82 51.91±1.90 50.80±1.63 50.29±1.92 70.45±1.33 53.73±1.70

Medformer + CIF(New) 55.21±1.42 52.84±2.36 52.60±2.26 52.43±2.65 72.11±2.42 54.10±3.09

Table 21: Results of Subject-Independent Setup. Green cells indicate performance improvement
with CIF.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

PTB
(2-Classes)
Reproduced

iTransformer 83.43±1.19 88.06±1.47 75.64±1.55 78.29±1.70 91.38±1.41 91.08±1.30

iTransformer + CIF(HM-BiTCN) 81.62±2.96 87.48±2.03 72.74±4.41 74.99±4.91 90.25±3.29 89.80±3.28

iTransformer + CIF(New) 83.56±1.15 86.00±1.03 76.78±1.94 79.10±1.87 90.40±0.75 89.80±0.93

Nonformer 78.93±1.46 82.48±1.53 69.68±2.15 71.50±2.56 90.54±0.59 87.78±1.46

Nonformer + CIF(HM-BiTCN) 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08

Nonformer + CIF(New) 80.46±2.20 84.22±2.44 71.79±3.10 73.89±3.50 92.74±0.97 90.30±1.26

Medformer 80.99±0.75 83.01±0.72 73.35±1.16 75.47±1.21 93.10±1.18 90.69±1.04

Medformer + CIF(HM-BiTCN) 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92

Medformer + CIF(New) 83.98±0.81 85.21±0.62 78.00±1.30 80.11±1.22 93.32±0.97 90.97±1.69

For models that did not initially benefit from the direct transfer of CIF hyperparameters optimized for
HM-BiTCN, we conducted further fine-tuning of the key CIF parameters. The results demonstrate
that, after targeted adjustment, these models also achieved notable performance improvements. This
process not only reinforces the adaptability of the CIF architecture across diverse models but also
highlights the high tunability and flexibility of its hyperparameters. By appropriately modifying the
number of selected channels, fusion direction, and scaling factors, as shown in Tables 15, 16, 17, 18
and Figures 11, 12, 13, 14, CIF can be effectively tailored to different network structures, thereby
maximizing its strengths in feature modeling and discriminative capability.
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Figure 11: Performance improvement on the APAVA dataset using the CIF method.
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Figure 12: Performance improvement on the TDBRAIN dataset using the CIF method.
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Figure 13: Performance improvement on the PTB dataset using the CIF method.
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Figure 14: Performance improvement on the ADFTD dataset using the CIF method.
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K LIMITATIONS AND FUTURE WORK

Limitations:

Biomedical time series exhibit complex modal characteristics, which lead to significant efficiency
bottlenecks when manually adjusting the prior parameters (t, n, a, b) with clear medical interpretations
in the CIF model based on empirical experience. This limitation highlights the urgent need for
developing novel automated hyperparameter optimization frameworks.

Future Work:

We plan to explore a more universal and generalizable time-series analysis approach, incorporating
domain knowledge, structural modeling, and automated hyperparameter optimization. This inte-
gration should foster both deeper theoretical insights and stronger practical applicability, providing
robust solutions for real-world medical problems.

Furthermore, incorporating domain-specific prior knowledge into medical time-series analysis can
more precisely reveal and model relationships between channels. By integrating medical expertise,
clinical experience, and existing pathological data, the interpretability and predictive performance
of models can be enhanced, thereby supporting clinical decision-making and interventions. On
this basis, frequency-domain analysis Hu et al. (2025); Nason & Sachs (1999); Yi et al. (2025)
offers an additional perspective: by applying Fourier transform or wavelet decomposition to the
signals, physiological features at different frequency components can be identified, revealing patterns
that are difficult to capture in the time domain. This is particularly valuable for noise reduction,
extraction of periodic signals, and detection of pathological events, and can also provide richer feature
representations for model inputs. Future research could further explore how to combine time-domain
and frequency-domain information, integrating domain priors to improve the accuracy and robustness
of intelligent medical analytics.

Finally, we must acknowledge that the development trends in the field of artificial intelligence
highlight the importance of architectural innovation. Future research should focus on designing
novel architectures that align more closely with the CIF method, combining the strengths of existing
models. For example, the local feature extraction capabilities of CNNs LeCun et al. (1989), the
temporal stability of TCNs Bai et al. (2018) for long sequences, the long-term dependency modeling
of RNNs Rumelhart et al. (1986) and LSTMs Hochreiter & Schmidhuber (1997), the global modeling
efficiency of Transformers Vaswani et al. (2017), the resource-efficient computation of Mamba Gu &
Dao (2023), and the hybrid recurrence-attention structure of RWKV Peng et al. (2023). By adapting
and integrating these methods, we aim to build a powerful model that is not only deeply compatible
with the CIF framework but also capable of efficiently handling complex medical time-series data.

L BROADER IMPACTS

In this study, we take the first step toward a paradigm shift in medical time-series analysis, transition-
ing from a focus on model architecture improvements to emphasizing the intrinsic structure of the
data. Our experimental results, which outperform several state-of-the-art methods across multiple
datasets, validate the effectiveness of this approach. We emphasize that uncovering the essential
characteristics in medical time-series data is a valuable research direction, particularly given the
critical need for model interpretability in medical applications. However, practitioners should be
cognizant of the method’s limitations.
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